八年级数学竞赛例题专题讲解9:二次根式的概念与性质
八年级数学实数之二次根式知识点总结
一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。
例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。
② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。
③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。
④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。
注:对于商的算术平方根,最后结果一定要进行分母有理化。
⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。
⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。
判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。
⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。
二次根式的概念和性质ppt课件
又 ∵ a+2 +|3b-9|+(4-c) 2=0,
∴ a+2=0 , 3b-9=0 ,4-c=0 。
∴ a= -2 , b= 3 ,c= 4。
∴ 2 a -b + c = 2 × (精-选2 p)pt-课3件+ 4 = -3 。
17
二次根式的双重非负性解析
经常作为隐含条件,是解题的关键
例 已知 x 1 y 3 0,求x+y的值
1.表示a的算术平方根
2. a可以是数,也可以是式.
3. 形式上含有二次根号
4. a≥0, a≥0 ( 双重非负性)
5.既可表示开方运算,也可表示运算的结果.
精选ppt课件
6
例1 : 判断,下列各式中那些是二次根式?
a 10, 00..0044,, a a2 , 2 ,
5,
aa , , 3 8 .
成一个数的平方的形式。如 4= 4 2 。
试一试(4)把下列各数写成平方的形式:
2
3=
3 2,
5 2
5 2
0.04
2
0.04
精选ppt课件
24
( a)2a (a0) 面积a a
2
(
2 )2 7
7
a
( 2 1 )2 2 1
3
3
( 5)2 5
(
2 )2 -
3
2 3
精选ppt课件
25
( 2 x ) 2 ( 3 y ) 2 2 x 3 y 2 x 3 y
精选ppt课件
41
练习.在实数范围内分解因式
(1) 3x2 15
(2) 2a24b2
精选ppt课件
42
二次根式—2024全国初中数学重点高中自招竞赛试题精选精编
二次根式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)4+15+4-15=.【答案】10【分析】本题考查二次根式的运算,将式子进行平方,运用完全平方公式展开后化简,即可解答.【详解】∵4+15+4-152=4+152+24+15⋅4-15+4-152=4+15+216-15+4-15=8+2=10,又4+15>0,4-15>0∴4+15+4-15=10.故答案为:10.2(2024·全国·九年级竞赛)已知x为实数,则x-2+4-x的最大值为.【答案】2【分析】本题考查二次根式有意义的条件和配方法,掌握被开方数为非负数和配方法是解题关键.先确定x的取值范围,然后利用配方法分析其最值.【详解】解:由题意可得x-2≥04-x≥0,解得2≤x≤4,令y=x-2+4-x y≥0,则y2=x-2+4-x2=x-2+2x-24-x+4-x=2+2-x2+6x-8=2+2-x-32+1∵0≤-x-32+1≤1∴y2的最大值为4,∴y的最大值为2,即x-2+4-x的最大值为2.故答案为:2.3(2024·全国·八年级竞赛)定义一种新的运算“@”:x@y=ax+by,其中a、b为常数,且使得等式a-2-8-4a+a b=12恒成立,那么2@3=.【答案】1【分析】本题考查了二次根式的意义,幂的运算,求代数式的值,正确理解二次根式的意义是解答本题的关键.先根据二次根式的意义列出不等式组并求解,得到a=2,再代入方程求出b的值,从而得到x@y=2x -y,依此即可求得答案.【详解】根据题意得a-2≥08-4a≥0 ,∴a≥2 a≤2 ,∴a=2,将a=2代入a-2-8-4a+a b=12得0-0+2b=12,解得b=-1,∴x@y=2x-y,∴2@3=2×2-3=1.故答案为:1.4(2024·全国·八年级竞赛)计算:2+520172-52017=.【答案】-1【分析】本题主要考查了分式混合运算,平方差公式和积的乘方运算,解题的关键是熟练掌握运算法则,准确计算.根据相关的运算法则进行计算即可.【详解】解:2+520172-52017=2+52-52017=4-52017=-12017=-1.故答案为:-1.5(2024·全国·八年级竞赛)若不等式x+4+x-1≥a-x-2-2对任意实数x都成立,则a的最大值为.【答案】8【分析】本题考查了绝对值不等式的解法,根据题设借助绝对值的几何意义得x+4+x-2有最小值为6,又由x-1≥0得出当x=1时,x+4+x-2+x-1的最小值为6,然后由不等式恒成立即可求解.【详解】解:x+4+x-1≥a-x-2-2,∴x+4+x-2+x-1≥a-2当-4≤x≤2时,x+4+x-2有最小值为6,∵x-1≥0,∴当x=1时,x+4+x-2+x-1的最小值为6,∴6≥a-2,∴解得a≤8,∴a的最大值为8,故答案为:8.6(2024·全国·八年级竞赛)计算12×1327+75+313-48-24-3232=.【答案】12【分析】本题考查了二次根式的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,解题的关键是掌握运算法则.【详解】解:原式=23×13×33+53+3×33-43-26-3×632=23×33-6=12.7(2024·全国·八年级竞赛)计算:2009×2010×2011×2012+1-2009=.【答案】2010【分析】本题考查整式的混合运算、二次根式的性质,设参数计算是解答的关键.设a=2009,利用整式的混合运算法则和二次根式的性质是解答的关键.【详解】解:记a=2009,则原式=a a+1+1-aa+3a+2=a a+3+1-aa+2a+1=a2+3a+1-aa2+3a+2=a2+3a2+2a2+3a+1-a=a2+3a+12-a=a2+3a+1-a=a+12=a+1=2010,故答案为:2010.8(2024·全国·八年级竞赛)化简:-(x+1)2=.【答案】0【分析】本题考查了二次根式有意义的条件,由被开方数为非负数得到-x+12≤0,可确2≥0,即x+1定x+12=0,进而求解,掌握二次根式有意义的条件是解题的关键.【详解】解:由题意可得,-(x+1)2≥0,∴x+12≤0∴(x+1)2=0,∴-x+12=0=0,故答案为:0.9(2024·全国·八年级竞赛)已知实数x满足20122-4024x+x2+x-2013=x,则x-20122=.【答案】2013【分析】本题考查了二次根式有意义的条件,二次根式的性质,熟练掌握各知识点是解答本题的关键.先根据二次根式有意义的条件求出x的取值范围,再根据二次根式的性质化简得x-2013=2012,然后两边平方即可求解.【详解】解:∵x-2013≥0,∴x≥2013,∴x>2012.∵20122-4024x+x2+x-2013=x,∴2012-x2+x-2013=x,∴2012-x+x-2013=x,∴x-2012+x-2013=x,∴x-2013=2012,即x-2013=20122,故x-20122=2013.故答案为:2013.10(2024·全国·八年级竞赛)计算:1+20092+2009220102-12010=.【答案】2009【分析】本题考查了完全平方公式和二次根式化简,熟练巧用完全平方公式是解本题的关键;首先化简为完全平方公式形式,然后根据二次根式开方即可解答.【详解】解:1+20092+20092 20102-12010=1+2010-12+20092 20102-12010=1+20102-2×2010+1+2009220102-1 2010=20102-2×2010+2+200920102-12010=20102-2×2010-1+200920102-12010=20102-2×2009+200920102-12010=2010-200920102-12010=2010-20092010-1 2010=2009.故答案为:2009.11(2024·全国·八年级竞赛)5+26+5-26=.【答案】23【分析】本题考查二次根式的化简,熟练利用完全平方公式化简二次根式是解本题的关键.把原式化为3+22+3-22,再利用二次根式的性质化简即可.【详解】解:5+26+5-26=3+22+3-22=3+2+3-2=23,故答案为:23.12(2024·全国·八年级竞赛)计算:(π+999)0-12+-3+8+(-1)3+(2+1)23-22=.【答案】22-3+1【分析】本题主要考查了二次根式的运算,先将二次根式化简,再根据二次根式的运算法则计算即可.【详解】原式=1-23+3+22-1+(3+22)(3-22)=22-3+(9-8)=22-3+1.故答案为:22-3+1.13(2024·全国·九年级竞赛)已知正整数a、b满足等式a+b=369,则a-b=.【答案】123或-123【分析】本题考查了二次根式的加减运算,掌握二次根式的运算法则是解题的关键.先把369化成最简二次根式,再把满足正整数a、b的所有值列举出来代入计算即可.【详解】解:∵369=341,正整数a、b满足等式a+b=369,∴a=41,b=241,即a=41,b=164,或a=241,b=41,即a=164,b=41,∴a-b=41-164=-123或a-b=164-41=123,故答案为:123或-123.14(2024·全国·七年级竞赛)计算:1-2=.+2-3+⋅⋅⋅+2016-2017+3-4【答案】2017-1/-1+2017【分析】本题主要考查了二次根式混合运算,解题的关键是根据绝对值的意义,去掉绝对值,然后根据二次根式加减运算法则进行计算即可.【详解】解:1-2+⋯+2016-2017+3-4+2-3=2-1+3-2+4-3+⋯+2017-2016=2017-1.故答案为:2017-1.15(2024·全国·九年级竞赛)计算:9+18-27=.【答案】3+32-33【分析】本题考查二次根式的加减运算,理解二次根式的性质,准确化简各数是解题关键.直接根据二次根式的性质化简即可.【详解】解:9+18-27=3+32-33故答案为:3+32-33.16(2024·全国·八年级竞赛)若实数a满足a-8+a-2015=a,则a=.【答案】2079【分析】本题考查二次根式有意义的条件、绝对值的化简、算术平方根,熟知二次根式有意义的条件是解答的关键.先求得a≥2015,则a-8=a-8,进而得到a-2015=8,然后求解即可.【详解】解:依题意得a-2015≥0,则a≥2015,∴a-8=a-8,∴原式化为a-8+a-2015=a,即a-2015=8,得a-2015=64,∴a=2079.故答案为:2079.17(2024·全国·八年级竞赛)已知-2<x<3,则x2-6x+9-x2+4x+4化简为.【答案】1-2x【分析】先判断出x-3<0,x+2>0,再根据二次根式的性质化简原式即可.此题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键.【详解】解:∵-2<x<3,∴x-3<0,x+2>0,∴x2-6x+9-x2+4x+4=x-32-x+22=x-3-x+2=3-x-x-2=1-2x故答案为:1-2x二、单选题18(2021·全国·九年级竞赛)设n,k为正整数,A1=(n+3)(n-1)+4,A2=(n+5)A1+4,A3= (n+7)A2+4,A4=(n+9)A3+4,⋯,A k=(n+2k+1)A k-1+4,⋯,已知A100=2005,则n的值为( ).A.1806B.2005C.3612D.4100【答案】A【详解】A1=[(n+1)+2][(n+1)-2]+4=(n+1)2-22+4=(n+1)2=n+1,A2=[(n+3)+2][(n+3)-2]+4=(n+3)2-22+4=(n+3)2=n+3,A3=[(n+5)+2][(n+5)-2]+4=(n+5)2-22+4=(n+5)2=n+5,同理A4=n+7,A5=n+9,⋯,A100=n+2×100-1=n+199=2005⇒n=2005-199=1806.故选:A.19(2011·湖北黄冈·九年级竞赛)设a、b是整数,方程x2+ax+b=0的一根是4-23,则a2+b2 ab的值为()A.2B.0C.-2D.-1【答案】C【分析】先化简4-23,再代入方程x2+ax+b=0并整理,根据题意列出二元一次方程组并求解求得a 和b的值,再代入计算即可.【详解】解:4-23=32-23+1==3-12=3-1.∵方程x2+ax+b=0的一根是4-23,∴4-232+4-23a+b=0.∴3-12+3-1a+b=0.∴a-23+4-a+b=0.∵a、b是整数,∴a-2=0,4-a+b=0.解得a=2, b=-2.∴a2+b2ab =22+-222×-2=-2.故选:C.【点睛】本题考查二次根式的化简,一元二次方程的解,二元一次方程组的应用,正确构造二元一次方程组是解题关键.20(2024·全国·八年级竞赛)若二次根式x-2在实数范围内没有意义,则x的取值范围是() A.x<2 B.x≤2 C.x>2 D.x≥2【答案】A【分析】此题主要考查了二次根式有意义的条件,根据二次根式没有意义的条件可得x-2<0,再解不等式即可,关键是掌握二次根式中的被开方数是非负数.【详解】解:二次根式x -2在实数范围内没有意义,∴x -2<0,解得:x <2故选:AD .21(2024·全国·八年级竞赛)已知13-7的整数部分是m ,小数部分是n ,则m m +7n +mn 的值为()A.10B.7C.6D.4【答案】A【分析】本题考查了无理数的估算,分母有理化,代数式求值,先根据无理数的估算求出m ,n 的值,再代入进行求解即可.【详解】解:13-7=3+73+7 3-7=3+72,∵4<7<9,∴2<7<3,∴2.5<3+72<3,∴m =2,n =3+72-2,∴m m +7n +mn =22+7×3+72-2+2×3+72-2 =10,故选:A .22(2024·全国·九年级竞赛)若1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,则ab的值为()A.18B.8C.2D.92【答案】B【分析】本题考查了根与系数的关系.先整理成一般式,利用根与系数的关系分另求得b 和a 的值,再代入求解即可.【详解】解:方程a (x -b )2=7整理得ax 2-2abx +ab 2-7=0,∵1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,∴1+72+1-72=1=--2ab a =2b ,∴b =12,1+72⋅1-72=-32=ab 2-7a ,∴-32=12 2-7a ,∴a =4,∴a b=412=8.故选:B .23(2024·全国·八年级竞赛)已知75m 是整数,则满足条件的最小正整数m =( ).A.5B.0C.3D.75【答案】C【分析】此题考查了无理数与有理数的联系,根据二次根式的定义进行解答,解题的关键是正确理解75m 什么情况下为正整数.【详解】解:∵75m =52×3m ,∴3m 是一个平方数,∴正整数m 最小是3,故选:C .24(2021·全国·九年级竞赛)已知实数a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,则bb a+aa b的值为()A.23 B.-23C.-2D.-13【答案】B【分析】由题意可得a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,根据根与系数的关系可得a +1+b +1=-3,a +1 b +1 =-3,整理可得a +b =-5,ab =1,即得a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,然后把所求的式子变形后整体代入即可求解.【详解】解:∵a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,∴a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,∴a +1+b +1=-3,a +1 b +1 =-3,整理,得a +b =-5,ab =1,∴a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,∴b b a +aa b =-b a ab -a b ab =-b a -a b =-a 2+b 2ab=-23;故选:B .【点睛】本题考查了一元二次方程根与系数的关系,二次根式的化简求值,由题意得出a +b =-5,ab =1,是解题的关键.三、解答题25(2024·全国·八年级竞赛)若m 满足关系式2x +3y +4x +5y -m =x -2012+y +2012-x -y ,求m 的值.【答案】4024【分析】本题考查了非负数的性质以及二次根式有意义的条件,得到x +y =2012是关键.根据二次根式的性质:被开方数是非负数求得2x +3y +4x +5y -m =0,然后根据非负数的性质得到关于x 和y 的方程组,然后结合x +y =2012即可求得m 的值.【详解】解:由x -2012+y ≥02012-x -y ≥0 可得x +y =2012,∴x +y =20122x +3y =04x +5y -m =0∴m =4x +5y =2x +y +2x +3y =402426(2024·全国·八年级竞赛)设等腰三角形的腰为a ,底边为b ,底边上的高为h .(1)如果a =6+3,b =6+43,求h ;(2)如果b =46+2,h =26-1,求a .【答案】(1)32;(2)52.【分析】此题考查了等腰三角形的基本性质,学会在等腰三角形中构造直角三角形从而应用勾股定理来求解.(1)知道等腰三角形、底边利用等腰三角形高的特殊性质可构成直角三角形,再应用勾股定理求解h 值;(2)知道等腰三角底边和高,同理在等腰三角形中构造直角三角形,利用勾股定理来求a 值.【详解】(1)解:在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴6+3 2=146+43 2+h 2,∴36+123+3=1436+483+48 +h 2,∴39+123=9+123+12+h 2,∴h 2=18,∴h =18=32.(2)解:同理在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴a 2=12×46+22+26-1 2∴a 2=26+1 2+26-1 2∴a 2=50,∴a =52.27(2024·全国·八年级竞赛)先化简,再求值:(2x -1)2-(3x +2)(3x -2)+(5x -4)(x +2),其中x =2.【答案】2x -3,22-3【分析】本题考查平方差公式、完全平方公式及多项式乘多项式、整式的加减,熟练掌握并灵活运用它们是本题的关键.分别利用完全平方和、平方差公式、多项式乘多项式的法则、整式加减的运算法则计算即可.【详解】解:原式=4x 2-4x +1-9x 2+4+5x 2+6x -8,=2x -3当x =2时,原式=2x -3=22-3.28(2024·全国·八年级竞赛)已知:y =3x -15+15-3x +4,求2x +y 2-2x +y 2x -y ÷2y -12y 的值.【答案】12【分析】先根据二次根式有意义的条件得出x =5,进而得出y =4,再化简求值,代入即可得出答案.【详解】解:由3x -15≥0,15-3x ≥0,∴x =5,∴y =4,∴2x +y 2-2x +y 2x -y ÷2y -12y =2x +y 2x +y -2x +y ÷2y -12y=2x+y-12y=2x+12y=12.29(2024·全国·八年级竞赛)已知a=4-15,求:(1)a-1a;(2)a5-6a4-16a3+7a2+23a-42008.【答案】(1)-6(2)1【分析】本题考查完全平方公式,无理数的估算:(1)先根据完全平方公式变形得出a+1a =8,求出a-1a2=6,再估算出0<4-15<1,即0<a<1,最后求出答案即可;(2)将式子变形,再将a2-8a+1=0代入,进而可得出答案.【详解】(1)解:a=4-15,∴a-42=15,∴a2-8a+1=0.∴a+1a=8,∴a-1a2=a+1a-2=8-2=6,∵3<15<4,∴-4<-15<-3,∴0<4-15<1,即0<a<1,∴a-1a<0,∴a-1a=-6.(2)解:∵a5-6a4-16a3+7a2+23a-4=a3a2-8a+1+2a2a2-8a+1-a a2-8a+1 -3a2-8a+1-1=0+0-0-0-1=-1,∴a5-6a4-16a3+7a2+23a-42008=-12008=1.30(2024·全国·八年级竞赛)已知△ABC的三边长分别为a,b,c,且满足a-2+b2-10b+25=0.(1)求△ABC第三边c的取值范围;(2)求△ABC的周长l的取值范围;(3)若△ABC为等腰三角形,你能求出△ABC的周长吗?【答案】(1)3<c<7(2)10<l<14(3)12【分析】本题考查二次根式的非负性,等腰三角形的定义,三角形的三边关系:(1)先根据非负性得出∴a=2,b=5,再根据三角形第三边的取值范围即可得出答案;(2)根据周长三边之和,即可得出答案;(3)当c=2时,可知不能构成三角形,当c=5时,求出三边之和即可.【详解】(1)解:a-2+(b-5)2=0,∴a=2,b=5,∵b-a<c<a+b,∴3<c<7.(2)l=a+b+c=7+c,∴10<l<14.(3)c=2时,三边长(2,2,5)不能构成三角形,舍去.∴c=5,l=2+5+5=12.11。
初二数学经典讲义 二次根式(基础)知识讲解
《二次根式》全章复习与巩固--知识讲解(基础)【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】要点一、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义. 2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 2a .(3a ,再根据绝对值的意义来进行化简.(42的异同a可以取任何实数,而2中的a 必须取非负数;a,2=a (0a ≥).相同点:被开方数都是非负数,当a2.3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.显然是同类二次根式. 要点二、二次根式的运算 1. 乘除法(1)乘除法法则: 类型 法则逆用法则二次根式的乘法0,0)a b =≥≥积的算术平方根化简公式:0,0)a b =≥≥二次根式的除法0,0)a b ≥>商的算术平方根化简公式:0,0)a b =≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如= (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).≠. 2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-. 【典型例题】类型一、二次根式的概念与性质1. 当________时,二次根式3x -在实数范围内有意义. 【答案】x ≥3.【解析】根据二次根式的性质,必须3x -≥0才有意义.【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥时a 才是二次根式. 举一反三【高清课堂:二次根式 高清ID 号:388065 关联的位置名称:填空题5】 【变式】①242x x =-成立的条件是 . ②2233x x x x--=--成立的条件是 . 【答案】① x ≤0;(2422x x x x ==-∴≤0.)② 2≤3x <.(20,30,x x -->∴≥2≤3x <)2.当0≤x <1时,化简21x x +-的结果是__________.【答案】 1.【解析】因为x ≥0,所以2x =x ;又因为x <1,即x -1<0,所以1(1)1x x x -=--=-,所以21x x +-=x +1-x =1.【总结升华】利用二次根式的性质化简二次根式,即2a =a ,同时联系绝对值的意义正确解答. 举一反三【变式】已知0a <,化简二次根式3a b -的正确结果是( ).A.a ab --B. a ab -C. a abD.a ab -【答案】A.3.下列二次根式中属于最简二次根式的是( ).1448ab44a +【答案】A.【解析】选项B :48=43;选项C :有分母;选项D :44a +=21a +,所以选A. 【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式;(2)被开方数中不含能开方的因式或因数. 类型二、二次根式的运算4.下列计算错误的是( ).A. 14772⨯=B. 60523÷=C. 9258a a a +=D. 3223-= 【答案】 D.【解析】选项A : 14714727772⨯=⨯=⨯⨯= 故正确;选项B :605605123423÷=÷==⨯=,故正确;选项C925358a a a a a +=+=故正确;选项D :32222-= 故错误.【总结升华】本题主要考查了二次根式的加减乘除运算,属于基础性考题. 举一反三 【变式】计算:48(54453)833-+⨯ 【答案】243610-.5.化简20102011(32)(32)⋅. 【答案与解析】201020102010=(32)32)(32)(32)32)32)132)3 2.⋅⋅⎡⎤=⋅⋅⎣⎦=⋅=原式【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,是一道综合运算题型.6 已知2231,12x x x x=-+求.【答案与解析】2231,1=30,(1)1313331=3x x x xx x x =+∴->∴=--++==原式当时,原式【总结升华】 化简求值时要注意x 的取值范围,如果未确定要注意分类讨论. 举一反三【高清课堂:二次根式 高清ID 号:388065关联的位置名称:计算技巧6-7】 【变式】已知a b +=-3, ab =1,求ab b a +的值. 【答案】∵a b +=-3,ab =1,∴<0a ,<0b11+==-(+)=-=3--ab ab a bb a b a ab∴+原式.。
初二数学二次根式知识点解析
二次根式的定义性质和概念如果一个数的平方等于a,那么这个数叫做a的平方根。
a可以是具体的数,也可以是含有字母的代数式。
即:若,则x叫做a的平方根,记作x= 。
其中a叫被开方数。
其中正的平方根被称为算术平方根。
关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
二次根式的性质:1.任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形势中被开方数不能有分母存在。
2.零的平方根是零,即 ;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
4.无理数可用有理数形式表示, 如: 。
二次根式的几何意义1、(a≥0)[任何一个非负数都可以写成一个数的平方的形式;利用此性质在实数范围内因式分解];2、都是非负数;当a≥0时, ;而中a取值范围是a≥0,中取值范围是全体实数。
3、c= 表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论;4、逆用可将根号外的非负因式移到括号内,如﹙a>0﹚,﹙a<0﹚﹙a≥0﹚,﹙a<0﹚5、注意: ,即具有双重非负性。
算术平方根正数a的正的平方根和零的平方根统称为算术平方根,用(a≥0)来表示。
0的算术平方根为0.开平方运算求一个非负数的平方根的运算,叫做开平方。
开平方与平方互为逆运算。
化简化简二次根式是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
最简二次根式定义概要(❶被开方数不含分母❷被开方数中不含能开得尽的因数或因式)二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。
有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式注意﹙①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式④一个二次根式可以与几个二次根式互为有理化因式﹚分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。
专题01 二次根式的概念及性质(知识精讲+综合训练)(解析版)
章节复习知识精讲与综合训练专题01 二次根式的概念及性质知识点01 二次根式的概念1、二次根式的概念(1(0a ³)叫做二次根式,读作“根号a ”,其中a 是被开方数.(2)二次根式有意义的条件是被开方数是非负数.即两个特性(双重非负性)⎩⎨⎧³³00a a 【典例分析】1.下列式子一定是二次根式的是( )ABCD【答案】.B【分析】根据二次根式的定义判断即可;【详解】A 错误;B 正确;C 错误;a 的取值范围,故D 错误;故选B .【点睛】本题主要考查了二次根式的定义应用,准确分析判断是解题的关键.2是整数,则a 能取的最小整数为( )A .0B .1C .2D .3【答案】.A【分析】首先根据二次根式有意义的条件确定a是整数,知识精讲即可求得a 能取的最小整数.【详解】解:成立,410a \+³,解得14a ³-,又\a 能取的最小整数为0,故选:A .【点睛】本题考查了二次根式有意义的条件,熟练掌握和运用次根式有意义的条件是解决本题的关键.3a 的取值范围为( )A .1a ³-B .2a ¹C .1a ³-且2a ¹D .1a >-【答案】.C【分析】二次根式有意义的条件和分式分母有意义的条件即可解得.【详解】∵∴10a +³,-20a ¹解得-1a ³且2a ¹故选:C .【点睛】此题考查了二次根式和分式有意义的条件,解题的关键是列出不等式求解.4.若2m =,则m n -=( )A .425B .254C .254-D .425-【答案】A【分析】先根据二次根式的意义求出n ,再求出m ,最后根据负整数指数幂的运算法则得到最终解答.【详解】解:由题意可得:2n -5=5-2n =0,∴52n =,m =0+0+2=2,∴n-m =225242525-æöæö==ç÷ç÷èøèø,故选A .【点睛】本题考查二次根式和负整数指数幂的综合应用,熟练掌握二次根式有意义的条件及负整数指数幂的计算方法是解题关键.5=-,则a 的取值范围是( )A .20a -££B .0a £C .a<0D .2a ³-【答案】A【分析】根据二次根式的性质列出不等式,解不等式即可解答.【详解】=-,∴020a a £+³,,∴-20a ££.故选A .【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键知识点02 二次根式的性质1、二次根式的性质(1)二次根式的性质:性质1(0)a a =³;性质2:2(0)a a =³;性质3=0a ³,0b ³);性质4=(0a ³,0b >).(2与a的关系:(0)0(0)(0)a a a a a >=-<.【典例分析】6====….请你按照规律写出第n (1n ³)个式子是()A (n=-B=C (n=+D =【答案】.C【分析】观察等式,找出规律,写出第n 个式子即可.【详解】解:由规律可得,第n 个式子为:(n =+.故选项A 、B 、D 错误,选项C 正确故选:C .【点睛】本题主要考查了二次根式,解题的关键是观察等式,找出规律.7.实数a 、b 在数轴上对应点的位置如图所示,化简b )A .2a b -+B .2b a -C .aD .B【答案】.B【分析】由数轴知,a <0<b ,得到a-b <0,进而根据二次根式的性质化简即可求解.【详解】解:∵由数轴知,a <0<b ,∴a-b <0,∴b +2b b a b a+-=-故选:B .【点睛】此题考查了利用数轴比较数的大小,化简二次根式,正确利用数轴比较数的大小是解题的关键.8.已知xy >0,化简二次根式-的正确结果( )A B C .D .【答案】.B 【分析】根据二沉池根式有意义的条件求出2x y -≥0,求出x 、y 的范围,再根据二根式的性质进行化简即可.【详解】解:由二次根式有意义的条件可得20x y ->,∵xy >0,∴x <0,y <0,∴-==故选:B.【点睛】本题考查了二次根式的性质与化简和二次根式有意义的条件,能熟记二次根式的性质是解此题的关键.9.实数a、b的结果是()A.- 2a B.2(a+b)C.2b D.- 2b【答案】.C【分析】根据数轴判断a、b、a+b与0的大小关系,然后根据二次根式的性质即可求出答案.【详解】解:由数轴可知:a<-b<0<b,∴a<0,b>0,a+b<0,∴原式=|a|+|b|-|a+b|=-a+b+(a+b)=-a+b+a+b=2b,故选:C.【点睛】本题考查二次根式的性质与化简、化简绝对值、数轴,解题的关键是熟练运用二次根式的性质,本题属于基础题型.10.实数a,b)A.2b-D.0b a-B.2a-C.22【答案】.A【分析】先根据数轴判断出a、b和a-b的符号,然后根据二次根式的性质化简求值即可.【详解】解:由数轴可知:a<0,b>0,a-b<0=a b a b---=-a -b +a -b=2b-故选A .【点睛】此题考查的是二次根式的化简,掌握利用数轴判断字母符号和二次根式的性质是解决此题的关键.123x =+,则x 取值范围为( )A .2233x -££B .203x -££C .203x ££D .23x £-或23x ³2.当1a <- )A .1-B .1C .21a +D .12a--3.已知0xy <).AB.CD .4.实数a ,b ||a b +化简的结果为( )A .aB .2a b +C .2a b-D .2a b -+5.在下列各式中,计算正确的是( )综合训练A 9=-B .3=C .(22=-D 1-6,3,…,,3,L ;若()14,,()23, )A .()64,B .()53,C .()52,D .()65,7.若实数a 、b 、c 在数轴上的对应点如图所示,( )A .a c -B .2a b c --+C .a c --D .a c-+8.下列二次根式中,是最简二次根式的是( )A B C D9.x )A .0B .1-C .2-D .3-10)A 5=±B 142=C =D 210-=-二、填空题11.对于任意两个不相等的数a ,b ,定义一种运算※如下:a b =※,例如23==※62=※____________.12.实数a ,b ___________.13)12x <<=___________.14有意义,则a 的取值范围是_____________________.15.已知等腰三角形ABC 0BC =,则此三角形的周长为___________.16.如果2、5、m _____.17=_____.18.若22m n x y --与423m n x y +是同类项,则3m n -的平方根是____________.19a =,则a =_____________.20.若3y ,则xy =________.三、解答题21.求代数式a 2022a =-.如图,小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.(1)___________的解法是错误的;(2)求代数式a +的值,其中4a =22.已知关于x 、y 的二元一次方程组325342x y a x y a +=⎧⎨+=-⎩①②的解互为相反数.(1)求a 的值;(2)若b 为3c23.当2022a =时,求a(1)__________的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:____________________;a>|1|a-的值.(3)当3参考答案:1.B【分析】根据算术平方根的非负性可得230x +³,23x =+可得x x =-,据此即可作答.【详解】∵23x =+,∴230x +³,∴23x ³-,23x =+,∴()()222323x x -=+,∴2291249124x x x x -+=++,∴x x =-,∴0x £,∴x 取值范围:203x -££,故选:B .【点睛】本题主要考查了算术平方根的非负性,二次根式的化简以及绝对值的知识,掌握二次根式的化简以及算术平方根的非负性是解答本题的关键.2.A【分析】根据1a <-去绝对值计算即可.【详解】∵1a <-∴11a a +=--,a a=-1)()1a a ----=-故选:A .3.C【分析】根据二次根式有意义的条件求出20xy -³,求出x 、y 的范围,再根据二次根式的性质进行化简即可.【详解】解:由二次根式有意义的条件求出20xy -³,∵0xy <,∴0x <,0y >,==故选:C .【点睛】本题考查了二次根式的性质与化简和二次根式有意义的条件,能熟记二次根式的性质是解此题的关键.4.D 【分析】根据题意可得:a b >,0a b <<,从而可得0a b +<,0b a ->,然后利用二次根式的性质,绝对值的意义,进行化简计算,即可解答.【详解】解:∵a b >,0a b <<,∴0a b +<,0b a ->,||a b ++a b a a b =+--+a b a a b =-+-++2a b =-+故选:D【点睛】本题考查了二次根式的性质与化简,实数与数轴,整式的加减,准确熟练地进行计算是解题的关键.5.D【分析】根据立方根,算术平方根,二次根式的性质计算判断即可.【详解】解:|9|9=-=,∴A 不符合题意;∵-=∴B 不符合题意;∵(22=,∴C 不符合题意;1=-,∴D 符合题意;故选D .【点睛】本题考查了求立方根,算术平方根,二次根式的性质,熟练掌握求立方根的方法和二次根式的性质是解题的关键.6.A【分析】由题意可知,每行5个数,数的被开方的规律是3n 29个数,6行的第4个数.【详解】解:一组数据的排列变形为L ;由题意可知,每行5个数,∵87=3×29,29个数,∵2955¸=…4,6行的第4个数,()64,,故选:A .【点睛】本题考查数字的变化规律,能够根据所给的数的特点,找到数的排列规律是解题的关键.7.C【分析】根据题意0a b c <<<,从而可得0b c -<,然后利用二次根式的性质,以及绝对值的意义进行计算即可得出答案.a b c b---+【详解】由题意得0a b c <<<,∴0b c -<,b ()ac b =+--,()a b c b =-+--+,a b c b =---+,a c =--,故选:C .键.8.C【分析】根据最简二次根式的概念逐项判断即可.【详解】解:A.=A 不符合题意;B. ===,故B 不符合题意;C.是最简二次根式,故C 符合题意;D. 1=-,故D 不符合题意.故选:D .【点睛】本题考查了最简二次根式,掌握最简二次根式的特点①被开方数不含分母,②被开方数不含能开得尽方的因数或因式是解答本题的关键.9.A【分析】根据二次根式有意义求出x 的取值范围,即可得出答案.【详解】解:由题意得,210x +³,解得:21x ³-,∴只有A 选项符合题意,故选:A .【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件是被开方数为非负数.10.C 【分析】根据求一个数的算术平方根及立方根,幂的乘方运算的逆用,即可一一判定.【详解】解:5=,故该选项错误,不符合题意;==,故该选项错误,不符合题意;=210-==,故该选项错误,不符合题意;故选:C .【点睛】本题考查了求一个数的算术平方根及立方根,幂的乘方运算的逆用,熟练掌握和运用各运算法则是解决本题的关键.11【分析】根据新定义运算进行运算,即可求得.【详解】解:2==6※【点睛】本题考查了新定义运算,二次根式的性质,理解题意,正确进行运算是解决本题的关键.12.b【详解】由数轴得:0a b <<,∴a a =- ,a b a b-=-+()b a a b a b--=-+--=故答案为:b .13.21及1的符号,去绝对值化简即可.+1-∵12x <<,∴011x <-<,∴01<<,∴110-<<10>,∴原式11=2=,故答案为:2.【点睛】题目主要考查二次根式的化简及完全平方公式,化简绝对值,熟练掌握二次根式的化简方法是解题关键.14.2a £【分析】根据二次根式有意义的条件列式计算可求解.【详解】解:由题意得20a -³,解得2a £,故答案为2a £.【点睛】本题主要考查二次根式有意义的条件,根据二次根式有意义时被开方数为非负数求解是解题的关键.15.15【分析】根据二次根式和绝对值的非负性得出,AB BC 的值,然后结合三角形三边关系进行计算即可.【详解】解:0BC =,30AB \-=,60BC -=,解得:3AB =,6BC =,若等腰三角形ABC 的三边分别为3,3,6,则336+=,不能构成三角形;若等腰三角形ABC 的三边分别为3,6,6,则此三角形周长为36615++=,故答案为:15.【点睛】本题考查了二次根式和绝对值的非负性,等腰三角形的定义,三角形三边关系的应用,熟练掌握基础知识点是解本题的关键.16.4【分析】根据三角形三边的关系得到37m <<,再根据二次根式的性质得原式37m m =-+-,然后根据m 的取值范围去绝对值后合并即可.【详解】解:∵2、5、m 为三角形三边,∴37m <<,∴原式()3737374m m m m m m =-+-=---=--+=,故答案为:4.熟练掌握知识点是解题的关键.17.5【分析】直接根据二次根式的性质进行化简即可得到答案.|5|5=-=故答案为:5(0)0(0)a a a a >-<⎩是解答本题的关键.18.±【分析】利用同类项的含义可得4,22m n m n -=⎧⎨+=⎩再解方程组可得m ,n 的值,再求解3m n -及其平方根即可.【详解】解:∵22m n x y --与423m n x y +是同类项,∴4,22m n m n -=⎧⎨+=⎩解得:2,2m n =⎧⎨=-⎩ ∴()32328,m n -=-´-=∴3m n -的平方根是±故答案为:±【点睛】本题考查的是利用同类项的含义求解未知系数的值,求解非负数的平方根,二元一次方程组的解法,二次根式的化简,掌握“同类项的定义及求解平方根的方法”是解本题的关键.19.13【分析】由二次根式有意义的条件可得4,a ³ 3=再利用算术平方根的含义解方程可得答案.a =,∴40,a -³解得:4,a ³∴3,a a -+=3,=∴49,a -=解得:13a =,经检验符合题意;故答案为:13.【点睛】本题考查的是二次根式有意义的条件,算术平方根的含义,掌握“判断题干当中的隐含条件4a ³”是解本题的关键.20.6【分析】先根据二次根式有意义的条件求出x 的值,进而得出y 的值,再求出xy 的值即可.【详解】解:∵∴2020x x -³⎧⎨-³⎩,解得x =2,∴y =3,∴xy =2×3=6.故答案为:6.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.21.(1)小亮(2)2+【分析】(1)根据二次根式的性质,完全平方公式进行化简即可.(2)先化简,代入计算即可.【详解】(1)因为a=1a a a =+-,因为2022a =-,所以10a -<,所以原式=11a a +-=,所以小亮的解法错误,故答案为:小亮.(2)因为a +=23a a a +=+-,因为4a =-,所以43,所以原式=2(3)6a a a +-=-,当4a =-原式=642-=【点睛】本题考查了二次根式的性质,完全平方公式,绝对值的化简,熟练掌握二次根式的性质是解题的关键.22.(1)1(2)2【分析】(1)先应用求二元一次方程组的解法进行计算,求出x ,y ,再根据题意可得0x y +=,代入计算即可得出答案;(2)根据估算无理数大小的方法,计算出b ,c 出答案.【详解】(1)325342x y a x y a +=⎧⎨+=-⎩①②①×3-②得:484x a =-∴21x a =-把21x a =-代入①得:()32142a y a -+=-∴78y a=-∴x 、y 互为相反数∴0x y +=∴()()21870a a -+-+=∴1a =.(2)23,12,<<<<Q536,\<+<5,1,b c \=-====2=【点睛】本题主要考查了估算无理数的大小及解二元一次方程组,熟练掌握估算无理数的大小及解二元一次方程组的方法进行求解是解决本题的关键.23.(1)小亮||a =(3)2-【分析】(1)根据二次根式的性质即可判断答案.(2)根据二次根式的性质即可判断答案.(3)根据a 的范围判断3a -与1a -的符号,然后根据绝对值的性质以及二次根式的性质即可求出答案.【详解】(1)原式a =|1|a a =+-,2022a =Q ,10a \-<,\原式1212202214043a a a =+-=-=´-=,故小亮的解法错误.故答案为:小亮.(2||a =.||a =.(3)原式|1|a -|3||1|a a =---,3a >Q ,30a \->,10a -<,原式3(1)a a =-+-31a a=-+-2=-.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.。
八年级数学二次根式知识点
八年级数学二次根式知识点在八年级数学中,二次根式是比较基础的一个知识点,也是初学者需要特别掌握的内容之一。
本文将详细介绍二次根式的定义、性质、运算方法和解题技巧,希望能够帮助大家更好地掌握这个知识点。
1. 二次根式的定义二次根式是指如下形式的算式:$\sqrt{a}$其中,a是一个非负实数,$\sqrt{a}$表示a的平方根。
例如,$\sqrt{4}$等于2,$\sqrt{9}$等于3。
2. 二次根式的性质(1)二次根式的值不超过其被开方数的值。
即,对于任意非负实数a和b,当a≥b时,有$\sqrt{a}≥\sqrt{b}$。
这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是单调递增的。
(2)二次根式的值域为非负实数。
即,对于任意非负实数a,有$\sqrt{a}≥0$。
这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是非负的。
(3)二次根式可以转化为分数形式。
即,对于任意非负实数a和正整数b,有$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。
这是因为,分子、分母分别乘以$\sqrt{b}$,可以得到等式右边的形式。
3. 二次根式的运算方法(1)二次根式的加减法对于相同根式$\sqrt{a}$和$\sqrt{b}$,有:$\sqrt{a}±\sqrt{b}=\sqrt{a±b}$例如,$\sqrt{2}+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$。
(2)二次根式的乘法对于非负实数a和b,有:$\sqrt{a}·\sqrt{b}=\sqrt{ab}$例如,$\sqrt{2}·\sqrt{8}=\sqrt{16}=4$。
(3)二次根式的除法对于非负实数a和b(b≠0),有:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$例如,$\frac{\sqrt{8}}{\sqrt{2}}=\sqrt{4}=2$。
数学奥赛讲座:《二次根式》
二次根式的性质
1. 根式的乘法性质
$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0, b geq 0$)。
2. 根式的除法性质
$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 有根式的式子, 可以通过有理化分母的方 法,将分母化为有理数。
合并同类项
对于形如$sqrt{a+b}$和 $sqrt{a-b}$的二次根式, 可以合并为$sqrt{2a}$。
运算规则
乘法运算
对于两个二次根式相乘, 可以直接将它们的系数相 乘,根号部分不变。
除法运算
对于两个二次根式相除, 可以直接将它们的系数相 除,根号部分不变。
二次根式的历史与发展
历史背景
二次根式起源于古希腊数学家对 几何图形的研究,特别是对直角
三角形和圆的性质的研究。
文艺复兴时期,数学家开始系统 研究二次根式的性质和运算规则,
为后续的发展奠定了基础。
17世纪,微积分学的发展推动 了二次根式理论的进一步深化。
现代发展
计算机科学的发展为二次根式计算提供了更高效的算法和软件工具,如符号计算和 数值计算。
总结词
二次根式具有一些基本的数学性 质,如根式的乘法、除法、加法、 减法等运算性质。
3. 根式的加法性质
$sqrt{a} + sqrt{b} = sqrt{(sqrt{a} + sqrt{b})^2}$ ($a geq 0, b geq 0$)。
4. 根式的减法性质
$sqrt{a} - sqrt{b} = sqrt{(sqrt{a} - sqrt{b})^2}$($a geq 0, b geq 0$)。
八年级二次根试知识点讲解
八年级二次根试知识点讲解在初中数学学习中,二次根式是一个非常重要的知识点,而二次根试题更是考试中难度较大的部分。
下面,本文将详细讲解八年级二次根试的相关知识点。
一、什么是二次根式?二次根式通常表示为 $\sqrt{a}$,其中 $a$ 表示一个正实数,且它的二次方 $\mathrm{a^2}$ 不为平方数,可化简为不含根式的形式。
例如,$\sqrt2$ 与 $\sqrt6$ 都是二次根式,而 $\sqrt4$ 和$\sqrt9$ 不是二次根式。
二、如何进行基本的二次根式运算?1. 二次根式的化简化简二次根式是指将二次根式中的根号去掉,使其变为更简便的形式。
其中较简单的是约分和提取因式。
约分指将同类项的二次根式进行合并。
例如 $\sqrt2+\sqrt8$ 可以化简为 $\sqrt2+2\sqrt2=\sqrt2(1+2)=\sqrt2\times3$。
提取因式是将二次根式中的公共因式提取出来。
例如,$\sqrt8+\sqrt{32}$ 可以化简为$\sqrt8+4\sqrt2=4\sqrt2(\frac{\sqrt2}{2}+1)=4\sqrt2\times\frac{\sqrt2+ 2}{2}$。
2. 二次根式的加减运算二次根式的加减需要先化简后,再按照同、异根的形式进行加减,具体步骤如下:(1)将所有二次根式化为最简形式。
(2)将同根二次根式进行加减,即将同样的数值相加减,仍保留根号。
(3)对于异根之和,需要进行化简,化简方法为换元法,例如 $\sqrt{a}+\sqrt{b}$ 可以化为 $\sqrt{m}+\sqrt{m}$ 的形式,其中$m=a\times b$。
3. 二次根式的乘除运算二次根式的乘除运算同样需要先化简后,再进行乘除。
(1)乘法:将二次根式相乘后,进行化简。
例如,$\sqrt5\times\sqrt{20}$ 可以化为$\sqrt{5}\times2\sqrt5=2\times5=10$。
二次根式的有关概念和性质 (知识点考点串编八年级数学下学期核心考点精讲精练(沪科版)(解析版)
专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =42x + ) A .4 B .2 C 2D .0【答案】B 【解析】 【分析】把0x =42x + 【详解】解:把0x =42x +42◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。
【注意】 1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键. 练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个10a +a 2a 21a -21a +()21a -A .3个 B .4个 C .5个 D .6个【答案】B 【解析】 【分析】,(0)a a >的代数进行分析得出答案. 【详解】222210,||,,1,1,(1)a a a a a a +-+-||a 2a 21a +2(1)a -4个. 故选:B . 【点睛】此题主要考查了二次根式的定义,形如,(0)a a >的代数式,正确把握定义是解题关键. 练习2.(2021·河北·222321-- ). A .321-+ B .321+- C .321++ D .321--【答案】A 【解析】 【分析】根据有理数运算和二次根式的性质计算,即可得到答案. 【详解】2223219412--=--=∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0 故选:A .本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<2(2)1a a --的值是( ) A .3- B .12a -C .32a -D .23a -【答案】C 【解析】 【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可. 【详解】 解:∵12a <<,2(2)1212132a a a a a a a --=---=-+-=-. 故选:C. 【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·24n n 的最小值是( ) A .2 B .4 C .6 D .8【答案】C 【解析】 【分析】24n 2426n n =6n 是完全平方数,满足条件的最小正整数n 为6. 【详解】 解:2426n n =24n∵26n 6n 是完全平方数; ∵n 的最小正整数值为6. 故选:C .本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且220x y +-=,则2019x y ⎛⎫⎪⎝⎭的值( ) A .-2 B .1 C .2 D .-1【答案】D 【解析】 【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可. 【详解】解:∵220x y +-, ∵x +2=0,y -2=0, ∵x =﹣2,y =2, ∵220190192=12x y -⎛⎫⎛⎫ ⎪⎝=- ⎪⎝⎭⎭.故选:D . 【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果22443x x y -+-,则2x y -的平方根是( ) A .-7 B .1 C .7 D .±1【答案】D 【解析】 【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+≠=,,解得:2x =, 故3y =,则21x y -=, 故2x y -的平方根是:±1. 故选:D . 【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键. 练习3.(2021·全国·20n n 的值是( ) A .0 B .1C .2D .5【答案】D 【解析】 【分析】首先化简二次根式进而得出n 的最小值. 【详解】20n =5n ∵最小正整数n 的值是5. 故选D . 【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数12y x =-中,自变量x 的取值范围是( ) A .x <2 B .x ≥2 C .x >2 D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
初二数学二次根式知识点归纳
初二数学二次根式知识点归纳一、二次根式的概念二次根式是指形如√a的表达式,其中a是一个非负实数。
根号下的数字a称为被开方数,√a称为二次根式的基数。
二、二次根式的化简化简二次根式是指将二次根式写成最简形式的过程。
化简的基本原则是将被开方数a的因数分解,并利用数的乘法法则和开方的运算性质进行合理的变形。
1. 同底合并当两个二次根式的基数相同时,可以将它们合并为一个二次根式,并进行化简。
2. 分解因数当被开方数a是一个完全平方数时,可以将其分解因数,再进行化简。
例如,√16可以分解为√(4×4),再利用根号的运算性质进行合并得到4。
3. 有理化分母当二次根式的分母中含有二次根式时,为了方便计算和比较,需要对分母进行有理化处理。
有理化分母的基本原则是将分母中的二次根式去掉,即将其乘以一个合适的形式为√a的因式。
三、二次根式的运算二次根式可以进行加减、乘除等运算。
在进行二次根式的运算时,需要注意以下几点:1. 加减运算当二次根式的基数和被开方数相同时,可以直接进行加减运算,并保持根号下的数字不变。
2. 乘除运算二次根式的乘法和除法运算可以通过化简和合并同类项的方式进行。
在乘法运算中,可以将二次根式的被开方数相乘,并将基数相乘;在除法运算中,可以将二次根式的被开方数相除,并将基数相除。
四、二次根式的应用二次根式在实际问题中有着广泛的应用。
以下是二次根式常见的应用场景:1. 长方形的对角线当已知长方形的长和宽时,可以利用勾股定理和二次根式的概念求出长方形的对角线长度。
2. 面积和体积在计算面积和体积时,常常会遇到含有二次根式的公式,如三角形的面积公式、球的体积公式等。
3. 几何图形的边长和面积比较通过比较含有二次根式的几何图形的边长和面积,可以判断它们的大小关系。
五、二次根式的性质二次根式有一些重要的性质,掌握这些性质有助于更好地理解和应用二次根式。
1. 非负性二次根式的基数必须是非负实数,即根号下的数字不能为负数。
一、初二数学二次根式知识点归纳
二次根式知识点归纳及典型例题1.二次根式定义:形如(a≥0)的式子,叫做二次根式.2.二次根式的性质:①≥0(a≥0),这是因为(a≥0)表示a的算术平方根,根据算术平方根的意义,当a>0时,>0,当a=0时,= 0 . ∴≥0.利用这一性质,可以解决下面问题:若,则x=-2,y=2.②()2= a (a≥0),在探究这一性质时,教科书所采用的方法是不完全归纳法,而根据算术平方根的意义有:如果x2=a(x≥0),则x=,所以代入上式得()2=a.③= a (a≥0) ,根据算术平方根的意义该性质的推导过程应是:因为当a≥0时,a2的算术平方根是a, 所以.3.代数式:用基本运算符号(基本运算符号包括加、减、乘、除、乘方、开方)把数和表示的数的字母连接起来的式子,叫代数式.4.利用二次根式性质化简:利用=a(a≥0)化简某些代数式时,一般应将被开方数化为完全平方式,如化简(x>-1)=.典例讲解例1、填空题:(1)式子中x的取值范围是______________.(2)当x满足条件______________时,式子有意义.(3)当x=__________时,有最小值,最小值是_________.(4)如果是正整数,那么x能取的最小自然数是________.答案:(1)x>-2 (2)x≥0且x≠1 (3)-25;9 (4)6例2、选择题:(1)化简的值为() A. 4 B.-4 C.±4 D. 16(2)下列各组数中,互为相反数的是()A. -2与B.C.-2和D. 2和(3)若x≥0,那么等于() A.x B.-x C.-2x D. 2x (4)当a≥1,则=() A.2a-1 B. 1-2a C.-1 D. 1 (5)在实数范围内分解因式:x2-3=()A.(x+3)(x-3)B.(x+)(x-)C.(x+)(x-)D.(x+9)(x-9)答案:(1)A (2)A (3)B (4)A (5)C例3、用带有根号的式子表示:(1)已知一个正方体的表面积是S.求它的棱长.解:设它的棱长为x,则所以,故它的棱长为.(2)一个圆的半径是10cm,是它面积2倍的正方形的边长为多少?解:设这个正方形的边长为xcm.则所以.正方形的边长为㎝.例4、计算:(1) (2) (3)(4)解:(1)= (2)=63(3)=3+2=5 (4)=例5、已知|x+y-7|+,求x2+y2的值.解:由已知得:∴所以,原式=(x+y)2-2xy=72-2×12=25.例6、已知实数a满足,求a-20082的值.解:因为所以a≥2009,所以2008-a<0,所以原式可化为:,所以,所以a-2009=20082,所以a-20082=2009.1. 二次根式的乘法:①法则,=(a≥0,b≥0);②利用这一法则,可以求出某些特殊的二次根式的值,如:15,7;③这一法则的探究我们采用的方法是不完全归纳法.2. 积的算术平方根的性质:①性质,与二次根式的乘法法则相比较互逆;②利用这一性质和二次根式的乘法法则,可以化简二次根式,如=3a2b,=;③性质应用:在化简二次根式时,通常要结合二次根式的性质,因此方法上应注意将被开方数进行因数分解或直接开算术平方根的原则是将开得尽方的因数分解出来. 化简实质上是将根号内完全平方的因数(式)移到根号外. 典例讲解例1、填空题:(1)化简:_______;(2)计算:_______;(3)计算:= ________.答案:(1);(2);(3)6例2、把下列各式中根号外的因式移到根号内:(1); (2)解:(1); (2)=-(-a). 例3、计算:(1) (2)(3) (4)解:(1)==(2) ==x(x+y)=x2+xy(3)===(4)===2xy例4、比较下列各组中两个数的大小.(1)解:∵2,,而44<45∴,∴.(2)解:∵,,而32<,∴.例5、观察下列各式及其验证过程:验证:验证:3=.(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反映的规律,写出n(n为任意自然数,且n≥2)表示的等式,并证明.解:(1) 验证:(2)反映的规律为:证明:n=.1.二次根式的除法:①法则:;②法则中规定b>0的理由是分母不为零;③作用是化去分母中的根号.2.商的算术平方根:①性质(≥0,>0);②语言叙述:算术平方根等于被除式的算术平方根除以除式的算术平方根;③作用是化去根号下的分母.3.最简二次根式:①最简二次根式必须满足两个条件是被开方数不含分母和被开方数中不含开得尽的因数或因式;②二次根式的乘除法运算,最后的结果一定要是最简二次根式或有理式.典例讲解例1、化简下列二次根式(1);(2);(3)答案:(1);(2);(3)例2、选择题1.下列各式中正确的是()A. B. C. D.答案:B2.在化简时,甲、乙、丙三位同学的解法如下:甲:;乙:;丙:;正确的是()A.甲B.乙C.丙D.甲、乙、丙均正确。
八年级下册数学二次根式的定义和性质
二次根式的定义和性质讲学:●二次根式的定义:形如的式子叫二次根式,其中叫被开方数。
两个特点:二次根号,非负性(非负性包括被开方数和开方结果)判断二次根式:1.有二次根号2.被开方数可以确定非负(包括转化为非负形式)1.有意义必须满足_________2.当满足什么条件时下列式子有意义。
●二次根式的性质:1.非负性:是一个非负数.2.3.公式与区别与联系(1)表示求一个数的平方的算术根,的范围是一切实数.(2)表示一个数的算术平方根的平方,的范围是非负数.(3)和的运算结果都是非负的.4.把根号外的因式移入根号内:1判断根号外的因式的符号;2留下符号;3平方后与被开方数相乘计算:因式分解:考练:【例1】下列各式,,,,,,其中是二次根式的是?【例2】若式子有意义,则x的取值范围是.【例3】若则=【例4】若则= .【例5】化简:的结果为()A、B、0 C、D、4【例6】已知,则化简的结果是【例7】如果表示两个实数的点在数轴上的位置如图所示,那么化简的结果等于()A、B、C、D、【例8】如果,那么的取值范围是()o b aA、B、C、或D、【例9】化简二次根式的结果是( )课后作业:二次根式的定义:1.下列各式中,一定是二次根式的是()A、B、C、D、2.在中是二次根式的个数有______个3.使代数式有意义的的取值范围是()A、>3B、≥3C、>4 D 、≥3且≠44.使代数式有意义的的取值范围是5.如果代数式有意义,那么,直角坐标系中点(,)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限6.若,则的值为()A、-1B、1C、2D、37.若都是实数,且,求的值8.当取什么值时,代数式取值最小,并求出这个最小值。
9.二次根式的性质:10.若,则的值为。
11. 已知 为实数,且 ,则 的值为( )A 、3B 、– 3C 、1D 、– 112. 已知直角三角形两边 的长满足 ,则第三边长为______________.13. 若 与 互为相反数,则14. 在实数范围内分解因式: = ; =15. 化简:16. 根式 的值是( )A 、-3B 、3或-3C 、3D 、917. 已知 ,那么 可化简为( )A .B .C .D .18. 若 ,则 等于( )A 、B 、C 、D 、19. 若 ,则化简 的结果是( )A 、-1B 、1C 、D 、20. 化简 得( )A 、2B 、C 、-2D 、21. 当 且 时,化简 = .22. 已知 ,化简求值:23. 实数 在数轴上的位置如图所示: 化简: . 24. 如果 成立,那么实数 的取值范围是________________25. 若 ,则 的取值范围是____________。
二次根式的有关概念和性质(题型归纳)(解析版)
二次根式的有关概念和性质【思维导图】◎考点题型1 求二次根式的值例.(2022·浙江·九年级专题练习)当0x = )A .4B .2C D .0【答案】B 【解析】 【分析】把0x = 【详解】解:把0x =2= 故选:B . 【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.变式1.(2020·山东定陶·八年级期末)当 x =-3 )A .3B .-3C .±3D【答案】A 【解析】 【分析】把x =-3代入二次根式进行化简即可求解. 【详解】解:当x =-33=. 故选A. 【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键. 变式2.(2020·北京·一模)如果31a ,那么代数式21(1)11aa a +÷--的值为( )A .3BCD 2【答案】B 【解析】 【分析】先根据分式的混合运算法则化简原式,再把a 的值代入化简后的式子计算即可. 【详解】 解:原式=()()111a a a a a ÷--+=()()1111a a a a a a-+⨯=+-;当31a时,原式11+=故选:B . 【点睛】本题考查了分式的化简求值,属于常考题型,熟练掌握分式的混合运算法则是解题关键.变式3.(2020·湖北鄂城· )A B .2 C .22 D .2±【答案】B 【解析】 【分析】根据乘方和开方的运算法则进行计算即可. 【详解】2=故答案为:B.【点睛】本题考查了开方和乘方的运算问题,掌握乘方和开方的运算法则是解题的关键.◎考点题型2 求二次根式中的参数例.(2021·山东阳谷·n的最小值是()A.2B.4C.6D.8【答案】C【解析】【分析】=6n是完全平方数,满足条件的最小正整数n为6.【详解】解:24n=∴6n是完全平方数;∴n的最小正整数值为6.故选:C.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答变式1.(2021·全国·n是()A.6B.3C.4D.2【答案】B【解析】【分析】根据题意,算数平方根是正整数,可得被开方数是能开方的正整数.【详解】n 的最小正整数是3,故选:B.【点睛】本题主要考查了二次根式的定义,利用开方运算是解答本题的关键.变式2.(2020·四川三台·n 的最小值是( ) A .2 B .3C .4D .6【答案】B 【解析】 【分析】n 的最小正整数值. 【详解】= ∴n 的最小正整数值是3; 故选B . 【点睛】变式3.(2020·江西南丰·20b -=,则2019()a b +的值是( ). A .1 B .-1C .2019D .-2019【答案】B 【解析】 【分析】利用非负数的性质列出方程组,求出方程组的解得到a 与b 的值,代入原式计算即可求出值. 【详解】20b -=,∴3020a b +=⎧⎨-=⎩, ∴32a b =-⎧⎨=⎩,∴20192019()(32)1a b +=-+=-, 故选择:B. 【点睛】此题考查了非负数的性质及二元一次方程组,熟练掌握几个非负数的和为零,则每一个非负数都为零是解本题的关键.◎考点题型3 二次根式有意义的条件例.(2022·河北·在实数范围内有意义,则x的值可能为()A.0B.﹣2C.﹣1D.1【答案】D【解析】【分析】10,10xx得到不等式组的解集,再逐一分析各选项即可.【详解】解:1010xx①②由①得:1,x≥由②得:1,x≠-所以:1,x≥故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式的综合形式的代数式有意义的条件”是解本题的关键.变式1.(2022·湖南岳阳·x的取值范围是()A.1x≥-B.0x≠C.1≥x D.0x>【答案】C【解析】【分析】根据二次根式的被开方数为非负数解答. 【详解】解:由题意得10x -≥, 解得1≥x , 故选:C . 【点睛】此题考查了二次根式的非负数,解题的关键是熟练掌握二次根式的双重非负性列式进行解答.变式2.(2022·福建惠安·有意义,则x 的取值范围为( ) A .1x ≥- B .1x >- C .1≥x D .1x ≤【答案】A 【解析】 【分析】根据二次根式有意义的条件分析即可. 【详解】∴10x +≥ 解得1x ≥- 故选A 【点睛】本题考查了二次根式有意义的条件,理解被开方数为非负数是解题的关键.变式3.(2021·中x 的取值范围是( ) A .x >2 B .x ≥﹣2C .x ≠2D .x ≥﹣2且x ≠2【答案】D 【解析】 【分析】根据二次根式及分式有意义的条件可直接进行求解. 【详解】 解:由题意得:20x +≥且20x -≠,解得:2x ≥-且2x ≠; 故选D . 【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.◎考点题型4 利用二次根式的性质化简例.(2022·贵州松桃·八年级期末)下列各式中正确的是( )A 2=-B 2=±C .22= D .(22=-【答案】C 【解析】 【分析】根据二次根式的性质即可依次判断. 【详解】A. 2,故错误;B. 2=,故错误;C.22=,正确;D. (22=,故错误;故选C . 【点睛】此题主要考查二次根式的计算,解题的关键是熟知二次根式的性质.变式1.(2022·江苏·2x =-成立,则x 的取值范围是( ) A .2x ≤ B .2x ≥C .02x ≤≤D .任意实数【答案】A 【解析】 【分析】根据实数的性质及去绝对值的方法即可求解.22x x =-=-∴x -2≤0 ∴2x ≤ 故选A . 【点睛】此题主要考查实数的性质,解题的关键是熟知平方根的性质及去绝对值的方法. 变式2.(2021·上海奉贤·七年级期末)下列计算错误的是( )A 2=-B 2C 2D .2(2=【答案】A 【解析】 【分析】直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可. 【详解】解:A 2,故此选项计算错误,符合题意;B 2=,故此选项计算正确,不合题意;C 2=,故此选项计算正确,不合题意;D .2(2=,故此选项计算正确,不合题意; 故选:A . 【点睛】此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.变式3.(2022·2的结果是( ) A .61x -- B .1-C .61x +D .1【答案】D 【解析】 【分析】x 号,然后合并同类项即可.0x ≥∴31=+x故原式化简为:3131x x +-=. 故选:D . 【点睛】本题主要是考查了去二次根号以及二次根式的基本性质,熟练掌握二次根式的性质,求解该题的关键.◎考点题型5 复合二次根式的化简例.(2021·浙江滨江·八年级期中)对式子m ,正确的结果是( )A B .C .D 【答案】C 【解析】 【分析】直接利用二次根式的性质化简求出答案. 【详解】解:由题意可得:30m -≥,∴0m ≤∴=故选:C 【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.变式1.(2021·河南原阳· )AB C .D .【答案】D 【解析】 【分析】根据二次根式成立的条件确定x 的取值,从而利用二次根式的性质进行化简.解:由题意可得:x <0∴(11x x x⋅=⋅-故选:D . 【点睛】本题考查二次根式的化简,理解二次根式成立的条件及二次根式的性质正确化简计算是解题关键.变式2.(2021·湖北鄂州·八年级期末)把(2-x) 2-x )适当变形后移入根号内,得( )AB C . D .【答案】D 【解析】 【分析】由题意易得x>2,然后根据二次根式的性质可进行求解. 【详解】 解:由题意得: 102x >-,解得:x>2,∴(2x -= 故选D . 【点睛】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键.变式3.(2018·全国·2得( ) A .2 B .﹣4x+4C .xD .5x ﹣2【答案】C 【解析】 【分析】根据二次函数的性质求解可得答案. 【详解】解:1-3x≥0,x≤13,∴2x-1≤1-3<0,∴原式-(1-3x)=1-2x-1+3x=x,故选C.【点睛】主要考查了根据二次根式的意义及化简.:当a>0时=a;当a<0时,=-a.二次根式2=a,(a≥0).11。
(word完整版)初二数学二次根式概念及性质讲义
二次根式的概念1、判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、计算 : (1) 2)4((2) (3)2)5.0((4)2)31(3、 x 取何值时,下列各二次根式有意义?①43-x ③ 4、(1)若a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数【总结】 1、二次根式的基本性质(a )2=a 成立的条件是a ≥0,利用这个性质可以求二次根式的平方,如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。
【拓展延伸】1、(1)在式子xx +-121中,x 的取值范围是____________. (2)已知42-x +y x +2=0,则x-y = _____________.(3)已知y =x -3+23--x ,则x y = _____________。
2、由公式)0()(2≥=a a a ,我们可以得到公式a=2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
(1)把下列非负数写成一个数的平方的形式:5 0.35(2)在实数范围内因式分解72-x 4a 2-11【练习】A 组(一)填空题:1、2)3(x --2123⎪⎪⎫ ⎛2、 在实数范围内因式分解:(1)x 2-9= x 2 - ( )2= (x+ ____)(x-____)(2) x 2 - 3 = x 2 - ( ) 2 = (x+ _____) (x- _____)(二)选择题:1、计算( )A. 169B.-13C±13 D.132、已知的值不能确定3、下列计算中,不正确的是 ( )。
A. 3= 2)3( B 0.5=2)5.0( C .2)3.0(=0.3 D 2)75(=35B 组(一)选择题:1、下列各式中,正确的是( )。
二次根式的概念与性质
二次根式的概念与性质二次根式是我们在数学学习过程中常常遇到的一种特殊形式的根式。
在本文中,我们将探讨二次根式的概念以及其重要的性质。
一、二次根式的概念二次根式是指具有“根号下一次方的数”的形式。
具体而言,若a为非负实数,则√a表示其非负平方根,而√(-a)表示其虚数平方根。
因此,二次根式包括了实数根式和虚数根式两种情况。
实数根式的概念是我们初中就已经学习过的,它表示的是可以找到一个非负实数,将其平方得到原始数。
例如,√4=2,√9=3,这些都是实数根式的例子。
虚数根式则是更加复杂一些。
它指的是无法找到一个非负实数来满足平方后得到原始数的情况。
例如,√(-4)=2i,其中i表示虚数单位。
虚数根式在进一步的数学学习中有着重要的应用。
二、二次根式的性质1. 二次根式的有理化:有理化是将含有根号的式子转化成不含根号的形式。
对于二次根式,我们常常利用有理化的方法将其转化为一个更加简洁的形式。
例如,对于√2,我们可以乘以√2/√2得到2/√2,这样就进行了有理化。
2. 二次根式的运算:二次根式在进行运算时有一些特殊的性质。
首先,根号下的数相同的二次根式可以进行加减运算。
例如,√2+√2=2√2,√3-√3=0。
其次,二次根式可以与有理数进行乘法运算。
例如,2√2*3=6√2,√3*4=4√3。
然而,二次根式的乘法运算并不满足交换律。
即,a√b*b√a不一定等于ab。
3. 二次根式的简化:对于二次根式,我们可以将其进行简化,使其表达更加方便。
例如,对于√8,我们可以简化成2√2。
4. 二次根式的大小比较:在进行大小比较时,二次根式也有一些规律。
如果a和b都是非负实数,则当a<b时,√a<√b;当a>b时,√a>√b;当a=b时,√a=√b。
这些规律在解决不等式问题时有着重要的应用。
结语:通过本文的学习,我们了解了二次根式的概念与性质。
二次根式的概念涵盖了实数根式和虚数根式两种情况,而其性质包括有理化、运算、简化以及大小比较等方面。
八年级数学竞赛讲座二次根式的运算附答案
八年级数学竞赛讲座二次根式的运算附答案第七讲:二次根式的运算二次根式是指形如a(a≥0)的式子,其运算基于以下几个法则:1) ac±bc=(a±b)c(c≥0);2) ab=a×b(a≥0,b≥0);3) a/b=a÷b(a≥0,b>0);4) (a)²=a²(a≥0)。
同类二次根式的合并是二次根式加减的实质,而二次根式除法和混合运算则常常用到有理化概念。
因此,有理化是二次根式中重要的概念。
二次根式的运算是在有理式(整式、分式)运算的基础上发展起来的,因此,解决二次根式问题时,常常需要用到有理式运算的方法和技巧,如换元、字母化、拆项相消、分解相约等。
例题求解:例1】已知y=(x²-2)/(x²-2-5x+4+5x/(4-5x)),求x²+y²=4-5x。
解析:由于等式中含有两个未知量,初看似乎条件不足,因此,我们从二次根式的定义入手。
通过二次根式的性质,我们可以通过平方去掉根号有理化,揭示与绝对值的内在一致性。
这样,我们就可以充分运用概念解题。
例2】化简1+1/n²+1/(n+1)²,所得的结果为()A.1+1/n+1/(n+1)B.1-1/n+1/(n+1)C.1+1/n-1/(n+1)D.1-1/n-1/(n+1)解析:待选项不再含根号,从而可预见被开方数通过配方运算后必为完全平方式形式。
特殊与一般是能相互转化的,而一般化是数学创造的基本形式,数学的根本目的就是要揭示更为普遍、更为深刻的事实和规律。
例3】计算:1)(6+4)/(3+2);2)10+14-15-21/10+14/15+21;3)75+57+…+5+23+1/(315-10-26+33-2+18)。
解析:若一开始就把分母有理化,则使计算复杂化。
因此,我们需要观察每题中分子与分母的数字特点,通过分拆、分解、一般化、配方等方法寻找它们的联系,以此为解题的突破口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题09 二次根式的概念与性质
阅读与思考
0)
a≥叫做二次根式,二次根式的性质是二次根式运算、化简求值的基础,主要有:
1
≥
a、a2一样都是非负数.
2
.
2
=a(a≥0).解二次根式问题的基本途径——通过平方,去掉根号有理化.
3
()
()
a a
a
a a
≥
⎧⎪
==⎨
-≤
⎪⎩
揭示了与绝对值的内在一致性.
4
a b
=(a≥0,b≥0).
5
=(a≥0,b>0).给出了二次根式乘除法运算的法则.
6.若a>b>0
>0,反之亦然,这是比较二次根式大小的基础.
运用二次根式性质解题应注意:
(1)每一性质成立的条件,即等式中字母的取值范围;
(2)要学会性质的“正用”与“逆用”,既能够从等式的左边变形到等式的右边,也能够从等式的右边变形到等式的左边.
例题与求解
【例1】设x,y都是有理数,且满足方程
11
40
2332
x y
ππ
π
⎛⎫⎛⎫
+++--=
⎪ ⎪
⎝⎭⎝⎭
,那么x y
-的值是
____________.(“希望杯”邀请赛试题)解题思路:将等式整理成有理数、无理数两部分,运用有理数和无理数的性质解题.
【例2】当1≤x≤2
___________.
解题思路:
a≥0的隐含制约.
【例3】若a>0,b>0=
的值.
(天津市竞赛试题)解题思路:对已知条件变形,求a,b的值或探求a,b的关系.
【例4】若实数x,y,m满足关系式:
199
y x
=--m的值.
(北京市竞赛试题)解题思路:观察发现(x-199+y)与(199-x-y)互为相反数,由二次根式的定义、性质探索解题的突破口.
【例5】已知
1
5
2
a b c
+-=-,求a+b+c的值.
(山东省竞赛试题)
解题思路:题设条件是一个含三个未知量的等式,三个未知量,一个等式才能确定未知量的值呢?考虑从配方的角度试一试.
【例6】在△ABC中,AB,BC,AC
同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点
△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上:_________.
(2)我们把上述求△ABC面积的方法叫作构图法.若△ABC,,
(a>0),请利用图2中的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
(3)若△ABC(m>0,n>0,且m≠n)试运用构图法求出这个三角形的面积.
(咸宁市中考试题)
解题思路:本题主要考查三角形的面积、勾股定理等知识,不规则三角形的面积,可通过构造直角三角形、正方形等特殊图形求得.
能力训练
A 级
1.要使代数式
2
3243
x x x ---+有意义.则x 的取值范围是_____________.
(“希望杯”邀请赛试题)
2.阅读下面一题的解答过程,请判断是否正确?若不正确,请写出正确的解答. 已知a 为实数,化简3
1a a a
---. 解:原式=()1
1a a a
a a a a
---=--. (1)若a =1,b =1,则ab ≤1;
(2)若a =
12,b =52,则ab ≤32
; (3)若a =2,b =3,则ab ≤5
2
;
(4)若a =1,b =5,则ab ≤3.
(黄冈市竞赛试题)
4.已知实数a ,b ,c 满足211
2024
a b b c c c -+++-+=,则a (b +c )的值为_______.
5.代数式12x x x +
-+-的最小值是( ).
C
B
A
图1
图2
A.0 B.1C.1 D.不存在
6.下列四组根式中是同类二次根式的一组是().
A B.3和3
C D
(“希望杯”邀请赛试题)
7
2
的结果是().
A.6x-6 B.-6x+6 C.-4 D.4
(江苏省竞赛试题)
8.设a是一个无理数,且a,b满足a b-a-b+l=0,则b是一个().A.小于0的有理数B.大于0的有理数
C.小于0的无理数D.大于0的无理数
(武汉市竞赛试题)
9
=,其中ab≠0
(山东省中考试颗)
10.已知66-a,b,求ab的值.
(浙江省竞赛试题)11.设a,b,c为两两不等的有理数.
(北京市竞赛试题)
12.设x ,y y =,求y 的最大值.
(上海市竞赛试题)
B 级
1.已知x ,y 为实数,y ,则5x +6y =_________.
2.已知实数a 满足1999a a -=,则a -19992=___________.
3.正数m ,n 满足m +-4n =3
_______.
(北京市竞赛试题)
4.若a ,b 满足5b =7,则s =3b 的取值范围是________.
(全国初中数学联赛试题)
5.已知整数x ,y +50,那么整数对(x ,y )的个数是( )
A .0
B .1
C .2
D .3
(江苏省竞赛试题)
6.已知
1a a -=1,那么代数式1
a a
+的值为( )
A .
2 B .-2
C D . (重庆市中考试题)
7=
x ,y ,a 是两两不同
的实数.则代数式22
22
3x xy y x xy y +--+的值为( ) .
A .3
B .
13 C .2 D .53
82= ) . A .3 B .4 C .5 D .6
9.设a ,b ,c 是实数,若a +b +c =++14,求
()()()a b c b c a c a b +++++的值.
(北京市竞赛试题)
10.已知ax 3=by 3=cz 3,1x
+1y +1
z =1,求证:22233ax by cz a ++=+3b +3c .
11.已知在等式
ax b
s cx d
+=+中,a ,b ,c ,d 都是有理数,x 是无理数.求:
(1)当a ,b ,c ,d 满足什么条件时,s 是有理数, (2)当a ,b ,c ,d 满足什么条件时,s 是无理数.
(“希望杯”邀请赛试题)
12.设s =222222
111111111122319992000+
+++++⋅⋅⋅+++,求不超过s 的最大整数[s].
13.如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,ED ⊥BD ,连结AC ,EC ,已知AB =5,DE =1,BD =8,设CD =x .
(1)用含x 的代数式表示AC +CE 的长;
(2)请问点C 满足什么条件是AC +CE 的值最小?
(3)根据(2)中的规律和结论,请构图求出代数式()
2
2
4129x x ++
-+的最小值.
B
D
E
C
(恩施自治州中考试题)。