年产20万吨甲醇合成工艺设计 化工专业毕业设计 课程设计

合集下载

年产20万吨煤制甲醇生产工艺初步设计

年产20万吨煤制甲醇生产工艺初步设计

年产20万吨煤制甲醇生产工艺初步设计摘要甲醇是一种极重要的有机化工原料,也是一种燃料,是碳一化学的基础产品,在国民经济中占有十分重要的地位。

近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广应用,甲醇的需求大幅度上升。

为了满足经济发展对甲醇的需求,开展了此20万t/a的甲醇项目。

设计的主要内容是进行工艺论证,物料衡算和热量衡算等。

本设计本着符合国情、技术先进和易得、经济、环保的原则,采用煤炭为原料;利用GSP 气化工艺造气;NHD净化工艺净化合成气体;低压下利用列管均温合成塔合成甲醇;三塔精馏工艺精制甲醇;此外严格控制三废的排放,充分利用废热,降低能耗,保证人员安全与卫生。

关键词:甲醇、合成、精馏。

abstractMethanol is a kind of extremely important organic industrial chemicals, and a kind of fuel too, it is the basic products of the chemistry of carbon one. It is very important in national economy. In recent years, with the development of the products that are made from methanol, especially the popularization and application of the fuel of methanol, the demand for the methanol rises by a large margin. In order to satisfy economic development's demands for methanol , have launched the methanol project of this 200,000t/a. Main content that design to carry on craft prove, supplies weighing apparatus regard as with heat weighing apparatus charging etc The principle of the design in line with according with the national conditions, technologically advanced and apt, economy, protecting environment,. Coals is adopted as raw materials; the craft of GSP gasification is utilized to make water gas; the craft of NHD purification is utilized to purify the syngas; tubular average -temperature reaction is utilized to synthesize methanol keeping in low pressure; the rectification craft of three towers is utilized to rectify methanol; In addition control the discharge of the three wastes strictly, fully utilize used heat, reduce energy consumption, guarantee the personal security and hygiene.Keyword: Methanol, synthesis, rectification.目录前言 (5)1总论 (6)1.1概述 (6)1.2设计的目的和意义 (8)1.3设计依据 (8)1.4设计的指导思想 (8)1.5设计的范围,装置组成及建设规模 (8)1.6原料煤的规格 (9)1.7产品质量标准 (10)2工艺论证 (10)2.1 煤气化路线的选择 (11)2.2净化工艺方案的选择 (13)2.3合成甲醇工艺选择 (15)2.4甲醇精馏 (21)3工艺流程 (26)3.1 GSP气化工艺流程 (26)3.2净化装置工艺流程 (27)3.3甲醇合成工艺流程 (34)3.4甲醇精馏工艺流程 (35)3.5氨吸收制冷流程 (37)4工艺计算 (38)4.1物料衡算 (38)4.2能量衡算 (48)5主要设备的工艺计算及选型 (54)5.1甲醇合成塔的设计 (54)5.2水冷器的工艺设计 (57)5.3循环压缩机的选型 (60)5.4气化炉的选型 (60)5.5甲醇合成厂的主要设备一览表 (61)6合成车间设计 (61)6.1厂房的整体布置设计 (61)6.2合成车间设备布置的设计 (62)7非工艺专业要求 (62)7.1公用工程 (62)7.2安全卫生 (63)8 三废处理 (65)8.1甲醇生产对环境的污染 (65)8.2 处理方法 (66)9设计结果评价 (67)10致谢 (67)11参考文献 (68)附工程图纸1、甲醇合成厂总工艺流程图2、主设备结构图3、辅设备结构图4、生产车间设备布置图前言甲醇是醇类中最简单的一元醇。

年产20万吨煤制甲醇生产工艺—毕业设计说明书

年产20万吨煤制甲醇生产工艺—毕业设计说明书

年产20万吨煤制甲醇生产工艺初步设计设计说明书题目:年产20万吨煤制甲醇生产工艺初步设计年级:应化0901学院:武汉科技大学职业技术学院系别:化工系专业:应用化工技术摘要甲醇是一种极重要的有机化工原料,也是一种燃料,是碳一化学的基础产品,在国民经济中占有十分重要的地位。

近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广应用,甲醇的需求大幅度上升。

为了满足经济发展对甲醇的需求,开展了此20万t/a的甲醇项目。

设计的主要内容是进行工艺论证,物料衡算和热量衡算等。

本设计本着符合国情、技术先进和易得、经济、环保的原则,采用煤炭为原料;利用GSP 气化工艺造气;NHD净化工艺净化合成气体;低压下利用列管均温合成塔合成甲醇;三塔精馏工艺精制甲醇;此外严格控制三废的排放,充分利用废热,降低能耗,保证人员安全与卫生。

关键词:甲醇合成、气体精馏、工艺流程目录第一章总论 (1)1.1概述 (1)1.2设计的目的和意义 (3)1.3设计依据 (3)1.4设计的指导思想 (4)1.5设计的范围,装置组成及建设规模 (4)1.6原料煤的规格 (5)1.7产品质量标准 (5)第二章工艺论证 (6)2.1 煤气化路线的选择 (6)2.2净化工艺方案的选择 (8)2.3合成甲醇工艺选择 (11)2.4甲醇精馏 (17)第三章工艺流程 (22)3.1 GSP气化工艺流程 (22)3.2净化装置工艺流程 (23)3.3甲醇合成工艺流程 (31)3.4甲醇精馏工艺流程 (32)3.5氨吸收制冷流程 (34)第四章工艺计算 (35)4.1物料衡算 (35)4.2能量衡算 (45)第五章主要设备的工艺计算及选型 (50)5.1甲醇合成塔的设计 (50)5.2水冷器的工艺设计 (54)5.3循环压缩机的选型 (57)5.4气化炉的选型 (57)5.5甲醇合成厂的主要设备一览表 (58)第六章合成车间设计 (59)6.1厂房的整体布置设计 (59)6.2合成车间设备布置的设计 (59)第七章非工艺专业要求 (59)7.1公用工程 (59)7.2安全卫生 (60)第八章三废处理 (62)8.1甲醇生产对环境的污染 (62)8.2 处理方法 (63)设计结果评价 (65)致谢 (65)参考文献 (66)第一章总论1.1概述1.1.1甲醇性质OH。

年产20万吨甲醇生产工艺流程设计

年产20万吨甲醇生产工艺流程设计

年产20万吨甲醇生产工艺流程设计下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!年产20万吨甲醇生产工艺流程设计是化工领域的重要课题,对于化工生产企业来说具有重要的指导意义。

年产20万吨煤制甲醇合成工艺初步设计煤化工毕业设计

年产20万吨煤制甲醇合成工艺初步设计煤化工毕业设计

年产 20 万吨煤制甲醇合成工艺初步设计煤化工毕业设毕业设计题目年产20 万吨煤制甲醇生产工艺初步设计学号姓名年级09 煤化工学院系别煤化工系专业煤化工指导教师完成日期2012 年5月14日摘要甲醇是一种极重要的有机化工原料也是一种燃料是碳一化学的基础产品在国民经济中占有十分重要的地位近年来随着甲醇下属产品的开发特别是甲醇燃料的推广应用甲醇的需求大幅度上升为了满足经济发展对甲醇的需求开展了此20万ta的甲醇项目设计的主要内容是进行工艺论证物料衡算和热量衡算等本设计本着符合国情技术先进和易得经济环保的原则采用煤炭为原料利用GSP气化工艺造气NHD净化工艺净化合成气体低压下利用列管均温合成塔合成甲醇三塔精馏工艺精制甲醇此外严格控制三废的排放充分利用废热降低能耗保证人员安全与卫生关键词甲醇合成目录1总论411甲醇性质412甲醇用途413醇生产原料42甲醇的合成521甲醇合成的基本原理5211甲醇合成反应步骤5212合成甲醇的化学反应5213甲醇合成反应的化学平衡63甲醇合成的催化剂631工业用甲醇合成催化剂74甲醇合成的工艺条件941反应温度942压力1043空速1044气体组成115甲醇合成的工艺流程1251甲醇合成的方法1252甲醇合成塔的选择1553甲醇合成的工艺流程186主要设备的工艺计算及选型1961甲醇合成塔的设计1962水冷器的工艺设计2263循环压缩机的选型257设计结果评价268参考文献27致谢27附工程图纸1 甲醇合成塔简图2 甲醇合成工艺流程图1 总论11 甲醇性质甲醇俗称木醇木精英文名为methanol分子式CH3O是一种无色透明易燃有毒易挥发的液体略带酒精味分子量3204 化学性质较活泼能发生氧化酯化羰基化等化学反应是重要有机化工原料和优质燃料广泛应用于精细化工塑料医药林产品加工等领域主要用于生产甲醛消耗量要占到总产量的一半甲醛则是生产各种合成树脂不可少的原料用甲醇作甲基化试剂可生产丙烯酸甲酯对苯二甲酸二甲酯甲胺甲基苯胺甲烷氯化物等羰基化可生产醋酸醋酐甲酸甲酯等重要有机合成中间体它们是制造各种染料药品农药炸药香料喷漆的原料目前用甲醇合成乙二醇乙醛乙醇也日益受到重视甲醇是一种重要的有机溶剂其溶解性能优于乙醇可用于调制油漆作为一种良好的萃取剂甲醇在分析化学中可用于一些物质的分离甲醇是一种能源甲醇燃料以其安全廉价燃烧充分利用率高环保的众多优点替代汽油已经成为车用燃料的发展方向之一甲醇还可经生物发酵生成甲醇蛋白富含维生素和蛋白质具有营养价值高而成本低的优点用作饲料添加剂有着广阔的应用前景醇原料自1923 年开始工业化生产以来甲醇合成的原料路线经历了很大变化20 世纪50 年代以前多以煤和焦碳为原料50 年代以后以天然气为原料的甲醇生产流程被广泛应用进入60 年代以来以重油为原料的甲醇装置有所发展对于我国从资源背景看煤炭储量远大于石油天然气储量随着石油资源紧缺油价上涨因此在大力发展煤炭洁净利用技术的背景下在很长一段时间内煤是我国甲醇生产最重要的原料对甲醇合成而言无论是锌铬催化剂还是铜基催化剂其多相非匀相催化过程按下列过程进行a 扩散气体自气相扩散到催化剂的界面b吸附各种气体在催化剂的活性表面进行化学吸附其中CO在Cu2上吸附H2在Zn2 上吸附并异裂c 表面反应化学吸附的反应物在活性表面上进行反应生成产物d 解析反应产物脱附e 扩散反应产物气体自催化剂界面扩散到气相中去甲醇合成反应的速率是上述五个过程中每一个过程进行速率的总和但全过程的速率取决于最慢步骤的完成速率研究证实以上五个过程中ae 扩散进行得最快b 吸附d 解析进行的速度较快而过程c 表面反应分子在催化剂活性界面的反应速度最慢因此整个反应过程取决于表面反应的进行速率提高压力升高温度均可使甲醇合成反应速率加快但从热力学角度分析由于COCO却H2合成甲醇的反应是强放热的体积缩小反应提高压力降低温度有利于化学平衡向生成甲醇的方向移动同时也有利于抑制副反应的进行是甲醇合成反应是多项铜基催化剂上进行的复杂的可逆的化学反应1 主要的化学反应2甲醇合成的副反应213 甲醇合成反应的化学平衡一氧化碳和氢气合成甲醇是一个气相可逆反应压力对反应起着重要作用用气体分压来表示的平衡常数可用下面公式表示Kp 式中Kp ---- 甲醇的平衡常数P CH3OHPH2P CO ------ 分别表示甲醇氢气一氧化碳的平衡分压反应温度也是影响平衡常数的一个重要因素不同温度下的反应平衡常数见表1-1 其平衡常数随着温度的上升而很快减小因此甲醇合成不能在高温下进行但是低温反应速率太慢所以甲醇生产选用高活性的铜基催化剂使反应温度控制在220〜280C表1-1 不同温度下甲醇反应的平衡常数反应温度C平衡常数KpO 66730 100 1292 2001909X 10-2 300 242 X 10-4 400 1079X 10-53甲醇合成的催化剂甲醇合成是是典型的气固相催化反应过程没有催化剂的存在合成甲醇反应几乎不能进行合成甲醇工业的进展很大程度上取决于催化剂的研制成功以及质量的改进在合成甲醇的生产中很多工艺指标和操作条件都由所用催化剂的性质决定一氧化碳加氢合成甲醇工业化以来合成催化剂合成工艺不断研究改进虽然实验室研究出了多种甲醇合成催化剂但工业上使用的催化剂只有锌铬和铜基催化剂甲醇合成是是典型的气固相催化反应过程没有催化剂的存在合成甲醇应几乎不能进行合成甲醇工业的进展很大程度上取决于催化剂的研制成功以及质量的改进在合成甲醇的生产中很多工艺指标和操作条件都由所用催化剂的性质决定自一氧化碳加氢合成甲醇工业化以来合成催化剂合成工艺不断研究改进虽然实验室研究出了多种甲醇合成催化剂但工业上使用的催化剂只有锌铬和铜基催化剂CuOZnOAI2O3 压力MPa 温度C 英国ICI 51-3 60 30 10 78-118190〜270 德国LG104 51 32 4 49 210〜240 美国C79-2 ---15-117 220 〜330 丹麦LMK 40 10 - 98 220〜270中国C302系列51 32 4 50-100 210 〜280 中国XCN-98 52 208 50100 200〜290 从表的对比可以看出国产催化剂的铜含量已提50 以上制备工艺合理使该催化剂的活性选择性使用寿命和机械强度均达到国外同类催化剂的先进水平并且价格较低1锌铬催化剂ZnOC r2O3锌铬催化剂是最早用于工业合成甲醇的1966年以前的甲醇合成几乎都用锌铬催化剂锌铬催化剂一般采用共沉淀法制造将锌与铬的硝酸盐溶液用碱沉淀经洗涤干燥后成型制的催化剂也可以用氧化铬溶液加到氧化锌悬浮液中充分混合然后分离水分烘干掺进石墨成型还可以干法生产将氧化锌与氧化铬的细分混合均匀添加到少量氧化铬溶液和石墨压片然后烘干压片制的成品锌铬催化剂使用寿命长使用范围宽耐热性好抗毒能力好机械强度好但是锌铬催化剂活性温度高操作温度在320--400 °C之间为了获得较高的转化率必须在高压下操作操作压力可达25--35Mpa 目前逐步被淘汰2 铜基催化剂CuO ZnO C r2O3 或CuOZnOAI2O3铜基催化剂是20世纪60年代开发的产品它具有良好的低温活性较高的选择性通常用于低中压流程1 组成铜基催化剂的主要化学成分是CuOZnO AI2O3或CuO ZnO C r2O3其活性组分是Cu和ZnO同时还要添加一些助催化剂促进催化剂活性C r2O3 的添加可以提高铜在催化剂的分散度同时又能阻止分散的铜晶粒在受热时被烧结长大延长催化剂的使用寿命添加AI2O3 助催化剂使催化剂活性更高而且AI2O3 价廉无毒用AI2O3 代替C r2O3 的铜基催化剂更好2 还原氧化铜对甲醇合成无催化活性投入使用之前需将氧化铜还原成单质铜工业上采用氢气一氧化碳作为还原剂对铜基催化剂进行还原其反应如下CuO H2 —Cu H2OQCuO CO —Cu H2OQ氧化铜的还原反应是强烈的放热反应而且铜基催化剂对热比较敏感因此要严格控制氢及一氧化碳浓度和温度还原升温要缓慢出水均匀以防温度猛升和出水过快影响催化剂的活性寿命还原后的催化剂与空气接触时产生下列反应H2O 12O2—Cu O Q如果与大量的空气接触放出的反应的热将使催化剂超温结烧因此停车卸出之前应先通入少量氧气逐步进行氧化在催化剂的表面形成一层氧化铜保护膜这一过程称为催化剂的钝化铜基催化剂最大的特点是活性高反应温度低操作压力低其缺点是对合成原料气杂质要求严格特别是原料气中的SAs必须精脱除3其他类型的催化剂铜锌铝铜锌铬催化剂是当前甲醇合成工业的主要催化剂但近年来新型催化剂的研制一刻也没停歇过新型催化剂研制方向在于进一步提高催化剂的活性改善催化剂的热稳定性以及延长催化剂的使用寿命如钯系催化剂钼系催化剂和低温液相催化剂这些催化剂虽然在某些方面弥补了铜锌铝铜锌铬催化剂的不足但因其活性不理想或对甲醇的选择性差等自身缺点还只停留在研究阶段而没有实现工业化的应用3 铜基催化剂的中毒和寿命铜基催化剂对硫的中毒十分敏感一般认为其原因是H2S和Cu形成CuS也可能生成Cu2S反应如下CuH2&CuS H22CuH2S f Cu2S H2因此原料气中硫含量应小于Olppm与此类似的是氢卤酸对催化剂的毒性催化剂使用的寿命与合成甲醇的操作条件有关铜基催化剂比锌铬催化剂的耐热性差得多因此防止超温是延长寿命的重要措施甲醇合成反应为放热体积缩小的可逆反应温度压力及气体组成对反应进行的程度及速度有一定的影响下面围绕温度压力气体的组成及空间速度对甲醇合成反应的影响来讨论工艺条件的选择在甲醇合成反应过程中温度对于反应混合物的平衡和速率都有很大影响对于化学反应来说温度升高会使分子的运动加快分子间的有效碰撞增多并使分子克服化合时的阻力的能力增大从而增加了分子有效结合的机会使甲醇合成反应的速度加快但是由一氧化碳加氢生成甲醇的反应和由二氧化碳加氢生成甲醇的反应均为可逆的放热反应对于可逆的放热反应来讲温度升高固然使反应速率常数增大但平衡常数的数值将会降低因此选择合适的操作温度对甲醇合成至关重要所以必须兼顾上述两个方面温度过低达不到催化剂的活性温度则反应不能进行温度太高不仅增加了副反应消耗了原料气而且反应过快温度难以控制容易使催化剂衰老失活一般工业生产中反应温度取决于催化剂的活性温度不同催化剂其反应温度不同另外为了延长催化剂寿命反应初期宜采用较低温度使用一段时间后再升温至适宜温度压力甲醇合成反应为分子数减少的反应因此增加压力有利于反应向甲醇生成方向移动使反应速度提高增加装置生产能力对甲醇合成反应有利但压力的提高对设备的材质加工制造的要求也会提高原料气压缩功耗也要增加以及由于副产物的增加还会引起产品质量的变差pa操作温度350〜420°C至较高的压力和温度下一氧化碳和氢生成甲烷异丁醇等副产物这些副反应的反应热高于甲醇合成反应使床层温度提高副反应加速如果不及时控制回造成温度猛升而损坏催化剂近年来普遍使用的铜基甲醇合成催化剂其活性温度范围在200〜300 C有较高的活性对于规模小于30万吨a的工厂操作压力一般可降为5Mpa左右对于超大型的甲醇装置为了减少设备尺寸合成系统的操作压力可以升至10Mpa左右设采用的是低压法入塔压强为514MPa合成甲醇所以工厂对压力的选择要在技术经济等方面综合考虑空速空速的大小意味着气体与催化剂接触时间的长短在数值上空速与接触时间互为倒数一般来说催化剂活性愈高对同样的生产负荷所需的接触时间就愈短空速愈大甲醇合成所选用的空速的大小既涉及合成反应的醇净值合成塔的生产强度循环气量的大小和系统压力降的大小又涉及到反应热的综合利用当甲醇合成反应采用较低的空速时气体接触催化剂的时间长反应接近平衡反应物的单程转化率高由于单位时间通过的气量小总的产量仍然是低的由于反应物的转化率高单位甲醇合成所需要的循环量较少所以气体循环的动力消耗小当空速增大时将使出口气体中醇含量降低即醇净值降低催化剂床层中既定部位的醇含量与平衡醇浓度增大反应速度也相应增大由于醇净值降低的程度比空速增大的倍数要小从而合成塔的生产强度在增加空速的情况下有所提高因此可以增大空速以增加产量但实际生产中也不能太大否则会带来一系列的问题1提高空速意味着循环气量的增加整个系统阻力增加使得压缩机循环功耗增加2 甲醇合成是放热反应依靠反应热来维持床层温度那么若空速增大单位体积气体产生的反应热随醇净值的下降而减少空速过大催化剂温度就难以维持合成塔不能维持自热则可能在不启用加热炉的情况下使床层温度跨掉气体组成原料气组成对催化剂活性的影响是比较复杂的问题现就以下几种原料气成分对催化剂活性的影响作一下讨论1惰性气体CH4N2A的影响合成系统中惰性气体含量的高低影响到合成气中有效气体成分的高低惰性气体的存在引起COCO2H分压的下降合成系统中惰性气体含量取决于进入合成系统中新鲜气中惰性气体的多少和从合成系统排放的气量的多少排放量过多增加新鲜气的消耗量损失原料气的有效成分排放量过少则影响合成反应进行调节惰性气体的含量可以改变触媒床层的温度分布和系统总体压力当转化率过高而使合成塔出口温度过高时提高惰气含量可以解决温度过高的问题此外在给定系统压力操作下为了维持一定的产量必须确定适当的惰气含量从而选择驰放气合适的排放量2CO和H2比例的影响从化学反应方程式来看合成甲醇时CO与H2的分子比为12CO2和H2的分子比是13 这时可以得到甲醇最大的平衡浓度而且在其他条件一定的情况下可使甲醇合成的瞬间速度最大但由生产实践证明当CO含量高时温度不易控制且会导致羰基铁聚集在催化剂上引起催化剂失活同时由于CO在催化剂的活性中心的吸附速率比H2要快得多所以要求反应气体中的氢含量要大于理论量以提高反应速度氢气过量同时还能抑制高级醇高级烃和还原物质的生成减少H2S中毒提高粗甲醇的浓度和纯度同时又因氢的导热性好可有利于防止局部过热和降低整个催化层的温度但氢气过量会降低生产能力工业生产中用铜系催化剂进行生产时一般认为在合成塔入口的VH2VCO5较为合适实际生产中我们的氢碳比按照以下关系确定H2-CO2COCO2 2052153CO2勺影响CO2对催化剂活性时空产率的影响比较复杂而且存在极值完全没有CO2勺合成气催化剂活性处于不稳定区催化剂运转几十小时后很快失活所以CO2是活性中心的保护剂不能缺少在CO2浓度4以前CO2寸时空产率的影响成正效应促进CO合成甲醇自身也会合成甲醇但如果CO2含量过高就会因其强吸附性而占据催化剂的活性中心因此阻碍反应的进行会使时空产率下降同时也降低了CC和H2的浓度从而降低反应速度影响反应平衡而且由于存在大量的CO2使粗甲醇中的水含量增加在精馏过程中增加能耗一般认为CO2在35左右为宜pa是最初生产甲醇的方法采用锌铬催化剂反应温度360-400 C压力196-294Mpa高压法由于原料和动力消耗大反应温度高生成粗甲醇中有机杂质含量高而且投资大其发展长期以来处于停顿状态低压法50-80 Mpa 是20世纪60 年代后期发展起来的甲醇合成技术低压法基于高活性的铜基催化剂其活性明显高于锌铬催化剂反应温度低240-270 C在较低压力下可获得较高的甲醇收率且选择性好减少了副反应改善了甲醇质量降低了原料消耗此外由于压力低动力消耗降低很多工艺设备制造容易低压法甲醇合成工艺流程158 热交换器29分离器34压缩机器6甲醇合成塔7加热炉10中间储罐11闪蒸塔12轻馏分塔13精馏塔ICI 低压合成基本工艺过程①天然气脱硫②蒸汽转化③补碳及合成气压缩④甲醇合成⑤甲醇精制中压法98-120 Mpa 随着甲醇工业的大型化如采用低压法势必导致工艺管道和设备较大因此在低压法的基础上适当提高合成压力即发展成为中压法中压法仍采用高活性的铜基催化剂反应温度与低压法相同但由于提高了压力相应的动力消耗略有增加目前甲醇的生产方法还主要有①甲烷直接氧化法2CH4CQ2CH3O②由一氧化碳和氢气合成甲醇③液化石油气氧化法2.本设计的合成工艺以投资成本生产成本产品收率为依据选择中压法为生产甲醇的工艺用CC和H2在加热压力下在催化剂作用下合成甲醇其主要反应式为f CH3CHCC H2经过净化的原料气经预热加压于5 Mpa220 °C下从上到下进入Lurgi反应器在铜基催化剂的作用下发生反应出口温度为250 C左右甲醇7左右因此原料气必须循环则合成工序配置原则为图2-2 甲醇的合成是可逆放热反应为使反应达到较高的转化率应迅速移走反应热本设计采用Lurgi管壳式反应器管程走反应气壳程走4MPa的沸腾水粗甲醇驰放气图1-1 合成合序配置原则甲醇合成的工艺流程图① 这个流程是德国Lurgi 公司开发的甲醇合成工艺流程采用管壳式反应器催化剂装在管内反应热由管间沸腾水放走并副产高压蒸汽甲醇合成原料在离心式透平压缩机内加压到52 MPa 以15的比例混合循环混合气体在进反应器前先与反应后气体换热升温到220 C左右然后进入管壳式反应器反应反应热传给壳程中的水产生的蒸汽进入汽包出塔气温度约为250 C含甲醇7左右经过换热冷却到40 C冷凝的粗甲醇经分离器分离分离粗甲醇后的气体适当放空控制系统中的惰性气体含量这部分空气作为燃料大部分气体进入透平压缩机加压返回合成塔合成塔副产的蒸汽及外部补充的高压蒸汽一起进入过热器加热到50 C带动透平压缩机透平后的低压蒸汽作为甲醇精馏工段所需热源52 甲醇合成塔的选择甲醇合成反应器实际是甲醇合成系统中最重要的设备从操作结构材料及维修等方面考虑甲醇合成反应器应具有以下要求1催化剂床层温度易于控制调节灵活能有效移走反应热并能以较高位能回收反应热2反应器内部结构合理能保证气体均匀通过催化剂床层阻力小气体处理量大合成转化率高催化剂生产强度大3结构紧凑尽可能多填装催化剂提高高压空间利用率高压容器及内件间无渗漏催化剂装御方便制造安装及维修容易甲醇合成塔主要由外筒内件和电加热器三部分组成内件事由催化剂筐和换热器两部分组成根据内件的催化剂筐和换热器的结构形式不同甲醇内件份为若干类型按气体在催化剂床的流向可分为轴向式径向式和轴径复合型按催化剂筐内反应惹得移出方式可分为冷管型连续换热式和冷激型多段换热式两大类按换热器的形式分为列管式螺旋板式波纹板式等多种形式目前国内外的大型甲醇合成塔塔型较多归纳起来可分为五种1冷激式合成塔这是最早的低压甲醇合成塔是用进塔冷气冷激来带走反应热该塔结构简单也适于大型化但碳的转化率低出塔的甲醇浓度低循环量大能耗高又不能副产蒸汽现已经基本被淘汰2 冷管式合成塔这种合成塔源于氨合成塔在催化剂内设置足够换热面积的冷气管用进塔冷管来移走反应热冷管的结构有逆流式并流式和U 型管式由于逆流式与合成反应的放热不相适应即床层出口处温差最大但这时反应放热最小而在床层上部反应最快放热最多但温差却又最小为克服这种不足冷管改为并流或U 形冷管如1984 年ICI公司提出的逆流式冷管型及1993年提出的并流冷管TCC型合成塔和国内林达公司的U形冷管型这种塔型碳转化率较高但仅能在出塔气中副产0 4MPa的低压蒸汽日前大型装置很少使用3 水管式合成塔将床层内的传热管由管内走冷气改为走沸腾水这样可较大地提高传热系数更好地移走反应热缩小传热面积多装催化剂同时可副产25Mpa40MPa勺中压蒸汽是大型化较理想的塔型4固定管板列管合成塔这种合成塔就是一台列管换热器催化剂在管内管间壳程是沸腾水将反应热用于副产30MPa-40MPa勺中压蒸汽代表塔型有Lurgi公司的合成塔和三菱公司套管超级合成塔该塔是在列管内再增加一小管小管内走进塔勺冷气进一步强化传热即反应热通过列管传给壳程沸腾水而同时又通过列管中心的冷气管传给进塔的冷气这样就大大提高转化率降低循环量和能耗然而使合成塔的结构更复杂固定管板列管合成塔虽然可用于大型化但受管长设备直径管板制造所限在日产超过2000t 时往往需要并联两个这种塔型是造价最高的一种也是装卸催化剂较难的一种随着合成压力增高塔径加大管板的厚度也增加管板处的催化剂属于绝热段管板下面还有一段逆传热段也就是进塔气225 E管外的沸腾水却是248 C不是将反应热移走而是水给反应气加热这种合成塔由于列管需用特种不锈钢因而是造价非常高的一种5多床内换热式合成塔这种合成塔由大型氨合成塔发展而来日前各工程公司的氨合成塔均采用二床四床内换热式合成塔针对甲醇合成的特点采用四床或五床内换热式合成塔各床层是绝热反应在各床出口将热量移走这种塔型结构简单造价低不需特种合金钢转化率高适合于大型或超大型装置但反应热不能全部直接副产中压蒸汽典型塔型有Casale 的四床卧式内换热合成塔和中。

年产20万吨煤制甲醇生产工艺毕业设计1

年产20万吨煤制甲醇生产工艺毕业设计1

年产20万吨煤制甲醇生产工艺毕业设计1煤制甲醇是一种常见的合成甲醇方法,利用煤炭作为原料,经过一系列的工艺过程转化为甲醇。

本文将对年产20万吨煤制甲醇生产工艺进行设计。

1.原料准备2.煤气化煤炭经过破碎和清洗后,进入煤气化炉进行煤气化反应。

煤气化反应是将煤炭在高温下与水蒸汽和空气进行反应,生成合成气(氢气和一氧化碳)。

为了提高反应效率,可以采用固定床煤气化工艺,其中煤炭通过喷吹的方式,使其与煤化反应剂充分接触,从而提高反应速率。

3.气体清洁合成气中存在着很多不纯物质,如硫化氢、氨和苯等,需要对其进行清洁处理。

可采用物理吸附和化学吸附的方法去除其中的硫化氢、氨和苯等有害物质,并保证合成气的纯度。

4.合成气净化经过清洁处理的合成气中,仍然含有少量的杂质,如水、二氧化碳和烃类。

这些杂质需要通过压力摩擦吸附和凝聚法进行移除,以获得高纯度的合成气。

5.合成反应经过净化后的合成气进入合成反应器进行甲醇的合成。

一般采用高压合成法,其中合成气与催化剂在高温高压的反应条件下进行反应,生成甲醇。

这一反应通常使用一种铜活性的催化剂,如Zn-Cu-Al催化剂,以提高甲醇的产率。

6.分离纯化合成反应产物中除了甲醇外,还含有大量的水和其他杂质。

这些杂质需要通过蒸馏和吸附等方法进行分离,以得到高纯度的甲醇产品。

其中,蒸馏是最常见的分离方法,通过不同组分的沸点差异将甲醇与其他组分进行分离。

7.废水处理在煤制甲醇的生产过程中,会产生大量的废水。

这些废水中含有甲醇和其他有机物、无机盐等,需要进行处理。

一般采用生物降解和化学方法对废水进行处理,使其达到环保排放标准。

8.能源回收在年产20万吨煤制甲醇生产工艺中,存在大量的热能和废气能。

这些能源可以通过采用余热回收和废气利用技术进行回收利用。

例如,可以利用高温废气进行锅炉燃烧,产生蒸汽,用于发电和煤制甲醇工艺中的能源需求。

综上所述,年产20万吨煤制甲醇生产工艺包括原料准备、煤气化、气体清洁、合成气净化、合成反应、分离纯化、废水处理和能源回收等环节。

年产20万吨甲醇制二甲醚生产工艺初步《化工设计》课程设计说明书

年产20万吨甲醇制二甲醚生产工艺初步《化工设计》课程设计说明书

《化工设计》课程设计说明书年产20万吨甲醇制二甲醚生产工艺初步设计学生学号:学生姓名:专业班级:化工工艺指导教师:起止日期:2012.11.26~2012.12.21化工设计课程设计任务书摘要作为LPG和石油类的替代燃料,目前二甲醚(DME)倍受注目。

DME是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。

与甲烷一样,被期望成为21世纪的能源之一。

目前生产的二甲醚基本上由甲醇脱水制得,即先合成甲醇,然后经甲醇脱水制成二甲醚。

甲醇脱水制二甲醚分为液相法和气相法两种工艺,本设计采用气相法制备二甲醚工艺。

将甲醇加热蒸发,甲醇蒸气通过γ-AL2O3催化剂床层,气相甲醇脱水制得二甲醚。

气相法的工艺过程主要由甲醇加热、蒸发、甲醇脱水、二甲醚冷凝及精馏等组成。

主要完成以下工作:1)精馏用到的二甲醚分离塔和甲醇回收塔的塔高、塔径、塔板布置等的设计;2)所需换热器、泵的计算及选型;关键词:二甲醚,甲醇,工艺设计。

Abstract:As LPG and oil alternative fuel, DME has drawn attentions at present. Physical propertie s of DME is similar for LPG, and don’t produce combustion gas to damage the environment, so, It can be produced largely. Like methane, DME is expected to become 21st century energy resources., DME is prepared by methanol dehydration, namely, synthetic methanol first and then methanol dehydration to dimethyl etherby methanol dehydration. Methanol dehydration to DME is divided into two kinds of liquid phase and gas-phase process. This design uses a process gas of dimethyl ether prepared by dimethyl. Heating m ethanol to evaporation, methanol vapor through the γ-AL2O3catalyst bed, vapor methanol dehydration to dimethyl etherby. This process is made of methanol process heating, evaporation, dehydration of methanol, dimethyl ether condensation and distillation etc. Completed for the following work:1) Distillation tower used in separation of dimethyl ether and methanol recovery , column height of tower ,diameter, arrangement of column plate etc;2) The calculation and selection of heat exchanger, pump;Key words: dimethyl ether, methanol, process design目录摘要前言化工设计课程设计任务书................................................................................................................................. 前言.. 01 文献综述 01.1 二甲醚概述 01.1.1 二甲醚的发展现状 01.1.2 二甲醚的传统领域的应用及其拓展 01.2国内二甲醚市场简况 (1)1.2.1现状 (1)1.2.2 国内市场预测 (3)1.3国外二甲醚市场简况 (4)1.3.1现状 (4)1.3.2 国外市场预测 (5)1.4 原料说明 (6)1.6 二甲醚的主要技术指标 (7)1.6.1技术要求 (7)1.6.2试验方法 (8)2 DME产品方案及生产规模 (10)2.1 产品品种、规格、质量指标及拟建规模 (10)2.2 产品规格、质量指标 (10)2.3 产品方案分析及生产规模分析 (11)3 工艺流程介绍 (11)3.1生产方法简述 (11)3.2工艺流程说明 (13)3.3生产工艺特点 (15)3.4主要工艺指标 (15)3.4.1 二甲醚产品指标 (15)3.4.2 催化剂的使用 (16)4主要塔设备计算及选型 (16)4.1 汽化塔及其附属设备的计算选型 (16)4.1.1 物料衡算 (16)4.1.2 热量衡算 (18)4.1.3 理论板数、塔径、填料选择及填料层高度的计算 (20)4.1.4 汽化塔附属设备的选型计算 (24)4.2 合成塔及其附属设备的计算选型 (25)4.2.1 物料衡算 (25)4.2.2 合成塔的选取选取: (25)4.2.3 热量衡算及附属设备的选型计算 (25)4.3 精馏塔及其附属设备的计算选型 (28)4.3.1 物料衡算 (29)4.3.2 热量衡算 (29)4.3.3 理论塔板数的计算 (31)4.3.4 初馏塔主要尺寸的设计计算 (31)4.3.5塔径设计计算 (33)4.3.6 填料层高度的计算 (34)4.3.7 附属设备的选型计算 (34)4.4 回收塔及其附属设备的计算选型 (35)4.5.1 物料衡算 (35)4.4.2 热量衡算 (37)4.4.3 理论塔板数的计算 (38)4.4.4 回收塔主要尺寸的设计计算 (39)4.4.5塔径设计计算 (40)4.4.6 填料层高度的计算 (41)4.4.7 附属设备的选型计算 (42)致谢 (44)参考文献 (45)附录1.主要设备一览表 (46)前言二甲醚又称甲醚、木醚氧、二甲,是最简单的脂肪醚重要的甲醇下游产品之一。

(整理)年产20w吨煤制甲醇的生产流程工艺设计

(整理)年产20w吨煤制甲醇的生产流程工艺设计

目录1.1概述------------------------------------------------ 01.2市场分析------------------------------------------------------------- 11.2.1对世界甲醇供需现状的分析---------------------------------------- 1 1.2.2 我国甲醇发展预测----------------------------------------------- 2第二章工艺流程设计 ----------------------------------------- 52.1生产方法------------------------------------------------------------- 5 2.2 工艺流程化----------------------------------------------------------- 82.2.1反应工段-------------------------------------------------------- 82.2.2原料预处理----------------------------------------------------- 12 2.2.3产品后处理---------------------------------------------------- 12 2.2.4废物回收或处理------------------------------------------------ 13 2.2.5流程简述------------------------------------------------------ 22第三章设备平面布置图 -------------------------------------- 233.1设备布置概述-------------------------------------------------------- 233.1.1设备布置原则--------------------------------------------------- 233.1.2设备布置内容--------------------------------------------------- 243.1.3设备布置注意事项----------------------------------------------- 24 3.2主要设备一览表------------------------------------------------------ 26致谢----------------------------------------------------- 27 参考文献--------------------------------------------------- 28第一章总论1.1概述OH。

年产20万吨甲醇制二甲醚生产工艺初步设计(DOC 55页)

年产20万吨甲醇制二甲醚生产工艺初步设计(DOC 55页)

太原理工大学化学化工学院《化工设计》课程设计说明书年产20万吨甲醇制二甲醚生产工艺初步设计学生学号:2009002273学生姓名:武晓佩专业班级:化工工艺0904指导教师:郑家军起止日期:2012.11.26~2012.12.21化工设计课程设计任务书摘要作为LPG和石油类的替代燃料,目前二甲醚(DME)倍受注目。

DME是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。

与甲烷一样,被期望成为21世纪的能源之一。

目前生产的二甲醚基本上由甲醇脱水制得,即先合成甲醇,然后经甲醇脱水制成二甲醚。

甲醇脱水制二甲醚分为液相法和气相法两种工艺,本设计采用气相法制备二甲醚工艺。

将甲醇加热蒸发,甲醇蒸气通过γ-AL2O3催化剂床层,气相甲醇脱水制得二甲醚。

气相法的工艺过程主要由甲醇加热、蒸发、甲醇脱水、二甲醚冷凝及精馏等组成。

主要完成以下工作:1)精馏用到的二甲醚分离塔和甲醇回收塔的塔高、塔径、塔板布置等的设计;2)所需换热器、泵的计算及选型;关键词:二甲醚,甲醇,工艺设计。

Abstract:As LPG and oil alternative fuel, DME has drawn attentions at present. Physical properties of DME is similar for LPG, and don’t produce combustion gas to damage the environment, so, It can be produced largely. Like methane, DME is expected to become 21st century energy resources., DME is prepared by methanol dehydration, namely, synthetic methanol first and then methanol dehydration to dimethyl etherby methanol dehydration. Methanol dehydration to DME is divided into two kinds of liquid phase and gas-phase process. This design uses a process gas of dimethyl ether prepared by dimethyl. Heating methanol to evaporation, methanol vapor through the γ-AL2O3catalyst bed, vapor methanol dehydration to dimethyl etherby. This process is made of methanol process heating, evaporation, dehydration of methanol, dimethyl ether condensation and distillation etc. Completed for the following work:1) Distillation tower used in separation of dimethyl ether and methanol recovery , column height of tower ,diameter, arrangement of column plate etc;2) The calculation and selection of heat exchanger, pump;Key words: dimethyl ether, methanol, process design目录摘要前言化工设计课程设计任务书 (I)前言 (1)1 文献综述 (1)1.1 二甲醚概述 (1)1.1.1 二甲醚的发展现状 (1)1.1.2 二甲醚的传统领域的应用及其拓展 (1)1.2国内二甲醚市场简况 (2)1.2.1现状 (2)1.2.2 国内市场预测 (4)1.3国外二甲醚市场简况 (5)1.3.1现状 (5)1.3.2 国外市场预测 (6)1.4 原料说明 (7)1.6 二甲醚的主要技术指标 (8)1.6.1技术要求 (8)1.6.2试验方法 (9)2 DME产品方案及生产规模 (11)2.1 产品品种、规格、质量指标及拟建规模 (11)2.2 产品规格、质量指标 (11)2.3 产品方案分析及生产规模分析 (12)3 工艺流程介绍 (12)3.1生产方法简述 (12)3.2工艺流程说明 (14)3.3生产工艺特点 (16)3.4主要工艺指标 (16)3.4.1 二甲醚产品指标 (16)3.4.2 催化剂的使用 (17)4主要塔设备计算及选型 (17)4.1 汽化塔及其附属设备的计算选型 (17)4.1.1 物料衡算 (17)4.1.2 热量衡算 (19)4.1.3 理论板数、塔径、填料选择及填料层高度的计算 (21)4.1.4 汽化塔附属设备的选型计算 (25)4.2 合成塔及其附属设备的计算选型 (26)4.2.1 物料衡算 (26)4.2.2 合成塔的选取选取: (26)4.2.3 热量衡算及附属设备的选型计算 (26)4.3 精馏塔及其附属设备的计算选型 (29)4.3.1 物料衡算 (30)4.3.2 热量衡算 (30)4.3.3 理论塔板数的计算 (32)4.3.4 初馏塔主要尺寸的设计计算 (32)4.3.5塔径设计计算 (34)4.3.6 填料层高度的计算 (35)4.3.7 附属设备的选型计算 (35)4.4 回收塔及其附属设备的计算选型 (36)4.5.1 物料衡算 (36)4.4.2 热量衡算 (38)4.4.3 理论塔板数的计算 (39)4.4.4 回收塔主要尺寸的设计计算 (40)4.4.5塔径设计计算 (41)4.4.6 填料层高度的计算 (42)4.4.7 附属设备的选型计算 (43)致谢 (45)参考文献 (46)附录1.主要设备一览表 (47)前言二甲醚又称甲醚、木醚氧、二甲,是最简单的脂肪醚重要的甲醇下游产品之一。

年产20万吨Lurgi低压甲醇合成设计

年产20万吨Lurgi低压甲醇合成设计

年产20万吨合成甲醇分厂设计低压、Lurgi式班级:化工1306设计组成员:张昭钦李春晓于明诚于坤祥蒲飞2016年12月目录摘要 (3)第一章概述 (5)1.1 项目概述 (5)1.1.1项目名称 (5)1.1.2项目简介 (5)1.2 设计依据及原则 (5)1.2.1 设计依据 (5)1.2.2 设计原则 (6)1.3 工艺特点 (6)1.4 产品方案 (6)1.5 主要物料规格及消耗 (7)1.6 排污要求 (7)1.7公用工程 (7)1.8 厂址概况 (7)第二章文献综述 (8)2.1研究背景及意义 (8)2.2甲醇的性质 (8)2.3甲醇的用途 (9)2.4甲醇的合成方法 (9)2.4.1甲醇合成化学反应 (9)2.4.2甲醇合成工艺 (10)2.5甲醇发展现状 (11)2.5.1目前甲醇发展状况 (11)2.5.2目前甲醇下游产品发展状况 (12)2.6甲醇发展未来展望 (13)2.6.1甲醇制烯烃/甲醇制丙烯( MTO/MTP) (13)2.6.2甲醇燃料 (14)2.6.3甲醇其他运用方向 (14)2.7课题开展意义与内容 (14)第三章生产方法的选择 (16)3.1现今合成气制甲醇工艺简介 (16)3.2甲醇合成影响因素 (16)3.2.1反应温度与压力 (17)3.2.2空速 (17)3.2.3气体组成 (17)3.3工艺流程模拟 (18)3.3.1预处理合成工段 (18)3.3.2冷凝分离工段 (18)3.3.3精馏工段 (19)第四章物料衡算和热量衡算 (20)4.1概述 (20)4.2物料衡算的意义 (20)4.3物料衡算遵循的原则 (20)4.4物料衡算结果 (21)4.4.1全段工艺的物料衡算 (21)4.5 热量衡算 (28)4.5.1热量衡算原则 (28)4.5.2热量衡算 (28)第五章设备设计及选型 (31)5.1概述 (31)5.2 甲醇合成反应器的选择 (31)5.2.1列管式反应器内部结构及空速的计算 (31)5.2.2反应器塔高的计算 (32)5.3 压缩机的选择 (32)5.3.1 选型原则 (32)5.3.2 选型介绍 (32)第六章安全技术与环境保护 (33)6.1环境保护治理措施 (33)6.2毒物质的预防 (33)6.2.1甲醇中毒的应急处理 (33)6.2.2二甲醚中毒的应急处理 (33)6.2.3一氧化碳中毒的应急处理 (34)6.2.4硫化氢中毒的应急处理 (34)6.3甲醇的贮藏 (34)6.4三废处理 (34)参考文献 (36)摘要甲醇是一种极重要的有机化工原料,也是一种燃料,是碳一化学的基础产品,在国民经济中占有十分重要的地位。

年产20万吨甲醇合成工段工艺设计综述汇总

年产20万吨甲醇合成工段工艺设计综述汇总

1综述1.1甲醇生产的发展1.1.1国外甲醇生产的发展甲醇是醇类中最简单的一元醇。

1661年英国化学家R.波义耳首先在木材干馏后的液体产物中发现甲醇,故甲醇俗称木精、木醇。

在自然界只有某些树叶或果实中含有少量的游离态甲醇,绝大多数以酯或醚的形式存在。

1857年法国的M·贝特洛在实验室用一氯甲烷在碱性溶液中水解也制得了甲醇。

1923年德国BASF公司首先用合成气在高压下实现了甲醇的工业化生产,直到1965年,这种高压法工艺是合成甲醇的唯一方法。

1966年英国ICI公司开发了低压法工艺,接着又开发了中压法工艺。

1971年德国的Lurgi公司相继开发了适用于天然气-渣油为原料的低压法工艺。

由于低压法比高压法在能耗、装置建设和单系列反应器生产能力方面具有明显的优越性,所以从70年代中期起,国外新建装置大多采用低压法工艺。

世界上典型的甲醇合成工艺主要有ICI工艺、Lurgi工艺和三菱瓦斯化学公司(MCC)工艺[1]。

目前,国外的液相甲醇合成新工艺具有投资省、热效率高、生产成本低的显著优点,尤其是LPMEOHTM工艺,采用浆态反应器,特别适用于用现代气流床煤气化炉生产的低H2/(CO+CO2)比的原料气,在价格上能够与天然气原料竞争[2]。

1.1.2国内甲醇生产的发展我国的甲醇工业经过十几年的发展,生产能力得到了很大提高。

1991年,我国的生产能力仅为70万吨,截止2004年底,我国甲醇产能已达740万吨,117家生产企业共生产甲醇440.65万吨,2005年甲醇产量达到500万吨,比2004年增长22.2%,进口量99.1万吨,因此下降3.1%。

2008年以来我国甲醇产量不断增加。

我国的甲醇生产始于1957年,50年代在吉林、兰州和太原等地建成了以煤或焦炭为原料来生产甲醇的装置。

60年代建成了一批中小型装置,并在合成氨工业的基础上开发了联产法生产甲醇的工艺。

70年代四川维尼纶厂引进了一套以乙炔尾气为原料的95 kt/a低压法装置,采用英国ICI技术。

年产20万吨煤制甲醇合成工艺初步设计煤化工毕业设计

年产20万吨煤制甲醇合成工艺初步设计煤化工毕业设计

在煤化工领域,煤制甲醇是一项重要的合成工艺。

本次毕业设计旨在对年产20万吨煤制甲醇合成工艺进行初步设计。

1.引言煤制甲醇是利用煤作为原料,采用合成气法在催化剂的作用下,通过甲醇合成反应反应制得甲醇的工艺。

甲醇是重要的化工原料和燃料,广泛应用于能源、化工、医药、农药和合成材料等领域。

煤制甲醇工艺具有资源广泛、可替代性强等特点,对于我国的能源结构调整和低碳经济发展具有重大意义。

2.工艺概述本次设计以年产20万吨煤制甲醇工艺为研究对象。

工艺主要包括煤气化、洗净和变换、合成甲醇以及甲醇精制和补热等几个步骤。

2.1煤气化煤气化是将煤转化为合成气(CO+H2)的过程。

在本工艺设计中,选用常压热力煤气化工艺,采用煤气化炉将煤转化为合成气。

煤气化炉为锅炉式,在高温下煤与氧气反应生成煤气。

2.2洗净和变换合成气中还含有一定量的杂质,需要通过洗净和变换净化处理。

洗净包括酸气(H2S、CO2)的吸收和除尘两个步骤,主要通过洗涤液对酸气和颗粒物进行吸收和分离。

变换则是通过反应将CO与H2进行适当的比例调整,通常采用水蒸气变换法。

2.3合成甲醇通过将洗净和变换后的合成气进入反应器,在催化剂的作用下进行甲醇合成反应。

本设计中选用Cu-Zn-Al催化剂,并采用固定床反应器进行反应。

在适宜的反应温度和压力下,合成气中的CO和H2与催化剂发生反应生成甲醇。

2.4甲醇精制和补热合成甲醇后,通过分离、蒸馏和精制等过程,将甲醇纯化得到符合质量标准的甲醇产品。

同时也需要对合成反应产生的热量进行回收利用,提高热能利用率。

3.工艺流程4.工艺经济分析进行工艺经济分析是评估该工艺可行性的关键环节。

通过对投资、生产能力、原料消耗和产品收益等方面的计算和估算,可以评估工艺的经济效益,为项目决策提供依据。

5.结论本次毕业设计对年产20万吨煤制甲醇合成工艺进行了初步设计,从工艺概述、工艺流程和工艺经济分析等方面对该工艺进行了详细的研究。

煤制甲醇工艺的应用有助于推动我国能源结构调整和低碳经济发展,具有重要的实际意义。

年产20万吨煤制甲醇工艺设计

年产20万吨煤制甲醇工艺设计

年产20万吨煤制甲醇工艺设计专业:精细化学品生产技术组别:第六组指导老师:目录1 文献综述 (4)1.1我国甲醇行业现状与发展建议 (4)1.1.1甲醇发展状况 (4)1.1.2甲醇市场状况 (4)1.1.3甲醇发展方向 (5)1.1.4甲醇行业的发展建议 (5)1.2甲醇生产方法简介 (6)1.2.1煤、焦炭制甲醇的生产方法简述 (6)1.2.2本设计工艺流程 (19)2 煤制甲醇生产工艺流程 (20)2.1煤气化制粗原料气 (20)2.1.1 煤气化基本原理 (20)2.1.2 灰熔聚流化床煤气化技术概述 (20)2.1.3 ICC灰熔聚流化床煤气化工艺 (21)2.2粗原料气栲胶法脱硫 (23)2.2.1 栲胶法脱硫工艺原理 (23)2.2.2 粗原料气栲胶脱硫工艺流程 (23)2.3原料气变换 (24)2.3.1 一氧化碳变换的原理 (24)2.3.2 加压全低变工艺流程 (25)2.4变换气栲胶法脱硫 (26)2.4.1 变换气脱硫原因 (26)2.4.2 变换气栲胶脱硫工艺流程 (26)2.5变换气碳酸丙烯酯法脱碳 (26)2.5.1 碳酸丙烯酯法脱碳原理 (26)2.5.2 碳酸丙烯酯法脱碳工艺流程 (26)2.6合成气(变换气)压缩 (27)2.7合成气合成甲醇 (27)2.7.1 合成甲醇反应原理 (27)2.7.2 鲁奇(Lurgi)低中压发合成甲醇工艺流程 (28)2.7.3 鲁奇(Lurgi)管壳型甲醇合成塔 (30)2.8粗甲醇精馏 (31)2.8.1精馏原理 (31)2.8.2 加压蒸馏的目的及双效法定义 (31)2.8.3 双效法三塔粗甲醇精馏工艺流程 (32)2.8.4 双效法三塔粗甲醇精馏工艺流程特点 (33)2.9工艺流程总结 (33)3 煤制甲醇生产工艺计算.................................... 错误!未定义书签。

3.1ICC灰熔聚流化床煤气化工艺计算......................... 错误!未定义书签。

年产20万吨甲醇合成工艺设计化工专业毕业设计课程设计

年产20万吨甲醇合成工艺设计化工专业毕业设计课程设计

年产20万吨甲醇合成工艺设计(一)概述甲醇作为及其重要的有机化工原料,是碳一化学工业的基础产品,在国民经济中占有重要地位。

长期以来,甲醇都是被作为农药,医药,染料等行业的工业原料,但随着科技的进步与发展,甲醇将被应用于越来越多的领域。

当今甲醇生产技术主要采用中压法和低压法两种工艺,并且以低压法为主,这两种方法生产的甲醇约占世界甲醇产量的80%以上。

高压法:(19.6-29.4Mpa)是最初生产甲醇的方法,采用锌铬催化剂,反应温度360-400℃,压力19.6-29.4Mpa。

高压法由于原料和动力消耗大,反应温度高,生成粗甲醇中有机杂质含量高,而且投资大,其发展长期以来处于停顿状态。

低压法:(5.0-8.0 Mpa)是20世纪60年代后期发展起来的甲醇合成技术,低压法基于高活性的铜基催化剂,其活性明显高于锌铬催化剂,反应温度低(240-270℃)。

在较低压力下可获得较高的甲醇收率,且选择性好,减少了副反应,改善了甲醇质量,降低了原料消耗。

此外,由于压力低,动力消耗降低很多,工艺设备制造容易。

中压法:(9.8-12.0 Mpa)随着甲醇工业的大型化,如采用低压法势必导致工艺管道和设备较大,因此在低压法的基础上适当提高合成压力,即发展成为中压法。

中压法仍采用高活性的铜基催化剂,反应温度与低压法相同,但由于提高了压力,相应的动力消耗略有增加。

目前,甲醇的生产方法还主要有①甲烷直接氧化法:2CH4+O2→2CH3OH.②由一氧化碳和氢气合成甲醇,③液化石油气氧化法(二)原料选取本设计选择中压法为生产甲醇的工艺,用CO和H2在加热压力下,在催化剂作用下合成甲醇主要反应式为:CO+ H2→CH3OH因此原料主要是:CO, H2催化剂:Cu。

(三)工艺过程设计经过净化的原料气,经预热加压,于5 Mpa、220 ℃下,从上到下进入Lurgi反应器,在铜基催化剂的作用下发生反应,出口温度为250 ℃左右,甲醇7%左右,因此,原料气必须循环,则合成工序配置原则为图2-3。

最新产20万吨煤制甲醇工艺

最新产20万吨煤制甲醇工艺

产20万吨煤制甲醇工艺年产20万吨煤制甲醇工艺设计专业:精细化学品生产技术组别:第六组指导老师:目录1文献综述 (3)1.1我国甲醇行业现状与发展建议 (3)1.1.1 甲醇发展状况 (3)1.1.2甲醇市场状况 (3)1.1.3甲醇发展方向 (4)1.1.4 甲醇行业的发展建议 (4)1.2甲醇生产方法简介 (5)1.2.1煤、焦炭制甲醇的生产方法简述 (5)1.2.2本设计工艺流程 (18)2煤制甲醇生产工艺流程 (19)2.1煤气化制粗原料气 (19)2.1.1 煤气化基本原理 (19)2.1.2 灰熔聚流化床煤气化技术概述 (19)2.1.3 ICC灰熔聚流化床煤气化工艺 (20)2.2粗原料气栲胶法脱硫 (22)2.2.1栲胶法脱硫工艺原理 (22)2.2.2粗原料气栲胶脱硫工艺流程 (22)2.3原料气变换 (23)2.3.1 一氧化碳变换的原理 (23)2.3.2 加压全低变换工艺流程 (24)2.4变换气栲胶法脱硫 (25)2.4.1 变换气脱硫原因 (25)2.4.2 变换气栲胶脱硫工艺流程 (25)2.5变换气碳酸丙烯酯法脱碳 (25)2.5.1 碳酸丙烯酯法脱碳原理 (25)2.5.2 碳酸丙烯酯法脱碳工艺流程 (25)2.6合成气(变换气)压缩 (26)2.7合成气合成甲醇 (26)2.7.1 合成甲醇反应原理 (26)2.7.2鲁奇(Lurgi)低中压发合成甲醇工艺流程 (27)2.7.3鲁奇(Lurgi)管壳型甲醇合成塔 (29)2.8粗甲醇精馏 (30)2.8.1精馏原理 (30)2.8.2 加压蒸馏的目的及双效法定义 (30)2.8.3 双效法三塔粗甲醇精馏工艺流程 (31)2.8.4 双效法三塔粗甲醇精馏工艺流程特点 (32)2.9工艺流程总结 (32)附表1甲醇合成厂的主要设备一览表附甲醇快速检测方法:附本产品(精甲醇)执行国家《GB338—92》标准,具体指标见下表1文献综述1.1 我国甲醇行业现状与发展建议1.1.1 甲醇发展状况⑴甲醇的性质纯甲醇为无色透明略带乙醇气味的易挥发液体,沸点65℃,熔点-97.8℃,和水相对密度0.7915(20/4℃),甲醇能和水以任意比相溶,但不形成共沸物,能和多数常用的有机溶剂(乙醇、乙醚、丙酮、苯等)混溶,并形成恒沸点混合物,甲醇能和一些盐如CaCl2、MgCl2等形成结晶化合物,称为结晶醇如CaCl2·CH3OH、MgCl2·6CH3OH,和盐的结晶水合物类似,甲醇蒸气能和空气形成爆炸性混合物,爆炸极限6.0~36.5%(体积)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年产20万吨甲醇合成工艺设计(一)概述甲醇作为及其重要的有机化工原料,是碳一化学工业的基础产品,在国民经济中占有重要地位。

长期以来,甲醇都是被作为农药,医药,染料等行业的工业原料,但随着科技的进步与发展,甲醇将被应用于越来越多的领域。

当今甲醇生产技术主要采用中压法和低压法两种工艺,并且以低压法为主,这两种方法生产的甲醇约占世界甲醇产量的80%以上。

高压法:(19.6-29.4Mpa)是最初生产甲醇的方法,采用锌铬催化剂,反应温度360-400℃,压力19.6-29.4Mpa。

高压法由于原料和动力消耗大,反应温度高,生成粗甲醇中有机杂质含量高,而且投资大,其发展长期以来处于停顿状态。

低压法:(5.0-8.0 Mpa)是20世纪60年代后期发展起来的甲醇合成技术,低压法基于高活性的铜基催化剂,其活性明显高于锌铬催化剂,反应温度低(240-270℃)。

在较低压力下可获得较高的甲醇收率,且选择性好,减少了副反应,改善了甲醇质量,降低了原料消耗。

此外,由于压力低,动力消耗降低很多,工艺设备制造容易。

中压法:(9.8-12.0 Mpa)随着甲醇工业的大型化,如采用低压法势必导致工艺管道和设备较大,因此在低压法的基础上适当提高合成压力,即发展成为中压法。

中压法仍采用高活性的铜基催化剂,反应温度与低压法相同,但由于提高了压力,相应的动力消耗略有增加。

目前,甲醇的生产方法还主要有①甲烷直接氧化法:2CH4+O2→2CH3OH.②由一氧化碳和氢气合成甲醇,③液化石油气氧化法(二)原料选取本设计选择中压法为生产甲醇的工艺,用CO和H2在加热压力下,在催化剂作用下合成甲醇主要反应式为:CO+ H2→CH3OH因此原料主要是:CO, H2催化剂:Cu。

(三)工艺过程设计经过净化的原料气,经预热加压,于5 Mpa、220 ℃下,从上到下进入Lurgi反应器,在铜基催化剂的作用下发生反应,出口温度为250 ℃左右,甲醇7%左右,因此,原料气必须循环,则合成工序配置原则为图2-3。

甲醇的合成是可逆放热反应,为使反应达到较高的转化率,应迅速移走反应热,本设计采用Lurgi管壳式反应器,管程走反应气,壳程走4MPa的沸腾水流程采用管壳式反应器,催化剂装在管内,反应热由管间沸腾水放走,并副产高压蒸汽,甲醇合成原料在离心式透平压缩机内加压到5.2 MPa (以1:5的比例混合) 循环,混合气体在进反应器前先与反应后气体换热,升温到220 ℃左右,然后进入管壳式反应器反应,反应热传给壳程中的水,产生的蒸汽进入汽包,出塔气温度约为250 ℃,含甲醇7%左右,经过换热冷却到40 ℃,冷凝的粗甲醇经分离器分离。

分离粗甲醇后的气体适当放空,控制系统中的惰性气体含量。

这部分空气作为燃料,大部分气体进入透平压缩机加压返回合成塔,合成塔副产的蒸汽及外部补充的高压蒸汽一起进入过热器加热到50 ℃,带动透平压缩机,透平后的低压蒸汽作为甲醇精馏工段所需热源。

本设计的主要方法及原理:造气工段:使用二步法造气CH4+H2O(气)→CO+3H2-205.85 kJ/molCH4+O2→CO2+2H2+109.45 kJ/molCH4+21O2→CO+2H2+35.6 kJ/molCH4+2O2→CO2+2H2O+802.3 kJ/mol合成工段5MPa下铜基催化剂作用下发生一系列反应主反应: CO+2H2→CH3OH+102.37 kJ/kmol副反应: 2CO+4H2→(CH3O)2+H2O+200.3 kJ/kmolCO+3H2→CH4+ H2O+115.69 kJ/kmol4CO+8H2→C4H9OH+3H2O+49.62 kJ/kmol------------(A)CO+H2→CO +H2O-42.92 kJ/kmol除(A)外,副反应的发生,都增大了CO的消耗量,降低了产率,故应尽量减少副反应。

(四)主要设备(精馏塔)装配图及设计计算说明书常压精馏塔计算条件:⑴.精甲醇质量:精甲醇含醇:99.95%(wt) 残液含醇:1%(wt) ⑵.操作条件:塔顶压力:0.01⨯106 Pa 塔底压力:0.13⨯106 Pa 塔顶温度:67 ℃ 塔底温度:105 ℃ 回流液温度:40 ℃ 进料温度:124 ℃ <1>.精馏段 平均温度:21⨯(124+67)=95.5 ℃ 平均压力:21⨯[(0.13⨯106-0.01⨯106) ⨯751975-⨯0.01⨯106]=99.6 KPa表2-22 精馏段物料流率标准状况下的体积:V 0=1257.17⨯22.4=28160.63Nm 3/h操作状况下的体积:V 1=28160.63⨯2735.95273+⨯63610101.0106.9910101.0⨯+⨯⨯ =19122.47m 3/h气体负荷:V n =360047.19122=5.312m 3/s气体密度: n ρ=47.1912247.40229=2.104 kg/ m 3查《化工工艺设计手册》,95.5℃时甲醇的密度n ρ=721 kg/m 3 液体负荷:L n =721360047.40229⨯=0.0155m 3/h<2>.提馏段 平均温度:21(105+124)=114.5 ℃入料压力:(0.13⨯106-0.01⨯106)⨯751975-=89.6 kPa 平均压力:21(89.6⨯103+0.13⨯106)=109.8 kPa表2-23 提馏段内回流量标准状况下的体积: 1V '=1523.23⨯22.4=34120.32 Nm 3/h操作状态下的体积:1V '=34120.32⨯2735.114273+⨯63610101.0108.10910101.0⨯+⨯⨯ =23292.9 Nm 3/h所以:气体负荷:V m =36009.23292=6.47 m 3/s 气体密度: m ρ=9.2329232.48743=2.093kg/m 3查得进料状态甲醇溶液温度124℃,含甲醇55.7%,密度为0.83 t/m 3。

塔底含醇1%,可近似为纯水,105℃,0.13Mpa 下水的密度为939.41 kg/m 3。

所以:液体平均密度ρ=2.84741.939+=893.21 kg/m 3则液体负荷L m =360021.89332.48743⨯=0.01516m 3/s初估塔径本设计采用F1重阀浮阀塔,设全塔选用标准结构,板间距H T =0.35 m ,溢流堰高h c =0.05 m 。

<1>.精馏段⑴.求操作负荷系数C σ精馏段功能参数:n n V L (vl ρρ)21=312.50155.0⨯(104.2721)21 =0.054 塔板间有效高度H 0=H T -H C=0.35-0.05=0.30m查斯密斯图《甲醇工学》化工工学出版社。

得负荷系数:G σ=0.0515。

又查得95.5℃时,甲醇的表面张力为:15.87⨯10-5 N/cm 水的表面张力为:68.87⨯10-5 N/cm 精馏段甲醇水溶液的平均组成为: 甲醇:21⨯(0.9995+0.579)=0.7893 wt 则含水为:1-0.7893=0.2107 wt所以表面张力:σ=0.7893⨯15.87⨯10-5+0.2107⨯68.87⨯10-5 =27.04⨯10-5 N/cm 所以:C σ=2.051020⎪⎭⎫ ⎝⎛⨯-σσG =2.05510201004.270515.0⎪⎪⎭⎫ ⎝⎛⨯⨯--=0.0485⑵.最大流速Umax Umax=1.3C σvvl ρρρ-=1.3⨯0.0485⨯104.2104.2721-=1.69 m/sU 适=0.7Umax=1.69⨯0.7=1.183 m/s ⑶.求塔径D D=适U V n 785.0=183.1785.0312.5⨯=2.39 m<2>.提馏段⑴.求操作负荷系数C σ 提馏段功能参数:mm V L (v l ρρ)21=47.601516.0⨯(093.221.893)21 =0.0484查斯密斯图得G σ=0.0524又得114.5℃时,甲醇表面张力为:14.13⨯10-5 N/cm水的表面张力为:57.06⨯10-5 N/cm提馏段甲醇水混合平均组成:甲醇:21⨯(0.01+0.579)=0.295 水:1-0.295=0.705 平均表面张力:σ=0.295⨯14.13⨯10-5+0.705⨯57.06⨯10-5=44.40⨯10-5 N/cm 所以:C σ=2.051020⎪⎭⎫ ⎝⎛⨯-σσG =2.05510201040.440524.0⎪⎪⎭⎫ ⎝⎛⨯⨯--=0.0447⑵.求提馏段U’maxU 'max=1.3C σv v l ρρρ-=1.3⨯0.0447⨯093.2093.221.893- =1.199 m/sU '适=0.7U 'max=0.7⨯1.199=0.839 m/s⑶.求塔径D 'D '=适U V m 785.0=839.0785.047.6⨯=2.93 m对全塔,取塔径D=3000 mm理论板数的计算<1>.各点的甲醇摩尔分数,设加压塔后甲醇的甲醇摩尔人率为X f 。

X f =02.1831.673032914.925932914.9259+=0.437 精甲醇中甲醇的摩尔分率X d 。

X d =02.1805.03295.993295.99+=0.999残液中甲醇的摩尔分率X w 。

X w =02.1899321321+=0.0057 <2>.处理能力F=OH O H f f M X M X G22+=02.18)437.01(32437.0534.2483⨯-+⨯ =102.93 kmol/h 精馏段物料量: D 精=F ⨯wd w f X X X X --=102.93⨯0057.0999.00057.0437.0--=44.697 kmol/h 提馏段物料量: D 提=F ⨯wd f d X X X X --=102.93⨯0057.0999.0437.0999.0--=55.185 kmol/h <3>.平均挥发度:α查得124℃时,甲醇的饱和蒸汽压P*CH 3OH=705.38 Kpa水的饱和蒸汽压P*H 2O=229.47 Kpa105℃时,甲醇的饱和蒸汽压P*CH 3OH=439.08 Kpa 水的饱和蒸汽压P*H 2O=123.18 Kpa由α=OH OHCH p P 23**得:124℃时,α124℃=47.22938.705=3.074105℃时,α105℃=18.12308.439=3.565平均挥发度:α=105124αα=565.3074.3⨯=3.310 <4>.求最小理论塔板数Nm : 因为:X d =0.999,X w =0.0057;X d1=0.001X w1=0.9943;根椐芬斯克公式:Nm=αlg lg 11⎪⎪⎭⎫ ⎝⎛w w d d X X X X =310.3lg 0057.09943.0001.0999.0lg ⎪⎭⎫ ⎝⎛⨯ =10.06块 <5>.求最小回流比 各组分参数列表用恩德伍德公式计算:()∑-θααi m D i i X ,=R m +1∑-θααiFi i X ,=1-q因为:为露点进料 所以:q=1∑-θααiFi i X ,=0=θ-⨯565.3563.0565.3+θ-⨯074.3437.0074.3用试差法求出:θ=3.254,代入:()∑-θααi m D i i X ,=R m +1=254.3565.39943.0565.3-⨯+254.3074.30057.0074.3-⨯故:R m =10.32操作回流比R=1.5R m =1.5⨯10.30=15.45 则1+-R R R m =145.1530.1045.15+-=0.356 <6>.求实际理论板数 查吉利兰图得:1+-N N N m=0.356则:108.10+-N N =0.356所以:N ≈16.17块 <7>.计算板效率⑴.求平均相对挥发度与平均粘度的积(α、μ)塔顶塔底平均温度为:21(105+67)=86℃ 86℃时:O H 2μ=0.325⨯10-3 PaS OH CH 3μ=0.3354⨯10-3 PaS则:μ= OH CH 3μX f +O H 2μ (1-X f )=0.325⨯10-3⨯0.437+0.3354⨯10-3⨯(1-0.437) =0.3309⨯10-3 PaS所以:μα=0.3309⨯10-3⨯3.310=1.0973⨯10-3 PaS⑵.查板效率与μα关联图得:N=15.05板效率:E=49*25.0)(-αμ=所以实际板数为:464.017.16=34.85块 塔内件设计<1>.溢流堰设计塔板上的堰是为了保持塔板上有一定的清液层高度,若过高则雾沫夹带严重,过低气液接触时间短,都会降低板效。

相关文档
最新文档