外加电流型阴极保护
外加电流阴极保护用阳极
外加电流阴极保护用阳极牺牲阳极保护法具有无需提供辅助电源,阳极输出电流小,安装工程量小,运行期间不必经常维护等特点。
但是实施牺牲阳极保护时,它的阳极输出电流有限,且可控性较小,只能保护阳极附近较小的范围。
当遇到需要较大的工作电流或较大范围时,如暴露在空气中的钢筋混凝土结构,则需要用外加电流阴极保护法。
外加电流阴极保护法是通过外加电源来提供所需的保护电流,将被保护的金属做阴极,选用特定的材料做阳极,从而使金属得到保护的方法。
外加电流阴极保护系统主要由直流电源、辅助阳极、参比电极3个部分组成。
其中辅助阳极是核心部件,它的电化学性能直接影响着整个系统的工作效果和使用寿命,可根据几何形状、外加电流的大小、应用环境等条件选择。
1石墨阳极石墨的电阻率为(3。
8)xlO-s Q·m,抗压强度为25.35 MPa,合适的工作电流密度一般是5。
10 Mm2。
多孔石墨阳极材料的孔隙率为20%~30%,发生阳极反应时产生的气体会滞留在孔内,引起阳极材料的机械和化学损坏,造成表面软化和膨胀。
为了延长石墨阳极的使用寿命,增加其机械强度,一般用桐油、沥青或树脂对其进行浸渍处理。
石墨阳极在土壤或海水介质中工作时,消耗率与阳极表面的电化学反应密切相关,当阳极表面以析氯反应为主时,石墨的消耗率通常在o.13~0.22 kg/A·a;当阳极表面有析氧反应时,由于石墨中的碳被氧化成CO:,消耗率上升至0.9 kg/A·a。
石墨阳极导电性好,易于加工,价格便宜,但是脆性大,机械强度低,工作寿命短短,且材料较软,不适合在快速流动和冲刷的环境下使用。
2高硅铸铁阳极高硅铸铁是指含硅14%~18%的一种铁合金,电阻率为7.2×10-7 1-/·m,允许的工作电流密度是5~80 A/m2。
当高硅铸铁阳极中有电流通过时,表面会形成SiO:保护膜和水合物薄膜。
这层SiO:保护膜极耐酸腐蚀。
因此,高硅铸铁阳极适合在潮湿的环境下使用。
外加电流阴极保护设计原则及考虑
外加电流阴极保护设计原则及考虑外加电流阴极保护设计,根据工艺计算对保护范围宜增加10%的余量,对于埋地管道的工艺设计,一般对管道保护长度留有10%的余量。
外加电流阴极保护设计时,一般均已新建结构物或已建结构物的实际条件为基础。
在参数选择、设计计算中只要与管道本身参数相符合,其设计往往是成功的。
随着时间年限的延长,结构物上的防腐层逐渐老化,破损增多,使所需阴极保护电流增大有效保护范围缩小。
因此设计中应对阴极保护所需电流密度的变化做充分的考虑,通常办法是对结构物保护范围留有一定的余量。
②外加电流法阴极保护设计中,辅助阳极的设计寿命应与被保护结构物相匹配。
对各种不同结构物均应考虑辅助阳极的可更换性。
对于埋地管道的外加电流法阴极保护,其辅助阳极的寿命一般不小于20年。
辅助阳极的寿命是保障外加电流法阴极保护系统有效工作的关键。
辅助阳极失效,将使阴极保护系统中断工作。
对于可更换的辅助阳极系统,如船舶或其他工业设备装置中辅助阳极系统,从经济上考虑不必选择昂贵的、寿命很长的阳极。
而对于不可更换或很难更换的辅助阳极系统,如埋地管道辅助阳极系统,则应保证其设计寿命。
③外加电流法阴极保护设计时,应充分注意保护系统与外部金属结构物之间的干扰问题,以及外部信号可能对保护系统产生干扰的问题。
在被保护金属结构物周围往往还存在着一些其他的金属结构物,如埋地管道周围的情况。
这就要求在外加电流法阴极保护设计时应充分考虑这一点。
另一方面,埋地管道周围密集其他金属结构物存在于阴极保护电场中,将不可避免的改变电场电力线的分布,产生对埋地管道阴极保护的屏蔽作用。
在严重情况下,可在被保护结构物上形成阴极保护的死角。
由此产生保护不足甚至导致阴极保护失效。
同时也导致阴极保护运行成本增加。
处于直流电力输配系统、直流电气化铁路、邻近外部结构物阴极保护系统或其他直流源影响范围内的埋地金属结构物,易遭受杂散电流干扰影响而产生腐蚀破坏,从而导致被保护物迅速的电解腐蚀,使其阴极保护系统遭受严重的干扰破坏。
外加电流法阴极保护技术在大型原油储罐上的应用
外加电流法阴极保护技术在大型原油储罐上的应用发布时间:2022-05-12T12:34:45.174Z 来源:《科技新时代》2022年3期作者:于涛李鹏飞廖扬冯凯[导读] 目前,阴极保护系统在大型储罐的防腐蚀保护中起到重要作用。
中海石油(中国)有限公司湛江分公司,广东湛江 524000摘要:外加电流法阴极保护技术是一种电化学技术防腐蚀措施,作用原理是向被保护设备的金属表面施加一个负电流给被保护金属补充大量电子,使被保护的金属整体处于电子过剩状态,从而抑制金属腐蚀发生的电子迁移,达到减小或者避免腐蚀的发生。
目前,阴极保护系统在大型储罐的防腐蚀保护中起到重要作用。
关键词:阴极保护;储罐;腐蚀前言原油储罐作为油气生产储运过程中重要的储存容器,在使用中长期受到内外环境及介质的侵蚀。
加强原油储罐的腐蚀防护,对提高其使用寿命,保证储罐安全、正常运行至关重要。
经过技术参数对比,某公司选择外涂油漆防腐与外加电流法阴极保护技术相结合的方案,对现用的4个原油储罐进行施工,文中对该防腐方法进行了详细的阐述。
1 原油储罐内部罐底腐蚀原理及防腐方案 1.1金属腐蚀原理原油储罐的腐蚀主要是由于电化学腐蚀。
当储罐表面油漆脱落后,罐体金属铁的电位比空气中的氧电位低,造成铁是负极,氧是正极。
根据在阳极区,金属释放电子(腐蚀)形成金属阳离子,反应式为:Fe→Fe2++2e。
在阴极区,吸收阳极释放的电子发生电化学反应,反应式为:O2+H2O+4e→4OH-。
电子转移过程可以清晰发现金属不稳定的电子转换体系,加快了金属罐体的腐蚀速度[1]。
1.2罐体防腐方案分析传统的原油储罐防腐方案主要有两种,一是对金属罐体施行整体涂料防腐;二是在罐体内安装锌块,采用牺牲阳极的保护技术。
厂区原储罐采用以上两种防腐措施,但这两种防腐措施存在一定的局限性和时效性。
先进的电化学保护防腐对储罐和地下管线不方便进行人工防腐的结构提供优良的保护作用,减小防腐费用的投入。
浅谈外加电流阴极保护防腐技术的原理及调试
浅谈外加电流阴极保护防腐技术的原理及调试xx北港池集装箱码头三期位于xx东疆港区,码头为钢管桩和预应力砼梁板结构,有1456根Φ1200mm和1708根Φ1000mm钢桩,钢管桩材质为Q345B。
钢管桩位于海洋环境中,存在着潮差区、海水全浸区和海泥区三个严重腐蚀区域,严重威胁着码头的安全运行和长期使用。
因此,对xx北港池集装箱码头三期采用及时有效的防腐保护是十分必要的。
本工程采用的防腐方式为外加电流阴极保护,共分为29个系统对码头3164根钢桩进行保护。
系统的控制采用自动控制和手动控制相结合的方式,并配备了遥控的功能和可视化软件系统,使防腐工作从过去的粗放型管理一步跃进为可视化、数字化、远程化,专业化的先进管理模式,给业主提供了专业的防腐控制形式。
一、外加电流阴极保护介绍1、金属腐蚀基本原理定义:金属在周围介质(常见是气体和液体)作用下,由于化学变化、电化学变化或物理溶解而产生的破坏。
过程:金属在一定的环境介质中经过反应恢复到它的化合物状态,这个腐蚀的过程可用一个总的反应过程表示:金属材料+腐蚀介质=腐蚀产物2、外加电流阴极保护原理外加电流保护,即将惰性阳极与外部的直流电源的正极相连,将受保护的钢结构(钢管桩)与外部的直流电源的负极相连。
保护电流是由电源提供的。
这时辅助阳极可选用耐腐蚀的材料(如钛金属)。
当系统工作时,在阳极与的钢管桩之间有电流通过。
使钢管桩表面出现一层薄膜,也就是通常所说的极化薄膜。
该极化薄膜形成阻止腐蚀电池的电位。
在阴极保护中该极化电位可以通过改变电流的方式加以改变,从而可以选择理想的防腐效果。
3、外加电流阴极保护系统特点:(1)可随外界条件引起的变化自动调节电流,使被保护部分的电位控制在最佳保护电位范围内。
(2)使用寿命长,保护周期长。
(3)辅助阳极排流量大,作用半径大,可以保护结构复杂、面积较大的设备及港工建筑。
二、外加电流阴极保护系统组成及功能本外加电流阴极保护系统包括直流电源、辅助阳极、参比电极、监测设备和电缆。
外加电流的阴极保护原理
外加电流的阴极保护原理
阴极保护是一种常用的金属防腐蚀方法。
当金属处于电解质中时,会发生电化学反应,金属表面形成阳极和阴极。
阴极保护的原理就是通过施加外加电流,将金属件的表面设置为阴极,使其与电解质中的阳极直接相连,从而抑制或减少金属腐蚀的发生。
外加电流的阴极保护原理是基于电化学原理的。
施加外加电流后,金属件表面的阴极反应将被加强,阻止阳极反应的进行,从而降低了金属的腐蚀速率。
阴极保护通常通过两种方式实现:
1. 电流阴极保护:在金属件周围放置一个外部供电的电源,使金属件处于恒定的负电位状态,将金属件设为阴极。
由于金属处于阴极状态,金属的电位会变得较低,使其成为电解质中的阴极反应发生的位置。
这样,金属的腐蚀就通过阴极反应得到抑制。
2. 防护层阴极保护:在金属表面涂覆一层可溶性阳极材料或者不溶性阳极材料。
当电流通过涂层时,阳极材料会发生氧化反应,而金属件成为电化学电池中的阴极。
通过这种方式,涂层的阳极材料将受到腐蚀,而金属件则不会受到腐蚀,实现了对金属的保护。
这样,通过施加外加电流,金属阴极保护可以阻止或者减缓金属的腐蚀反应,延长金属的使用寿命。
这种方法广泛应用于海洋设施、油气管道等需要长期暴露于潮湿和腐蚀环境的金属结构。
外加电流法
❖ 但这并不是两种方法选择的绝对界线 ❖ 应从技术性、有效性和经济性考虑
外加电流法阴极保护技术
—两种方法技术比较
No.2011-wu-3007
❖ 影响方法选择的一些重要因素: ❖ ①所需的CP电流需用量大小 ❖ ②存在杂散电流影响地区,不宜采用牺牲阳极保护 ❖ ③将会对邻近结构物产生源自CP系统的杂散电流影
缺点
1高电阻率环境不宜使用 2保护电流几乎不可调 3要求良好的涂覆层 4投产调试工作复杂 5消耗有色金属 1需要外部电源 2对邻近金属结构物干扰大 3维护管理工作量大
外加电流法阴极保护技术
—两种方法技术比较
No.2011-wu-3004
Hale Waihona Puke ❖ 对埋地金属结构物:❖ (1)外加电流法CP的电源功率与阳极床接地电阻 成正比,后者又与土壤电阻率直接相关
❖ 除参比电极控制点处的电位外,其他部位的电位都 仍在经常性变动之中
❖ 绝对不能认为,通过恒电位仪就可以控制整个结构 物电位恒定!
外加电流法阴极保护技术
—电源设备
No.2011-wu-3018
❖ 受控制的参比电位点的选择是十分重要的:
❖ 参比电位点
❖ 应选择在环境条件变化大,结构物的构型复杂和受 干扰影响大的部位
❖ ◆具有一定机械强度,耐腐蚀、冲击、震动,可靠 性高
❖ ◆加工性能好,易于制成各种形状 ❖ ◆材料来源广泛易得,价格低廉
外加电流法阴极保护技术
—辅助阳极
No.2011-wu-3021
❖ 辅助阳极的材料种类很多 ❖ 根据阳极消耗率(溶解性能)可分为: ❖ ◆可溶性阳极 ❖ ◆低溶性阳极 ❖ ◆难溶性阳极
No.2011-wu-3026
❖ (2)铝和锌
浅析外加电流阴极保护系统的原理及操作须知
海洋工程装备种类繁多,主要有:船舶、海洋钻井平台、浮式生产系统等装备。
海洋工程装备体积庞大,且主体多是钢结构制成,他们服役期间长,多达20多年,而且海水腐蚀性很强,海洋工程设备腐蚀破坏,污染海洋环境,甚至出现安全事故,严重危害工作人员安全,海洋工程装备防腐工作越来越多的引起人们的重视。
目前,海洋工程装备防腐方式主要用防腐涂层、牺牲阳极和外加电流保护系统等方法。
防腐涂层可以有效隔绝海水与装备金属面的接触,进而实现防腐。
但在船舶航行、海洋工程设备安装施工过程中涂层会受到破坏,金属表面开始腐蚀。
牺牲阳极保护方法对于海洋工程装备来说,外部悬挂的牺牲阳极增加其航行的阻力,也增加了结构物的重量和额外费用。
在牺牲阳极消耗过程中,其释放的金属离子也会污染周围环境,最主要的是牺牲阳极设计寿命较短,难以满足长期服役装备的需要。
外加电流阴极保护系统具有使用寿命长、保护效果好、维护费用低,可以通过一个AC-DC电源转换产生电压电流,干扰船体金属与海水发生化学反应,从而保护船体不被腐蚀。
一、外加阴极保护原理阴极保护的定义:通过外加直流电源或者比船体表面金属更活跃的金属,将想要保护的金属电位降低至不受腐蚀的电位,使得发生氧化还原化学反应所需的电子通过外加电源的电流或活泼金属给出。
当船体表面金属处于比此电位更低的电位时,该金属就不会参加氧化还原反应了,也就不再受到海水腐蚀。
电化学腐蚀是由于活泼金属与电解质溶液在一起发生氧化还原反应所引起的,与原电池的原理相同。
因为船体是由活泼金属—铁构成的,而海水便是电解质溶液,他们之间发生了氧化还原反应。
由以上化学公式可得:铁失去电子后与氧、水发生反应形成铁锈而溶解在水中,这样周而复始船体就会腐蚀掉。
从正极公式可知得到电子形成氢氧根,那么通过外加电流提供给保护的船体电子,这样船体就不会因为失去电子而被腐蚀,这就是外加电流阴极保护的原理依据。
船体ICCP系统原理如下:二、W轮的外加电流阴极保护系统组成W轮外加电流阴极保护系统由恒电位仪、辅助阳极和阳极屏蔽层、参考电极组成。
牺牲阳极阴极保护和外加电流阴极保护的基本概念及自身特点
牺牲阳极阴极保护和外加电流阴极保护的基本概念及自身特点土壤中的杂散电流也能引起钢管的腐蚀,杂散电流从地下钢管的一端流入又从另一端流出,流入端成为阴极流出端变为阳极,导致钢管腐蚀杂散电流的强度与管道腐蚀量成正比,一般壁厚7~8 mm 钢管在杂散电流作用下4~5 个月即可能发生腐蚀穿孔,其速度大大超过自然腐蚀,是造成管道腐蚀穿孔的主要原因。
阴极保护是在金属表面通过足够的阴极,电流使金属表面阴极化,从而防止其表面腐蚀,它适用于土壤淡水等介质中,金属的腐蚀保护,同时它还可以应用于防止某些金属的局部腐蚀,如孔蚀、应力腐蚀、开裂腐蚀、疲劳等,阴极保护法又分强制电流法排流保护法牺牲阳极法。
强制电流是国内长输管道阴极保护保护的主要形式,通过向被保护管道输入直流电流使其阴极化从,而达到阴极保护工程目的这种保护方法输出的电流连续可调,保护范围大,工程越大相对投资比例越小,且不受土壤电阻率限制。
不足的是对邻近金属构筑物造成干扰,外部电源维护管理工作量大。
城市天然气管网及附属设备上多采用牺牲阳极保护法即用一块低电位金属与管道设备相,接使两者在电解质中构成原电池电位较低的金属作为阳极,会逐渐被腐蚀以实现对阴极金属管道的保护,通常牺牲阳极腐蚀到最后尺寸最快要10 ,年因此根据被保护物的长度土壤电阻率及保护年限确定牺牲阳极以降低或阻止金属的电化学腐蚀速度,保障管道的使用寿命。
牺牲阳极通过阳极自身的消耗,给被保护金属体提供保护电流,因此对牺牲阳极材料,要求有足够的负电位阳极极化小,使用过程中电位稳定,溶解均匀表面不产生高电阻的硬壳且无污染,同时材料的价格便宜来源广,常用的有镁与镁合金、锌铝合金三大类,镁阳极一般适用于各种土壤环境,锌阳极适用于土壤电阻率低的潮湿环境,铝阳极则用于低电阻潮湿和氯化物的环境而不能用于土壤中。
河南汇龙合金材料有限公司刘珍。
外加电流阴极保护
外加电流阴极保护1. 相关参数船体外加电流阴极保护,通过调节保护电位和保护电流达到保护船体钢板的目的,所以其最基本的也是最重要的参数有两个:保护电位、保护电流密度。
(1)保护电位:保护电位,取决于金属性质和所处介质的性质,变化不大。
通常最佳保护电位(船体钢板相对于银/ 氯化银参比电极的电位)-0.75~-1.00V ,ICCP 控制仪- 恒电位仪的工作电压范围± 2V。
(2)保护电流密度:保护电流密度,除金属和介质的性质外,还受环境影响,变化较大,可能包括:船舶在静止海水中,电流密度150mA/m2寸,可以很快达到保护电位(-0.80V ); 但若电流密度小于40mA/m2则几乎无法达到保护电位。
•船体钢板表面有无复盖物、复盖物的种类、复盖物的完整性等,很大程度上影响最佳电流密度的大小。
例如,涂有完整油漆的钢板所需的保护电流密度,比裸钢板小得多:在静止海水内,涂有三道聚二乙烯乙炔涂料的钢板,电流密度0.35mA/m2可即刻达到保护电位;而裸钢板却需154mA/m?大400多倍。
再如,同样在静止海水内:涂有三道聚二乙烯乙炔涂料的钢板,电流密度0.11mA/m2 只要几小时就可达到保护电位;而裸钢板,电流密度高达45mA/m2也需要9天左右。
•海水是流动的而且海流和风浪时大时小,船舶也有时停泊有时航行且航速有快慢,都影响最佳保护电流密度。
例如恶劣气象航行和破冰航行,所需要的保护电流密度显著增高。
•不同海域海水含盐量有差别,不同季节海水温差不同,都会影响最佳保护电流密度。
保护电流密度,需要综合考虑上述各种因素,而且主要靠大量的实践才能得到比较切实的数据。
船体外加电流阴极保护装置的管理者,日常应针对这些环境因素不断调节、修整装置的相关参数,以确保其充分发挥作用。
相对于常用的银/ 氯化银参比电极,保护电流密度要保证保护电位-0.75~-1.00V,最佳保护电流密度30~60mA/m2我国海船选用40~60mA/m2较为合适。
储罐底板外加电流阴极保护施工方案
某某国际机场扩建工程场外供油工程10000m3油罐阴极保护施工方案河南省防腐某某有限公司二00六年十二月十三日某某国际机场扩建工程场外供油工程10000m3油罐阴极保护施工方案储罐底板的阴极保护可采用网状阳极系统、柔性阳极系统以及在储罐基础内铺设镁带等三种方式。
经济效益分析比较表明,在储罐底板采用网状阳极系统,既合理又经济。
一、网格阳极系统的组成1、网格阳极阴极保护系统包括恒电位仪、钛/混合金属氧化物带、接线箱、参比电极和阳/阴极电缆。
2、恒电位仪将交流电转换成直流电,由参比电极控制其电流输出,阴极电缆连接在储罐上,阳极电缆连接混合金属氧化物阳极网。
系统工作时,电流从阳极网释放到沙层中并流入储罐底板,通过电缆返回到恒电位仪阴极。
当储罐底板的电流达到一定密度后,底板将停止腐蚀。
3、由混合金属氧化物阳极带(Corr-TapeⅡ)与钛导电片(Corr Stds Bar)相互垂直铺设,在交叉处焊接而成的阳极网,它处于罐底板下面的回填砂中,是外加电流阴极保护的辅助阳极。
阳极带间距为1.2m。
导电片间距为4m,阳极网距罐底板一般为150-300mm.4、阳极电缆线以及参比电极电缆线箱内连接,并且连接到电源设备。
5、参比电极用来监测阴极保护效果,采用硫酸铜塑料外壳参比电极Corr cell 802。
6、阴/阳极电缆采用不少于4根的阴阳极电缆,以保证系统的可靠性和电流分布更加均匀。
1、阳极材料混合金属氧化物阳极带Corr-TapeⅡ是由TIR2000混合金属氧化物涂敷在钛金属表面上制成,规格如下。
成分:ASTMB265,一级钛;宽度:6.35 mm;厚度:0.635 mm;重量:17.8 kg/km;电阻:0.138 ohm/m;覆盖层:TIR2000金属氧化物,最大输出电流:42A/m2、钛连接片钛连接片Corr-Stds呈银灰色,表面光亮,无污物,规格如下。
成分:ASTMB265(CPTAGr1/2);一级钛宽度:12.7mm厚度:0.9mm重量:59.6㎏/1000m电阻:0.049ohm/m3、专用接头Corr-Feed Cnnt,电缆是高分子聚乙烯铜芯电缆,其长度应使该电缆能够连接到接线箱,截面积一般为10mm2。
外加电流的阴极保护原理 参比电极
外加电流阴极保护原理及参比电极
一、外加电流阴极保护原理
外加电流阴极保护是通过外部电源提供电流,使被保护金属成为阴极,从而防止腐蚀的一种方法。
其原理是将被保护的结构物作为阴极,通过外部电源提供电流,使结构物的电位降低至腐蚀电位以下,从而消除腐蚀电流,实现保护。
二、参比电极
在阴极保护系统中,参比电极是一个非常重要的组成部分。
它主要用于测量被保护结构的电位,从而判断阴极保护效果。
根据不同的用途和特性,参比电极有多种类型。
1.零电位参比电极
零电位参比电极是最常用的参比电极之一,其电位接近于零。
常见的零电位参比电极有铜/硫酸铜电极、银/氯化银电极等。
这些电极的优点是电位稳定,使用方便,适用于各种介质和环境。
2.单一金属参比电极
单一金属参比电极是由单一金属制成的电极,其电位与该金属在电解质中的腐蚀电位有关。
常用的单一金属参比电极有镁、铝、锌等。
这些电极的优点是电位较稳定,适用于阳极保护系统。
3.饱和甘汞电极
饱和甘汞电极是一种常用的参比电极,由汞、甘汞和溶液组成。
该电极的电位与甘汞的浓度和溶液的组成有关。
饱和甘汞电极的优点是电位稳定,使用寿命长,适用于各种介质和环境。
4.银-氯化银电极
银-氯化银电极是一种常用的参比电极,由银和氯化银组成。
该电极的电位与氯化银的浓度和温度有关。
银-氯化银电极的优点是电位稳定,使用寿命长,适用于淡水和海水介质。
2024年阴极保护分类及特点(2篇)
2024年阴极保护分类及特点阴极保护是通过外加阴极极化来实现的,根据外加阴极的不同可分为外加电流阴极保护、牺牲阳极阴极保护两种保护方法。
将被保护金属设备与直流电源的负极相连,依靠外加阴极电流进行阴极极化而使金属得到保护的方法,称为外加电流阴极保护;在被保护金属设备上连接一个电位更负的强阳极,促使阴极极化,这种方法叫做牺牲阳极阴极保护,也称护屏保护。
牺牲阳极法和外加电流法各有其特点,见表5-3-24,一般来说,对于电阻率低、管道密集、被保护对象的面积和需要的保护电流小,或者没有电源的场合,宜采用牺牲阳极保护法;对于被保护对象规模大,所需要保护电流大的场合,宜采用强制电流保护法。
此外,在某些情况下,为了取长补短,发挥各自优势,可以同时采用强制电流和牺牲阳极对被保护对象进行联合保护。
外加电流型阴极保护根据外加电源的不同又分为外加直流电源和脉冲电源两种。
目前,国内大部分油田采用外加直流电源,而国外很多国家则开始使用脉冲电源,大量的资料表明脉冲电流阴极保护技术比直流阴极保技术具有更优越的保护技术,见表5-3-25。
因此,国外大都采用脉冲电流阴极保护技术对地层水和油层介质造成套管腐蚀方面进行保护。
表5-3-24牺牲阳极系统与外加电流系统的对比它的输出可以调节,故可以适应意外之外的,或正在变化的一些情况。
虽有此方便,但必需仔细设计电流输出不能控制,但是电流有一个可以自动调节的倾向,如果条件改变使电位变正,故电动势增大,因而电流增大,此外不容易造成涂层的破损保护机理明确、理论成熟,应用技术成熟,具有大量的实践经验,国内外形成了一系列标准,应用广泛保护深度浅,一般在1500m左右;电流、电位分布不均,易出现过保护和欠保护现象;对周围的金属设施干抗大、耗能大,性价比低具有更强的电流穿透性、明显延长保护深度可达3000m,平均电流小3~8A,节能,很大程度地减小了阳极地床的深度,一般只需几米,成本降低幅度大2024年阴极保护分类及特点(2)阴极保护是一种常用的金属防腐工艺,其通过将金属结构物作为阴极电极,在金属结构表面提供足够的电位来抵消电化学腐蚀反应,从而达到保护金属结构物的效果。
埋地管道的阴极保护(外加电流法)
• 3)在通电前,应先检查电源的正负输出端,确保其没有短路 现象。随后将输出电压调至最低一档,接通电源,这时通过 电压表测量,确保各阳极接在电源正极上,被保护的金属结 构物接在电源负极上。否则,不但起不到保护作用,反而加 剧金属的腐蚀,这一点千万不可马虎。 • 4)阴极保护系统运行后,辅助阳极有10~20天的极化时 间,极化时间过后电位测试的数据就比较稳定。 • 5)阴极保护系统运行后,应根据各参比电极的反馈数值, 对系统进行调整,以使整个系统达到最佳保护状态。
缺点
• ①: 一次性投资费用偏高,而且运行过程中需要支 付电费 • ②: 阴极保护系统运行过程中,需要严格的专业维 护管理 • ③: 离不开外部电源,需常年外供电 • ④对邻近的及设备,这些是阴极保护成功的前提,但最 终的实现则通过施工来完成。外加电流阴极保护施工应注 意以下问题: • 1)施工前对所有电极进行检查,主要是外观检查,表面 不得沾有油污等其它杂物,电极体表面是否破损等;另外 对连接及绝缘电阻进行检查,以保证连接或绝缘良好。 • 2)施工时严格按照设计图进行施工,辅助阳极及参比电 极均要求连接良好,且对相应的电缆均要做好标记,以备 将来检修使用。
埋地管道的阴极保护
主讲:外加电流法
阴极保护的原理
• 金属—电解质溶解腐蚀体系受到阴极极化时, 电位负移,金属阳极氧化反应过电位ηa 减小, 反应速度减小,因而金属腐蚀速度减小,称为 阴极保护效应。
• 实质:由外电路向金属通入电子,以供去极化剂还原 反应所需,从而使金属氧化反应(失电子反应)受到 抑制。
Evans极化图
常见防腐蚀方法:
电化学保护
阴极保护
阳极保护
牺牲阳极保护法
外加电流阴极保护法
外加电流保护法:
外加电流的阴极保护原理 方程式
外加电流的阴极保护原理和方程式1. 阴极保护原理概述阴极保护是利用外部电流干预金属结构的电化学过程,以抑制金属的腐蚀。
在腐蚀过程中,金属在阳极区域失去电子,而在阴极区域接收电子。
通过向金属表面施加外加电流,可以使金属在阴极区域吸收更多的电子,从而减缓甚至停止腐蚀过程。
2. 外加电流的作用机制外加电流能够改变金属表面的电位,使金属处于更加稳定的电化学状态。
外加电流还能够促进阴极反应的进行,使金属表面形成致密的保护膜,从而提高金属的耐腐蚀性能。
3. 阴极保护方程式阴极保护过程中涉及的主要方程式包括极化曲线方程、Faraday 定律和Nernst 方程。
极化曲线方程描述了金属表面的极化行为,而Faraday 定律则描述了外加电流与金属腐蚀速率之间的关系。
Nernst 方程则揭示了溶液中阴极与阳极反应的动力学过程。
4. 我的个人观点和理解阴极保护作为一种重要的腐蚀控制技术,对于延长金属结构的使用寿命、提高设备的安全性具有重要意义。
在实际工程中,我们需要充分理解阴极保护的原理和方程式,并结合具体情况进行科学设计和应用。
只有在深入理解的基础上,才能更好地发挥阴极保护技术的效果。
5. 总结外加电流的阴极保护原理及方程式是阴极保护领域的重要内容,它揭示了金属腐蚀抑制的重要机制和量化方法。
通过学习和理解这些原理和方程式,我们能够更好地应用阴极保护技术,保护金属结构,延长使用寿命。
结合自身的实际经验和对阴极保护技术的理解,我们可以在工程实践中更加灵活地运用这一技术,为工程建设和设备运行提供更可靠的保障。
以上就是我撰写的有关外加电流的阴极保护原理和方程式的文章,希望能够满足你的要求。
如有需要,欢迎提出修改意见。
阴极保护技术是一种常用的腐蚀控制方法,通过外加电流干预金属结构的电化学过程,从而有效地抑制金属的腐蚀。
在实际工程中,阴极保护技术广泛应用于海洋工程、石油化工、管道输送等领域,以延长金属结构的使用寿命、提高设备的安全性。
燃气管道阴极保护原理
燃气管道阴极保护原理
燃气管道阴极保护是一种常用的防腐措施,其原理是通过外加电流,在管道表面形成一个保护电流场,使管道表面处于阴极电位,从而抑制金属的腐蚀。
具体原理如下:
1. 阴极保护通过外加电流,使得燃气管道成为一个阴极。
阴极是电化学反应中电子流入的地方,而阳极是电子流出的地方。
由于外加电流的存在,燃气管道表面成为阴极,吸收电流。
2. 燃气管道表面的腐蚀主要是由于金属表面与燃气介质中的水和氧发生电化学反应,形成电池。
燃气管道的金属表面处在阳极电位,发生金属的氧化腐蚀。
而通过阴极保护,使管道表面保持在阴极电位,不发生氧化反应。
3. 阴极保护可以通过两种方式实现,一种是通过外接电源将电流引入燃气管道,使其成为阴极;另一种是使用牺牲阳极,在燃气管道上固定一些易于腐蚀的阳极材料,使其作为阴极。
总体来说,燃气管道阴极保护的原理是通过外加电流或者牺牲阳极,将管道表面维持在阴极电位,从而抑制金属腐蚀的发生。
这种保护方式可以延长燃气管道的使用寿命,减少维修和更换的成本。
电厂阴极保护外加电流系统措施
电厂阴极保护外加电流系统的措施及注意事项河南汇龙合金材料有限公司技术部:刘珍编制:2018年8月内部资料请勿外传一、电厂阴极保护系统措施的重要性变电站接地装置是用于工作接地、防雷接地、保护接地的重要设施,是确保人身、设备、系统安全的重要环节。
接地装置的优劣,直接关系到变电站的安全运行。
各发电供电、用电企业,对接地装置的设计、安装十分重视。
接地装置属于隐蔽工程,在施工和运行过程中容易被忽视,当事故发生时,如接地装置有缺陷,短路电流无法在土壤中充分扩散,导致接地装置电位升高,使接地的设备金属外壳带高压而危及人身安全和击穿二次保护装置绝缘,甚至损坏设备,扩大事故,破坏电装置系统稳定。
铁质接地装置腐蚀严重,导致截面和表面积减小,热稳定性不够,接触电阻增大。
随着电装置技术的不断发展,电装置安全稳定的重要性不断提高,接地装置防腐已成为急需解决的重要问题。
对于独立(电气上不加专门的连接线)的钢管桩、地下管道、埋地钢结构等生般不需要采用防腐涂料、牺牲阳极或者外加电流等专门的防腐措施,只要采取适当增加钢管桩的壁厚来延长它的使用寿命即可。
电厂的主厂房、烟囱、灰库等大型建筑物的钢管桩、地下管道等埋地钢结构,组成一个"非独立"系统即它们在电气上与全厂的避雷及接地网相连接。
在此,这部分钢结构受交流杂散电流的影响大,腐蚀速度就比独立的钢结构系统要严重。
二、电厂阴极保护外加电流保护系统参考标准阴极保护将符合以下提及的标准要求:NACE RP0169地下或水中金属管道系统的外部腐蚀NACE RP0285阴极保护的地下储罐系统腐蚀控制NACE RP0193金属储罐底的外部阴极保护NACE RP0286阴极保护管线的电隔离NACE RP0572外加电流深层地基的设计、安装、运行和维护NACE RP0177交流电的缓解、金属结构上的照明效果和腐蚀控制系统RP B401DNV建议实例“阴极保护设计”NEMA MR-20半导电整流器阴极保护设备GB/T7387-1999《船用参比电极技术条件》GB/T17005-1997《滨海设施外加电流阴极保护系统》GB153《标准电压》GB50054-95《低压配电设计规范》GB50217-94《电力工程电缆设计规范》SY/T36-2000《埋地钢管强制电流阴极保护设计规范》SYJ4006-90《长输管道阴极保护工程施工及验收规范》SY/T23-97《埋下钢质管道阴极保护参数测试方法》SY/T0087-95《钢质管道及储罐腐蚀与防护调查方法标准》三、电厂阴极保护外加电流系统的原理外加电流阴极保护系统由如下几部分组成:1)整流器,2)辅助阳极,3)参比电极。
外加电流阴极保护的组成结构
外加电流阴极保护的组成结构高硅铸铁阳极阳极的原理是当电流经过阳极流淌时,阳极外表物质会发生氧化,形成一种爱护膜,这种爱护膜因其优异的耐酸性能可以降低阳极本身的腐蚀速度。
但是这种氧化膜不耐碱所以当这种阳极处在在枯燥并且含有高硫酸盐的环境中使用时,阳极外表的阳极膜形成困难,而且很简单被四周物质破坏。
柔性阳极是由铜芯和能够导电的聚合物组成,聚合物中一般是添加碳粉。
在这个组合中,显而易见的是起导电作用的是中间的铜芯,而包覆在四周的聚合物主要是电化学反应。
阳极在土壤中使用时,需要用焦炭粉来作为回填料一起组成阳极地床。
虽然柔性阳极的电流密度与其他阳极相比较并不高,但是它可以在需要阴极爱护的设备四周做连续的地床,这样就可以给设备供应更匀称更有利的爱护工作。
在真正施工过程中,管道防腐层自身的差异,或者在施工设备四周有其他不同的作业设施都会影响到柔性阳极的使用,更有可能导致柔性阳极输出电流的不全都,当柔性阳极输出的电流过于大的时候,电缆中间的铜芯就会加快腐蚀速度,聚合物中的'碳粉也会在很短的时间内被消耗殆尽,最终造成柔性阳极的损坏。
全部能发出直流电的电源,都是可以作为外加电流阴极爱护系统的电源。
在外加电流阴极爱护系统中使用的电源的类型有:整流器、恒电位仪;太阳能电池;发电机;风力发电机;热点电池。
整流器和其他外加电流系统的电源类型相比较,经济节约操作简洁。
外加电流阴极爱护系统的电源,其基本要求有:输出恒电位、恒电压、恒电流;同步通断功能;数据远传、远控功能。
恒电位仪的输出电压限定在50V以内,当工程需要更高的输出电压时,必需做好对阳极地床的防护措施。
恒电位仪的基本要求:电位误差必需掌握在10mV之内;高硅铸铁阳极最早开头在美国使用,最初只是在试验室中应用,到80年月初期,这种阳极开头在工业生产中大量使用。
这种含硅14.5%铸铁阳极被发觉在海水中很简单发生腐蚀,所以以后在海水中使用阳极都会添加铬这种金属,加入铬的作用是为了减小原始阳极的腐蚀速度。
外加电流阴极保护ICCP系统在船舶的应用浅析ICCP的日常管理
外加电流阴极保护ICCP系统在船舶的应用浅析ICCP的日常管理导读:就爱阅读网友为您分享以下“外加电流阴极保护ICCP系统在船舶的应用浅析ICCP的日常管理”资讯,希望对您有所帮助,感谢您对的支持!外加电流阴极保护(..)ICCP系统在船舶的应用.—浅析ICCP的日常管理...当船舶航行时,水与船体表面发生摩擦而产生一种阻止船舶前进的力,称为摩擦阻力。
在船舶的水阻力中,一般低速船舶的摩擦阻力约占总阻力的8%,0高速船舶的摩擦阻力约占总阻力的4%。
0而摩擦阻力会随着船体表面逐渐附着一些海生物和受到腐蚀使粗糙度增加而增大船体阻力。
为防止船体表面的腐蚀,过去均采用在船体表面焊接锌块或铝块等牺牲阳极的保护方法来保护船体表面防止腐蚀,但在船体表面焊接锌块或铝块本身就增加了船体的阻力;在防止船体表面海生物的生长方面,08年代以后一般采用SC油漆(P自抛光漆)以防止船体表面海生物的生长。
随着船体保护技术的发展和改进,为节省费用,现在越来越多的船舶采用船体外加电流的阴极保护系统(..)I.P来防止船CC体表面海生物的生长和腐蚀,以保持船体的光洁度。
当然,如果在日常的维护保养中使用不当,而使船体失去保护或保护程度过大,就会对随着自动化和计算机技术的发展,它们也韩成敏中远集运船体产生一些不良影响,下面就对此问题进行一些初步的探讨。
1系统的结构及其工作原理()统结构如下图所示:1系②几一①①n⑤图1系统结构图江控制屏;卜一乡一舵柱接地系统;逗-阳极;)推进器轴接地C一4系统;卜参比电极c从上图可以看出组成该系统的各个部件,下面是各部件的作用:1控制屏)大多数CCP系统的控制电路已完全模..块化。
为了满足不同船舶的需要,制造商一般提供多种不同输出类型的控制箱供用户选用。
某轮控制屏使用主电源如下:C1十一1%A45/01HAS5/0PE06Hz参考文献1(hPocl19tAnMAPL/IMOTetoo97medRO77rofo38Rslisota97neneCnrtgeuoApet9Cfecootcnotndd1orfaiGvrmnsMAPL/8,97oenettoRO77)1932(diooAnxttetntnl-IMOAdifeVoIeaoaCntnn1hnriovnifrPeetnPltnmi,3AetntevnioouifSp17,oohroflorhs9os已经在船舶上得到了广泛的应用,并已经形成了船舶自动化技术和计算机应用技术领域。
阴极保护原理
阴极保护原理
阴极保护是一种通过外加电流的方式,来保护金属结构不受腐蚀的技术。
它是利用电化学原理,通过在金属结构表面施加一定的电流,使金属表面成为一个电化学反应的阴极,从而抑制金属腐蚀的一种方法。
阴极保护的原理主要包括两个方面,一是通过在金属结构表面施加负电流,使金属表面成为一个电化学反应的阴极,从而减缓甚至抑制金属腐蚀的发生;二是通过在金属结构周围设置阳极,使阳极处发生氧化反应,从而消耗周围介质中的氧气和水,降低金属表面的腐蚀速率。
在实际应用中,阴极保护通常通过在金属结构表面安装阴极保护系统来实现。
阴极保护系统通常由外加电源、导线、阳极和监测系统等组成。
外加电源提供所需的电流,导线将电流传输到金属结构表面,阳极则放置在金属结构周围的介质中,起到消耗氧气和水的作用,监测系统用于监测金属结构的腐蚀状况和阴极保护系统的工作状态。
阴极保护的原理是基于电化学原理的,它利用了金属在不同电位下的电化学行为,通过控制金属表面的电位,从而达到保护金属的目的。
在阴极保护系统中,外加电源提供的电流会使金属结构表面成为一个电化学反应的阴极,从而抑制金属的腐蚀。
同时,通过设置阳极,消耗周围介质中的氧气和水,降低金属表面的腐蚀速率,从而实现对金属结构的保护。
总的来说,阴极保护原理是利用外加电流控制金属表面的电位,使金属表面成为一个电化学反应的阴极,从而抑制金属腐蚀的发生。
通过在金属结构周围设置阳极,消耗周围介质中的氧气和水,降低金属表面的腐蚀速率,达到保护金属结构的目的。
阴极保护技术在海洋工程、船舶、油气管道等领域有着广泛的应用,对于延长金属结构的使用寿命,减少维护成本具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外加电流阴极保护系统由以下几部分组成:辅助阳极、测试桩、直流电源、辅助材料、参比电极和导线。
此外,为使阳极输出的保护电流更均匀,避免阳极附近结构物产生过保护,有时在阳极周围还须涂刷阳极屏蔽层。
在外加电流阴极保护系统中,需要有一个稳定的直流电源,以提供保护电流。
广泛使用的有整流器和恒电位仪两种。
一般,当被保护的结构物所处的工况条件(如浸水面积、水质等)基本不变或变化很小时,可以采用手动控制的整流器;但当结构物所处的工况条件经常变化时,则应采用自动控制的恒电位仪,以使结构物电位总处在最佳保护范围内。
所有能发出直流电的电源,都是可以作为外加电流阴极保护系统的电源。
在外加电流阴极保护系统中使用的电源的类型有:整流器、恒电位仪;太阳能电池;发电机;风力发电机;热点电池。
整流器和其他外加电流系统的电源类型相比较,经济节省操作简单。
外加电流阴极保护系统的电源,其基本要求有:输出恒电位、恒电压、恒电流;同步通断功能;数据远传、远控功能。
恒电位仪的输出电压限定在50V以内,当工程需要更高的输出电压时,必须做好对阳极地床的防护措施。
在工程中广泛使用的恒电位仪主要有三类:可控硅恒电位仪、磁饱和恒电位仪和晶体管恒电位仪。
可控硅恒电位仪功率较大、体积较小,但过载能力不强。
磁饱和恒电位仪紧固耐用,过载能力强,但体积比较大,加工工艺也比较复杂。
晶体管恒电位仪输出平稳、无噪声、控制精度较高,但线路较复杂。
辅助阳极
辅助阳极的作用是将直流电源输出的直流电流由介质传递到被保护的金属结构上。
可作辅助阳极的材料有很多,如废钢铁、石墨、铅银合金、高硅铸铁、镀铂钛、包铂铌以及混合金属氧化物电极等。
这些材料各有其特点,适用于不同的场合。
参比电极
参比电极的作用有两个:一方面用于测量被保护结构物的电位,监测保护效果;另一方面,为自动控制的恒电位仪提供控制信号,以调节输出电流,使结构物总处于良好的保护状态。
在工程中,常用的参比电极有铜/饱和硫酸铜、银/卤化银及锌参比电极等,这些参比电极各具特点,适用于不同的场合。
测试桩
测试桩是一种专门用于管道阴极保护配以电位测试探头对保护管道进行测试的附属设备。
主要用于阴极保护参数的检测,是管道管理维护中必不可少的装置,按测试功能沿线布设。
辅助材料
辅助材料包括绝缘接头、接地电池、铝热焊、补伤片、热熔胶等。
优缺点
优点
1、需要较大的电流场合,特别是裸露的或涂层较差的结构物的防护;
2、所有到点的电解质溶液内;
3、用于水箱里的大型热交换器、油加热处理器和其他容器的保护;
4、储水罐的内壁;
5、地面上储存罐的外底;
6、地下储存罐;
7、地下或水中的基桩和打板桩;
缺点
1、与牺牲阳极相比,需要更高的检测和维护费用;
2、需要外部电源,持续的电源供给费用;
3、具有引发杂散电流干扰的高风险,可导致过保护,引发防腐层的破坏及管材氢脆。
施工安装规定
1.阴极保护整流器或其他电源的安装方式应使其损坏或认为破坏的可能性最小。
2.与整流器相连的导线应遵循地方和国家电器规程,与所用的供电电源要求一致。
应在
交流回路中提供外部断路开关。
整流器外壳应可靠接地。
3.所有电缆均应仔细检查,检测其绝缘缺陷,应小心进行以防损伤电缆的绝缘,电缆绝
缘的缺陷必须进行修补。
4.阳极填充料应与技术规格书一致。
设备位置选择
阳极地床场址的选择
在选择阳极地床场址时,不仅要考虑方便的电源盒较低的土壤电阻率,而且要考虑与外部管道的距离。
要得到较低的阳极电压的方法很多,可以采用若干个阴极保护站,每个阴极保护站由较低的电流输出;可以加长阳极地床来降低接地电阻;可以强行降低所需的阳极电压或采用深井阳极。
有20m厚的覆土层的深井阳极特别适用于都市中管道的阴极保护,因为都市中的管道与外部装置的距离较小。
外加电流阴极保护设备位置选择应考虑的因素
1.有无现存的低压电源;
2.保护电流需要量;
3.适合阳极地床的低电阻率环境;
4.对个人利益损害尽量少;
5.有良好的专门运输线;
6.其他外部装置与贵金属阳极应有足够的间距,使干扰影响最小。
用途
主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。