浅谈牛顿莱布尼茨度微积分的贡献
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈牛顿、莱布尼兹对微积分的贡献
姓名:马志霞学号:200971010129 班级:09级数学(1)班
摘要本文主要论述了微积分的产生、牛顿和莱布尼茨对微积分的贡献以及他们创立微积分的比较。
关键词牛顿莱布尼兹微积分产生贡献比较
一、微积分的产生
微积分是微分学和积分学的总称。微分学的主要内容包括:极限理论、导数、微分等,积分学的主要内容包括:定积分、不定积分等。如今,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。以下四种主要类型的问题:
第一类:变速运动求即时速度的问题。
第二类:求曲线的切线的问题。
第三类:求函数的最大值和最小值问题。
第四类:求曲线长、曲边梯形面积、不规则物体的体积、物体的重心、压强等问题。这些科学问题需要解决是促使微积分产生的因素。许多著名的科学家都为解决上述几类问题作了大量的研究工作,英国伟大的科学家牛顿和德国数学家莱布尼茨分把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。1686年,莱布尼茨发表了第一篇积分学的文献。他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨选用的。
微积分学的创立,极大地推动了数学的发展,对过去很多束手无策的初等数学问题运用微积分就会迎刃而解。微积分学不但极大的推动了数学的发展,而且也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展,并在这些学科中应用越来越广泛。
二、莱布尼兹对微积分的贡献
莱布尼兹创立微积分首先是出于几何问题的思考。1673年,他因在帕斯卡的有关论文中“突然看到一束光明”,而提出了自己的“微分三角形”理论。借助于这种无限小三角形,他迅速地、毫无困难地了建立大量定理,其中包括后来“在巴罗和格里高利的著作中见到的几乎所有定理”。
在对微分特征三角形的研究中,莱布尼兹逐渐认识到了什么是求曲线切线和求曲线下面积的实质,并发现了这两类问题的互逆关系。在1666年,莱布尼兹便在序列的求和运算与求差运算间发现了它们的互逆关系。从1672年开始,莱布尼兹将他对数列研究的结果与微积分运算联系起来。他通过把曲线的纵坐标想象成一组无穷序列,得出了“求切线不过是求差,求积不过是求和”的结论。他引进了微分记号dx来表示两相邻x的值的差,并给出幂函数的微分与积分公式。不久,他又给出了计算复合函数微分的链式法则。1677年,莱布尼兹在一篇手稿中明确陈述了微积分基本定理。
1684年莱布尼兹发表了他的第一篇微分学论文《新方法》,该文是莱布尼兹对自己1673年以来微分学研究的概括,其中定义了微分并广泛采用了微分记号,并明确陈述了函数和、差、积、商、乘幂与方根的微分公式。他还得出了复合函数的链式微分法则,以及后来又将乘积微分的“莱布尼兹法则”推广到了高阶情形,这些表明莱布尼兹非常重视微积分的形式运算法则和公式系统。《新方法》还包含了微分法在求极值、拐点以及光学等方面的广泛应用。1686年,莱布尼兹又发表了他的第一篇积分学论文《深奥的几何与不可分量及无限的分析》。这篇论文初步论述了积分或求积问题与微分或切线问题的互逆关系,说明了他的方法和符号,
积分号"∫"第一次出现于印刷出版物上,对符号的精心选择,是莱布尼兹微积分的一大特点。他引进的符号体现了微分与积分的“差”与“和”的实质,后来获得普遍接受并沿用至今。
三、牛顿对微积分的贡献
牛顿对微积分问题的研究始于他对笛卡尔圆法发生兴趣而开始寻找更好的切线求法。起初他的研究是静态的无穷小量方法,像费尔马那样把变量看成是无穷小元素的集合。1669年,他完成了第一篇有关微积分的论文。当时在他的朋友中间散发传阅,直到42年后的1711年才正式出版。牛顿在论文中不仅给出了求瞬时变化率的一般方法,而且证明了面积可由求变化率的逆过程得到。这一事实是牛顿创立微积分的标志。接着,牛顿研究变量流动生成法,认为变量是由点、线或面的连续运动产生的,因此,他把变量叫作流量,把变量的变化率叫做流数。牛顿第二阶段的工作,主要体现在成书于1671年的一本论著《流数法和无穷级数》中。书中叙述了微积分基本定理,并对微积分思想作了广泛而更明确的说明。但这篇论著直到1736年才公开发表。牛顿微积分研究的第三阶段用的是最初比和最后比的方法,否定了以前自己认为的变量是无穷小元素的静止集合,不再强调数学量是由不可分割的最小单元构成,而认为它是由几何元素经过连续运动生成的,不再认为流数是两个实无限小量的比,而是初生量的最初比或消失量的最后比,这就从原先的实无限小量观点进到量的无限分割过程即潜无限观点上去。这是他对初期微积分研究的修正和完善。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
在牛顿以前,面积总被看成是无限小不可分量之和,而牛顿则从确定面积的变化率入手,通过反微分计算面积。面积计算与求切线问题的互逆关系,在牛顿这里被明确地作为一般规律揭示出来,并成了建立微积分普遍算法的基础。牛顿的正、反流数术亦即微分与积分,通过揭示它们互逆关系的所谓“微积分基本定理”统一为一个整体。在这样的意义下,牛顿发明了微积分。
牛顿在《流数简论》中,牛顿还将他建立的统一算法应用于求曲线的切线、曲率、拐点、曲线求长、求积、求引力与引力中心等问题中,展示了其算法极大的普遍性与系统性。《流数简论》标志着微积分的诞生,但它在许多方面是不成熟的。后来,牛顿始终不渝努力改进、完善自己的微积分学说,先后写成了三篇微积分论文:《分析学》(1669)、《流数法》(1671)、《求积术》(1691)。它们真实地再现了牛顿创建微积分学说的思想历程。
在《流数法》中,牛顿恢复了其运动学观点,但对以物体速度为原型的流数概念作了进一步提炼。该文以清楚明白的流数语言,表述了微积分的基本问题。《求积术》是牛顿最成熟的微积分著述。。
四、牛顿、莱布尼兹创立微积分的比较
牛顿坚持唯物论的经验论,特别重视实验和归纳推理。他在研究经典力学规律和万有引力定律时,遇到了一些无法解决的数学问题,,因此牛顿着手研究新的以求曲率、面积、曲线的长度、重心、最大最小值等问题的方法———流数法。“牛顿的研究采用了最初比和最后比的方法。他认为流数是初生量的最初比或消失量的最后比。初生量的最初比就是在初生的瞬间的比值,消失量的最后比就是量在消失的瞬间的比值。”这个解释太模糊了,算不上精确的数学概念,只不过是一种直观的描述。最初比和最后比的物理原型是初速度与末速度的数学抽象,在物体作位置移动的过程中的每一瞬间具有的速度是自明的,牛顿就是从这个客观事实出发提出了最初比和最后比的直观概念。这样他就给出了极限的观点。
莱布尼兹的微积分创造始于研究“切线问题”和“求积问题”,他从微分三角形认识到:求曲线的切线依赖于纵坐标之差与横坐标之差的比值;求曲边图形的面积则依赖于在横坐标的无限小区间上的纵坐标之和或无限薄的矩形之和。莱布尼兹认识到求和与求差运算是可逆的。