第十四章 压杆稳定
简明工程力学14章压杆稳定
1 Fcr ' = Fcr ' ' , tgα = , α = 18.43o 3
§14-4 欧拉公式的应用范围 · 临界应力总图
一、 欧拉公式的应用范围 1.临界应力:压杆处于临界状态时横截面上的平均应力。
σ cr
Fcr = A
w Fcr
w=0;
代表了压杆的直线平衡状态。 代表了压杆的直线平衡状态。
此时A可以不为零。 此时 可以不为零。 可以不为零
l
w l 2 x
M (x)= Fcrw
x
B y (a)
B y (b)
w = A sin kx ≠ 0 失稳 失稳!!!
失稳的条件是: 失稳的条件是: sin kl = 0
kl = nπ
§14–1 压杆稳定性的概念
构件的承载能力: ①强度 ②刚度 ③稳定性 工程中有些构 件具有足够的强度、 刚度,却不一定能 安全可靠地工作。
P
一、稳定平衡与不稳定平衡 :
1. 不稳定平衡
2. 稳定平衡
3. 稳定平衡和不稳定平衡
二、压杆失稳与临界压力 :
1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 理想压杆
y
B y (c)
B (d)
x
§14-3 不同杆端约束下细长压杆临界力的 欧拉公式 · 压杆的长度系数
各种支承约束条件下等截面细长压杆临界力的欧拉公式
支承情况 两端铰支 一端固定 两端固定 另端铰支 Fcr 失 稳 时 挠 曲 线 形 状 A C— D C B Fcr B Fcr B 一端固定 另端自由 Fcr 两端固定但可沿 横向相对移动 Fcr
压杆稳定解析课件
查表13-1,得 0.276, 与 0.289 相差不大
故可选28a工字钢,校核其稳定性
F 45.1MPa [ ] 46.92MPa
A
例6: 图示梁杆结构,材料均为Q235钢。AB梁为14号
工字钢,BC杆为 d=20mm的圆杆。已知: F=25kN,
l1=1.25m,l2=0.55m,E=206GPa,p=200MPa, s=235MPa,n=1.4,nst=1.8。求校核该结构是否安全。
二﹑欧拉公式应用中的几个问题
(1)Fcr与EI成正比,与l2 成反比,且与杆端约束有 关。 Fcr越大,压杆稳定性越好,越不容易失稳;
(2)杆端约束情况对Fcr的影响,是 通过长度系数μ来实现的。要根据实 际情况选择适当的μ 。
(3)当压杆在两个形心主惯性平面内 的杆端约束情况相同时,则失稳一定 发生在最小刚度平面,即I 最小的纵 向平面。
y z x
轴销
y z
x
轴销
解:xy面内,两端视作铰支,μ = 1,iz = 4.14 cm
z
l
iz
1 2 4.14 102
48.3
y z
x
轴销
xz面内,两端视作固定端,μ = 0.5,查表iy= 1.52cm
y
l
iy
0.5 2 1.52 102
65.8
显然 z y
压杆将在xz平面内失稳 而 p 100,u s 60
lw
x
O
y
M(x) Fcr=F
w
w = Asinkx +Bcoskx (d)
Fcr
k2=Fcr / EI 两个边界条件:
w = Asinkx +Bcoskx
压杆稳定
表 细长压杆临界力与杆端支承的关系
两端铰支
Fcr
L l 相当(折算)长度
(与支承有关的)长度系数
Fcr
π 2 EI
L 2
l
EI
L 1l
O
一端固定一端自由
Fcr
一端固定一端铰支
Fcr
两端固定
Fcr
L 0.7l
l
EI
l
EI L 0.5l
O
O
EI l
L 2l
O
图示材料相同,直径相同的四根细长圆杆, ( )杆能承受的压力最大。
Fcr=?
●其它构件的稳定性问题
深梁失稳
薄壁圆管失稳
压杆稳定
Stability of Compressed Columns
2 细长压杆的临界力
2.1 两端铰支细长压杆的临界力——欧拉公式
临界状态: 微弯状态的平衡 杆的任一横截面上的弯矩:
x Fcr
Fcr wM x
Fcr
M x Fcrw
EI
l
cr F
A
cr
1 安全系数法
cr
nst
cr
nst:稳定安全系数
[cr]:稳定许用应力
稳定条件:
F A
cr
例5: 图示结构中,支承柱CD的直径d=20mm,
材料为A3钢,A、C、D三铰均为球铰。已知: P=25kN,l1=1.25m,l2=0.55mm,E=106 GPa,规定 的稳定安全系数nst=2.0,试校核CD杆是否安全。
压杆稳定
1 压杆稳定性的概念 2 细长压杆的临界力 3 压杆的柔度与压杆的非弹性失稳 4 压杆的稳定计算 5 提高压杆稳定性的措施
压杆稳定
工程力学压杆稳定
MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。
压杆稳定教学课件PPT
P
cr
2E 2
细长压杆。
粗短杆 中柔度杆
o
s
大柔度杆
P
l
i
粗短杆 中长杆 细长杆
细长杆—发生弹性屈曲 (p) 中长杆—发生弹塑性屈曲 (s < p) 粗短杆—不发生屈曲,而发生屈服 (< s)
四、注意问题:
1、计算临界力、临界应力时,先计算柔度,判断所用公式。
2、对局部面积有削弱的压杆,计算临界力、临界应力时, 其截面面积和惯性距按未削弱的尺寸计算。但进行强度 计算时需按削弱后的尺寸计算。
小球平衡的三种状态
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
受压直杆平衡的三种形式
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
电子式万能试
验机上的压杆稳定 实验
工程项目的 压杆稳定试验
§9-2 细长压杆临界压力的欧拉公式 一、两端铰支细长压杆的临界载荷
当达到临界压力时,压杆处于微弯状态下的平衡
1.287
91(kN)
例:图示立柱,L=6m,由两根10号槽型A3钢组成,下端固定,上 端为球铰支座,p 100 ,试 a=?时,截面最为合理。并求立柱的 临界压力最大值为多少?
解:1、对于单个10号槽钢,形心在C1点。 A1 12.74cm2, z0 1.52cm, Iz1 198.3cm4, I y1 25.6cm4.
细长压杆的破坏形式:突然产生显著的弯
曲变形而使结构丧失工作能力,并非因强度不
够,而是由于压杆不能保持原有直线平衡状态
(a)
(b) 所致。这种现象称为失稳。
1907年加拿大圣劳伦斯河上的魁北克桥 (倒塌前正在进行悬臂法架设中跨施工)
压杆稳定的概念
二、压杆的失稳12-2 细长压杆临界力公式——欧拉公式一、两端钝支细长压杆的j l P令: EI K j =则: Y K Y ⋅-=即: 02=⋅+''Y K Y此微分方程的通解:Y=C ;kx C kx cos sin 2+ ——(1) 边界条件: 当X=0, 02=C , kx C Y sin 1= ——(2) 又杆上端边界条件:X=l 代入(2)式kl sin 0=——(3) 若要使(3)式成立必有1C 或0sin =kl 方可。
如果 01=C 式就不成立,所以必定是0sin =kl πn kl =当 ππππn kl 3,2,,0=时,0sin =kl 得 ln EI P K jl π==又得 222l EI n P j l π= n=1 时, 2min2l EI P j l π=——临界力欧拉公式j l P ——临界力min I ——截面z I 、y I 选小值l ——杆长二、其他支座j l P()2min25.0l EI P j l π= u=0.5三、临界应力()()()2222min22min2r ul EAul EI Aul EI AP lj l j πππσ====——(1)式中: AI r min= ——截面的回转半径λ=rul——压杆的长细比 (1)式可成: 22λπσEjl =12-3 临界应力总图目的: 了解临界应力适应范围 关键是看懂j l σ总图一、临界应力的公式的适用范围(因为挠曲线近似微分方程只在材料服从虎克定律的前提下成立,即在材料不超过比例极限时成立,而j l P 又是通过挠曲线微分方程推倒出来的故p l j σσ≤)P l E jσλπσ≤=22 即: P p EE σπσπλ=≥2 即只有当λ大于或等于极限值p p Eσπλ=时 22λπσEjl *=方成立。
那么j l σ适用的范围总:p λλ≥ 如:钢 100≥p λ 铸铁 80≥p λ 木材 100≥p λ二、超过p σ后压杆的临界应力⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=21c l j λλασσ ——经验公式其中: s σ——材料的屈服极限 α——系数 0.43 Sc Eσπλ57.0=例: S A 钢: cmkgs 2400=σ 26102cm kgE ⨯=20715.02400λσ-=j l三、j l σ总图总图:p l j σσ≤和p l j σσ>的图形, j l σλ-曲线图12-4 压杆稳定计算一、压杆的稳定条件: []σϕσ≤=APjj l l K P P ≤其中j l P 压杆的临界力jl K 稳定安全系数,随λ变化比例强度安全系数K 的实际作用在杆上的应力则: []j jjj j l l l l l K K A P A Pσσσ==*≤=其中σ为实际杆内力[]j l σ为稳定许用应力稳定条件:[]j l σσ≤ []jjj l ll K σσ=,[]Kσσ=[]︒*=∴σσσKK JJJ L LL ,[][]σϕσ= 其中 ϕ 为折减系数,可查表 又[]σϕσ≤=∴AP说明:(1)式中j l σ总小于︒σ,()︒<σσj l ;k K j l > 故ϕ是小于1的。
第14章 压杆稳定
图14.1 压杆的稳定性
工程实际中许多受压构件都要考虑其稳定性,例如千斤顶的丝杆, 自卸载重车的液压活塞杆、连杆以及桁架结构中的受压杆等。 解决压杆稳定问题的关键是确定其临界力。如果将压杆的工作压力 控制在由临界力所确定的许用范围内,则压杆不致失稳。下面研究 如何确定压杆的临界力。
14.2 理想压杆临界力的计算
式中, 为杆自由端的微小挠度,其值不定。
2l
)
14.2.3 两端固定的细长压杆的临界力
14.2.3 两端固定的细长压杆的临界力 如图14.4(a)所示,两端固定的压杆,当轴向力达到临界力 Fcr 时 ,杆处于微弯平衡状态。由于对称性,可设杆两端的约束力偶矩均 为 M,则杆的受力情况如图14.4(a)所示。将杆从 x截面截开, 并考虑下半部分的静力平衡(如图14.4(b)所示),可得到 x截面 处的弯矩为 M ( x) Fcr w M e (a) 代入挠曲线近似微分方程,得 EIw ( Fcr w M e ) (b)
F
当 x=0时,w=0, 有 B 。 当 x=0时,w’=0 ,有 A=0。 将 A、B 值代入式(d)得 w (1 cos kx) (f) 再将边界条件 x l , w , 代入式(f),即得
材料力学之压杆稳定课件
分析实验数据,得出压 杆的临界压力和失稳形式。
实验结果分析
分析压杆在不同压力 下的变形情况,判断 压杆的稳定性。
总结临界压力与失稳 形式的规律,为实际 工程应用提供依据。
对比不同长度、直径、 材料等因素对压杆稳 定性的影响。
总结词
机械装置中的压杆在承受载荷时,其稳 定性对于机械的正常运转和安全性至关 重要。
VS
详细描述
在机械装置中,如压力机、压缩机等,压 杆是重要的承载元件。通过材料力学的方 法,可以分析压杆的稳定性,确定其临界 载荷和失稳模式,从而优化机械装置的设 计,提高其稳定性和安全性。
05
压杆稳定的应用与发展
工程实例二:建筑压杆
总结词
建筑压杆在高层建筑、大跨度结构等建筑中广泛应用,其稳定性是保证建筑安全的重要 因素。
详细描述
高层建筑和大跨度结构的稳定性分析中,建筑压杆的稳定性分析占据重要地位。通过材 料力学的方法,可以对建筑压杆的承载能力和稳定性进行精确计算,从而为建筑设计提
供可靠的支持。
工程实例三:机械装置压杆
数值模拟
随着计算机技术的发展,数值模 拟方法在压杆稳定性分析中得到 广泛应用,能够更精确地预测结
构的稳定性。
材料性能研究
新型材料的不断涌现,对压杆稳定 性的影响也日益受到关注,相关研 究正在不断深入。
多因素耦合分析
在实际工程中,多种因素如载荷、 温度、腐蚀等会对压杆稳定性产生 影响,因此需要开展多因素耦合分析。
欧拉公式是由瑞士科学家欧拉提出的一个公式,用于计算等截面直杆的临界应力。 根据欧拉公式,临界应力只与压杆的材料性质和截面形状有关,而与压杆的长度 和外载大小无关。
稳定性校核
压杆稳定
设 杆CD的抗弯刚度为EI2 ,则
P B
当 EI2∞ μ 0.7
当 EI20 μ 1.0
杆AB: μ=0.7~1.0
C
EI
EI2
A
D
例:已知 圆截面直钢杆,长度l=2m,直径d=20mm,
弹性模量E=200GPa, 屈服极限s =230MPa
求 按强度理论计算的最大许用载荷PS 按稳定理论计算的最大许用载荷Pcr 解:1) 按强度理论
当P<Pcr ,稳定平衡
Mr
当 P>Pcr ,失稳
当 P=Pcr ,临界平衡
P Pcr
干扰力F
稳定平衡
加干扰力,产生变形 撤去干扰力,变形恢 复。
P Pcr
干扰力F
临界平衡
加干扰力,产生变形 撤去干扰力,变形不 能恢复。
P Pcr
不能平衡
加干扰力,变形将持续 增加。
压杆失稳的内在原因 对于可变形压杆,干扰力 F 起到使压杆脱离 原直线平衡位置的作用,而杆的弯曲变形起 到使压杆恢复原直线平衡位置的作用。压杆 随纵向力P的改变,平衡的稳定性会发生改变 ,由稳定平衡转为不稳定平衡的纵向力临界 值称压杆的临界压力或临界载荷Pcr(critical load);它是压杆保持稳定平衡状态压力的最 大值。
工程上用“经验公式”代替“欧拉公式”。
如:可用直线经验公式: σ cr= a - b λ
a、b为材料常数,见表9-2。
A3钢:a=304MPa,b=1.12MPa
小柔度杆
当直线经验公式σ cr= a - b λ σ s(或σ b)时,
压杆的失效由强度控制。
压杆的稳定ppt
定义
01
边界条件是指压杆在支撑条件下的限制条件,如固定、自由、
简支等。
描述
02
不同的边界条件对压杆的稳定性产生不同的影响。例如,固定
边界条件下的压杆比自由边界条件下的压杆更稳定。
影响因素
03
边界条件对压杆稳定性的影响主要表现在支撑反力的分布和大
小上,从而影响压杆的临界载荷和屈曲载荷。
03
压杆稳定性问题的解决策略
合理选择材料和截面形状
选择高强度材料
如合金钢、不锈钢等,能够提高压杆的屈服强度和抗拉强度 ,增加压杆的稳定性。
选择合适的截面形状
如圆形、方形、工字形等,能够改变压杆的截面面积和惯性 矩,进而改变压杆的稳定性。
对压杆进行合理支撑和固定
增加支撑点
通过在压杆的适当位置增加支撑点,能够提高压杆的稳定性,防止其发生屈 曲变形。
船舶设计
在船舶设计中,压杆被用于船体结构的支撑和固定。特 别是在海洋环境中,压杆的稳定性对于抵御海浪冲击和 保证船舶的安全至关重要。
地下工程
在隧道、地铁等地下工程中,压杆被用于支撑和固定土 石方及结构物。其稳定性对于保障地下工程的稳定性和 安全性至关重要。
06
总结与展望
总结
压杆稳定的定义
压杆稳定的重要性
05
压杆稳定性问Leabharlann 的工程应用建筑结构中的压杆稳定性问题
建筑物的支撑结构
在建筑设计中,压杆常被用于支撑和固定建筑结构,如桥梁、高层建筑等。其稳定性直接 影响到建筑物的安全性和使用寿命。
抗风和抗震设计
在地震或强风天气中,建筑物的压杆稳定性显得尤为重要。压杆能够提供必要的支撑力, 帮助建筑物抵御自然灾害。
定义
材料力学压杆稳定
材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。
在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。
压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。
稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。
本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。
压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。
压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。
这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。
为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。
一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。
此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。
2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。
一般来说,杆件所使用的材料应当具有足够的强度和刚度。
强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。
此外,材料应当具有足够的韧性,以防止杆件发生断裂。
3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。
一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。
支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。
4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。
外力可以包括静力荷载、动力荷载和温度荷载等。
在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。
总之,压杆的稳定性是确保结构安全可靠性的重要因素。
在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。
合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。
压杆稳定
压杆稳定一、压杆稳定的概念压杆的稳定性,是指受压杆件保持其原有平衡状态的能力。
压杆不能保持原有平衡状态的现象,称为丧失稳定,简称失稳。
压杆处于稳定平衡和不稳定平衡之间的临界状态时,其轴向压力称为临界力或临界荷载,用表示。
临界力是判别压杆是否会失稳的重要指标。
二、两端铰支细长压杆的临界力两端为铰支的细长压杆,如图所示。
取图示坐标系,并假设压杆在临界荷载作用下,在xy平面内处于微弯平衡状态。
两端铰支细长压杆的临界荷载为称为欧拉公式。
在两端支承各方向相同时,杆的弯曲必然发生在抗弯能力最小的平面内,所以,式(1)中的惯性矩I应为压杆横截面的最小惯性矩;对于杆端各方向支承情况不同时,应分别计算,然后取其最小者作为压杆的临界荷载。
三、各种支承情况下压杆临界力计算公式可以写成统一形式的欧拉公式式中:μ反映了杆端支承对临界力的影响,称为长度系数,μL称为相当长度。
一端自由,一端固定m=2.0;两端固定 m=0.5一端铰支,一端固定 m=0.7;两端铰支m=1.0四、压杆的临界应力(一)、临界应力与柔度将临界荷载除以压杆的横截面面积A,即可求得压杆的临界应力,即将截面对中性轴的惯性半径代入,--临界应力欧拉公式---柔度或长细比。
它是一个无量纲量。
λ值愈大,压杆就愈容易失稳。
(二)、欧拉公式的适用范围于是欧拉公式的适用范围可用柔度表示为是与压杆材料性质有关的量。
对于,钢制成的压杆,E=200GPa,,=100的压杆称为大柔度杆或细长杆,其临界力或临界应力可用欧拉公式来计算。
(三)、超出比例极限时压杆的临界应力1、经验公式式中:a、b是与材料的力学性能有关的两个常数,可以通过试验加以测定,使用时可从有关手册上查取。
2、临界应力总图&如果将临界应力与柔度之间的函数关系绘在~λ直角坐标系内,将得到临界应力随柔度变化的曲线图形,称为临界应力总图。
临界应力均随柔度λ的增大而呈逐渐衰减的变化规律。
也就是说压杆越细越长,就越容易失去稳定。
《压杆稳定教学》课件
增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、是非题
14.1 由于失稳或由于强度不足而使构件不能正常工作,两者之间的本质区别在于:前者构件的平衡是不稳定的,而后者构件的平衡是稳定的。
()
14.2 压杆失稳的主要原因是临界压力或临界应力,而不是外界干扰力。
()
14.3 压杆的临界压力(或临界应力)与作用载荷大小有关。
()
14.4 两根材料、长度、截面面积和约束条件都相同的压杆,其临界压力也一定相同。
()
14.5 压杆的临界应力值与材料的弹性模量成正比。
()
二、选择题
14.6 在杆件长度、材料、约束条件和横截面面积等条件均相同的情况下,压杆采用图()所示的截面形状,其稳定性最好;而采用图()所示的截面形状,其稳定性最差。
14.7一方形横截面的压杆,若在其上钻一横向小孔(如图所示),则该杆与原来相比()。
A. 稳定性降低,强度不变
B. 稳定性不变,强度降低
C. 稳定性和强度都降低
D. 稳定性和强度都不变
14.8 若在强度计算和稳定性计算中取相同的安全系数,则在下列说法中,()是正确的。
A. 满足强度条件的压杆一定满足稳定性条件
B. 满足稳定性条件的压杆一定满足强度条件
C. 满足稳定性条件的压杆不一定满足强度条件
D. 不满足稳定性条件的压杆不一定满足强度条件
三计算题
14.9无缝钢管厂的穿孔顶针如图所示。
杆端承受压力。
杆长l =4.5m ,横截面直径d =15cm ,材料为低合金钢,E =210 Gpa 。
两端可简化为铰支座,规定的稳定安全系数为=3.3 。
试求顶杆的许可载荷。
14.10某厂自制的简易起重机如图所示,其压杆BD 为20号槽钢,材料为A3 钢。
起重机的最大起重量是P = 40 kN 。
若规定的稳定安全系数为=5 ,试校核BD 杆的稳定性。
14.11 10 号工字梁的C 端固定,A 端铰支于空心钢管AB 上。
钢管的内径和外径分别为30mm 和40mm ,B 端亦为铰支。
梁及钢管同为A3 钢。
当重为300N 的重物落于梁的
A 端时,试校核A
B 杆的稳定性。
规定稳定安全系数=2.5 。
答案
14.1 √14.2 √14.3 ×14.4 ×14.5 ×14.6 D ,B 14.7
B 14.8 B
14.9 解:
14.10 解:
14.11。