2019-2020学年高中数学 第三章《不等式》基本不等式第一课时教学设计 新人教版必修5.doc

合集下载

人教A版高中数学必修5《基本不等式》精品教案

人教A版高中数学必修5《基本不等式》精品教案

人教A版高中数学必修5《基本不等式》精品教案课题: 基本不等式:2ba ab +≤(第一课时)教材:人教版高中课程标准实验教科书《数学·必修5》第三章第四节 1 教材分析本节书介绍了两个不等式定理:(1)、如果R b R a ∈∈,,那么ab b a 222≥+①;(2)、如果0,0>>b a ,那么2ba ab +≤②。

这两个定理是解决一些数学问题和实际应用问题的重要的数学方法。

本节书教学共需3课时,这是第一课时,主要是了解探索基本不等式的证明过程,熟悉基本不等式的结构,为下节基本不等式的应用做准备(以下用①②代替两个定理)。

2 学生分析有了前面“不等式性质”的学习,学生要理解这两个定理难度并不大。

针对学生求知欲旺盛的特点,在教学中,以思考、探索、讨论为主要方法,适当加以讲解,使学生自己收获结论、总结方法,动手解决实际问题,并且增强学习数学的的信心。

3 教学策略(1)、以“孔融选蛋糕”为例引入,课件辅助,引导学生探究①的证明,并总结证明方法;利用正方形和弦图让学生了解①的几何意义,同时介绍“国际数学家大会”,培养学生的民族自豪感和使命感。

(2)、利用①式,通过“换元法”练习引入定理②,引导学生从不同角度探究②的证明过程,利用“半径和半弦的关系”让学生了解②的几何意义,并强调①②的联系与区别。

(3)、巩固练习。

设置三道习题由浅到深让学生对基本不等式逐渐熟悉,应用它们去比较大小、解决生活常见问题,最后让学生通过替换定理中的字母发现更多②式有趣的变形式,为下一节课铺垫。

4 教学目标(1)、知识目标了解不等式①②的证明过程和方法;了解不等式①②的几何意义;初步应用基本不等式比较大小,熟悉其变形式。

(2)、能力目标通过探究结果的汇报以及讨论活动,提高学生语言表达能力;在对不等式①②的证明过程中培养学生发现、比较、论证、转化等分析问题和解决问题的能力;通过掌握不等式①②的结构特点和运用不等式①②的适当变形,培养学生的思维能力和创新精神。

《基本不等式(第1课时)》教学设计新

《基本不等式(第1课时)》教学设计新

教师学科教案[20-20学年度第一学期]任教学科:______________任教年级:______________任教老师:______________XX市实验学校课题:基本不等式(第1课时)学校:北京市顺义牛栏山第一中学学科:数学姓名:***一、指导思想与理论依据布鲁姆将教育目标划分为认知领域、情感领域和操作领域三个领域,共同构成教育目标体系•认知目标又分类为:记忆、理解、应用、分析、评价、创造,每个层次的要求各不相同,因此教学目标的确定应结合课程内容和学生的实际情况,符合学生的认知规律.学生是课堂中的主体,教学设计一定要从学生的认知水平出发,充分考虑学生的已有经验、学习基础、思维特点,立足于学生的"最近发展区”;用学生的眼光看数学,学生在理解的基础上,由浅入深,由感性到理性地设计问题,才能真正引导和帮助学生思考问题、分析问题和解决问题.同时《高中数学学科德育指导纲要》指出,在高中数学教学中加强德育,对于全面推进素质教育,培养社会主义的建设者和接班人具有重要意义.因此在教学中要关注学生的情感、态度和价值观,渗透德育内容.教学活动是师生积极参与、交流互动、共同发展的过程.有效的数学教学活动是学生学与教师教的统一.《普通高中数学课程标准(实验)》指出:“学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探究、动手实践、合作交流、阅读自学等学习数学的方式……"、“还应注重提高学生的数学思维能力”.本节课从学生的最近发展区出发,通过典型具体例子的分析和学生自主地观察、探索活动,亲身经历、体验发现规律的过程,学会如何去研究问题的方法,体会蕴含在其中的数学思想方法,把数学的学术形态通过适当的方式转化为学生易于接受的教育形态,培养学生交流合作的意识.二、教学背景分析(一)教学内容分析本节课的内容是人教A版《数学(必修5)》第三章3.4基本不等式:J^≤土^的第1课时.“基本不等式”在教学中安排3课时,第1课时的内容是基本不等式的形成、证明及其几何解释,正确把握基本不等式的结构和等号成立的条件;第2课时的内容是能用基本不等式求简单的最值问题,并理解其应用条件“正、定、等”;第3课时的内容是从实际问题中抽象出具体的基本不等式问题,并应用基本不等式处理最值问题,也就是将基本不等式作为处理优化问题的一种模型.基本不等式反映了实数的两种基本运算(即加法和乘法)所引出的大小变化.这一简单朴实、平易近人的本质,恰是这一不等式变化多端、妙用无穷的源头,体现了运算带给数的巨大力量.这一本质不仅可以从不等式的代数结构上得到表现,而且也有几何意义,由此而生发出的问题在训练学生的代数推理能力和几何直观能力上都发挥了良好的作用。

“基本不等式”(第一课时)教案

“基本不等式”(第一课时)教案

基本不等式教学设计(第一课时)阮 晓 锋一、教学目标1.知识与技能目标: 学会推证基本不等式,了解基本不等式的应用。

2.过程与方法目标:通过代数、几何背景探究抽象出基本不等式;3.情感与价值目标:通过学习,体会数学来源于生活,提高学习数学的兴趣。

二、教学重点和难点重点:应用数形结合的思想理解基本不等式,并从不同角度探索其证明过程; 难点:在几何背景下抽象出基本不等式,并理解基本不等式.三、教学过程:1.设置情景,引入新课如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明。

探究一:在这张“弦图”中借助面积能找出一些相等关系和不等关系吗?问题1:它们有相等的情况吗?何时相等?结论:一般地,对于正实数a 、b ,我们有ab b a 222≥+当且仅当a=b 时等号成立.2.代数证明,推出结论问题2:你能给出它的代数证明吗?(请同学们用代数方法给出这个不等式的证明.)证明(作差法):∵,当时取等号. (在该过程中,可发现a,b 取值可以是全体实数)问题3:当 a,b 为任意实数时,上式还成立吗?重要不等式:对任意实数a 、b ,我们有ab b a 222≥+(当且仅当a=b 时等号成立)特别地,若a>0且b>0可得ab b a ≥+,即ab b a ≥+2(当且仅当a=b 时等号成立) 基本不等式:若a>0且b>0,则ab b a ≥+2(当且仅当a=b 时等号成立) 深化认识:(1)两个正数的等差中项不小于它们的等比中项.(2)若称2b a +为a 、b 的算术平均数,称ab 为它们的几何平均数,则基本不等式又可叙述为:两个正数的几何平均数不大于它们的算术平均数3.动手操作、几何证明,相见益彰探究二:先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为a 和b (b a >),考察两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?(通过学生动手操作,探索发现)探究三:如图,AB 是圆O 的直径,点C 是AB 上一点,AC=a ,BC=b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .根据射影定理可得:ab BC AC CD =⨯=由于RtCOD 中斜边OD 大于直角边CD ,于是有ab b a ≥+2当且仅当点C 与圆心O 重合时,即a=b 时等号成立. (进一步加强数形结合的意识,提升思维的灵活性)4.应用举例,巩固新知例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?(通过例1的讲析,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 方法:一般地,对于R y x +∈,我们有:(1)若xy=p (p 为定值),则当且仅当a=b 时,x+y 有最小值xy 2; (2)若x+y=s (s 为定值),则当且仅当a=b 时,xy 有最大值2s 41. 上述应用基本不等式求最值的方法可简记为:在“一证、二定、三相等”的前提下有“积定和最小,和定积最大”。

《基本不等式(一)》示范课教学设计【高中数学人教】

《基本不等式(一)》示范课教学设计【高中数学人教】

环节三 基本不等式(一)
1.理解基本不等式2b a ab +≤
(a >0,b >0),会利用不等式性质证明,发展逻辑推理素养;
2.了解基本不等式的几何解释,发展直观想象素养;
3.结合具体实例,形成用基本不等式解决简单的求最大值或最小值的问题的基本模型,发展数学运算核心素养. PPT 课件,及GEOGEBRA 制作的动画课件.
一、整体感知
问题1:请同学们阅读课本第44页,说一说今天我们将要学习的内容是什么?在不等式中起着怎样的作用?
师生活动:学生自主阅读课本,思考并回答,教师给予简单总结.
预设答案:类比代数式运算的研究,学习了一般运算之后,就要探索其特殊关系,这些特殊关系往往具有重要作用,比如乘法公式等等.那么学习了不等式的性质,我们就要尝试探索一些特殊的不等式——基本不等式.
它是一种重要而基本的不等式类型,与乘法公式在代数运算的地位一样,在解决不等式问题中有重要的作用,它之所以被称为“基本不等式”,主要是因为它可以作为不等式论的基本定理,成为支撑其他许多非常重要结果的基石.
设计意图:让学生从整体上把握本节内容,了解基本不等式在解决不等式问题有重要的作用.。

3.4 基本不等式(教案)

3.4 基本不等式(教案)

3.4基本不等式(第一课时)来宾高中数学组:卢红兰教学目标一、知识目标1、探索并了解基本不等式的证明过程;2、了解基本不等式的几何背景;3、会用基本不等式解决简单的最大(小)值问题。

二、能力目标通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法。

三、情感目标通过对基本不等式成立条件的分析,培养分析问题的能力及严谨的数学态度。

教学重、难点重点:1、数形结合的思想理解基本不等式;2、基本不等式成立的条件及应用。

难点:基本不等式成立的条件及应用。

教学过程一、创设情境,引入课题探究一:如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计;将右图中的“风车”抽象成下图,比较4个直角三角形的面积与大正方形的面积,你能找到怎样的不等关系?引导学生从面积的关系去找相等关系或不等关系。

设直角三角形的两条直角边长为a,b 我们考虑4个直角三角形的面积的和是ab S 21=,大正方形的面积为222b a S +=。

由图可知12S S >,即ab b a 222>+.思考一:1、能否取到等号?什么时候取等号?(当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=)2、以上结论能否推广到任意实数a ,b ?总结:重要不等式:一般地,对于任意实数 a 、b ,我们有222a b ab +≥,当且仅当a b =时,等号成立。

你能给出证明吗?思考二:如果用a ,b 去替换ab b a 222≥+中的a ,b 能得到什么结论? 引导:为什么可以替换?a ,b 要满足什么条件?结论:a b +≥)0,0(>>b a ,当且仅当b a =时取等号. 你能给出证明吗?二、数形结合,深化认识展示课题内容:重要不等式.....:若,a b R ∈,则ab b a 222≥+(当且仅当b a =时,等号成立) 基本不等式.....:若,0a b >,则2ba ab +≤(当且仅当b a =时,等号成立)此环节学生提出疑惑,小组解答三、辨析质疑(小组活动)例1. 若0x >,当x 取什么值时,1x x+的值最小?最小值是多少?练1:把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?小结1:当ab 为定值P 时,a b +有最什么值?此时a 、b 应满足什么条件?变式1:若0x <,1x x+有最值吗?如果有,请你求出最值. 变式2:你会求1x x +的最值吗?试一试.例2. 若02x <<,当x 取什么值?(2)x x -值最大?最小值是多少?练2:把18写成两个正数的和,当这两个正数取什么值时,它们的积最小?小结2:当a b + 为定值S 时,ab 有最什么值?此时a 、b 应满足什么条件?四、小结:1、222a b ab +≥当且仅当a b =时“=”成立2、2a b +≥0,0a b >>)当且仅当a b =时“=”成立 思想方法:1、数形结合思想2、换元思想五、作业设计1、基本作业:(1)判断下列推理是否正确:① 函数22(0)y x x x=+>的最小值是( )② 函数y =的最大值是5. ( )③ 函数1sin sin y x x=+的最小值是2. ( )(2)完成同步课时作业2、拓展作业:到阅览室或网上查找基本不等式的几何解释,整理并相互交流.六、板书设计3.4基本不等式1、重要不等式:若,a b R ∈,则ab b a 222≥+(当且仅当b a =时,等号成立)2、基本不等式:若,0a b >,则2b a ab +≤(当且仅当b a =时,等号成立) 思想方法:1、数形结合思想2、换元思想。

《基本不等式》教学设计

《基本不等式》教学设计

微课《基本不等式》(第一课时)教案设计北师大版高中数学必修5第三章一、教学目标1.通过实例,引导学生利用数形结合的思想从几何图形中获得重要不等式的内容,从而得到基本不等式。

2.进一步完善基本不等式等号成立的条件,并从圆中给出不等式的几何证明,加深对基本不等式的认识,提高逻辑推理论证能力;3.运用基本不等式进行证明,强化学生应用的能力。

以上教学目标结合教学实际,将知识与能力、过程与方法、情感态度价值观的三维目标融入各个教学环节.二、教学重点和难点重点:应用数形结合的思想理解基本不等式。

难点:在几何图形中抽象出基本不等式,并理解基本不等式.三、教学过程:1.实例探究:如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图体现了最早的数形结合的思想.在正方形中有4个全等的直角三角形.设直角三角形两条直角边长为,设正方形的面积为S ,四个全等的直角三角形的面积为S ’。

问1:正方形的面积S 是多少?问2:四个全等的直角三角形的面积S ’是多少?问3: S 与S ’有怎样的关系?2.积极思考: 若直角三角形的直角顶点合为一点即正方形中心时S 与S ’又有怎样的关系.(等号成立的条件)于是,得到重要不等式当且仅当a=b 时等号成立。

同时解释“当且仅当”的含义。

3.启发引导:若将重要不等式中的2a 与2b 用a 和b 代换会用怎样的结论? 通过学生动手操作,探索发现基本不等式的内容:若22,,2a b R a b ab ??,则2a b +³a=b 时等号成立)。

4知识点强化:关于基本不等式的三点说明:I :两数a ,b 必须为正数;II :2a b +³III: “=”成立的条件。

通过教师演示几何画板,展示图形动画,使学生直观感受不等关系中的相等条件,从而进一步完善基本不等式的理论:3.对基本不等式的三点总结:(1)圆的半径大于等于半弦;(2)两个正数的算术平均数不小于它们的几何平均数;(3)两个正数的等差中项不小于它们的几何平均数。

基本不等式教学设计(王世艳)

基本不等式教学设计(王世艳)

黑龙江省七台河市第二中学王世艳教材:人教版高中数学必修5第三章一、教学内容解析本节选自人教版必修五的第三章第四节的第一课时,它是在学生学习完“不等式的性质”、“一元二次不等式及其解法”及“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究。

在探究基本不等式内涵和证明的过程中,能够培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;在应用的过程中,通过对条件的转换和变式,有助于培养学生形成类比归纳的思想和习惯,进而形成严谨的思维方式。

二、教学目标设置1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。

3.通过例题让学生学会用基本不等式求最大值和最小值。

三、学生学情分析对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。

四、教学策略分析在教学过程中学生往往会直接应用不等式而忽略成立的条件,因此本节课的重点内容是对基本不等式的理解和运用。

在运用过程中生成的规律,在学生做题时能灵活运用是难点,因此理解基本不等式和灵活应用基本不等式十本节课难点五、教学过程:(一)情景引入下图是2002年在北京召开的第24届国际数学家大会会议现场。

通过情境引发联想,学生深切感受到我国数学科学的悠久历史和深厚的文化底蕴,以及我国的数学成就对世界数学文明的影响和发展做出的卓越贡献,激发学生喜欢数学,学好数学的热情。

探究一:观察上面的会标。

会标是根据中国古代数学家赵爽的弦图设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、数形结合的思想。

高中数学 第三章 不等式 3.4 基本不等式 第1课时 基本

高中数学 第三章 不等式 3.4 基本不等式 第1课时 基本

[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”) (1) 对任意 a,b∈R,a2+b2≥2ab,a+b≥2 ab均成 立.( )
(2)若 a≠0,则 a+4a≥2 a·4a=4.(
)
(3)若 a>0,b>0,则 ab≤a+2 b2.(
)
解析:(1)错误.任意 a,b∈R,有 a2+b2≥2ab 成立,
解析:①因为 x∈(0,π),所以 sin x∈(0,1], 所以①成立;②只有在 lg a>0,lg b>0,
即 a>1,b>1 时才成立;
③x+4x=x+4x≥2 答案:①③
x·|4x|=4 成立.
5.如果 a>0,b>0,则ba+ab的最小值是 2;如果 ab >0,则ba+ab的范围是________.
故1+1a1+1b=1+a+a b1+a+b b= 2+ba2+ab=5+2ba+ab≥ 5+4=9,当且仅当 a=b=12时取等号.
(2)因为 a>0,b>0,所以 a+b≥2 ab,
当且仅当 a=b=12时,等号成立.则 ab≤a+2 b2=14,
则 a2b2≤116,而 a4+b4=(a2+b2)2-2a2b2=[(a+b)2-2ab]2

2a2b2

[(a

b)2

2ab]2


1 16

(1

2ab)2

1 8

1-2×142当 a=b=12时取等号.
类型 2 利用基本不等式求最值 [典例 2] (1)若 x>0,求 f(x)=1x2+3x 的最小值; (2)已知 x>2,求 x+x-4 2的最小值. 解:(1)因为 x>0,由基本不等式得 f(x)=1x2+3x≥2 1x2·3x=2 36=12.

高中数学_基本不等式(第一课时)教学设计学情分析教材分析课后反思

高中数学_基本不等式(第一课时)教学设计学情分析教材分析课后反思

《基本不等式》教学设计一、教学目标1.知识与技能:了解基本不等式的几何背景,探索基本不等式的证明过程,会用基本不等式解决简单最大(小)值问题。

2.过程与方法:进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。

3.情感态度与价值观:培养学生观察问题、分析问题和解决问题的能力,培养学生形成数形结合的思想意识。

二、教学重难点1.教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程,基本不等式在实际问题中的应用。

2.教学难点:用基本不等式求最大值和最小值。

三、教材分析最新版教材之所以把“基本不等式”前置是经过了学习的重要性与可能性两方面的综合考量。

相比旧教材,“基本不等式”的教材地位与教学要求都发生的变化,由于“基本不等式”本身内涵非常丰富,其学习过程不可能一蹴而就,“反复认知,螺旋上升”才是课堂教学的有效策略。

四、学情分析本节课针对的是高一年级学生,知识上,刚系统学完了不等式性质,一元二次不等式,在初中阶段,也了解了数学家赵爽“弦图”推出勾股定理,圆的垂径定理,算数平均数、几何平均数。

方法上,能够运用数形结合和化归的思想提炼基本不等式,阐述基本不等式的几何意义。

能力上,运用作差法,综合法能从数量关系上进行逻辑推理验证基本不等式。

五、教学方法1、借助“折纸游戏”,从特殊到一般的猜想,发现基本不等式(数学抽象、直观想象)。

2、探索基本不等式的证明过程,会用作差比较法、综合法,分析法,证明基本不等式(逻辑推理、数学运算、直观想象)。

3、从不同角度理解基本不等式(直观想象)。

4、感知与基本不等式相近一些不等式的证明(逻辑推理、数学运算)。

学生:消去了教师:得到定值学生:2教师:当且仅当学生:x x 1=时等号成立 教师:这时我们得到的是学生:最小值2教师:好的,我们类比这道例题完成三个变式,这里请三位同学上来板书变式1:已知0>x ,求x x 12+的最小值. 变式2:已知0<x ,求x x 1+的最大值. 变式3:已知1>x ,求11-+x x 的最小值. 教师:我们看变式3,如果4>x 时,最值还是这个答案吗 学生:不是教师:原因是什么学生:当且仅当的相等教师:所以我们运用基本不等式求最值的条件可以总结为 学生:一正、二定、三相等教师:观察我们例1和变式,我们发现在利用基本不等式后两正数之积为定值,这时我们能求出两正数之和的最小值,那么我们是否可以得到结论:能力,灵活运用已学知识,体会证明的答题过程《基本不等式》学情分析本节课针对的是高一年级学生,知识上,刚系统学完了不等式性质,一元二次不等式,在初中阶段,也了解了数学家赵爽“弦图”推出勾股定理,圆的垂径定理,算数平均数、几何平均数。

《基本不等式》教学设计

《基本不等式》教学设计

《基本不等式》教学设计基本不等式教学设计一、教学目标1. 理解基本不等式的概念和性质;2. 掌握基本不等式的证明方法;3. 能够运用基本不等式解决实际问题。

二、教学内容1. 基本不等式的定义;2. 基本不等式的证明方法;3. 基本不等式的应用。

三、教学过程设计1. 导入(5分钟)在开始教学之前,通过简单的例子引出不等式的概念,以提高学生的学习兴趣和主动性。

例如:已知a > b,b > c,求a与c的大小关系。

2. 理论讲解(15分钟)首先,介绍基本不等式的定义:若a > b,则a - b > 0,这就是基本不等式的定义。

接着,讲解基本不等式的性质:可以对不等式两边同时加上(或减去)同一个数,且不等号的方向不变;可以对不等式两边同时乘以(或除以)同一个正数,且不等号的方向不变,对不等式两边同时乘以(或除以)同一个负数,不等号的方向反转。

3. 证明方法教授(30分钟)以证明a² ≥ 0为例,介绍基本不等式的证明方法。

步骤一:假设a > 0,根据基本不等式的定义,有a - 0 > 0,即a > 0。

步骤二:两边同时乘以a得到a² > 0,即a² ≥ 0。

步骤三:当a = 0时,直接代入原不等式得到0² ≥ 0,即0 ≥ 0。

结论:无论a为正数还是零,都有a² ≥ 0成立。

4. 练习与讨论(25分钟)分发练习题给学生,让他们尝试证明不等式的正确性,并在学生结束练习后,采用板书的形式,对解题思路和方法进行梳理和讲解。

5. 应用实例(20分钟)给学生提供一些实际问题,让他们运用基本不等式解决问题。

例如:已知a + b = 10,求a² + b²的最小值。

6. 拓展延伸(10分钟)引导学生思考更复杂的不等式问题,例如:证明(a + b)(b + c)(c + a) ≥ 8abc。

7. 总结归纳(5分钟)对本节课所学的基本不等式内容进行总结,强调基本不等式在数学证明和实际问题解决中的重要性。

第1课时 基本不等式教学设计-2022-2023学年高一上学期数学人教A版(2019)必修第一册

第1课时 基本不等式教学设计-2022-2023学年高一上学期数学人教A版(2019)必修第一册

2.2 第1课时 基本不等式[教学目标] 1.理解基本不等式的内容及证明;2.能熟练运用基本不等式来比较两个实数的大小;3.能初步运用基本不等式证明简单的不等式. [教学重点] 基本不等式的内容及证明. [教学难点] 运用基本不等式证明简单的不等式.【要点整合】知识点 两个不等式1.重要不等式:∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b 2,当且仅当a =b 时,等号成立.其中a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数. [答一答]1.下面是基本不等式ab ≤a +b2的一种几何解释,请你补充完整. 如图所示,AB 为⊙O 的直径,AC =a ,CB =b ,过点C 作CD ⊥AB 交⊙O 上半圆于D ,连接OD ,AD ,BD .(1)由射影定理可知,CD =ab ,而OD =a +b2;(2)因为OD ≥CD ,所以a +b2≥ab C 与O 重合,即a =b 时,等号成立;(3)基本不等式ab ≤a +b2的几何意义是半径不小于半弦.2.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab 对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.3.(1)基本不等式中的a ,b 可以是代数式吗? (2)a +b 2≥ab 与⎝⎛⎭⎫a +b 22≥ab 是等价的吗?提示:(1)可以.但代数式的值必须是正数,否则不成立. (2)不等价,前者条件是a >0,b >0,后者是a ,b ∈R .【典例讲练】类型一 用基本不等式比较大小[例1] 若0<a <1,0<b <1,且a ≠b ,试找出a +b ,a 2+b 2,2ab ,2ab 中的最大者. [解] ∵0<a <1,0<b <1,且a ≠b ,∴a +b >2ab ,a 2+b 2>2ab ,∴四个数中最大的应从a +b ,a 2+b 2中选择. 而a 2+b 2-(a +b )=a (a -1)+b (b -1), ∵0<a <1,0<b <1,∴a (a -1)<0,b (b -1)<0,∴a 2+b 2-(a +b )<0,即a 2+b 2<a +b ,∴a +b 最大. [通法提炼]利用基本不等式比较实数大小的注意事项(1)利用基本不等式比较大小,常常要注意观察其形式(和与积),同时要注意结合函数的性质. (2)利用基本不等式时,一定要注意条件是否满足a >0,b >0.[变式训练1] (1)已知a ,b ∈R ,且ab >0,则下列结论恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 【解析】对于A ,当a =b 时,a 2+b 2=2ab ,所以A 错误;对于B ,C ,ab >0只能说明a ,b 同号,当a ,b 都小于0时,B ,C 错误;对于D ,因为ab >0,所以b a >0,a b >0,所以b a +ab ≥2b a ·ab,即b a +ab ≥2成立. 【答案】D(2)已知a ,b 是不相等的正数,x =a +b2,y =a +b ,试比较x ,y 的大小. 解:a ,b 是不相等的正数,由x =a +b 2得x 2=a +b +2ab 2<a +b +a +b2=a +b ,又∵y =a +b ,即y 2=a +b ,∴x 2<y 2,即x <y . 类型二 用基本不等式证明不等式[例2] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1,求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8. [证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0.∴2(a +b +c )≥2(ab +bc +ca ), 即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .(2)∵a ,b ,c 为正实数,且a +b +c =1,∴1a -1=1-a a =b +c a ≥2bc a ,同理1b -1≥2ac b ,1c -1≥2abc. 由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥2bc a ·2ac b ·2ab c =8. 当且仅当a =b =c =13时,等号成立.[通法提炼]利用基本不等式证明不等式的策略与注意事项1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果. 2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用基本不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练2] 已知a ,b ,c 为正数,且a +b +c =1,证明:1a +1b +1c ≥9.证明:1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+(b a +a b )+(c a +a c )+(c b +bc )≥3+2+2+2=9.当且仅当a =b =c =13时,等号成立.【课堂达标】1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( )A .1个B .2个C .3个D .4个【解析】当b a ,a b 均为正数时,b a +ab ≥2,故只须a 、b 同号即可.所以①③④均可以.【答案】C2.已知x >0,y >0,且2x +1y =1,若x +2y >m 恒成立,则实数m 的取值范围是( )A .{m |m <6}B .{m |m ≤6}C .{m |m ≤8}D .{m |m <8}【解析】本题考查基本不等式的应用.x +2y =(x +2y )·⎝⎛⎭⎫2x +1y =4+4y x +xy ≥4+24=8(当且仅当4y x =xy ,即x =4,y =2时等号成立),所以x +2y >m 恒成立,只需(x +2y )min >m .所以m <8.故选D.【答案】D3.设b >a >0,且a +b =1,则四个数12,2ab ,a 2+b 2,b 中最大的是( )A .bB .a 2+b 2C .2abD.12【解析】因为b >a >0,所以a 2+b 2>2ab .又因为a +b =1,所以b >12.又b =b (b +a )=b 2+ab >b 2+a 2,所以b 最大,故选A. 【答案】A4.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是 (写出所有正确命题的序号).①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3;⑤1a +1b ≥2.【解析】因为a >0,b >0,a +b =2,所以ab ≤(a +b 2)2=1,所以①恒成立;a +b ≤2(a )2+(b )22=2,所以②不恒成立; a 2+b 2≥(a +b )22=2,所以③恒成立; 当a =b =1时,a 3+b 3=2<3,所以④不恒成立; 1a +1b =12(a +b )(1a +1b )=12(2+a b +ba )≥2,所以⑤恒成立. 【答案】①③⑤ 5.已知x ,y 都是正数. 求证:(1)y x +xy≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.证明:(1)∵x ,y 都是正数,∴x y >0,yx >0,∴y x +xy≥2y x ·x y =2,即y x +xy≥2, 当且仅当x =y 时,等号成立. (2)∵x ,y 都是正数,∴x +y ≥2xy >0, x 2+y 2≥2x 2y 2>0,x 3+y 3≥2x 3y 3>0.∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·2x 2y 2·2x 3y 3=8x 3y 3,即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3,当且仅当x =y 时,等号成立.【课堂小结】本课须掌握的两大问题1.两个不等式a 2+b 2≥2ab 与a +b2≥ab 都是带有等号的不等式,对于“当且仅当…时,取‘=’”这句话的含义要有正确的理解.一方面:当a =b 时,a +b 2=ab ;另一方面:当a +b2=ab 时,也有a =b .2.在利用基本不等式证明的过程中,常需要把数、式合理的拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.。

最新高中数学必修5《基本不等式》教学设计精编版

最新高中数学必修5《基本不等式》教学设计精编版

2020年高中数学必修5《基本不等式》教学设计精编版课 题:》第一课时(教学设计) 教 材:普通高中课程标准实验教科书(人教社A 版)数学必修5 第三章3.4节一、教学分析:2a b +≤二、教学基本流程:赵爽:弦图三、教学过程设计:【环节一:创设情景,体会感知】 情景引入:勾股定理是“人类最伟大的十个科学发现之一”,它是初等几何中最精彩的,也是最著名和最有用的定理。

据不完全统计,勾股定理的证明方法已经多达500多种了。

通过向学生介绍中国古代数学家赵爽证明勾股定理的方法,引导学生发现赵爽弦图中存在的不等关系,从几何角度直观地引出不等式()2220,0a b ab a b +≥>>,从而引出本节课的内容。

1.重要不等式:()222,a b ab a b R +≥∈,当且仅当a b =时,等号成立。

分析:(1)代数证明:()()222222200,a b ab a b ab a b a b R +≥⇔+-≥⇔-≥∈,当且仅当a b =时,等号成立;(2)代换变形: 当0,0a b >>,a b ,a b 得到基本不等式。

2.()0,02a bab a b +≤>>,当且仅当a b =时,等号成立。

分析:(1)类比证明:引导学生类比重要不等式的证明方法完成课本基本不等式的推导过程;设计意图:依据认知的规律,创设有趣的情景,激发学生的学习兴趣,感知知识的发现与推导过程,体验数学思维的严谨和数形结合的魅力,培养学生的民族自豪感。

(2)特征剖析:几何平均数不大于算术平均数;(3)几何解释:直角三角形斜边上的高不大于斜边的中线长;(4)思维拓展:课后探究基本不等式的其他几何解释(课本P98探究)。

【环节三:深入探究,开阔视野】 学生探究活动:暑假是电脑销售的旺季,商家会开展一系列的促销活动吸引顾客,现有两种不同的打折方式:方式一:甲商家采取的促销方式是在原价打a 折的基础上再打b 折; 方式二:乙商家的促销方式是在原价打2a b +折的基础上再打2a b+折; 其中甲、乙商家的商品原价相同,(),0,10a b ∈。

2.2《基本不等式》教学设计

2.2《基本不等式》教学设计

人教A版高中数学必修第一册《基本不等式》(第一课时)单位:山东省单县第五中学姓名:陈洪飞时间:2019年9月2.2基本不等式(第一课时)教材:人民教育出版社A版必修第一册课题:2.2基本不等式(一)一、教学目标1.通过一个探究实例,引导学生从几何图形中获得基本不等式,了解基本不等式的几何背景,体会数形结合的思想;2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力;3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想;4.借助例1尝试用基本不等式解决简单的最值问题,通过三个探究引导学生领会运用基本不等式2ba ab +≤的三个限制条件(一正二定三相等)在解决最值中的作用,锻炼学生的交流合作探究能力,体会方法与策略.以上教学目标结合了教学实际,将知识与能力、过程与方法、情感态度价值观的三维目标融入各个教学环节.二、教学重点和难点重点:1、应用数形结合的思想理解基本不等式,并从不同角度探索不等式2ba ab +≤的证明过;2、熟练掌握基本不等式求代数式的最值;难点:在几何背景下抽象出基本不等式,并理解基本不等式.三、教学过程:1、动手操作,几何引入先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为a 和b (b a ≥),考察两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?抽象出不等式. 通过学生动手操作,探索发现:2ba ab +≤接着让学生探讨取等号的条件,及a 、b 的取值范围;得出结论,展示课题内容.根据上述几何背景,初步形成不等式结论:0,0>>∀b a 有2b a ab +≤(当且仅当a=b 时等号成立) 深化认识: 称ab 为a 、b 的几何平均数;称2b a +为a 、b 的算术平均数 基本不等式2b a ab +≤又可叙述为: 两个正数的几何平均数不大于它们的算术平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学 第三章《不等式》基本不等式第一课时教学设计 新人
教版必修5
一、教学目标
1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想;
2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力;
3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想; 4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生领会运用基本不等式2
b
a a
b +≤
的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的能力,体会方法与策略.
以上教学目标结合了教学实际,将知识与能力、过程与方法、情感态度价值观的三维目标融入各个教学环节.
二、教学重点和难点
重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式2
b
a a
b +≤ 的证明过程; 难点:在几何背景下抽象出基本不等式,并理解基本不等式. 三、教学过程: 1.动手操作,几何引入
如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分
的.
探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD 中有4个全等的直角三角形.设直角三
角形两条直角边长为b a ,,
那么正方形的边长为22b a +.于是, 4个直角三角形的面积之和ab S 21=, 正方形的面积222b a S +=. 由图可知12S S >,即ab b a 222>+.
探究二:先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用
这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为a 和b (b a ≥),考察两个直角三角
形的面积与矩形的面积,你能发现一个不等式吗?
通过学生动手操作,探索发现:2
b
a a
b +≤ 2.代数证明,得出结论
根据上述两个几何背景,初步形成不等式结论: 若+∈R b a ,,则ab b a 22
2
>+. 若+∈R b a ,,则2
b
a a
b +≤
. 学生探讨等号取到情况,教师演示几何画板,通过展示图形动画,使学生直观感受不等关系中的相等条件,从而进一步完善不等式结论:
(1)若+∈R b a ,,则ab b a 222≥+;(2)若+∈R b a ,,则2
b
a a
b +≤ 请同学们用代数方法给出这两个不等式的证明. 证法一(作差法):
0)(2222≥-=-+b a ab b a
ab b a 222≥+∴,当b a =时取等号.
(在该过程中,可发现b a ,的取值可以是全体实数) 证法二(分析法):由于+∈R b a ,,于是 要证明
ab b
a ≥+2
, 只要证明 ab b a 2≥+, 即证 02≥-+ab b a ,
即 0)(2≥-b a ,该式显然成立,所以ab b
a ≥+2
,当b a =时取等号. 得出结论,展示课题内容 基本不等式: 若+∈R b a ,,则2
b
a a
b +≤
(当且仅当b a =时,等号成立) 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时,等号成立) 深化认识:
称ab 为b a ,的几何平均数;称2
b
a +为
b a ,的算术平均数 基本不等式2
b
a a
b +≤
又可叙述为: 两个正数的几何平均数不大于它们的算术平均数 3.几何证明,相见益彰
探究三:如图,AB 是圆O 的直径,点C 是AB 上一点,a AC =,b BC =.过点C 作垂直于AB 的弦DE ,连接BD AD ,.
根据射影定理可得:ab BC AC CD =⋅= 由于Rt COD ∆中直角边<CD 斜边OD , 于是有2
b
a a
b +<
当且仅当点C 与圆心O 重合时,即b a =时等号成立. 故而再次证明: 当0,0>>b a 时,2
b
a a
b +≤
(当且仅当b a =时,等号成立) (进一步加强数形结合的意识,提升思维的灵活性) 4.应用举例,巩固提高
例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 对于+∈R y x ,,
(1)若p xy =(定值),则当且仅当b a =时,y x +有最小值p 2;
(2)若s y x =+(定值),则当且仅当b a =时,xy 有最大值4
2s .
(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)
例2.求)0(1
≠+=x x x y 的值域.
变式1. 若2>x ,求2
1
-+
x x 的最小值. 在运用基本不等式解题的基础上,利用几何画板展示)0(1
≠+=x x
x y 的函数图象,使学生再次感受数
A
B
形结合的数学思想.
并通过例2及其变式引导学生领会运用基本不等式2
b
a a
b +≤
的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.
练一练(自主练习): 1.已知0,0>>y x ,且
18
2=+y
x ,求xy 的最小值. 2.设R y x ∈,,且2=+y x ,求y x 33+的最小值. 5.归纳小结,反思提高
基本不等式:若R b a ∈,,则ab b a 222≥+(当且仅当b a =时,等号成立)
若+∈R b a ,,则2
b
a a
b +≤
(当且仅当b a =时,等号成立) (1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法. 媒体展示,渗透思想: 若将算术平均数记为2
1y
x z +=
,几何平均数记为xy z =2 利用电脑3D 技术,在空间坐标系中向学生展示基本不等式的几何背景:
平面2
1y
x z +=
在曲面xy z =2的上方
6.布置作业,课后延拓
(1)基本作业:课本P100习题A 组1、2题
(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流. (3)探究作业:
现有一台天平,两臂长不相等,其余均精确,有人说要用它称物体的重量,只需将物体放在左右托盘
各称一次,则两次所称重量的和的一半就是物体的真实重量.这种说法对吗?并说明你的结论.。

相关文档
最新文档