“希望杯”全国数学八年级邀请赛培训80题

合集下载

八年级数学希望杯第1-22届试题汇总(含答案与提示)

八年级数学希望杯第1-22届试题汇总(含答案与提示)

希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。

2023希望杯八年级数学思维训练题(含答案)

2023希望杯八年级数学思维训练题(含答案)

2023希望数学——8年级培训80题1.计算111 ________.2.的值是________.3..4.( )A.B.12C.21E.25. 化简,得( ).A. B.C.D.6. 若x 2 – 13x + 1 = 0,则44x x ________.4322(2)2(2)n n n 8121n 12n 87477. 设,则代数式的值为( ).A. –6B.24C.D.8. 用[x ]表示不超过x 的最大整数,用x – [x ]表示x 的小数部分.已知a 是t 的小数部分,b 是 – t 的小数部分,则________.9. 已知x + y + z = 13,xy + yz + zx =102, xyz = 333,那么222222(1)(1)(1)(1)(1)(1)x y z y z x z x y ________.10. 已知实数a ,b ,c 满足613675a b c ,99260a b c ,则3232b ca b=_______.11. 若2(23)|23|0x y x y z ,则y z x =________.12. 如果221,4x y x y ,则33x y _________.1a 2212a a 1012t112b a13. 实数x ,y 满足,,x y ,则的值为________.14. 已知1113a b c d,1115b a c d ,1117c a b d ,1119d a b c ,则3579a b c d=________.15. 若a ,c ,d 是整数,b 是正整数,且满足a +b =c ,b +c =d ,c +d =a ,那么a +b +c +d的最大值是________.16. 已知12m x x ,222n y y 则m – n 的最小值为_______.17. 记12()12nf n n n n n(其中n 为大于1的整数),则f (n )的最小值是_________.18. 在实数范围内定义一种运算☆,其规则为a ☆b =12a b,则x ☆(x +1)=0的解为x =________.24x24y x yy x19. 设1232016,,,,a a a a 是不为零的实数,那么20152016121220152016||||||||a a a a a a a a 的值有_______种情况. 20. 方程34xx x x有________个实数根.21. 满足 2211x x x 的整数x 有________个.22. 对于实数a ,[a ]表示不大于a 的最大整数.则关于x 的方程51830337x x的整数解是x=________.23. 方程33225x y x y xy 的正整数解(x ,y )的个数是________.24. 求方程x 3+x 2y +xy 2+y 3=8(x 2+xy +y 2+1)的全部整数解x 、y .25. 不定方程的整数解(x ,y )共有________组.26.2 ,得x =________.27. 不等式1248163264x x x x x xx的解集是_________.28.满足不等式32 的最大质数x =_________.29. 在实数范围内定义运算 :(1)x y y x ,若不等式()()1a x x a 对任意实数x 都成立,则正整数a =_________.30. 已知关于x 的一元二次方程ax 2+bx +c =0没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了一次项系数的符号,误求得两根为 – 1和4,那么23b ca=_________.2222x y xy x y31.△ABC的三边长a、b、c均为实数且满足b+c=8,bc=a2 –12a+52,则△ABC的周长等于_________.32.关于x的四次方程x4 – 18x3 + kx2 + 200x – 1984 = 0的四个根中有两个根乘积为–32,则k的值是________.33.直角坐标系中有两个点A(– 1,– 1),B(2,3),若M为x轴上一点,且使MB – M A最大,则M的横坐标是________.34.如图,在平面直角坐标系中,一次函数443y x的图象分别交x轴、y轴于点A、B,把直线AB绕点O逆时针旋转90°,交y轴于点A',交直线AB 于点C,则△A'BC的面积为_________.35. 一次函数11y k x b 的图像经过(1,6)和(– 3,– 2)两点,它与x 轴、与轴的交点分别为B 、A ,一次函数22y k x b 的图像经过点(2,–2),在y 轴上的截距为 – 3,它与x 轴、与y 轴的交点分别为D 、C .若直线AB 、CD 交于E ,则△BCE 和△ADE 的面积比是_________.36. 已知,并且,那么直线一定通过第( )象限. A.一、二B.二、三C.三、四D.一、四37. 从– 2,– 1,1,2,3中取出两个作为一次函数y = kx + b 中的k 和b ,得到的一次函数不经过第二象限的概率是_________.38. 对于每个x ,函数y 是12332,2,122y x y x y x 这三个函数中的最小值.则函数y 的最大值是________.39. 点(2,)P a 在反比例函数ky x的图象上,它关于原点的对称点在一次函数23y x 的图象上,则k 的值为_______.0 abc p bac a c b c b a p px y40. 由方程111x y 确定的曲线所围成图形的面积是________.41. 如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且AB =1,OB ,矩形ABOC 绕点O 按顺时针方向旋转60°后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c 过点A 、E 、D . 在x 轴的上方有点P 、点Q ,使以点O 、B 、P 、Q 为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,求出点P 坐标.42. 对任意的实数x ,函数f (x )有性质f (x )+f (x – 1)= x 2.如果f (19)= 94,那么f (94)除以1000的余数是________.43.密铺,即平面图形的镶嵌,指用形状、大小完全相同的几种或几十种平面图形进行拼接,使彼此之间不留空隙、不重叠地铺成一片.李老师设计了四种正多边形瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是().A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)44.一个凸n边形,它的每个内角的度数都是整数,且任意两个内角的度数都不相同,则n的最大值是_______.45.已知等腰三角形的三边长分别是2x–2,3x–6,4x–10,则x的值是________.46.正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为________.47.如图所示,在平面直角坐标系xOy中,∠MON的两边分别是射线y=x(x≥0)与x轴正半轴.点A(6,5),B(10,2)是∠MON内的两个定点,点P、Q分别是∠MON 两边上的动点,则四边形ABPQ周长的最小值是________.48.在平面直角坐标系内,已知4个定点A(– 3,0),B(1,– 1),C(0,3),的最小值为________.D(– 1,3)及一个动点P,则PA PB PC PD49.已知点P的坐标为(0,1),O为原点,Q为第一象限内一点,若∠QPO = 150°,且P到Q的距离为2,则Q的坐标为(____,____).50.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP、△CRQ的面积分别是S1=1,S2=3,S3=1,那么正方形OPQR的边长是________.51.在△ABC中,若AC ,BC ,AB 则△ABC的面积为_______.52.如图,D是△ABC三条中线的交点,若AD=3,BD=4,CD=5,△ABC的面积是________.53.如图,等腰△ABC中,∠ACB = 90°,M,N为斜边AB上两点,且∠MCN =45°,已知AM = 3BN = 5,则MN =________.54.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为________.(结果保留π)55. 如图,Rt △ABC 中,90ACB ,30CAB ,BC =1,D ,E 分别为AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°,得到△A'BC',旋转过程中,线段DE 扫过的面积为_________.(结果保留π)56. 在Rt △ABC 中,∠C = 90°,CD ⊥AB 于D ,∠A 的平分线交CD 于E ,交BC于F ,过E 作EG ∥AB 交BC 于G ,若CE = 5,则BG =________.57. 如图,P 是△ABC 内的一点,连结AP 、BP 、CP 并延长,分别与BC 、AC 、AB 交于D 、E 、F ,已知AP = 6,BP = 9,PD = 6,PE = 3,CF = 20.那么△ABC 的面积是________.58. 如图,等边△AFG 被线段BC ,DE 分割成周长相等的三部分:等边△ACB 、梯形BCED 、梯形DEGF ,其面积分别为S 1,S 2,S 3,若263S ,则13S S =________.59. 如下图,在正方形的两个顶点之间依次连接了五条相互垂直的线段,长度分别为2,2,2,1,3,则阴影部分的面积为________.60. 已知正方形ABCD 的边长为1,P 1,P 2,P 3,P 4是正方形内部的4个点,使得△ABP 1,△BCP 2,△CDP 3和△DAP 4都是正三角形,则四边形P 1P 2P 3P 4的面积等于________.61. 在等腰梯形ABCD 中,上底AB = 500,下底CD = 650,两腰AD = BC = 333,∠A 和∠D 的平分线交于P 点,∠B 和∠C 的平分线交于Q .则PQ 的长为________.62.如图,点O是正六边形ABCDEF的中心,OM⊥DE于点M,N为OM的中点.若S△F AN=10,则正六边形ABCDEF的面积为________.63.三边长均为整数且周长不超过30的直角三角形有_________个.(平移或旋转后可以重合的三角形视为同一个)64.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同的整数最小是________.65.从1,2,…,2010这2010个正整数中,最多可以取出________个数,使得所取出的数中任意三个数之和都能被33整除.66.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数是________.67.一个三位数被11整除后的商等于这个三位数各位数字的平方和,那么这个三位数可能是_________.(求出所有结果)68.若三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是一定是某个整数n的倍数.那么n的最大值是________.69.一个不透明的袋子中装有红、黄、蓝三种颜色的玻璃球若干个,这些玻璃球除颜色外其余都相同.其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为25,那么,随机摸出一个为红色玻璃球的概率为________.70.一项“过关游戏”规定:在第n关,要抛一颗骰子n次,如果这n次抛掷骰子上底面所出现的点数之和大于2n,就算过关.则连过前3关的概率是_________.71.为了防止信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种密码加密系统,其加密、解密原理为:发送方由明文x → 密文y(加密),接收方由密文y → 明文x(解密).现在密匙为y=kx3,若明文“4”通过加密后得到的密文是“2”,则密文“1256”,解密后得到的明文是________.72.将1~20这20个正整数分成A、B两组,使得A组所有数的和等于N,而B组所有数的乘积也等于N,则N的所有可能取值有________.73.如图,矩形ABCD中,AB=3,BC=5,边长为1的小正方形MNPQ从如图的位置开始沿A→B→C→D→A的方向,在矩形内翻滚,翻滚1次后点P来到P1的位置,那么翻滚________次后,小正方形第一次回到初始位置,这个过程中点P经过的路径长为________.(结果保留π)74.如图所示,两个全等菱形的边长均为1厘米,一只蚂蚁由点A开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2016厘米后停下,则这只蚂蚁停在_________点.75.观察如下一列数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),……则第2023个数对是( ).A. (6,58)B. (6,59)C. (7,58)D. (58,7)E. (59,6)76. B 船在A 船的北偏西45°处,两船相距km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是________km .77. 已知实数a > 0,且2和 –1至少有一个不满足关于x 的不等式250ax x a,则a 的最小值是________.78. 设a 1,a 2,a 3,…,a 13是13个两两不同的正整数,a 1+a 2+a 3+…+a 13=488.设a 是其中任意3个数相加之和的最小值,则a 最大可以是________.79. a ,b ,c ,d ,e ,f ,g ,h ,i 是1~9中的不同数字,则a b c d e fg h i的最小值是________.80. 一玩具工厂用于生产一批小熊、小猫的全部劳动力为273个工时,原料为243个单位.生产一个小熊要使用9个工时、12个单位原料,利润为144元;生产一个小猫要使用6个工时、3个单位原料,利润为81元.在劳动力和原料的限制下,要使生产小熊和小猫的总利润最高,应该生产小熊________个、小猫________个.2023希望数学——8年级培训80题答案1.计算111 ________.答案:– 22.的值是________.答案:23..答案:2022 4.( )A.B.12C.21E.2 答案:D5. 化简,得( ).A. B.C.D.答案:C6. 若x 2 – 13x + 1 = 0,则44x x ________.答案:278874322(2)2(2)n n n 8121n 12 n 87477. 设,则代数式的值为( ).A. –6B.24C.D.答案:A8. 用[x ]表示不超过x 的最大整数,用x – [x ]表示x 的小数部分.已知a 是t 的小数部分,b 是 – t 的小数部分,则________. 答案:9. 已知x + y+ z = 13,xy + yz + zx =102,xyz = 333,那么222222(1)(1)(1)(1)(1)(1)x y z y z x z x y ________. 答案:3365210. 已知实数a ,b ,c 满足613675a b c ,99260a b c ,则3232b ca b=_______.答案:111. 若2(23)|23|0x y x y z ,则y z x =________.答案:2512. 如果221,4x y x y ,则33x y _________.答案:11213. 实数x ,y 满足,,x y ,则的值为________. 答案:11a 2212a a 1012t112b a1224x 24y x yy x14. 已知1113a b c d,1115b a c d ,1117c a b d ,1119d a b c ,则3579a b c d=________. 答案:315. 若a ,c ,d 是整数,b 是正整数,且满足a +b =c ,b +c =d ,c +d =a ,那么a +b +c +d的最大值是________. 答案:– 516. 已知12m x x ,222n y y 则m – n 的最小值为_______.答案:4 17. 记12()12nf n n n n n(其中n 为大于1的整数),则f (n )的最小值是_________.答案:5618. 在实数范围内定义一种运算☆,其规则为a ☆b =12a b,则x ☆(x +1)=0的解为x =________. 答案:119. 设1232016,,,,a a a a 是不为零的实数,那么20152016121220152016||||||||a a a a a a a a 的值有_______种情况. 答案:2017 20. 方程34xx x x有________个实数根. 答案:121. 满足 2211x x x 的整数x 有________个.答案:322. 对于实数a ,[a ]表示不大于a 的最大整数.则关于x 的方程51830337x x的整数解是x=________. 答案:– 1523. 方程33225x y x y xy 的正整数解(x ,y )的个数是________.答案:124. 求方程x 3+x 2y +xy 2+y 3=8(x 2+xy +y 2+1)的全部整数解x 、y .答案:8228x x y y 或25. 不定方程的整数解(x ,y )共有________组.答案:626.2 ,得x =________.答案:±36 27. 不等式1248163264x x x x x x x的解集是_________. 答案:x <6428.满足不等式32 的最大质数x =_________.答案:3972222x y xy x y29. 在实数范围内定义运算 :(1)x y y x ,若不等式()()1a x x a 对任意实数x 都成立,则正整数a =_________. 答案:130. 已知关于x 的一元二次方程ax 2+bx +c =0没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了一次项系数的符号,误求得两根为 – 1和4,那么23b ca=_________. 答案:– 631. △ABC 的三边长a 、b 、c 均为实数且满足b +c =8,bc =a 2 –12a +52,则△ABC的周长等于_________. 答案:1432. 关于x 的四次方程x 4 – 18x 3 + kx 2 + 200x – 1984 = 0的四个根中有两个根乘积为 –32,则k 的值是________. 答案:8633. 直角坐标系中有两个点A (– 1,– 1),B (2,3),若M 为x 轴上一点,且使MB – M A 最大,则M 的横坐标是________. 答案:– 2.534. 如图,在平面直角坐标系中,一次函数443y x 的图象分别交x 轴、y 轴于点A 、B ,把直线AB 绕点O 逆时针旋转90°,交y 轴于点A ',交直线AB 于点C ,则△A'BC 的面积为_________.答案:62535. 一次函数11y k x b 的图像经过(1,6)和(– 3,– 2)两点,它与x 轴、与轴的交点分别为B 、A ,一次函数22y k x b 的图像经过点(2,–2),在y 轴上的截距为 – 3,它与x 轴、与y 轴的交点分别为D 、C .若直线AB 、CD 交于E ,则△BCE 和△ADE 的面积比是_________. 答案:1∶436. 已知,并且,那么直线一定通过第( )象限. A.一、二 B.二、三 C.三、四 D.一、四答案:B37. 从– 2,– 1,1,2,3中取出两个作为一次函数y = kx + b 中的k 和b ,得到的一次函数不经过第二象限的概率是_________. 答案:31038. 对于每个x ,函数y 是12332,2,122y x y x y x 这三个函数中的最小值.则函数y 的最大值是________. 答案:60 abc p bac a c b c b a p px y39. 点(2,)P a 在反比例函数ky x的图象上,它关于原点的对称点在一次函数23y x 的图象上,则k 的值为_______.答案:240. 由方程111x y 确定的曲线所围成图形的面积是________.答案:241. 如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且AB =1,OB ABOC 绕点O 按顺时针方向旋转60°后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c 过点A 、E 、D . 在x 轴的上方有点P 、点Q ,使以点O 、B 、P 、Q 为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,求出点P 坐标.答案: 120,22P P,42. 对任意的实数x ,函数f (x )有性质f (x )+f (x – 1)= x 2.如果f (19)= 94,那么f (94)除以1000的余数是________. 答案:56143.密铺,即平面图形的镶嵌,指用形状、大小完全相同的几种或几十种平面图形进行拼接,使彼此之间不留空隙、不重叠地铺成一片.李老师设计了四种正多边形瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是().A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)答案:D44.一个凸n边形,它的每个内角的度数都是整数,且任意两个内角的度数都不相同,则n的最大值是_______.答案:2645.已知等腰三角形的三边长分别是2x–2,3x–6,4x–10,则x的值是________.答案:1646.正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为________.答案:47.如图所示,在平面直角坐标系xOy中,∠MON的两边分别是射线y=x(x≥0)与x轴正半轴.点A(6,5),B(10,2)是∠MON内的两个定点,点P、Q分别是∠MON 两边上的动点,则四边形ABPQ周长的最小值是________.答案:548.在平面直角坐标系内,已知4个定点A(– 3,0),B(1,– 1),C(0,3),D(– 1,的最小值为________.3)及一个动点P,则PA PB PC PD答案:49.已知点P的坐标为(0,1),O为原点,Q为第一象限内一点,若∠QPO = 150°,且P到Q的距离为2,则Q的坐标为(____,____).答案:11, 50.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP、△CRQ的面积分别是S1=1,S2=3,S3=1,那么正方形OPQR的边长是________.答案:251.在△ABC中,若AC ,BC ,AB ,则△ABC的面积为_______.答案:5.552.如图,D是△ABC三条中线的交点,若AD=3,BD=4,CD=5,△ABC的面积是________.答案:1853.如图,等腰△ABC中,∠ACB = 90°,M,N为斜边AB上两点,且∠MCN =45°,已知AM = 3BN = 5,则MN =________.54.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为________.(结果保留π)答案:π55. 如图,Rt △ABC 中,90ACB ,30CAB ,BC =1,D ,E 分别为AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°,得到△A'BC',旋转过程中,线段DE 扫过的面积为_________.(结果保留π)答案:456. 在Rt △ABC 中,∠C = 90°,CD ⊥AB 于D ,∠A 的平分线交CD 于E ,交BC于F ,过E 作EG ∥AB 交BC 于G ,若CE = 5,则BG =________. 答案:557. 如图,P 是△ABC 内的一点,连结AP 、BP 、CP 并延长,分别与BC 、AC 、AB 交于D 、E 、F ,已知AP = 6,BP = 9,PD = 6,PE = 3,CF = 20.那么△ABC 的面积是________.答案:10858. 如图,等边△AFG 被线段BC ,DE 分割成周长相等的三部分:等边△ACB 、梯形BCED 、梯形DEGF ,其面积分别为S 1,S 2,S 3,若263S ,则13S S =________.答案:5659. 如下图,在正方形的两个顶点之间依次连接了五条相互垂直的线段,长度分别为2,2,2,1,3,则阴影部分的面积为________.答案:960.已知正方形ABCD的边长为1,P1,P2,P3,P4是正方形内部的4个点,使得△ABP1,△BCP2,△CDP3和△DAP4都是正三角形,则四边形P1P2P3P4的面积等于________.答案:261.在等腰梯形ABCD中,上底AB = 500,下底CD = 650,两腰AD = BC = 333,∠A和∠D的平分线交于P点,∠B和∠C的平分线交于Q.则PQ的长为________.答案:24262.如图,点O是正六边形ABCDEF的中心,OM⊥DE于点M,N为OM的中点.若S△F AN=10,则正六边形ABCDEF的面积为________.答案:4863.三边长均为整数且周长不超过30的直角三角形有_________个.(平移或旋转后可以重合的三角形视为同一个)答案:364.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同的整数最小是________.答案:1765.从1,2,…,2010这2010个正整数中,最多可以取出________个数,使得所取出的数中任意三个数之和都能被33整除.答案:6166.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数是________.答案:867.一个三位数被11整除后的商等于这个三位数各位数字的平方和,那么这个三位数可能是_________.(求出所有结果)答案:550,80368.若三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是一定是某个整数n的倍数.那么n的最大值是________.答案:969.一个不透明的袋子中装有红、黄、蓝三种颜色的玻璃球若干个,这些玻璃球除颜色外其余都相同.其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为25,那么,随机摸出一个为红色玻璃球的概率为________.答案:6 2570.一项“过关游戏”规定:在第n关,要抛一颗骰子n次,如果这n次抛掷骰子上底面所出现的点数之和大于2n,就算过关.则连过前3关的概率是_________.答案:100 24371.为了防止信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种密码加密系统,其加密、解密原理为:发送方由明文x → 密文y(加密),接收方由密文y → 明文x(解密).现在密匙为y=kx3,若明文“4”通过加密后得到的密文是“2”,则密文“1256”,解密后得到的明文是________.答案:1 272.将1~20这20个正整数分成A、B两组,使得A组所有数的和等于N,而B组所有数的乘积也等于N,则N的所有可能取值有________.答案:180,182,19273.如图,矩形ABCD中,AB=3,BC=5,边长为1的小正方形MNPQ从如图的位置开始沿A→B→C→D→A的方向,在矩形内翻滚,翻滚1次后点P来到P1的位置,那么翻滚________次后,小正方形第一次回到初始位置,这个过程中点P经过的路径长为________.(结果保留π)答案:12, 374.如图所示,两个全等菱形的边长均为1厘米,一只蚂蚁由点A开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2016厘米后停下,则这只蚂蚁停在_________点.答案:A75. 观察如下一列数对:(1,1),(1,2), (2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…… 则第2023个数对是( ).A. (6,58)B. (6,59)C. (7,58)D. (58,7)E. (59,6) 答案:C76. B 船在A 船的北偏西45°处,两船相距km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是________km .答案:77. 已知实数a > 0,且2和 –1至少有一个不满足关于x 的不等式250ax x a,则a 的最小值是________.答案:178. 设a 1,a 2,a 3,…,a 13是13个两两不同的正整数,a 1+a 2+a 3+…+a 13=488.设a 是其中任意3个数相加之和的最小值,则a 最大可以是________. 答案:9679.a,b,c,d,e,f,g,h,i是1~9中的不同数字,则a b c d e fg h i的最小值是________.答案:1 28880.一玩具工厂用于生产一批小熊、小猫的全部劳动力为273个工时,原料为243个单位.生产一个小熊要使用9个工时、12个单位原料,利润为144元;生产一个小猫要使用6个工时、3个单位原料,利润为81元.在劳动力和原料的限制下,要使生产小熊和小猫的总利润最高,应该生产小熊________个、小猫________个.答案:13,26。

第8-21届希望杯全国数学邀请赛(初二)试题

第8-21届希望杯全国数学邀请赛(初二)试题

第八届“希望杯”全国数学邀请赛初二第1试第八届“希望杯”全国数学邀请赛初二第2试第九届“希望杯”全国数学邀请赛初二第1试第九届“希望杯”全国数学邀请赛初二第2试第十届“希望杯”全国数学邀请赛初二第1试第十届“希望杯”全国数学邀请赛初二第2试第十一届“希望杯”全国数学邀请赛初二第1试第十一届“希望杯”全国数学邀请赛初二 第2试一、选择题:1.-20001999, -19991998, -999998, -1000999这四个数从小到大的排列顺序是(AA )-20001999<-19991998<-1000999<-999998 (B )-999998<-1000999<-19991998<-20001999(C )-19991998<-20001999<-1000999<-999998 (D )-1000999<-999998<-20001999<-199919982.一个三角形的三条边长分别是a , b , c (a , b , c 都是质数),且a +b +c =16,则这个三角形的形状是(A )直角三角形(B )等腰三角形(C )等边三角形(D )直角三角形或等腰三角形 3.已知25x =2000, 80y =2000,则y1x 1+等于 (A )2 (B )1 (C )21(D )23 4.设a +b +c =0, abc >0,则|c |ba |b |ac |a |c b +++++的值是 (A )-3 (B )1 (C )3或-1 (D )-3或15.设实数a 、b 、c 满足a <b <c (ac <0),且|c |<|b |<|a |,则|x -a |+|x -b |+|x +c |的最小值是 (A )3|c b a |++ (B )|b | (C )c -a (D )―c ―a 6.若一个等腰三角形的三条边长均为整数,且周长为10,则底边的长为 (A )一切偶数 (B )2或4或6或8 (C )2或4或6 (D )2或4 7.三元方程x +y +z =1999的非负整数解的个数有(A )20001999个 (B )19992000个 (C )2001000个 (D )2001999个 8.如图1,梯形ABCD 中,AB //CD ,且CD =3AB ,EF //CD ,EF 将梯形 ABCD 分成面积相等的两部分,则AE :ED 等于( )。

2007年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)-

2007年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)-

第十八届(2007年)“希望杯”全国数学邀请赛培训题“希望杯”命题委员会(未署名的题,均为命题委员会命题)初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后的圆括号内)1.有下面的四个叙述:①整式加整式还是整式;②整式减整式还是整式;③整式乘整式还是整式;④整式除整式还是整式.其中正确叙述的个数为().(A)4 (B)3 (C)2 (D)12.若x是有理数,分式1||2x-的值为正整数,则x的个数为()(A)2 (B)4 (C)6 (D)无数个3.将分式2aa b+中的a扩大2倍,6扩大4倍,而分式的值不变,则()(A)a=0 (B)b=0 (C)a=0,且b=0 (D)a=0或b=04.已知x与y+2成反比例,当x=1时,y=4,那么y=1时,x的值是()(A)0 (B)1 (C)2 (D)45.若实数a,b,c满足a2+b2≠0,a3+a2c-ab c+b2c+b3=0,则a+b+c的值是()(A)-1 (B)0 (C)1 (D)26.若实数a,b,c满足1a+1b+1c=1a b c++,则a+b,b+c,c+a中等于零的()(A)有且只有1个(B)至少有1个(C)最多有1个(D)不可能有2个7.设f=2x-3x-2,g=x-2,考察下面四个叙述:①f+g是整式;②f-g是整式;③f×g是整式;④当x≠2时,f÷g是整式.其中正确叙述的个数为()(A)4 (B)3 (C)2 (D)18.如果≠0成立,那么下列各式中正确的是()(A)a+b≥0 (B)a+b>0 (C)a+b≤0 (D)a+b<09.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象如图,根据图中提供的信息,•有下列叙述:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发了0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地.其中,符合图象的叙述有()个.(A)2 (B)3 (C)4 (D)5(第9题) (第10题) (第15题)10.已知直线y=2x+a与y=2a-x的图象的交点在如图所示的阴影长方形区域内(•含长方形边界),则a的取值范围是()(A)0≤a≤32(B)65≤a≤95(C)65≤a≤32(D)0≤a≤9511.甲车追超过前方的乙车,经过时间t后在A处追上,若甲、乙各提速a%,则()(A)甲车追上乙车所用的时间增加了a%; (B)甲车追上乙车所用的时间减少了a% (C)甲车仍在A处追上乙车; (D)甲车驶过A处后才追上乙车12.某人用1000元钱购进一批货物,第二天售出,获利10%,•过几天后又以上次售出的价格的90%购进一批同样的货物,由于卖不出去,•两天后他将其按第二次购进价的九价再QQ :- 3 -出售,这样他在两次交易中( )(A )刚好盈亏平衡 (B )盈利1元 (C )盈利9元 (D )亏损1.1元13.某足球赛,记分规律如下:胜一场积3分,平一场积1分,负一场积0分,A 队经过12场比赛后,积19分,若队员出赛一场的出场费为500元/人,胜一场奖金1000元/人,•平一场奖金500元/人,那么A 队队员在12场比赛后的最高收益可能是( )(A )13500元/人 (B )14000元/人 (C )13000元/人 (D )12500元/人14.小明和小刚用掷两枚骰子的方法来确定点P (x ,y )在坐标系上的位置,他们规定:小明掷得的点数为x ,小刚掷得的点数为y ,•那么他们各掷一次所确定的点落在已知直线y=-2x+6上的概率为( )(注:骰子是骨制的一个白色小正方体,它的六个面上分别刻有1个,2个,3个,4个,5个,6个红色小圆点,将其随意掷放于一个平面上,骰子必有一面向上,•这个面上红色圆点的个数就叫做点数).(A )16 (B )112 (C )118 (D )1915.如图,晴朗的夏天,太阳当空,•一只小鸟以不变的速度水平地飞过一个斜坡上空,则小鸟在斜坡上的影子移动的速度( )(A )越来越大 (B )越来越小(C )不变 (D )一定和小鸟的飞行速度一样大16.当5个整数从小到大排列时,中位数是4,如果这5个整数的惟一众数是6,则这5个整数的和最大是( ).(A )20 (B )21 (C )22 (D )2317.某市出租车的起步价为12元(行程在3公里以内),行程到达3公里之后,•每增加1公里需加付m 元(不足1公里亦按1公里计价),•张老师坐这种出租车从学校到离学校n 公里的教育局开会,沿途未遇红灯,下车时付车费28元,则m 与n 的关系是m=( ) (注:[n]表示不大于n 的最大整数,如[3,2]=3,[4]=4.)(A )16162828()()3()3[]3[]2[]3[]2B C D n n n n ------ 18.用200元钱买A 、B 、C 、D 四种商品共10件,若A 、B 、C 、D 的单价依次是13元,17元,22元,35元,则( )(A )A 、B 、C 、D 各买了2,3,4,1件 (B )A 、B 、C 、D 各买了4,2,2,2件(C )以上两种情况都可能 (D )以上三种情况都不可能19.如图,直线AE ∥BF ,点P 在AE 上方,点M 、N 分别在AE 、BF 上,若PC 平分∠MPN 交AE 、BF 于C 、D 两点,∠PCE=α,则∠1=∠2的大小为( )(A )α (B )2α (C )3α (D )4α(第19题) (第22题) (第25题)20.周长为30,各边长互不相等且都是整数的三角形的个数为( )(A )11 (B )12 (C )7 (D )821.如果△ABC 的垂心G (三条高的交点)在△ABC 的内部,并且在BC 边的中线AD 上,那么△ABC 一定是( )(A )直角三角形 (B )等腰三角形(C )等边三角形 (D )等腰直角三角形22.如图5,△ABC 中,∠A=60°,AC=16,S △ABC AB=( )(A )554(B )55 (C )45 (D )23.有下面四个判断性语句:①平行四边形的四个内角之和为360°;②有两个内角相等的四边形是平行四边形;QQ :- 5 -③平行四边形的四个内角中有两对是相等的;④四个内角中有两对相等的四边形是平行四边形.(A )4 (B )3 (C )2 (D )124.对凸四边形ABCD ,给出下列4个条件:①AB ∥CD ; ②AD ∥BC ; ③AB=CD ; ④∠BAD=∠DCB .现从以上4个条件中任选2个条件为一组,能推出四边形ABCD•为平行四边形的概率是( )(A )13 (B )12 (C )23 (D )5625.如图,以Rt △ABC 的两直角边AB 、BC 为边,•在△ABC•外部作等边△ABE•和△BCF ,EA 、FC 的延长线交于M 点,则点B 一定是△EMF 的((A )垂心 (B )重心 (C )内心 (D )外心26.Assume that in Fig . 7 ABCD is a square ,and •point •E •is •on •theline BC ,CE=AC .we connect A and E ,AE intersects CD at point •F ,•then •thedegree of ∠AFC is ( )(A )150° (B )125° (C )135° (D )112.5°(英汉词典:Fig .是figure (图、图形)的缩写;to cormect 连接;to intersect …at 相交于;degree 度、度数)(第26题) (第27题) (第28题) (第30题)27.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则∠CDF 等于( )(A )80° (B )70° (C )65° (D )60°28.如图,顺次连接凸四边形ABCD 的中点,得到四边形EFGH .要使四边形EFGH•是正方形,应补充的条件是( )(A )四边形ABCD 是等腰梯形 (B )四边形ABCD 是平行四边形(C )四边形ABCD 是菱形 (D )AC=BD ,且AC ⊥BD29.将一把折扇逐渐打开,会发现打开部分的扇形面积随圆心角的变化而变化,•那么能正确描述这种变化的函数是( )(A )正比例函数 (B )反比例函数(C )一次函数y=kx+b (b ≠0) (D )以上都不是30.如图是一间卧室地面瓷砖的图案,在这间卧室地下藏有一宝物,•则藏在白色瓷砖和灰色瓷砖下的可能性是( )(A )藏在白色瓷砖下的可能性大(B )藏在灰色瓷砖下的可能性大(C )藏在两种瓷砖下的可能性一样大(D )藏在灰色瓷砖下与藏在白色瓷砖下的可能性之比是3:2二、填空题31.计算:20082+20072+20062-2008×2007-2007×2006-2006×2008=________.32.已知则x 2007=2,则(x 2006+x 2005+x 2004+…+x+1)(x-1)=__________.33.设a ,b ,c 是实数,则能使(a+b+c )(1a +1b +1c )=1成立的条件是______或_______.(•写出两个满足条件即可)34.Ifm and n are positive integers satisfying m 2+27mn+n 2=729 and m+•n>mn ,then the value of m+n is_________.(英汉词典:positive integer 正整数;to satisfy 满足;value 值、数值)35.计算:(+2=________.36.已知A=××,B=(2007×2008×2009)2007200820093++,则A•与B•的大小关系是A_____B .(填“>”、“<”或“=”)QQ :- 7 -37.设B =,则A_______B .(填“>”、“<”或“=”) 38.39.If a and •b •are •constant .•and •the •set •of •solutions •of •theinequality ax+b>0 is x<13,then the set of solutions of the inequalityba<0 is________. (英汉词典:constant 常数;set 集合;solution 解、解答;inequality 不等式)40.一次智力测试有25道题,答对一题得4分,不答扣2分,答错扣4分,小明要想在这次智力测试中的得分不低于60分,他至少要答对________道题.41.设正数a ,b ,c ,x ,y 满足:a ≠c ,22222222221,x xy y x xy y a b c c b a++=++=1,则代数式222111a b c++的值为________. 42.若以x 为未知数的方程42ax x -+=3无解,则a=_______. 43.已知m 与n 使m m m n m n ++-的值等于-14,则n m的值是_________. 44.当x=2时,多项式75312a b c d x x x x ++++的值是3,那么当x=-2时,多项式的值是_______. 45.若实数a ,b 满足1a -1b -1a b +=0,则2222b a a b-的值等于________. (拟题:夏建平 江苏省江阴市要塞中学)46.如果以x ,y 为元的二元一次方程12ax y x ay +=⎧⎨+=⎩有解,那么a 不等于________.52.如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=4x(x>0)的图象上,•斜边OA,AA都在x轴上,则点A的坐标是________.(第52题) (第53题) (第55题) 53.In the following traffic marks,the number of marks whose•figuresaxially-symmetric is___________.(英汉词典:traffic交通;•mark•标志;•number•个数;•figure•图形;•axially-symmetric(轴对称)54.仅将两个全等的非等腰的直角三角形的一条边重合,拼接成新的图形,•拼成的图形可能是下列各种图形中的一种或几种:①矩形;②菱形;③直角梯形;④平行四边形;⑤等腰三角形;⑥等腰梯形.则正确结论的序号是_______.(把所有正确的图形的序号都填上)55.如图所示,平行四边形ABCD中,过BD的中点O的直线交AB、CD于M、N,•交DA、BC 延长线于E、F,则图中有全等三角形________对.56.如图,在一个由4×4个小正方形组成的正方形网格中,•阴影部分面积与正方形ABCDQQ :- 9 -的面积比是_______;周长的比是________.(第56题) (第58题) (第59题) (第60题)57.在平面直角坐标系内点A 、B 的坐标分别为(-3,-2),(3,a ),点B 在第一象限,•且A 、B 两点间的距离为10,那么a 等于______.58.在建筑工地上,工人用如图所示的装置能将重物运往高处:•绳子绕过定滑轮,一端系着重物,在地面的工人手拿绳子的另一端,沿着垂直于滑轮轴的方向,向前走一段距离,重物便上升到定滑轮外,被高处的工人卸下,已知重物上升的距离是5米,则地面上的工人向前行走的距离为________米.59.图中的两个滑块A 、B 由一个连杆连接,可以在竖直和水平的滑道内滑动,•开始时,滑块A 距0点15厘米,滑块B 距0点20厘米,A 、B 的距离为25厘米,那么滑块B 滑到C 点时,滑块A 共滑动了_________厘米.60.如图,△ABC 的边AB 长为2,AB 边上的中线CD 长为1,AC 、BC,则△ABC 的面积为_________.61.a 、b 、c 是三角形的三边,它们满足ac 2+b 2c-b 3=abc ,若三角形的一个内角是120°,那么a :b :c=_______.62.设a ,b ,c 是△ABC 的三条边,满足c a b a b c b c a c a b <<+-+-+-,则三边中最长的边是________.63.如图,0是△ABC 外部一点,AO 交BC 于A 点,BO ,CO 的延长线分别交AC ,AB•的延长线于点B ,C ,则111AO BO CO AA BB CC ++的值为_________.(第63题) (第64题) (第65题) (第66题)64.如图,已知梯形ABCD中,AD∥BC,∠A=90°,E为CD的中点,BE=132,梯形ABCD•的面积为30,则AB+BC+DA的值为________.65.如图,边长为2的正方形ABCD中,若∠PAQ=45°,则△PCQ的周长是_____.66.如图,A,B两个平行四边形草坪有公共部分(阴影处),A,B•草坪面积之和为160m2,A的面积为120m2,B的面积为74m,则重叠部分的面积是_______m2.67.若凸4n+2边形AA…A(A为正整数)的每个内角都是30°的整数倍,且∠A=∠A=∠A=90°,则n的值是________.?68.服装店进了某款式的时装,开始按比进价提高30%的价格销售,但是无人问津,•于是决定打折降价销售.•如果要使利润率不低于10%,••那么打折的幅度不能低于_________.(保留两位有效数字)69.红光中学去年有120人参加“希望杯”全国数学邀请赛,•今年的参赛人数增加了50%,考场数比去年多了3个,而且平均每个考场安排的考生增加了2人,今年安排的考场有_________个.70.直角三角形三边长均为整数,其中一条直角边长为35,•则它的周长的最大值是________,最小值是_______.(拟题:刘朝晖广东省中山市第一中学初中部)71.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,•若现在所需要的时间为b小时,则_______<b<______.(用关于a的表达式表示)72.1=12,2+3+4=32,3+4+5+6+7=52,QQ :- 11 -……从中找出一般规律是________.73.一种商品的进价为90元,原售价定为m 元,售出一半之后,剩余的一半按8折出售,全部售出后共获利10%,则原售价定为m=________元.74.某学校八年级的数学竞赛小组进行了一次数学测验,如图所示是反映这次测验情况的频率分布直方图,那么该小组共有______人;70.5~90.5这一分数段的频率是______.(第74题) (第76题) (第77题) 75.用[a ,b]表示自然数a ,b 的最小公倍数,(a ,b )表示□,b 的最大公约数,若[•a ,b]=1085-(a ,b ),那么当a>b 时,a-b 的最小值是________. 76.如图,△ABC 中,∠C=90°,EC=13AC ,CD=13BC ,BE=8,AD=EC+CD=6,则S △BCD =______. (拟题:刘朝晖 广东省中山市第一中学初中部)77.如图,E 是平行四边形ABCD 的边CD 上任一点,AE 的延长线与BC 的延长线交于点F ,连结BE 、DF ,则S △BCE _______S △DEF .(填“>”、“<”或“=”) (拟题:李廷江 贵州省修文县第二中学)78.若4x 2+1+kx 是关于x 的完全平方式,则k 2-2k+2的值为________. (拟题:窦桐生 吉林省磐石市明城中学 ) 79.解方程:20052007200820042004200620072003x x x x x x x x +++++=+++++得x=_________.(拟题:钟金子 福建省安溪恒兴中学) 三、解答题80.某班有语文、数学两个课外兴趣小组,•其中参加语文组的人数是全班人数的23,既参加语文组又参加数学组的人数是参加数学组人数的23,另外有4•位同学既不参加语文组,也不参加数学组,如果这4位同学参加语文组,•那么参加数学组与参加语文组的人数恰好相等,问全班有多少同学?既参加语文组又参加数学组的人数是多少?81.某工厂计划生产A、B两种产品,为取得最大生产利润,事先做了市场调查,根据厂内实际情况和市场需要得到有关数据如下表:现在工厂可以筹集到的资金用于原料及消耗的是元/月,用于工资支出的是元/月,问如何确定两种产品的月产量,可以使工厂得到的总利润达到最大?并求这个最大利润值.82.如图,从直线COD上一点O引两条射线OE,OF,使∠GOF=∠FOE=∠EOD=60°,•在射线QQ:OF,OG,OE上各取一点A,B,C,使∠CAB=60°,若OA=m,求△ABC面积的最大值.83.从2006年元旦起,公民的月工资、薪金个人所得税的起征点由原来的800•元调整为1600元,如果公民的月工资、薪金超过1600元,则税款按下表累加计算:根据上表,请:(1)写出所纳款税y(元)与该月收入x(元)之间的函数关系式;(2)作出所纳款税y(元)与该月收入x(元)之间的函数图象;(3)若李先生月薪金4000元,他应交纳的个人所得税是多少元?84.用红色刻度线将一根木棍分成135等份,•再用黑色刻度线将这根木棍分成40等份,沿- 13 -两种刻度线将这一木棍锯成短木棍.问共有多少种不同长度的短木棍?85.100条线段的长度分别为1,2,3,…,99,100,从中取出一些线段,•要使取出的线段中的任意三条都能构成一个三角形,问最多能取出多少条线段?第十八届(2007年)“希望杯”全国数学邀请赛初二培训题(1~85题)QQ:答案.解析一、选择题- 15 -。

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案一、选择题(每题2分,共20分)1. 已知x+y=5,x-y=1,求2x+3y的值。

A. 12B. 11C. 10D. 92. 一个数的平方等于该数本身,这个数可能是:A. 1B. -1C. 1或-1D. 03. 如果一个三角形的两边长分别是5和12,第三边长x满足三角形的三边关系,那么x的取值范围是:A. 7 < x < 17B. 2 < x < 14C. 5 < x < 13D. 12 < x < 154. 一个圆的半径为3,求圆的面积。

A. 28.26B. 9C. 18D. 365. 若a^2 + b^2 = 13,且a + b = 5,求ab的值。

A. 6B. 2C. 12D. 无法确定6. 一个等差数列的前三项分别为2,5,8,求第10项的值。

A. 27B. 29C. 21D. 227. 一个长方体的长、宽、高分别是2,3,4,求其体积。

A. 24B. 12C. 36D. 488. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 09. 一个直角三角形的两条直角边分别是3和4,求斜边的长度。

A. 5B. 6C. 7D. 810. 若a、b、c是三角形的三边,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 无法确定二、填空题(每题2分,共20分)11. 一个数的相反数是-8,这个数是________。

12. 一个数的立方等于-27,这个数是________。

13. 一个数的平方根是4,这个数是________。

14. 一个数的倒数是2,这个数是________。

15. 一个圆的直径是10,这个圆的周长是________。

16. 若a、b互为倒数,则ab=________。

17. 一个数的平方是25,这个数是________。

18. 一个数的绝对值是3,这个数可能是________。

2007年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)-

2007年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)-

第十八届(2007年)“希望杯”全国数学邀请赛培训题“希望杯”命题委员会(未署名的题,均为命题委员会命题)初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后的圆括号内)1.有下面的四个叙述:①整式加整式还是整式;②整式减整式还是整式;③整式乘整式还是整式;④整式除整式还是整式.其中正确叙述的个数为().(A)4 (B)3 (C)2 (D)12.若x是有理数,分式1||2x-的值为正整数,则x的个数为()(A)2 (B)4 (C)6 (D)无数个3.将分式2aa b+中的a扩大2倍,6扩大4倍,而分式的值不变,则()(A)a=0 (B)b=0 (C)a=0,且b=0 (D)a=0或b=04.已知x与y+2成反比例,当x=1时,y=4,那么y=1时,x的值是()(A)0 (B)1 (C)2 (D)45.若实数a,b,c满足a2+b2≠0,a3+a2c-ab c+b2c+b3=0,则a+b+c的值是()(A)-1 (B)0 (C)1 (D)26.若实数a,b,c满足1a+1b+1c=1a b c++,则a+b,b+c,c+a中等于零的()(A)有且只有1个(B)至少有1个(C)最多有1个(D)不可能有2个7.设f=2x-3x-2,g=x-2,考察下面四个叙述:①f+g是整式;②f-g是整式;③f×g是整式;④当x≠2时,f÷g是整式.其中正确叙述的个数为()(A)4 (B)3 (C)2 (D)18.如果≠0成立,那么下列各式中正确的是()(A)a+b≥0 (B)a+b>0 (C)a+b≤0 (D)a+b<09.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象如图,根据图中提供的信息,•有下列叙述:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发了0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地.其中,符合图象的叙述有()个.(A)2 (B)3 (C)4 (D)5(第9题) (第10题) (第15题)10.已知直线y=2x+a与y=2a-x的图象的交点在如图所示的阴影长方形区域内(•含长方形边界),则a的取值范围是()(A)0≤a≤32(B)65≤a≤95(C)65≤a≤32(D)0≤a≤9511.甲车追超过前方的乙车,经过时间t后在A处追上,若甲、乙各提速a%,则()(A)甲车追上乙车所用的时间增加了a%; (B)甲车追上乙车所用的时间减少了a% (C)甲车仍在A处追上乙车; (D)甲车驶过A处后才追上乙车12.某人用1000元钱购进一批货物,第二天售出,获利10%,•过几天后又以上次售出的价格的90%购进一批同样的货物,由于卖不出去,•两天后他将其按第二次购进价的九价再QQ :- 3 -出售,这样他在两次交易中( )(A )刚好盈亏平衡 (B )盈利1元 (C )盈利9元 (D )亏损1.1元13.某足球赛,记分规律如下:胜一场积3分,平一场积1分,负一场积0分,A 队经过12场比赛后,积19分,若队员出赛一场的出场费为500元/人,胜一场奖金1000元/人,•平一场奖金500元/人,那么A 队队员在12场比赛后的最高收益可能是( )(A )13500元/人 (B )14000元/人 (C )13000元/人 (D )12500元/人14.小明和小刚用掷两枚骰子的方法来确定点P (x ,y )在坐标系上的位置,他们规定:小明掷得的点数为x ,小刚掷得的点数为y ,•那么他们各掷一次所确定的点落在已知直线y=-2x+6上的概率为( )(注:骰子是骨制的一个白色小正方体,它的六个面上分别刻有1个,2个,3个,4个,5个,6个红色小圆点,将其随意掷放于一个平面上,骰子必有一面向上,•这个面上红色圆点的个数就叫做点数).(A )16 (B )112 (C )118 (D )1915.如图,晴朗的夏天,太阳当空,•一只小鸟以不变的速度水平地飞过一个斜坡上空,则小鸟在斜坡上的影子移动的速度( )(A )越来越大 (B )越来越小(C )不变 (D )一定和小鸟的飞行速度一样大16.当5个整数从小到大排列时,中位数是4,如果这5个整数的惟一众数是6,则这5个整数的和最大是( ).(A )20 (B )21 (C )22 (D )2317.某市出租车的起步价为12元(行程在3公里以内),行程到达3公里之后,•每增加1公里需加付m 元(不足1公里亦按1公里计价),•张老师坐这种出租车从学校到离学校n 公里的教育局开会,沿途未遇红灯,下车时付车费28元,则m 与n 的关系是m=( ) (注:[n]表示不大于n 的最大整数,如[3,2]=3,[4]=4.)(A )16162828()()3()3[]3[]2[]3[]2B C D n n n n ------ 18.用200元钱买A 、B 、C 、D 四种商品共10件,若A 、B 、C 、D 的单价依次是13元,17元,22元,35元,则( )(A )A 、B 、C 、D 各买了2,3,4,1件 (B )A 、B 、C 、D 各买了4,2,2,2件(C )以上两种情况都可能 (D )以上三种情况都不可能19.如图,直线AE ∥BF ,点P 在AE 上方,点M 、N 分别在AE 、BF 上,若PC 平分∠MPN 交AE 、BF 于C 、D 两点,∠PCE=α,则∠1=∠2的大小为( )(A )α (B )2α (C )3α (D )4α(第19题) (第22题) (第25题)20.周长为30,各边长互不相等且都是整数的三角形的个数为( )(A )11 (B )12 (C )7 (D )821.如果△ABC 的垂心G (三条高的交点)在△ABC 的内部,并且在BC 边的中线AD 上,那么△ABC 一定是( )(A )直角三角形 (B )等腰三角形(C )等边三角形 (D )等腰直角三角形22.如图5,△ABC 中,∠A=60°,AC=16,S △ABC AB=( )(A )554(B )55 (C )45 (D )23.有下面四个判断性语句:①平行四边形的四个内角之和为360°;②有两个内角相等的四边形是平行四边形;QQ :- 5 -③平行四边形的四个内角中有两对是相等的;④四个内角中有两对相等的四边形是平行四边形.(A )4 (B )3 (C )2 (D )124.对凸四边形ABCD ,给出下列4个条件:①AB ∥CD ; ②AD ∥BC ; ③AB=CD ; ④∠BAD=∠DCB .现从以上4个条件中任选2个条件为一组,能推出四边形ABCD•为平行四边形的概率是( )(A )13 (B )12 (C )23 (D )5625.如图,以Rt △ABC 的两直角边AB 、BC 为边,•在△ABC•外部作等边△ABE•和△BCF ,EA 、FC 的延长线交于M 点,则点B 一定是△EMF 的((A )垂心 (B )重心 (C )内心 (D )外心26.Assume that in Fig . 7 ABCD is a square ,and •point •E •is •on •theline BC ,CE=AC .we connect A and E ,AE intersects CD at point •F ,•then •thedegree of ∠AFC is ( )(A )150° (B )125° (C )135° (D )112.5°(英汉词典:Fig .是figure (图、图形)的缩写;to cormect 连接;to intersect …at 相交于;degree 度、度数)(第26题) (第27题) (第28题) (第30题)27.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则∠CDF 等于( )(A )80° (B )70° (C )65° (D )60°28.如图,顺次连接凸四边形ABCD 的中点,得到四边形EFGH .要使四边形EFGH•是正方形,应补充的条件是( )(A )四边形ABCD 是等腰梯形 (B )四边形ABCD 是平行四边形(C )四边形ABCD 是菱形 (D )AC=BD ,且AC ⊥BD29.将一把折扇逐渐打开,会发现打开部分的扇形面积随圆心角的变化而变化,•那么能正确描述这种变化的函数是( )(A )正比例函数 (B )反比例函数(C )一次函数y=kx+b (b ≠0) (D )以上都不是30.如图是一间卧室地面瓷砖的图案,在这间卧室地下藏有一宝物,•则藏在白色瓷砖和灰色瓷砖下的可能性是( )(A )藏在白色瓷砖下的可能性大(B )藏在灰色瓷砖下的可能性大(C )藏在两种瓷砖下的可能性一样大(D )藏在灰色瓷砖下与藏在白色瓷砖下的可能性之比是3:2二、填空题31.计算:20082+20072+20062-2008×2007-2007×2006-2006×2008=________.32.已知则x 2007=2,则(x 2006+x 2005+x 2004+…+x+1)(x-1)=__________.33.设a ,b ,c 是实数,则能使(a+b+c )(1a +1b +1c )=1成立的条件是______或_______.(•写出两个满足条件即可)34.Ifm and n are positive integers satisfying m 2+27mn+n 2=729 and m+•n>mn ,then the value of m+n is_________.(英汉词典:positive integer 正整数;to satisfy 满足;value 值、数值)35.计算:(+2=________.36.已知A=××,B=(2007×2008×2009)2007200820093++,则A•与B•的大小关系是A_____B .(填“>”、“<”或“=”)QQ :- 7 -37.设B =,则A_______B .(填“>”、“<”或“=”) 38.39.If a and •b •are •constant .•and •the •set •of •solutions •of •theinequality ax+b>0 is x<13,then the set of solutions of the inequalityba<0 is________. (英汉词典:constant 常数;set 集合;solution 解、解答;inequality 不等式)40.一次智力测试有25道题,答对一题得4分,不答扣2分,答错扣4分,小明要想在这次智力测试中的得分不低于60分,他至少要答对________道题.41.设正数a ,b ,c ,x ,y 满足:a ≠c ,22222222221,x xy y x xy y a b c c b a++=++=1,则代数式222111a b c++的值为________. 42.若以x 为未知数的方程42ax x -+=3无解,则a=_______. 43.已知m 与n 使m m m n m n ++-的值等于-14,则n m的值是_________. 44.当x=2时,多项式75312a b c d x x x x ++++的值是3,那么当x=-2时,多项式的值是_______. 45.若实数a ,b 满足1a -1b -1a b +=0,则2222b a a b-的值等于________. (拟题:夏建平 江苏省江阴市要塞中学)46.如果以x ,y 为元的二元一次方程12ax y x ay +=⎧⎨+=⎩有解,那么a 不等于________.52.如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=4x(x>0)的图象上,•斜边OA,AA都在x轴上,则点A的坐标是________.(第52题) (第53题) (第55题) 53.In the following traffic marks,the number of marks whose•figuresaxially-symmetric is___________.(英汉词典:traffic交通;•mark•标志;•number•个数;•figure•图形;•axially-symmetric(轴对称)54.仅将两个全等的非等腰的直角三角形的一条边重合,拼接成新的图形,•拼成的图形可能是下列各种图形中的一种或几种:①矩形;②菱形;③直角梯形;④平行四边形;⑤等腰三角形;⑥等腰梯形.则正确结论的序号是_______.(把所有正确的图形的序号都填上)55.如图所示,平行四边形ABCD中,过BD的中点O的直线交AB、CD于M、N,•交DA、BC 延长线于E、F,则图中有全等三角形________对.56.如图,在一个由4×4个小正方形组成的正方形网格中,•阴影部分面积与正方形ABCDQQ :- 9 -的面积比是_______;周长的比是________.(第56题) (第58题) (第59题) (第60题)57.在平面直角坐标系内点A 、B 的坐标分别为(-3,-2),(3,a ),点B 在第一象限,•且A 、B 两点间的距离为10,那么a 等于______.58.在建筑工地上,工人用如图所示的装置能将重物运往高处:•绳子绕过定滑轮,一端系着重物,在地面的工人手拿绳子的另一端,沿着垂直于滑轮轴的方向,向前走一段距离,重物便上升到定滑轮外,被高处的工人卸下,已知重物上升的距离是5米,则地面上的工人向前行走的距离为________米.59.图中的两个滑块A 、B 由一个连杆连接,可以在竖直和水平的滑道内滑动,•开始时,滑块A 距0点15厘米,滑块B 距0点20厘米,A 、B 的距离为25厘米,那么滑块B 滑到C 点时,滑块A 共滑动了_________厘米.60.如图,△ABC 的边AB 长为2,AB 边上的中线CD 长为1,AC 、BC,则△ABC 的面积为_________.61.a 、b 、c 是三角形的三边,它们满足ac 2+b 2c-b 3=abc ,若三角形的一个内角是120°,那么a :b :c=_______.62.设a ,b ,c 是△ABC 的三条边,满足c a b a b c b c a c a b <<+-+-+-,则三边中最长的边是________.63.如图,0是△ABC 外部一点,AO 交BC 于A 点,BO ,CO 的延长线分别交AC ,AB•的延长线于点B ,C ,则111AO BO CO AA BB CC ++的值为_________.(第63题) (第64题) (第65题) (第66题)64.如图,已知梯形ABCD中,AD∥BC,∠A=90°,E为CD的中点,BE=132,梯形ABCD•的面积为30,则AB+BC+DA的值为________.65.如图,边长为2的正方形ABCD中,若∠PAQ=45°,则△PCQ的周长是_____.66.如图,A,B两个平行四边形草坪有公共部分(阴影处),A,B•草坪面积之和为160m2,A的面积为120m2,B的面积为74m,则重叠部分的面积是_______m2.67.若凸4n+2边形AA…A(A为正整数)的每个内角都是30°的整数倍,且∠A=∠A=∠A=90°,则n的值是________.?68.服装店进了某款式的时装,开始按比进价提高30%的价格销售,但是无人问津,•于是决定打折降价销售.•如果要使利润率不低于10%,••那么打折的幅度不能低于_________.(保留两位有效数字)69.红光中学去年有120人参加“希望杯”全国数学邀请赛,•今年的参赛人数增加了50%,考场数比去年多了3个,而且平均每个考场安排的考生增加了2人,今年安排的考场有_________个.70.直角三角形三边长均为整数,其中一条直角边长为35,•则它的周长的最大值是________,最小值是_______.(拟题:刘朝晖广东省中山市第一中学初中部)71.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,•若现在所需要的时间为b小时,则_______<b<______.(用关于a的表达式表示)72.1=12,2+3+4=32,3+4+5+6+7=52,QQ :- 11 -……从中找出一般规律是________.73.一种商品的进价为90元,原售价定为m 元,售出一半之后,剩余的一半按8折出售,全部售出后共获利10%,则原售价定为m=________元.74.某学校八年级的数学竞赛小组进行了一次数学测验,如图所示是反映这次测验情况的频率分布直方图,那么该小组共有______人;70.5~90.5这一分数段的频率是______.(第74题) (第76题) (第77题) 75.用[a ,b]表示自然数a ,b 的最小公倍数,(a ,b )表示□,b 的最大公约数,若[•a ,b]=1085-(a ,b ),那么当a>b 时,a-b 的最小值是________. 76.如图,△ABC 中,∠C=90°,EC=13AC ,CD=13BC ,BE=8,AD=EC+CD=6,则S △BCD =______. (拟题:刘朝晖 广东省中山市第一中学初中部)77.如图,E 是平行四边形ABCD 的边CD 上任一点,AE 的延长线与BC 的延长线交于点F ,连结BE 、DF ,则S △BCE _______S △DEF .(填“>”、“<”或“=”) (拟题:李廷江 贵州省修文县第二中学)78.若4x 2+1+kx 是关于x 的完全平方式,则k 2-2k+2的值为________. (拟题:窦桐生 吉林省磐石市明城中学 ) 79.解方程:20052007200820042004200620072003x x x x x x x x +++++=+++++得x=_________.(拟题:钟金子 福建省安溪恒兴中学) 三、解答题80.某班有语文、数学两个课外兴趣小组,•其中参加语文组的人数是全班人数的23,既参加语文组又参加数学组的人数是参加数学组人数的23,另外有4•位同学既不参加语文组,也不参加数学组,如果这4位同学参加语文组,•那么参加数学组与参加语文组的人数恰好相等,问全班有多少同学?既参加语文组又参加数学组的人数是多少?81.某工厂计划生产A、B两种产品,为取得最大生产利润,事先做了市场调查,根据厂内实际情况和市场需要得到有关数据如下表:现在工厂可以筹集到的资金用于原料及消耗的是元/月,用于工资支出的是元/月,问如何确定两种产品的月产量,可以使工厂得到的总利润达到最大?并求这个最大利润值.82.如图,从直线COD上一点O引两条射线OE,OF,使∠GOF=∠FOE=∠EOD=60°,•在射线QQ:OF,OG,OE上各取一点A,B,C,使∠CAB=60°,若OA=m,求△ABC面积的最大值.83.从2006年元旦起,公民的月工资、薪金个人所得税的起征点由原来的800•元调整为1600元,如果公民的月工资、薪金超过1600元,则税款按下表累加计算:根据上表,请:(1)写出所纳款税y(元)与该月收入x(元)之间的函数关系式;(2)作出所纳款税y(元)与该月收入x(元)之间的函数图象;(3)若李先生月薪金4000元,他应交纳的个人所得税是多少元?84.用红色刻度线将一根木棍分成135等份,•再用黑色刻度线将这根木棍分成40等份,沿- 13 -两种刻度线将这一木棍锯成短木棍.问共有多少种不同长度的短木棍?85.100条线段的长度分别为1,2,3,…,99,100,从中取出一些线段,•要使取出的线段中的任意三条都能构成一个三角形,问最多能取出多少条线段?第十八届(2007年)“希望杯”全国数学邀请赛初二培训题(1~85题)QQ:答案.解析一、选择题- 15 -。

希望数学少年俱乐部2018年八年级培训题(含答案)

希望数学少年俱乐部2018年八年级培训题(含答案)

,则 x,y,z 三个数的大小关
系是( ). A.z<x<y B. y<z<x
C. x <y<z D. z<y<x
4. 当 a=1.66,b=1.62,c=1.16 时,
a2
ac
1
ab
bc
b2
bc
1
ab
ac
c2
ac
1 bc
ab
=(
).
A.100 B.200
C.150 D.300
1
5.

x+2y-3z=0,4x+3y-5z=0,则
6
22. 点 P(2,a )在反比例函数 y= k 的图象上,它关于原点中心对称的点在一次函 x
数 y=2x+3 的图象上,则 k 的值为( ).
A.-1
B.1
C. 1
D.2
2
23. 如图,等腰梯形 ABCD 中,CD//AB,CD:AB= 1:2,O 为对角线的交点,∠
ACD=60°. 若点 S,P,Q 分别为 DO,AO,BC 的中点,则△PQS 与△AOD
B.-2
C.0
D. -2 或-8
8. Known real numbers a,b,c satisfy 6a+13b+6c=75,9a+9b+2c=60. Then
3b 2c =( ). 3a 2b
A.-1 B.0
C.1
D.2
2
9. 三个互不相等的实数,小林将其表示为 0, y ,y 的形式,小李将其表示为 1, x
A
B
F
D
E
C
13

希望杯”全国数学邀请赛初二试题hopec2-1-10

希望杯”全国数学邀请赛初二试题hopec2-1-10

12 计算:
1 10 + 8 3 + 2 2 =_____. 2 3 − 2x 2 − 4x 13 已知: x = 3 − 1 ,那么 2 =_____. x + 2x − 1
14 计算:
1997 1999 + ( 1997 − 1999)( 1997 − 2001) ( 1999 − 2001)( 1999 − 1997)
+
2001 =_____. ( 2001 − 1997)( 2001 − 1999)
15 若x3+3x2-3x+k有一个因式是x+1 则k=_____ 16 给出四个自然数a,b,c,d 其中每三个数之和分别是180 197 208 222 那a,b,c,d中最大的数的值是_____ 那么这个三角形的形状是_____ , ABF=25 则 ACE=_____
1 3 B. [ , ] 4 4
1 2 C. [ , ] 6 3
1 7 D. [ , ] 6 8
直角或钝角三角形 则这个四边形 [ ] 可能不是平行四边形 CD=BF 则 EDF = [ ]
在四边形ABCD中 一定是正方形 ABC中 AB=AC
若两条对角线AC B 一定是菱形 D E C
一定是平行四边形 D AC AB上 若BD=CE
25 某班男女同学分别参加植树劳动 要求男女同学各种8行树 男同学种的树比女同学种 的树多 如果每行都比预定的多种一棵树 那么男女同学种树的数目都超过100棵 如果每
行都比预定的少种一棵树 那么男女同学植树的数目都达不到100棵 这样原来预定男同学 种树_____棵 女同学种树_____棵
橙子奥数工作室
教学档案 非卖品
第十届 希望杯

第二十二届(2011年)“希望杯”全国数学邀请赛初二培训题(含答案)

第二十二届(2011年)“希望杯”全国数学邀请赛初二培训题(含答案)

“希望杯”全国数学邀请赛培训题初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内) 1.如图1,数轴上的四个点A B C D 、、、分别代表整数a b c d 、、、.若1,1a b c b --=--=-,则d 的值是( ) (A )3- (B) 0 (C)1 (D )4 1. 已知201020111,,20092011201020122011a b c ===⨯⨯,则( )(A )a b c <<(B)c b a << (C )b a c << (D )c a b <<2. 下列各数中,最大的是( )(A )37+ (B) 26+ (C )20 (D )114522+3. 已知a 是实数,并且2201040a a -+=则代数式228040200954a a a -+++的值是( ) (A )2009 (B) 2010 (C )2011 (D )2012 4. Given two non -zero real numbers a and b ,satisfy ()2242342a b a b a -+++-+=,then the value ofa b + is ( )(A )-1 (B) 0 (C )1 (D )25. If the linear function y ax b =+ passes through the point (-2, 0),but not the first Quadrant, then the solution set forax b > is ( )(A )2x >- (B) 2x <- (C ) 2x > (D )2x < 6. 已知反比例函数k y x =的图像经过点1,b a -⎛⎫⎪⎝⎭,那么它可能不经过点( ) (A )1,b a ⎛⎫- ⎪⎝⎭ (B) 1,a b -⎛⎫ ⎪⎝⎭ (C ),1b a ⎛⎫- ⎪⎝⎭ (D ),1b a -⎛⎫ ⎪⎝⎭7. 已知a 是实数,关于x y 、的二元一次方程组235212x y ax y a-=⎧⎨+=-⎩的解不可能出现的情况是( )(A )x y 、都是正数 (B) x y 、都是负数 (C )x y 是正数、是负数 (D )x y 是负数、是正数8. If a and b are non -zero real numbers and ()()1991991a b -+=,then the value for111ab-+ is ( )(A )1 (B)100 (C )-1 (D )-1 9. 如图2是反比例函数ky x=在第二象限的图像,则k 的可能取值是( )(A )2 (B)-2 (C )12 (D )12-11. 在直角坐标系上,点(),11x y 关于电()22,x y 的对称点坐标是( )(A )()2121,22x y x y -- (B) ()1212,22x y y x -- (C )()12122,2x x y y -- (D )()21212,2x x y y --12. 一个长方体盒子的最短边长50cm ,最长边长90cm.则盒子的体积可能是( )(A )45003cm (B) 1800003cm (C )900003cm (D )3600003cm13. 若两个角可以构成内错角,则称为“一对内错角”.四条直线两两相交,且任意三条直线不交于同一点.那么,在这个几何图形中,可以构成的内错角的两个角的对数是( )(A )12 (B) 24 (C )36 (D )48 14. 如图3,已知ABC 中,,AB AC BAC ACB =∠∠和的角平分线相交于D 点,130ADC ∠=︒,那么CAB ∠的大小是( ) (A )80︒ (B) 50︒ (C )40︒ (D )20︒15. Given ABC with 90ACB ∠=︒,15ABC ∠=︒,1AC =,then the length of BC is ( )(A )23+ (B) 32+ (C )32- (D )23+16. 已知三角形三边的长分别为,,a b c ,且,,a b c 均为整数,若7,b a b =<,则满足条件的三角形的个数是( )(A )30 (B)36 (C )40 (D )45 17. 三角形三边的长分别为,,a b c ,且a abc b c b c a++=+-,则三角形是( ) (A )等边三角形 (B) 直角三角形(C )以a 为腰的等腰三角形 (D )以a 为底的等腰三角形 18. 有4个命题:一组对边相等,一组对角相等的四边形是平行四边形; 一组对边平行,一组对角相等的四边形是平行四边形;O 是四边形ABCD 内一点,若AO=BO=CO=DO ,则四边形ABCD 是矩形;若四边形的两条对角线互相垂直,则这个四边形是菱形。

“希望杯”全国数学八年级邀请赛培训80题含详解

“希望杯”全国数学八年级邀请赛培训80题含详解

1 (A) , b a
7.
(B)
1 , a b
(C) b,

1 a
(D) b,

1 a

已知 a 是实数, 关于 x、 y 的二元一次方程组
2 x 3 y 5a 的解不可能出现的情况是 ( x 2 y 1 2a
1 a

1 b
1
2010 2009 2011
,b
2011 2010 2012
,c
1 2011
,则(
) 9. 如图 2 是反比例函数 y (B)-2 (D) c a b (A)2
(A) a b c
(B) c b a ) (B)
(C) b a c
2. 下列各数中,最大的是( (A) 3 7
(D)以 a 为底的等腰三角形
一组对边相等,一组对角相等的四边形是平行四边形; 一组对边平行,一组对角相等的四边形是平行四边形;
22.If the figure 6 is composed of 24 equilateral triangles, then how many non-congruent distinct right triangles with v ertices on the intersecting points are possible in this figure?( (A)3 (B)4 (C)5 (D)6 ) )
(A) x、y都是正数 (C) x是正数、y是负数
(B) x、y都是负数 (D) x是负数、y是正数
8. If a and b are non-zero real numbers and 1 99a 1 99b 1 ,then the value for is ( (A)1 ) (B)100 (C)-1 (D)-1 )

希望杯初二上试题及答案

希望杯初二上试题及答案

希望杯初二上试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c - d答案:A2. 已知方程x^2 - 5x + 6 = 0的解为:A. x = 2, x = 3B. x = -2, x = -3C. x = 2, x = -3D. x = -2, x = 3答案:A3. 一个数的平方根是它本身的数是:A. 0B. 1C. -1D. 以上都是答案:A4. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bc(c > 0)C. 如果a > b,那么a/c > b/c(c > 0)D. 以上都是答案:D5. 以下哪个选项是等腰三角形的性质?A. 两腰相等B. 两底角相等C. 两腰和两底角都相等D. 以上都是答案:D6. 以下哪个选项是勾股定理的表述?A. 在直角三角形中,直角边的平方和等于斜边的平方B. 在直角三角形中,斜边的平方等于两直角边的平方和C. 在直角三角形中,斜边的平方等于两直角边的平方差D. 在直角三角形中,两直角边的平方和等于斜边的平方差答案:B7. 以下哪个选项是圆的性质?A. 圆心到圆上任意一点的距离相等B. 圆上任意两点的距离相等C. 圆的直径是最长的弦D. 以上都是答案:D8. 以下哪个选项是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 以上都是答案:D9. 以下哪个选项是反比例函数的性质?A. 图像是双曲线B. 图像分布在第一、三象限C. k > 0时,函数值随x的增大而增大D. 以上都是答案:A10. 以下哪个选项是正比例函数的性质?A. 图像是直线B. 图像经过原点C. k > 0时,函数值随x的增大而增大D. 以上都是答案:D二、填空题(每题3分,共30分)11. 已知一次函数y = 2x + 3,当x = 1时,y的值为________。

十一届希望杯数学邀请赛培训题(初二年级)答案

十一届希望杯数学邀请赛培训题(初二年级)答案

答案与提示提示:1.由.0〉-a b 且.0≥a 则,0≥〉a b 得0〉+b a , 又∵0〉-a b ,∴ 0〈-b a ∴ 原式=||||b a b a +--=.2)()(a b a b a -=+--- ∴ 选C2.①②③显然不成立,对于④, ∵.043)21(122〉+-=-+a a a ∴对于一切实数④式成立,故选 A3.原方程整理成2)2(+=+m x m m 该方程有唯一解的条件是,0)2(≠+m m ∴0≠m 且,2-≠m 选D4.原方程整理成2)1(a x a -=-,∵方程的解是负数,∴ 01〉-a 且,02≠a 即1〈a 且0≠a ,∴选C5.原方程整理成0)1()1(=---+--y x b y x a ,对于b a ,的每一组值,上述方程都有公共解,∴ ⎩⎨⎧=---=--0101y x y x 解得⎩⎨⎧-==10y x ∴选B6.设,20012000,20002001==b a 则,1000110001,++==b a N b a M1000110001++-=-b a b a N M .)10001()(10001)10001()10001()10001(+-=++-+=b b b a b b a b b a ∵ ,b a 〈 ∴ ,,0N M N M 〈〈- 故选C7.由,322〈b a 得 ,322b a 〈 2222222)(363963)()3(b a b ab a b ab a b a b a +---++=-++ =,0)()3(2222〉+-b a a b ∴,3)()3(22〉++b a b a 选B8.∵ [],1)(=+++b b b a a a ∴ ,0123=-+++b ab b a a ∴ 0)()1(23=+++-b ab b a a ∴ 0)1)(1(2=+-++b a a a ∵a 为正数, ∴,012〉++a a ∴,1,01=+=-+b a b a 故选 C9.若5个数中有4个为0,设它们是a ,0,0,0,0,其中0≠a ,则当0〈a 时,,00.00〈+++a 不合题意。

初二希望杯试题及答案

初二希望杯试题及答案

初二希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. \(\sqrt{4}\)B. \(\sqrt{-4}\)C. \(\sqrt{2x+3}\)D. \(\sqrt{x^2-4}\)答案:C2. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 一个等腰三角形的两边长分别为5和10,那么这个三角形的周长是多少?A. 15B. 20C. 25D. 不能构成三角形答案:D4. 以下哪个方程是一元二次方程?A. \(x^2 + 2x - 3 = 0\)B. \(x^2 - 2xy + y^2 = 0\)C. \(x^3 - 2x^2 + x - 1 = 0\)D. \(x + 2 = 0\)答案:A5. 一个数的立方是-8,那么这个数是多少?A. 2B. -2C. 8D. -8答案:B6. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 以下哪个选项是不等式?A. \(x + 3 = 7\)B. \(x - 5 > 0\)C. \(x^2 - 4 = 0\)D. \(x^3 + 2x^2 - x = 0\)答案:B8. 一个直角三角形的两个直角边长分别为3和4,那么斜边长是多少?A. 5B. 7C. 12D. 以上都不是答案:A9. 以下哪个选项是单项式?A. \(3x^2 + 2x - 1\)B. \(5x^3 - 2x^2 + 3x\)C. \(-7x^2\)D. \(x^2 - 3x + 2\)答案:C10. 一个数的倒数是1/3,那么这个数是多少?A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)11. 一个数的平方根是4,那么这个数是\(\boxed{16}\)。

12. 如果一个数的立方根是2,那么这个数是\(\boxed{8}\)。

2021希望杯8年级考前100题培训学生版含答案

2021希望杯8年级考前100题培训学生版含答案

2021希望数学少年俱乐部——八年级培训80题1.解方程:1113, 0x b c x c a x a b a b c a b c ------⎛⎫++=++≠ ⎪⎝⎭2.设x =7654323102921x x x x x x x +--+-+-=_________.3.设a 、b 、c 、d 为正实数,a <b 、c <d ,bc>ad .有一个三角形的三边长分别为,则此三角形的面积为________.4.分解因式:)5()4)(3)(2)(1(++++++x x x x x x =______________.5.a 、b 、c 是正整数,并且满足等式20041=+++++++c b a bc ac ab abc ,那么a+b+c 的最小值是____________.6.a 、b 、c 为正整数,且432c b a =+,求c 的最小值是_______.7. 满足方程组4423ab bc ac bc +=⎧⎨+=⎩的正整数组(a ,b ,c )的个数是_________.8. 已知方程组:2222110a b c d ac bd ⎧+=⎪+=⎨⎪+=⎩,求ab +cd 的值.9. 已知关于x 的方程()()43223220x x k x k x k ++++++=有实根,并且所有实根的乘积为 – 2,则所有实根的平方和为 .10. 设一元二次方程x 2+bx +c =0的两根为98,99.在二次函数y =x 2+bx +c 中,若x 取0,1,2,3,……,100,则y 的值能被6整除的个数是_______.11.已知:直角三角形的周长为261,求这个三角形的面积.12.如图,矩形ABCD是一个长为1000米、宽为600米的货场,A、D是入口.现准备在货场内建一个收费站P,在铁路线BC段上建一个发货站台H,则三条公路AP、DP、以及PH的长度之和最小是________米.13.已知四边形ABCD的面积为2021,E为AD上一点,△BCE,△ABE,△CDE的重心分别为G1,G2,G3,那么△G1G2G3的面积为__________.14. =的正整数解(x , y )中,x + y 的最大值为________.15.已知∠BAC =90°,四边形ADEF 是正方形且边长为1,求111AB BC CA++的最大值.16.设a 的小数部分,b 则1b a-的值为___________. 17.设 [x ] 表示不大于x 的最大整数,例如 [3.15]=3,[3.7]=3,[3]=3,则333234345200020012002⎤⎡⎤⎡⎤⎡⎤++++⎣⎦⎣⎦⎣⎦=__________.18.解不等式:()224291x x <+.19.若3,6,9,ab bc aca b b c a c===+++则c ab =________.20.已知方程组12a x y ca x y c +=⎧⎨+=⎩的解是27x y =⎧⎨=⎩,则关于x ,y 的方程组11122233a x y a c a x y a c +=--⎧⎨+⎩的解是( ).A .1375x y ⎧=-⎪⎪⎨⎪=-⎪⎩B.1357x y ⎧=-⎪⎪⎨⎪=⎪⎩C. 35x y =-⎧⎨=-⎩D .1357x y ⎧=⎪⎪⎨⎪=⎪⎩21.如图所示,在平行四边形ABCD 中,点E ,F ,G ,H 分别是AD , CD , AB ,BC 的中点,点I 是线段EF 的中点,则△GHI 与四边形AEIG 的面积的比是________.22.凸n边形恰有5个钝角,这5个角的和等于780°,那么n的值是________.23.如图,在正方形ABCD中E是BC边的中点,折叠正方形使点A与E重合,折痕为MN,若正方形的面积为64,则梯形ADMN的面积为________.24.将直径AB = 1的半圆形纸片平放在桌面上,然后让它绕直径的一个端点旋转到某个位置,这时它扫过的面积为π,则AB旋转的角度为________°.25.如图所示,圆柱体饮料瓶的高是8厘米,上、下底面的直径是8厘米.上底面开有一个小孔供插吸管用,小孔距离上底面圆心2厘米,那么吸管在饮料瓶中的长度最多是________厘米.26.直角三角形有一条直角边为13,另外两边的长是自然数,那么它的周长等于________.27.计算机将信息转换成二进制数来处理.二进制是“逢二进一”,如二进制数10011转换成十进制数是43210120202121219⨯+⨯+⨯+⨯+⨯=,那么二进制数220211(111111)个转换成十进制数是( ) . A.20212 B.20212+C.20222-D.20212-28.如图,在△ABC中,若242AC AB ++=,则BC 边上的中线AD 的取值范围是( ).A. 216AD <<B. 016AD <<C. 18AD <<D. 38AD <<29.2021=________.30.m ,小数部分是n ,=________.31.|2021||2022|x x +--的最大值与最小值的差为________.32.比较大小:44451111++++22+12+221-_______1(填“>”,“<”或“=”). 33.已知质数p 与q 满足5p +7q =101,则(p +1)(q +2) = ________.34.某工程的施工费用不得超过230万元.该工程若由甲公司承担,需用18 天,每天付费15万元;若由乙公司承担,需用27天,每天付费8万元.为缩短工期,决定由甲公司先工作m 天,余下的工作由乙公司完成.那么m =________时,总工期最短.35.在平面直角坐标系xOy 中,若将直线y =3x +2先沿y 轴方向向上平移9个单位,再沿x 轴方向向右平移_______个单位,最后得到的直线与原直线重合.36.已知△ABC 三边的长a 、b 、c 满足413a c b=+,那么∠A 是________(填“锐角”,“直角”,“补角”).37.如图所示,过原点的直线与反比例函数6y x=-的图象交于点A ,C ,过点A ,C 分别作x 轴的垂线,垂足为B ,D ,那么四边形ABCD 的面积为________.38.如图所示, 等边△ABC 位于第一象限内, B 点的坐标为(1,4), AC 平行于y 轴, AC =3, 若反比例函数(0)k y x =的图像与等边△ABC 有交点,则k 的最小值是________.39.在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的C点有________个.40.如图,P为边长为2的正三角形中任意一点,连接P A、PB、P C,过P点分别做三边的垂线,垂足分别为D、E、F,则阴影部分的面积为__________.41.如图,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD 的面积为11,则菱形EFGH的周长为.42.如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 边上一点,△P AD 的面积为21,∠APD =90°,则AD 的最小值为.43.如果一条直线l 经过不同三点()()()A a b B b a C a b b a --,,,,,,那么直线l 经过( )A .二、四象限B .一、二、三象限C .二、三、四象限D .一、三、四象限44.如图,在反比例函数2y x=(0)x >的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++=________.45.一个凸n 边形的内角和小于2021°,那么n 的最大值是______.46.已知:a 23331a a a++=________. 47.若实数x ,y ,z 满足41=+y x ,11=+zy ,371=+x z ,则xyz 的值为________. 48.如图所示,在△ABC 中,AB =AC ,AD =AE ,︒=∠60BAD ,则=∠E D C ________度.49.如图所示,在梯形ABCD 中,AD ∥BC (BC >AD),︒=∠90D ,BC =CD =12,︒=∠45ABE ,若AE =10,则CE 的长为________.50.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是______.51.10个学生参加n 个课外小组,每一个小组至多5个人,每两个学生至少都参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n 的最小值.52.方程的整数解(x ,y )的个数是( ).(A )0 (B )1 (C )3 (D )无穷多 53.已知对于任意正整数n ,都有,则 ________.323652x x x y y ++=-+312n a a a n +++=23100111111a a a +++=---54.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =BC =4-CD =,则AD 边的长为( ).(A ) (B )64 (C )64+ (D )622+55.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是________.56.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.,AD = 3,BD = 5,则CD 的长为________.57.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别为3,4,5,则四边形AEFD 的面积是____________.58.设a ,b 是a 2的小数部分,则(b +2)3的值为____________. 59.如图,在Rt △OAB 中,∠AOB =30°,AB =2,将Rt △OAB 绕O 点顺时针旋转90°得到Rt △OCD ,则AB 扫过的面积为________.60.已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =AM =________.61.已知正实数x ,y ,z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx ------++=,求111xy yz zx+的值. 62.不超过()615+的最大整数是( ) A.1142 B.1145 C.1148 D.115163.如图,小悦测出家里的瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?64.如图,面积为1的正方形ABCD 以C 为旋转中心,顺时针旋转45度得到正方形CEFG ,再顺时针旋转45度得到正方形CHID .BD 交CG 于M ,ME 交DH 于O ,求四边形FGMO 的面积.65.如果a ,b ,c 是正数,且满足a+b+c=9,111109a b b c c a ++=+++,那么c a b a b b c c a ++=+++_________. 66.P 是三角形ABC 内一点,已知20ABC ∠=︒,30ACB ∠=︒,10PBC ∠=︒,20PCB ∠=︒,求PAB ∠的度数.67.如图,ABCD 为正方形,90BEC ∠=︒,35BE =,21CE =,则阴影部分面积为_______.68.计算:)6435)(6427)(6419)(6411)(643()6439)(6431)(6423)(6415)(647(4444444444++++++++++=__________. 69.如图,已知△ABC 中,AB = AC ,P ,Q 分别为AC ,AB 上的点,且AP = PQ= QB = BC ,求∠PCQ .70.如图,在△ABC 中,∠BAC = 120°,P 是△ABC 内一点,若记,,则( ).A. B. C. D. 与y的大小关系不确定x PA PB PC =++y AB AC =+x y <x y =x y >x71.如图,在△ABC中,∠BAC =∠BCA = 44°,M为△ABC内一点,使∠MCA= 30°,∠MAC = 16°,求∠BMC度数.72.比6大的最小整数是多少?73.设实数x,y满足(1x y+=,求x+y的值.74.的最小值.75.若x y x y+=-=,则xy = _____.76._______.A.1 B. C. D. 577.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c的值是_______.A.1999 B. 2000 C. 2001 D. 不能确定78.如图,在矩形ABCD中,AB=20cm,BC=10cm.若在AC,AB上各取一点M,N,使BM+MN的值最小,那么这个最小值为多少cm?79.如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF = 2,BF = 1.为了合理利用这块钢板,将在五边形EABCD内截取一个矩形块MDNP,使点P在AB上,且要求面积最大,求钢板的最大利用率.80.如图,圆锥的母线长OA = 6,底面圆的半径为2.一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A,则小虫所走的最短距离为_______.A.12 B.4π C.62D.632021希望数学少年俱乐部——八年级培训80题答案1.解方程:1113, 0x b c x c a x a b a b c a b c ------⎛⎫++=++≠ ⎪⎝⎭答案:x=a+b+c2.设x =7654323102921x x x x x x x +--+-+-=_________.答案:23-3.设a 、b 、c 、d 为正实数,a <b 、c <d ,bc>ad .有一个三角形的三边长分别为,则此三角形的面积为________.答案:()12bc ad -4.分解因式:)5()4)(3)(2)(1(++++++x x x x x x =______________.答案:2(53)(58)x x x x ++++5.a 、b 、c 是正整数,并且满足等式20041=+++++++c b a bc ac ab abc ,那么a+b+c 的最小值是____________.答案:1716.a 、b 、c 为正整数,且432c b a =+,求c 的最小值是_______.答案:67.满足方程组4423ab bc ac bc +⎧⎨+⎩的正整数组(a ,b ,c )的个数是_________.答案:28.已知方程组:2222110a b c d ac bd ⎧+=⎪+=⎨⎪+⎩,求ab +cd 的值.答案: 09.已知关于x 的方程()()43223220x x k x k x k ++++++=有实根,并且所有实根的乘积为 – 2,则所有实根的平方和为 .答案:510.设一元二次方程x 2+bx +c =0的两根为98,99.在二次函数y =x 2+bx +c 中,若x 取0,1,2,3,……,100,则y 的值能被6整除的个数是_______.答案:6711.已知:直角三角形的周长为2+1,求这个三角形的面积.答案:0.512. 如图,矩形ABCD 是一个长为1000米、宽为600米的货场,A 、D 是入口.现准备在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,则三条公路AP 、DP 、以及PH 的长度之和最小是________米.答案:5003600+13. 已知四边形ABCD 的面积为2021,E 为AD 上一点,△BCE ,△ABE ,△CDE 的重心分别为G 1,G 2,G 3,那么△G 1G 2G 3的面积为__________.答案:2021914.2009x y =(x , y )中,x + y 的最大值为________. 答案:151715. 已知∠BAC =90°,四边形ADEF 是正方形且边长为1,求111AB BC CA++的最大值.答案:21+16.设a的小数部分,b则21b a -的值为___________.1+17.设 [x ] 表示不大于x 的最大整数,例如 [3.15]=3,[3.7]=3,[3]=3,则333234345200020012002⎤⎡⎤⎡⎤⎡⎤++++⎣⎦⎣⎦⎣⎦=__________. 答案:200100018.解不等式:()224291x x <+.答案:1450, 028x x -≤<<<19.若3,6,9,ab bc ac a b b c a c ===+++则c ab=________. 答案:3536-20.已知方程组12a x y c a x y c +=⎧⎨+=⎩的解是27x y =⎧⎨=⎩,则关于x ,y 的方程组11122253a x y a c a x y a c +=--⎧⎨+⎩的解是( ).A .1375x y ⎧=-⎪⎪⎨⎪=-⎪⎩ B.1357x y ⎧=-⎪⎪⎨⎪=⎪⎩C. 35x y =-⎧⎨=-⎩D .1357x y ⎧=⎪⎪⎨⎪=⎪⎩答案:A21.如图所示,在平行四边形ABCD中,点E,F,G,H分别是AD,CD,AB,BC的中点,点I是线段EF的中点,则△GHI与四边形AEIG的面积的比是________.答案:1:122.凸n边形恰有5个钝角,这5个角的和等于780°,那么n的值是________.答案:723.如图,在正方形ABCD中E是BC边的中点,折叠正方形使点A与E重合,折痕为MN,若正方形的面积为64,则梯形ADMN的面积为________.答案:2424.将直径AB = 1的半圆形纸片平放在桌面上,然后让它绕直径的一个端点旋转到某个位置,这时它扫过的面积为π,则AB旋转的角度为________°.答案:31525.如图所示,圆柱体饮料瓶的高是8厘米,上、下底面的直径是8厘米.上底面开有一个小孔供插吸管用,小孔距离上底面圆心2厘米,那么吸管在饮料瓶中的长度最多是________厘米.答案:1026.直角三角形有一条直角边为13,另外两边的长是自然数,那么它的周长等于________.答案:18227.计算机将信息转换成二进制数来处理.二进制是“逢二进一”,如二进制数10011转换成十进制数是43210120202121219⨯+⨯+⨯+⨯+⨯=,那么二进制数220211(111111)个转换成十进制数是( ) . A.20212 B.20212+C.20222-D.20212-答案:D28.如图,在△ABC中,若242AC AB +=,则BC 边上的中线AD 的取值范围是( ).A. 216AD <<B. 016AD <<C. 18AD <<D. 38AD <<答案:C29.2021=________.答案:408039830.m ,小数部分是n ,=________.答案:–131.|2021||2022|x x +--的最大值与最小值的差为________.答案:808632.比较大小:44451111++++22+12+221-_______1(填“>”,“<”或“=”). 答案:<33.已知质数p 与q 满足5p +7q =101,则(p +1)(q +2) = ________.答案:4534.某工程的施工费用不得超过230万元.该工程若由甲公司承担,需用18 天,每天付费15万元;若由乙公司承担,需用27天,每天付费8万元.为缩短工期,决定由甲公司先工作m 天,余下的工作由乙公司完成.那么m =________时,总工期最短.答案:435.在平面直角坐标系xOy 中,若将直线y =3x +2先沿y 轴方向向上平移9个单位,再沿x 轴方向向右平移_______个单位,最后得到的直线与原直线重合.答案:336.已知△ABC 三边的长a 、b 、c 满足413a c b=+,那么∠A 是________(填“锐角”,“直角”,“补角”). 答案:锐角37.如图所示,过原点的直线与反比例函数6y x=-的图象交于点A ,C ,过点A ,C 分别作x 轴的垂线,垂足为B ,D ,那么四边形ABCD 的面积为________.答案:1238.如图所示, 等边△ABC 位于第一象限内, B 点的坐标为(1,4), AC 平行于y 轴, AC =3, 若反比例函数(0)ky x =的图像与等边△ABC 有交点,则k 的最小值是________.答案:439.在平面直角坐标系中,点A 的坐标为(4,0),点B 的坐标为(4,10),点C 在y 轴上,且△ABC 是直角三角形,则满足条件的C 点有________个.答案:440.如图,P 为边长为2的正三角形中任意一点,连接P A 、PB 、P C ,过P 点分别做三边的垂线,垂足分别为D 、E 、F ,则阴影部分的面积为__________.41.如图,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD 的面积为11,则菱形EFGH 的周长为 .答案:2442.如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 边上一点,△P AD的面积为21,∠APD =90°,则AD 的最小值为.43.如果一条直线l 经过不同三点()()()A a b B b a C a b b a --,,,,,,那么直线l 经过( )A .二、四象限B .一、二、三象限 C .二、三、四象限 D .一、三、四象限答案:A44.如图,在反比例函数2y x=(0)x >的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++=________.答案:1.545.一个凸n 边形的内角和小于2021°,那么n 的最大值是______.答案:1346.已知:a 23331a a a++=________.答案:147.若实数x ,y ,z 满足41=+y x ,11=+z y ,371=+x z ,则xyz 的值为________. 答案:148.如图所示,在△ABC 中,AB =AC ,AD =AE ,︒=∠60BAD ,则=∠E D C ________度.答案:3049.如图所示,在梯形ABCD 中,AD ∥BC (BC >AD),︒=∠90D ,BC =CD =12,︒=∠45ABE ,若AE =10,则CE 的长为________.答案:4或650.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是______.答案:200551.10个学生参加n 个课外小组,每一个小组至多5个人,每两个学生至少都参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n 的最小值.答案:652.方程的整数解(x ,y )的个数是( ).(A )0 (B )1 (C )3 (D )无穷多答案:A53.已知对于任意正整数n ,都有,则________.答案:54.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB=,BC=4-CD=AD 边的长为( ).(A)(B )64 (C )64+ (D )622+答案:D55.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是________.答案:1113y x =-+323652x x x y y ++=-+312n a a a n +++=23100111111a aa +++=---3310056.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.,AD = 3,BD = 5,则CD 的长为________.答案:457.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别为3,4,5,则四边形AEFD 的面积是____________.答案:2041358.设a ,b 是a 2的小数部分,则(b +2)3的值为____________.答案:959.如图,在Rt △OAB 中,∠AOB =30°,AB =2,将Rt △OAB 绕O 点顺时针旋转90°得到Rt △OCD ,则AB 扫过的面积为________.答案:π60.已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =AM =________.答案:261.已知正实数x ,y ,z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------+,求111xy yz zx+的值. 答案:162.不超过()615+的最大整数是( )A.1142B.1145C.1148D.1151答案:C63.如图,小悦测出家里的瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?答案:6464. 如图,面积为1的正方形ABCD 以C 为旋转中心,顺时针旋转45度得到正方形CEFG ,再顺时针旋转45度得到正方形CHID .BD 交CG 于M ,ME 交DH 于O ,求四边形FGMO 的面积.答案:0.565. 如果a ,b ,c 是正数,且满足a+b+c=9,111109a b b c c a ++=+++,那么c a b a b b c c a++=+++_________. 答案:766. P 是三角形ABC 内一点,已知20ABC ∠=︒,30ACB ∠=︒,10PBC ∠=︒,20PCB ∠=︒,求PAB ∠的度数.答案:100°67. 如图,ABCD 为正方形,90BEC ∠=︒,35BE =,21CE =,则阴影部分面积为_______.答案:30068. 计算:)6435)(6427)(6419)(6411)(643()6439)(6431)(6423)(6415)(647(4444444444++++++++++=__________.答案:33769. 如图,已知△ABC 中,AB = AC ,P ,Q 分别为AC ,AB 上的点,且AP = PQ= QB = BC ,求∠PCQ .答案:30°70. 如图,在△ABC 中,∠BAC = 120°,P 是△ABC 内一点,若记,,则().A. B. C. D. 与y 的大小关系不确定答案:C71. 如图,在△ABC 中,∠BAC =∠BCA = 44°,M 为△ABC 内一点,使∠MCA= 30°,∠MAC = 16°,求∠BMC 度数.答案:150°x PA PB PC =++y AB AC =+x y <x y =x y >x72.比6大的最小整数是多少?答案:1058273.设实数x,y满足(1++=,求x+y的值.x y答案:074.答案:75.若x y x y+=-=,则xy = _____.76._______.A.1 B. C. D. 5答案:C77.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c 的值是_______.A.1999 B. 2000 C. 2001 D. 不能确定答案:B78.如图,在矩形ABCD中,AB=20cm,BC=10cm.若在AC,AB上各取一点M,N,使BM+MN的值最小,那么这个最小值为多少cm?答案:1679.如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF = 2,BF = 1.为了合理利用这块钢板,将在五边形EABCD内截取一个矩形块MDNP,使点P在AB上,且要求面积最大,求钢板的最大利用率.答案:80%80.如图,圆锥的母线长OA = 6,底面圆的半径为2.一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A,则小虫所走的最短距离为_______.A.12 B.4π C.62D.63答案:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“希望杯”全国数学邀请赛培训题初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内)1.如图1,数轴上的四个点A B C D 、、、分别代表整数a b c d 、、、.若1,1a b c b --=--=-,则d 的值是( )(A )3- (B) 0 (C)1 (D )4 1. 已知201020111,,20092011201020122011a b c ===⨯⨯,则( )(A )a b c <<(B)c b a << (C )b a c << (D )c a b <<2. 下列各数中,最大的是( )(A )37+ (B) 26+ (C )20 (D )114522+3. 已知a 是实数,并且2201040a a -+=则代数式228040200954a a a -+++的值是( ) (A )2009 (B) 2010 (C )2011 (D )2012 4. Giventwonon-zerorealnumbersaandb,satisfy()2242342a b a b a -+++-+=,then the value of a b + is ( )(A )-1 (B) 0 (C )1 (D )25. If the linear function y ax b =+ passes through the point (-2, 0),but not the first Quadrant, thenthe solution set for ax b > is ( )(A )2x >- (B) 2x <- (C ) 2x > (D )2x < 6. 已知反比例函数k y x =的图像经过点1,b a -⎛⎫⎪⎝⎭,那么它可能不经过点( ) (A )1,b a ⎛⎫- ⎪⎝⎭ (B) 1,a b -⎛⎫ ⎪⎝⎭ (C ),1b a ⎛⎫- ⎪⎝⎭ (D ),1b a -⎛⎫ ⎪⎝⎭7. 已知a 是实数,关于x y 、的二元一次方程组235212x y ax y a-=⎧⎨+=-⎩的解不可能出现的情况是( )(A )x y 、都是正数 (B) x y 、都是负数 (C )x y 是正数、是负数 (D )x y 是负数、是正数8. If a and b are non -zero real numbers and ()()1991991a b -+=,then the value for111ab-+is ( )(A )1 (B)100 (C )-1 (D )-19. 如图2是反比例函数ky x=在第二象限的图像,则k 的可能取值是( ) (A )2 (B)-2 (C )12 (D )12-11. 在直角坐标系上,点(),11x y 关于电()22,x y 的对称点坐标是( )(A )()2121,22x y x y -- (B) ()1212,22x y y x -- (C )()12122,2x x y y -- (D )()21212,2x x y y --12. 一个长方体盒子的最短边长50cm ,最长边长90cm.则盒子的体积可能是( )(A )45003cm (B) 1800003cm (C )900003cm (D )3600003cm13. 若两个角可以构成内错角,则称为“一对内错角”.四条直线两两相交,且任意三条直线不交于同一点.那么,在这个几何图形中,可以构成的内错角的两个角的对数是( ) (A )12 (B) 24 (C )36 (D )48 14. 如图3,已知ABC 中,,AB AC BAC ACB =∠∠和的角平分线相交于D 点,130ADC ∠=︒,那么CAB ∠的大小是( ) (A )80︒ (B) 50︒ (C )40︒ (D )20︒15. GivenABC with 90ACB ∠=︒,15ABC ∠=︒,1AC =,then the length of BC is ( ) (A )23+ (B) 32+ (C )32- (D )23+16. 已知三角形三边的长分别为,,a b c ,且,,a b c 均为整数,若7,b a b =<,则满足条件的三角形的个数是( )(A )30 (B)36 (C )40 (D )45 17. 三角形三边的长分别为,,a b c ,且a abc b c b c a++=+-,则三角形是( ) (A )等边三角形 (B) 直角三角形(C )以a 为腰的等腰三角形 (D )以a 为底的等腰三角形 18. 有4个命题:一组对边相等,一组对角相等的四边形是平行四边形; 一组对边平行,一组对角相等的四边形是平行四边形;O 是四边形ABCD 内一点,若AO=BO=CO=DO ,则四边形ABCD 是矩形;若四边形的两条对角线互相垂直,则这个四边形是菱形。

其中正确的命题个数是( )(A )0 (B)1 (C )2 (D )319. 如图4,正方形ABCD 的面积是486,点0P 在AD 上,点1P 在0P B 上,且01112P P PB =;点2P 在1PC 上,且12212PP P C =;点3P 在2P B 上,且23312P P P B =;…;点6P 在5PC 上,且56612P P P C =,则6P BC 的面积是( )(A )81 (B) 812 (C )643(D )128320. 如图5,四边形ABCD 中,135,120,6,53,ABC BCD AB BC ∠=︒∠=︒==- 6CD =,则AD 的长是( )(A )53+ (B) 8 (C )213 (D )21921.已知函数()14y a x a =-++的图像不经过第四象限,则满足题意的整数a 的个数是( ) (A ) 4 (B)5 (C )6 (D )722.If the figure 6 is composed of 24 equilateral triangles, then how many non -congruent distinct right triangles with v ertices on the intersecting points are possible in this figure?( ) (A )3 (B)4 (C )5 (D )623. 若在1,2,3,…,2010前任意添加一个正号或者负号,则( ) (A )它们的和是奇数 (B)它们的和是偶数(C )若有奇数个负号,则它们的和是奇数;若有偶数个负号,则它们的和是偶数 (D )若有奇数个负号,则它们的和是偶数;若有偶数个负号,则它们的和是奇数 24. 方程27819999x y +=的整数解有几组?( )(A )0 (B)1 (C )2 (D )多于225. 将3,4,5,6,7,8这六个数从左到右写成一排,使得每相邻的两个数的和都是质数,则这样的写法的种数是( )(A )6 (B)12 (C )18 (D )2426. 某农户养了鸡和兔各若干,如果平均每个动物有2.5只腿,那么鸡的数量与兔的数量的比等于( )(A )2 (B)2.4 (C )3 (D )3.527. 一个人步行从A 地出发,匀速向B 地走去.同时另一个人骑摩托车从B 地出发,匀速向A 地驶去.二人在途中相遇,骑车者立即把步行者送到B 地,再向A 地驶去,这样他在途中所用的时间是他从B 地直接驶往A 地原计划所用时间的2.5倍,那么骑摩托车者的速度与步行者速度的比是( )(A )2:1 (B)3:1 (C )4:1 (D )5:1 28. 12页书的页码用15个数码:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2.下面的数码的个数中,不能用来计算一本书的页数的是( ) (A )534 (B)1998 (C )1999 (D )2010 29. 方程23u v x y z ++++=的非负整数解(),,,,u v x y z 有几组? (A )10 (B)20 (C )24 (D )30 30. 老师问5个学生,昨天晚上你们有几个复习数学了?张:没有人 李:一个人 王:两个人 赵:三个人 刘:四个人老师知道昨天我岸上它们有人复习数学了,也有人没有复习数学,复习了的人说的是真话,那么这5个学生中复习了数学的人数是( ) (A )0 (B)1 (C )2 (D )3 二、填空题31. 已知x 为正整数,设32345175A x x x =+--,若A 为完全平方数,则A 的最小值是 32. 若851-能被20至30之间的两个整数整除,则这两个整数分别是 和 . 33. 已知实数,x y 满足()()222010201020100x x y y +-+--=,则x =y =34. 计算2222222211111111111112233420102011+++++++++⋅⋅⋅+++= 35. 若点P 的坐标(),a b 满足222210160a b a b ab ++++=,则点P 的坐标为 36. 已知:2222,2222,333333,884444,15151010,()a b b ba a+=⨯+=⨯+=⨯⋅⋅⋅+=⨯其中是满足条件的最小正整数,则a = ,b =37. 若关于x 的分式方程()15321m x m x +-=-+无解,则m =38. 当322x ≤≤时,化简231231x x x x +--+---= 39. 若220,,8,a b a b a b ab <<<+=-且则a b a b+-=40. 若1233215,7,xy yz zx kxyz x y z x y z++=++=++=,则实数k= 41. 已知6个数:23453,32,32,32,32,32⨯⨯⨯⨯⨯,其中最多能选出 个数,使得被选出的数种任意两个数的比都不是122或者. 42. 若6,11,6x y z xy yz zx xyz ++=++==,则x y z yz zx xy++= 43. 如果()()32x x a ++-可以因式分解为()()x m x n ++(其中,m n 均为整数),则a 的值是44. 若,a b 是实数,且2292,22a b a b ab +=++=,则ab = 45. 方程()()()111112011122320102011x xxx+++⋅⋅⋅+=+++的解是x =46. 设正整数112,5x y x y ≠+=且满足,则22x y +的值是 47. 已知235422x A B x x x +=+--+,那么22A B += 48. 已知5个互不相同的正整数的平均数是18,中位数25,那么这5个正整数中最大数的最大值是 49. 先阅读材料:若整数a 是整系数方程320x px qx r +++=的解,则 ()2r a a pa q -=++,说明a 是r 因数。

相关文档
最新文档