幂的运算单元测试卷

合集下载

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。

最新北京课改版七年级下册数学《幂的运算》单元测试题及答案.docx

最新北京课改版七年级下册数学《幂的运算》单元测试题及答案.docx

(新课标)京改版七年级数学下册第6章6.2幂的运算测试题一.选择题(共10小题)1.计算(a2)3的结果是()A.a5B.a6C.a8 D.3a2 2.计算(﹣a3)2的结果是()A.﹣a5B.a5C.﹣a6D.a6 3.下列计算正确的是()A.(a2)3=a5B.2a﹣a=2 C.(2a)2=4a D.a•a3=a44.下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=5.下列计算,正确的是()A.x3•x4=x12 B.(x3)3=x6C.(3x)2=9x2 D.2x2÷x=x6.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b37.计算:(ab2)3=()A.3ab2B.ab6C.a3b6D.a3b28.下列运算正确的是()A.3a+4b=12a B.(ab3)2=ab6C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3ab D.x12÷x6=x2 9.下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a510.已知10x=m,10y=n,则102x+3y等于()A.2m+3n B.m2+n2C.6mn D.m2n3二.填空题(共10小题)11.计算:(3x)2= .12.计算(a2)3的结果等于.13.若a2n=5,b2n=16,则(ab)n= .14.若a x=2,a y=3,则a2x+y= .15.若a+3b﹣2=0,则3a•27b= .16.已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是.17.(﹣0.125)2012×82012= .18.若a x=3,则(a2)x= .19.已知2n=3,则4n+1的值是.20.计算:(﹣x3)2•x2= .三.解答题(共5小题)21.计算:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2 (2)a•a3•(﹣a2)3.22.计算:(1)(﹣x)•x2•(﹣x)6 (2)(y4)2+(y2)3•y2.23.已知:26=a2=4b,求a+b的值.24.已知3×9m×27m=316,求m的值.25.已知2x=8y+2,9y=3x﹣9,求x+2y的值.六年级数学下册第6章6.2幂的运算测试题参考答案与试题解析一.选择题(共10小题)1.分析:根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.解答:解:(a2)3=a6.故选:B.2.分析:根据幂的乘方计算即可.解答:解:(﹣a3)2=a6,故选D3.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、(a2)3=a6,故错误;B、2a﹣a=a,故错误;C、(2a)2=4a2,故错误;D、正确;故选:D.4.分析:根据幂的乘方、同底数幂的乘法和同类项合并计算即可.解答:解:A、(a2)5=a10,错误;B、a2•a4=a6,正确;C、3a2b与3ab2不能合并,错误;D、()2=,错误;故选B.5.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,整式的除法的法则,对各选项分析判断后利用排除法求解.2解答:解:A、x3•x4=x7,故错误;B、(x3)3=x9,故错误;C、正确;D、2x2÷x=2x,故错误;故选:C.6.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣2a2b)3=﹣8a6b3.故选B.7.有分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.解答:解:(ab2)3,=a3(b2)3,=a3b6故选C.8.分析:根据同底数幂的除法的性质,整式的加减,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、3a与4b不是同类项,不能合并,故错误;B、(ab3)2=a2b6,故错误;C、正确;D、x12÷x6=x6,故错误;故选:C.9.分析:A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.10.分析:根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘的性质的逆用,计算后直接选取答案.解答:解:102x+3y=102x•103y=(10x)2•(10y)3=m2n3.故选D.二.填空题(共10小题)11.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘计算.解答:解:(3x)2=32•x2=9x2.故填9x2.12.分析:根据幂的乘方,底数不变指数相乘,可得答案.解答:解:原式=a2×3=a6,故答案为:a6.13.分析:根据幂的乘方与即的乘方,即可解答.解答:解:∵a2n=5,b2n=16,∴(a n)2=5,(b n)2=16,∴,∴,故答案为:.14.分析:根据幂的乘方和同底数幂的乘法法则计算即可.解答:解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.15.分析:根据幂的乘方运算以及同底数幂的乘法运算法则得出即可.解答:解:∵a+3b﹣2=0,∴a+3b=2,则3a•27b=3a×33b=3a+3b=32=9.故答案为:9.16.分析:把四个数字的指数化为11,然后比较底数的大小.解答:解:a=255=3211,b=8111,c=6411,d=2511,∵81>64>32>25,∴b>c>a>d.故答案为:b>c>a>d.17.分析:根据积的乘方法则得出a m•b m=(ab)m,根据以上内容进行计算即可.解答:解:(﹣0.125)2012×82012=[(﹣0.125)×8]2012=(﹣1)2012=1,故答案为:1.18.分析:根据(a2)x=(a x)2即可求解.解答:解:(a2)x=(a x)2=32=9.故答案是:9.19.分析:根据4n+1=22n×4,代入运算即可.解答:解:因为4n+1=22n×4,所以把2n=3代入22n×4=9×4=36,故答案为:36.20.分析:先根据幂的乘方计算,再根据同底数幂的乘法计算即可.解答:解:(﹣x3)2•x2=x8.故答案为:x8.三.解答题(共5小题)21.解答:解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.22.解答:解:(1)(﹣x)•x2•(﹣x)6=﹣x9;(2)(y4)2+(y2)3•y2=y8+y8=2y8.23.解答:解:∵26=22b,∴2b=6,∴b=3.又∵26=a2,∴(23)2=a2,∴a=±23=±8.故a+b=8+3=11或a+b=﹣8+3=﹣5.24.解答:解:∵3×9m×27m=3×32m×33m=35m+1=316,∴5m+1=16,∴m=3.25.解答:解:根据2x=23(y+2),32y=3x﹣9,列方程得:,解得:,则x+2y=11.。

幂的运算综合测试卷(含答案)

幂的运算综合测试卷(含答案)

第8章 幂的运算 单元综合卷(B)一、选择题。

(每题3分,共21分)1.31m a +可以写成 ( )A .31()m a +B . 3()1m a +C .a ·a3m D .(m a )21m + 2.下列是一名同学做的6道练习题:①0(3)1-=;②336a a a +=;③5()a -÷3()a -=2a -;④4m 2-=214m;⑤2336()xy x y =;⑥225222+=其中做对的题有 ( ) A .1道 B .2道 C .3道 D .4道3.2013年,我国发现“H 7N 9”禽流感,“H 7N 9”是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012 m ,这一直径用科学记数法表示为 ( )A .1.2×109- mB .1.2×108-m C .12 X 108-m D .1.2×107- m 4.若x 、y 为正整数,且2x ·2y =25;,则x 、y 的值有 ( )A .4对B .3对C .2对D .1对5.若x <一1。

则012x x x --、、之间的大小关系是 ( )A .0x > 2x -> 1x -B .2x ->1x ->0xC .0x >1x ->2x -D ..1x ->2x ->0x6.当x =一6,y =16时,20132014x y 的值为 ( ) A .16 B .16- C .6 D .一6 7.如果(m a ·n b ·b )3=915a b ,那么m 、n 的值分别为 ( )A .m =9,n =一4B .m =3,n =4C .m =4,n =3D .m =9,n =6二、填空题。

(每空2分,共16分)8.将(16)1-、(一2) 0、(一3) 2、一︱-10 ︱这四个数按从小到大的顺序排为 · 9.( )2=42a b ;( )×12n -=223n + 10.若35)x (=152×153,则x = .11.如果43(a )÷25(a )=64,且a <0,那么a = .12.若3n =2,35m =,则2313m n +-的值为 .13.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y .14.如果等式(2a 一1)2a +=1,则a 的值为 .三、解答题。

七年级数学下册幂的运算单元测试卷单元测试卷试题

七年级数学下册幂的运算单元测试卷单元测试卷试题

幂的运算单元测试卷班级__________姓名___________得分____________一、选择题1、以下计算正确的选项是〔 〕A 、x 3+ x 3=x 6B 、x 3÷x 4=x1 C 、(m 5)5=m 10 D 、x 2y 3=(xy)5 2、81×27可以记为〔 〕A 、93B 、36C 、37D 、312 3、a 5可以等于〔 〕A 、〔-a 〕2·(-a)3·B 、(-a)·(-a)4C 、(-a 2)·a3 D 、(-a 3)·(-a 2) 4、假设a m =6,a n =10,那么a m-n 值为〔 〕A 、-4B 、4C 、 53D 、35 5、计算- b 2·〔-b 3〕2的结果是〔 〕A 、-b 8B 、-b 11C 、b 8D 、b 116、连结边长为1的正方形对边中点,可将一个正方形分成四个全等的小正方形,选右下角的小正方形进展第二次操作,又可将这个小正方形分成四个更小的小正方形,……重复这样的操作,那么2021次操作后右下角的小正方形面积是〔 〕A 、20041 B 、〔21〕2021 C 、〔41〕2021 D 、1-〔41〕2021 7、以下运算正确的选项是〔 〕A 、x 3+2x 3=3x 6B 、(x 3)3=x 6C 、x 3·x 9=x27 D 、x ÷x 3=x -2 8、在等式a 2·a 3·( )=a 10中,括号内的代数式应当是〔 〕A 、a 4B 、a 5C 、a 6D 、a 79、 (a 2)3÷(-a 2)2=( )A 、- a 2B 、a 2C 、-aD 、a 10、0.000000108这个数,用科学记数法表示,正确的选项是〔 〕A 、1.08×10-9B 、1.08×10-8C 、1.08×10-7 D 、1.08×10-6 11、假设n 是正整数,当a=-1时,-(-a 2n )2n+1等于〔 〕A 、1B 、-1C 、0D 、1或者-112、计算机是将信息转换成二进制数进展处理的,二进制即“逢2进1”,如〔1101〕2 表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数〔1111〕2转换成十进制形式数是〔 〕A 、8B 、15C 、20D 、30二、填空题7、〔21〕-1= ,〔-3〕-3= , 〔π-3〕0 ,(-21)100×2101= 。

幂的单元测试题及答案

幂的单元测试题及答案

幂的单元测试题及答案一、选择题1. 下列哪个选项不是幂的运算法则?A. \( a^m \cdot a^n = a^{m+n} \)B. \( (a^m)^n = a^{mn} \)C. \( a^m \div a^n = a^{m-n} \)D. \( a^0 = 0 \)2. 如果 \( x \) 为正数,下列哪个表达式的结果不是正数?A. \( x^2 \)B. \( x^3 \)C. \( x^{-1} \)D. \( x^0 \)二、填空题1. 根据幂的乘方运算法则,\( (2^3)^2 \) 等于 ______ 。

2. 根据幂的除法运算法则,\( 81 \div 3^4 \) 等于 ______ 。

三、计算题1. 计算下列表达式的值:(1) \( 2^{10} \)(2) \( 5^{-2} \)(3) \( (3^2)^3 \)四、解答题1. 证明:\( (a^m)^n = a^{mn} \) 成立的条件是什么?五、应用题1. 一个球从 10 米的高度自由落下,每次弹起的高度是前一次的\( \frac{1}{2} \)。

求第三次弹起的高度。

答案:一、选择题1. D2. C二、填空题1. 642. 1三、计算题1. (1) \( 1024 \)(2) \( \frac{1}{25} \)(3) \( 81 \)四、解答题1. 幂的乘方运算法则 \( (a^m)^n = a^{mn} \) 成立的条件是 \( a \) 可以是任何实数,\( m \) 和 \( n \) 都是整数。

五、应用题1. 第一次弹起的高度是 \( 10 \times \frac{1}{2} = 5 \) 米,第二次弹起的高度是 \( 5 \times \frac{1}{2} =2.5 \) 米,第三次弹起的高度是 \( 2.5 \times \frac{1}{2} = 1.25 \) 米。

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。

(完整版)初一数学下册《幂的运算》单元测试卷

(完整版)初一数学下册《幂的运算》单元测试卷

初一数学下册《幂的运算》单元测试卷一、选择题1、下列计算正确的是( )A 、x 2+ x 2=x 4B 、x 3÷x 4=x1 C 、(m 5)5=m 25 D 、x 2y 3=(xy)5 2、81×27可以记为( ) A 、93 B 、36 C 、37 D 、312 3、a 5可以等于( )A 、(-a )2·(-a)3·B 、(-a)·(-a)4C 、(-a 2)·a3 D 、(-a 3)·(-a 2) 4、若a m =6,a n =10,则a m-n 值为( )A 、-4B 、4C 、 53D 、35 5、计算- b 2·(-b 3)2的结果是( ) A 、-b 8 B 、-b 11 C 、b 8D 、b 11 6、连结边长为1的正方形对边中点,可将一个正方形分成四个全等的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成四个更小的小正方形,……重复这样的操作,则2004次操作后右下角的小正方形面积是( )A 、20041 B 、(21)2004 C 、(41)2004 D 、1-(41)2004 7、下列运算正确的是( )A 、x 3+2x 3=3x 6B 、(x 3)3=x 6C 、x 3·x 9=x27 D 、x ÷x 3=x -2 8、在等式a 2·a 3·( )=a 10中,括号内的代数式应当是( )A 、a 4B 、a 5C 、a 6D 、a 79、 (a 2)3÷(-a 2)2=( )A 、- a 2B 、a 2C 、-aD 、a 10、0.000000108这个数,用科学记数法表示,正确的是( )A 、1.08×10-9B 、1.08×10-8C 、1.08×10-7D 、1.08×10-611、若n 是正整数,当a=-1时,-(-a 2n )2n+1等于( )A 、1B 、-1C 、0D 、1或-112、计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2 表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式数是( )A 、8B 、15C 、20D 、30二、填空题(每空3分,共42分) 7、(21)-1= ,(-3)-3= , (π-3)0 ,(-21)100×2101= 。

苏科版七年级数学幂的运算单元测试题及答案

苏科版七年级数学幂的运算单元测试题及答案

《幂的运算》专项测试一、选择题1.当x =一6,y=16时,20132014x y 的值为 ( ) A .16 B .16- C .6 D .一6 2.如果(m a ·n b ·b )3=915a b ,那么m 、n 的值分别为 ( ) A .m =9,n =一4 B .m =3,n=4 C .m =4,n =3 D .m =9,n =63.如果a =(一99)0,b=(一0.1)-1,C=(53-)-2,那么a 、b 、c 的大小关系为 ( ) A .a>c>b B .c>a>b C .a>b>c D .c>b>a4.计算(-2)100+(-2)99所得的结果是 ( )A .一2B .2C .一299D .-2995.计算25m ÷5m 的结果为 ( )A .5B .20C .5mD .20m6.计算(-3)0+(-12)-2÷|-2|的结果是 ( ) A .1 B .-1 C .3 D.98 7.下列等式正确的是( ).A.3(1)1--=B.0(4)1-=C.236(2)(2)2-⨯-=-D.422(5)(5)5-÷-=-8.下列计算正确的是( )A .(a 5)2=a 7B .a 6+a 6=2a 6C .a 5a 2=2a 7 D .a 2(n+1)=a 2n+19.计算(x 2·x n -1·x n +1)3的结果为 ( ) A .x 3n +3 B .x 6n +3 C .x 12n D .x 6n +6 10.如果3a =5,3b =10,那么9a-b 的值为 ( ) A .12 B .14 C .18D .不能确定 二、填空题11.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y .12.如果等式(2a 一1) 2a +=1,则a 的值为 .13.(1)若m a =2,则(3m a )2-4(3a )m = ;(2)若2m =9,3m =6,则621m -= ;14.若(x -10)0=1,则x 的取值范围是 ;15.2+23=22×23,3+38=32×38,4+415=42×415,…,若10+a b =102×a b(a ,b 为正整数),则a+b= ________. 16.若9n ·27n =320,则n =_________.17.若a m =2,则(3a m ) 2-4(a 3) m =____________.18.若实数m 、n 满足22(2016)0m n -+-=,则10m n -+= .19.若0.0000002210a =⨯,则a = . 20.(1)111111791(1)916⎛⎫⎛⎫⨯⨯-= ⎪ ⎪⎝⎭⎝⎭(2)()5.1)32(2000⨯1999()19991⨯-= 三、解答题21.(1)已知5×25m ×125m =516,求m 的值;(2)已知x +3y -2=0,求6x ·216y 的值;(3)已知9m ÷322m +=1()3n,求n 的值;22.已知105a =,106b =,求(1)231010a b +的值; (2)2310a b +的值.23.阅读材料:求l+2+22+32+42+…+22013的值. 解:设S= l+2+22+32+42+…+ 20122+22013 ,将等式两边同时乘2, 得2S=2+22+32+42+52+…+22013+22014. 将下式减去上式,得2S-S=22014一l 即S=22014一l ,即1+2+ 22+32+42+…+22013= 22014一l仿照此法计算: (1)1+3+2333++…+1003(2) 231111222+++…+1001224.已知x 3=m, x 5=n ,用含有m, n 的代数式表示x 14.25阅读下列材料:一般地,n 个相同的因数a 相乘(即n a a a ∙∙∙个)记为a n .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n =b (a>0且a ≠1,b>0),则n 叫做以a 为底b 的对数,记为log n b (即log n b =n ).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).(1)计算以下各对数的值:log 24=_______,log 216=_______,log 264=_______;(2)观察(1)中三数4、16、64之间满足怎样的关系式,log 24、10g 216、log 264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?答案:1.B 2.B 3.A 4.D5.C 6.C 7. B 8.B 9.D 10.B11.6x 12.-2或1或0 13.(1)4 (2)486 14.x ≠10 15.109 16.4 17.4 18. 32 19.7- 20 .(1)-1 (2) -32 21.(1) 3m = (2)36 (3) 2n =22. (1)241 (2)5400 23.(1)101312- (2)101100212-24.m 3n25.(1)2 46 (2)log 264.(3)log a M +log a N =log a ( MN)(a>0且 a≠1,M>0,N>0)。

幂的运算 单元测试卷 (含答案)

幂的运算 单元测试卷 (含答案)

幂的运算 单元测试卷一、选择题1.若a m =12,a n =3,则a m ﹣n 等于( )A .4 B .9 C .15 D .362.在等式a 2×a 4×( )=a 11中,括号里面的代数式应当是( )A .a 3B .a 4C .a 5D .a 63.计算25m ÷5m 的结果是( )A .5 B .20 C .5m D .20m4、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是( )A 、a n 与b nB 、a 2n 与b 2nC 、a 2n+1与b 2n+1D 、a 2n ﹣1与﹣b 2n ﹣15、下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a=a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个6、数学上一般把n aa a a a 个···…·记为( )A .na B .n a + C .n a D .a n7、下列计算不正确的是( )A.933)(a a =B.326)(n n a a =C.2221)(++=n n x xD.623x x x =⋅8、计算()4323b a --的结果是( ) A.12881b a B.7612b a C.7612b a - D.12881b a -二、填空题。

1、计算:x 2•x 3= _________ ;(﹣a 2)3+(﹣a 3)2= _________ .2、若2m =5,2n =6,则2m+2n = _________ .3、①最薄的金箔的厚度为0.000000091m ,用科学记数法表示为 m ; ②每立方厘米的空气质量约为1.239×10﹣3g ,用小数把它表示为 g .4.= ;﹣y 2n+1÷y n+1= ;[(﹣m )3]2= .5.(a+b )2•(b+a )3= ;(2m ﹣n )3•(n ﹣2m )2= .6.( )2=a 4b 2; ×2n ﹣1=22n+3.7.已知:,,,…,若(a ,b 为正整数),则ab= .8、已知102103m n ==,,则3210m n +=____________.三、解答题1、已知3x (x n +5)=3x n+1+45,求x 的值.3、已知2x+5y=3,求4x •32y 的值.2、若1+2+3+…+n=a,求代数式(x n y )(x n ﹣1y 2)(x n ﹣2y 3)…(x 2y n ﹣1)(xy n )的值.4、已知25m •2•10n =57•24,求m 、n .5、已知a x =5,a x+y =25,求a x +a y 的值.6、若x m+2n=16,x n=2,求x m+n的值. 8、比较下列一组数的大小.8131,2741,9617、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式。

幂的运算单元测试卷(含答案)(2)(最新整理)

幂的运算单元测试卷(含答案)(2)(最新整理)

幂的运算 单元测试卷一、选择题1.若a m =12,a n =3,则a m﹣n 等于( )A .4B .9C .15D .362.在等式a 2×a 4×( )=a 11中,括号里面的代数式应当是( )A .a 3B .a 4C .a 5D .a 63.计算25m ÷5m 的结果是( )A .5B .20C .5m D .20m4、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是( )A 、a n 与b nB 、a 2n 与b 2nC 、a 2n+1与b 2n+1D 、a 2n﹣1与﹣b 2n﹣15、下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a)6•(﹣a)3•a=a 10;③﹣a 4•(﹣a)5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个6、数学上一般把记为( )A . B . C . D .n a a a a a 个···…·na n a +n a an 7、下列计算不正确的是( )A. B. C. D.933)(a a =326)(n n a a =2221)(++=n n x x 623x x x =⋅8、计算的结果是( ) A. B. C. D.()4323b a --12881b a 7612b a 7612b a -12881b a -二、填空题。

1、计算:x 2•x 3= _________ ;(﹣a 2)3+(﹣a 3)2= _________ .2、若2m =5,2n =6,则2m+2n = _________ .3、①最薄的金箔的厚度为0.000000091m ,用科学记数法表示为 m ;②每立方厘米的空气质量约为1.239×10﹣3g ,用小数把它表示为 g .4.= ;﹣y 2n+1÷y n+1= ;[(﹣m)3]2= .5.(a+b )2•(b+a )3= ;(2m﹣n)3•(n﹣2m)2= .6.( )2=a 4b 2; ×2n﹣1=22n+3.7.已知:,,,…,若(a ,b 为正整数),则ab= .8、已知则____________.102103m n ==,,3210m n +=三、解答题1、已知3x (x n +5)=3x n+1+45,求x 的值.3、已知2x+5y=3,求4x •32y 的值.2、若1+2+3+…+n=a ,求代数式(x n y )(x n﹣1y 2)(x n﹣2y 3)…(x 2y n﹣1)(xy n )的值.4、已知25m •2•10n =57•24,求m 、n .5、已知a x =5,a x+y =25,求a x +a y 的值.6、若x m+2n =16,x n =2,求x m+n 的值. 8、比较下列一组数的大小.8131,2741,9617、已知10a =3,10β=5,10γ=7,试把105写成底数是10的幂的形式。

幂的运算 单元测试卷

幂的运算 单元测试卷

幂的运算单元测试卷幂的运算单元测试卷一、选择题(每题3分,共24分)1.下列运算正确的是()A。

a5·a2=a10B。

(a2)4=a8C。

a6÷a2=a3D。

a3+a5=a82.若am=2,an=3,则am+n等于()A。

5B。

6C。

8D。

93.在等式a3·a2·()=a11中,括号里面代数式应当是()A。

a7B。

a8C。

a6D。

a34.生物具有遗传多样性,遗传信息大多储存在DNA分子上。

一个DNA分子的直径约为0.xxxxxxx cm,这个数用科学记数法可表示为()A。

2×106cmB。

2×106cmC。

2×107cmD。

2×107cm5.下列计算中,正确的是()A。

103=0.001B。

103=0.003C。

103=-0.001D。

103=-0.0036.下列四个算式:(-a)3·(-a2)3=-a7;(-a3)2=-a6;(-a3)3÷a4=a2;(-a)6÷(-a)3=-a3.其中正确的有()A。

1个B。

2个C。

3个D。

4个7.若ambn)3=a9b15,则m、n的值分别为()A。

9,5B。

3,5C。

5,3D。

6,128.若a=(-1/π),b=(-2/3),c=0.81,则a、b、c三数的大小关系是()A。

a<b<cB。

a>b>cC。

a>c>bD。

无法比较大小关系二、填空题(每题3分,共24分)9.计算:(-x2)4=(x^8)。

10.计算:(-2/3)^(4/3)×(4/3)^(-2/3)×(4/3)^(1/3)×(x/3)^(-2) =(-8/27x^2)。

11.氢原子中电子和原子核之间的距离为0.xxxxxxxx529 cm。

用科学记数法表示这个距离为5.29×10^-9 cm。

12.(a+b)2·(b+a)3=(a+b)^5;(2m-n)3·(n-2m)2=-27(m-n)^5.13.科学家研究发现,由于地球自转速度变缓,因此现在每年(按365天计算)大约延长了0.5 s,平均每天延长0.0014 s。

第八章幂的运算单元基础测试卷(含答案)-精品

第八章幂的运算单元基础测试卷(含答案)-精品

第八章幂的运算单元基础测试卷(含答案)-精品2020-12-12【关键字】问题、发现、基础、关系、解决(60分钟,满分100分)一、填空题(6题,每题3分,共18分)1.计算:(1)x 3·x 4=_______; (2) x n ·x n -1 =_______;(3)(—m )5·(—m )·m 3=_______; (4)(x 2)3÷x 5=_______.2.计算:(1)4()3xy -·(—3x 2y )2=_______; (2)(π-)0+2-2=________.3.氢原子中电子和原子核之间的距离为0.00000000529厘米.用科学记数法表示这个距离为_______厘米.4.若a x =2,则a 3x =_______.5.若3n =2,3m =5,则32m +3n -1=_______.6.计算:2013201252()(2)125-⨯=__________. 二、选择题(6题,每题3分,共18分)7.在下列四个算式:(—a )3·(—a 2)2=—a 7,(—a 3)2=—a 6,(—a 3)3÷a 4=a 2,(—a )6÷(—a )3=—a 3,正确的有 ( )A .1个B .3个C .2个D .4个8.若(a m b n )3=a 9b 15,则m 、n 的值分别为 ( )A .9;5B .3;5C .5;3D .6;129.[—(-x )2]5= ( )A .—x 10B .x 10C .x 7D .—x 710.若a =—0.32,b =—3-2,c =21()3--,d =01()5-,则 ( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b11.已知| x | =1,|y |=12,则(x 20)3—x 3y 2等于 ( ) A .34-或54-B .34或54C .34D .54- 12.如果等式(2a —1)a +2=1成立,则a 的值可能有 ( )A .4个B .1个C .2个D .3个三、解答题(8题,共64分)13.(本题8分)计算:2(x 3)4+x 4(x 4)2+x 5·x 7+x 6(x 3)2.14.(本题8分)计算:(—2×1012)÷(—2×103)3÷(0.5×102)2.15.(本题8分)计算:—10—2—1×3—1×[2—(—3)2].16.(本题8分)已知83=a 9=2b 求222111()()2()5525a b a b b a b -++-+的值. 17.(本题8分)我们知道:因为4<5,所以4n <5n (n 为正整数),用你所学过的知识来比较3108与2144的大小关系?18.(本题6分)厂次数学兴趣小组活动中,同学们做了一个找朋友的游戏:有六个同学A 、B 、C 、D 、E 、F 分别藏在六张大纸牌的后面,如图所示,A 、B 、C 、D 、E 、F 所持的纸牌的前面分别写有六个算式:66;63+63;(63) 3;(2×62)×(3×63);(22×32) 3;(64) 3÷62.游戏规定:所持算式的值相等的两个人是朋友.如果现在由同学A 来找他的朋友,他可以找谁呢?说说你的看法.19.(本题6分)有一句谚语说:“捡了芝麻,丢了西瓜.”意思是说有些人办事只抓一些无关紧要的小事,却忽略了具有重大意义的大事.据测算,5万粒芝麻才200克,你能换算出1粒芝麻有多少克吗?可别“占小便宜吃大亏”噢!(把你的结果用科学记数法表示)20.(本题12分)阅读下列一段话,并解决后面的问题.观察下面一列数:l ,2,4,8,…我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比.(1)等比数列5,一15,45,…的第4项是_______;(2)如果一列数a 1,a 2,a 3,…是等比数列,且公比是q ,那么根据上述规定有21a q a = 32a q a =,43a q a =,…所以a 2=a 1q ,a 3=a 2q =a 1q ·q =a 1q 2,a 4=a 3q =a 1q 2·q =a 1q 3, … 则a n =______;(用a 1与q 的代数式表示)(3)一个等比数列的第2项是10,第3项是20,求它的第1项和第4项.参考答案一、填空题1.(1)x 7 (2)x 2n -1 (3)m 9 (4)x2.(1)—12x5y3(2)5 43.5.29×10-94.8 5.20036.512二、选择题7.C 8.B 9.A 10.B 11.B 12.D 三、解答题13.【解】原式=5x1214.【解】原式=1 1015.原式=1 616.原式=一6417.19.4×10-3(克)20.(1)一135 (2)a l·q n-1(3)第一项是5,第二项是40。

幂的运算练习题

幂的运算练习题

幂的运算练习题1. 计算下列各题:- (-3)^3- (-2)^2- 5^0- (-1)^(-2)2. 判断下列说法是否正确:- 任何数的0次幂都等于1- 负数的偶次幂是正数- 负数的奇次幂是负数3. 求下列表达式的值:- (3x)^2- (-2y)^3- (-3x^2)^(-1)4. 计算下列幂的运算:- (2a)^3- (3b^2)^(-1)- (4c^3)^(1/2)5. 根据幂的运算法则,计算下列表达式:- (2^3)^2- (3^2)^3- (x^2)^(-3)6. 判断下列幂运算的符号:- (-2)^4- (-3)^5- (-5)^67. 将下列表达式简化:- (2x)^4- (3y^2)^3- (-4z)^28. 根据幂的运算法则,计算下列表达式的值:- (2^2)^3- (3^3)^2- (x^3)^49. 计算下列复合幂的值:- (2^3) * (2^4)- (3^2) / (3^5)- (x^2) * (x^3)10. 根据幂的运算法则,将下列表达式转换为最简形式: - (2^3) * (2^3)- (3^2) / (3^2)- (x^3) / (x^2)11. 判断下列表达式是否等于1:- (-2)^(-1)- (-3)^0- (2^2)^(-1)12. 根据幂的运算法则,计算下列表达式的值:- (2^2) * (2^3)- (3^3) / (3^4)- (x^4) / (x^2)13. 计算下列表达式的值:- (-3)^(-2)- (-2)^(-3)- (-1)^(-1)14. 根据幂的运算法则,将下列表达式转换为最简形式: - (2^3) / (2^2)- (3^4) / (3^3)- (x^5) / (x^3)15. 计算下列复合幂的值:- (2^2)^(-1)- (3^3)^(-2)- (x^4)^(-3)16. 判断下列表达式是否为0:- 2^0- (-3)^0- (-2)^(-1)17. 计算下列表达式的值:- (2x^2)^3- (3y^3)^2- (-4z^4)^(-1)18. 将下列表达式简化:- (2^2 * 3^2)^2- (x^2 * y^2)^3- (-3^2 * 2^3)^(-1)19. 根据幂的运算法则,计算下列表达式的值: - (2^3 * 3^2)^2- (x^2 * y^3)^3- (-3^2 * 2^3)^(-2)20. 计算下列表达式的值,并简化:- (2^3 * 3^2) / (2^2 * 3^3)- (x^2 * y^3) / (x^3 * y^2)- (-3^2 * 2^3) / (-3^3 * 2^2)。

苏科版七年级下册幂的运算单元检测2份1

苏科版七年级下册幂的运算单元检测2份1

第八章幂的运算测试姓名: 得分: ( 总分:100分;时间:100分钟)一、选择题(每小题2分,共16分)1.下列各式中错误的是( )A.()[]()623y x y x -=- B.84216)2(a a =- C.363227131n m n m -=⎪⎭⎫⎝⎛- D.6333)(b a ab -=-2.若2=ma,3=n a ,则n m a +等于 ( )A.5B.6C.8D.9 3.在等式⋅⋅23a a ( )11a =中,括号里填入的代数式应当是 ( )A.7aB.8aC.6aD.3a 4.计算mm 525÷的结果为 ( )A.5B.20C.m 5D.m20 5. 下列4个算式中,计算错误的有 ( )(1)()()-=-÷-24c c 2c (2)336)()(y y y -=-÷-(3)33z z z =÷(4)44a a a m m =÷A.4个B.3个C.2个D.1个6.如果(),990-=a ()11.0--=b ,235-⎪⎭⎫⎝⎛-=c ,那么c b a ,,三数的大小为( )A.c b a >>B.b a c >>C.b c a >>D.a b c >>7.计算3112)(n n x x x +-⋅⋅的结果为( )A.33+n xB.36+n x C.nx12 D.66+n x8.已知 n 是大于1的自然数,则 ()()11+--⋅-n n c c 等于 ( )A.()12--n c B.nc 2- C.nc 2- D.nc2二、填空题(每题3分,共30分)9.最薄的金箔的厚度为 m 000000091.0,用科学记数法表示为 m ;10.()=-⋅⎪⎭⎫⎝⎛n n221 ;=÷-++112n n y y ;=-23])[(m . 11.=+⋅+32)()(a b b a ;=-⋅-23)2()2(m n n m ;(-21)100×2101= 。

2019-2020年七年级下第八章《幂的运算》单元综合测试卷含答案.docx

2019-2020年七年级下第八章《幂的运算》单元综合测试卷含答案.docx

2019-2020 年七年级下第八章《幂的运算》单元综合测试卷含答案一、选择题 (每小题 3 分,共 24 分)1.已知空气的单位体积质量为 1.24 ×10-3 g/cm 3,1.24 ×10-3 用小数表示为 ()A.0.000124B. 0.0124C. 0.00124D. 0.001242.下列各式 : ① a 2 n ga na 3 n ;② (xy 2 )3 x 3 y 6 ;③ 4m 21 2 ;④ ( 3)0 1 ;⑤4m( a)2 g( a)3a 5 .其中计算正确的有 ()A.4 个B.3 个C.2个D.1个3.如果 a( 99) 0 , b( 0.1) 1 , c ( 5 ) 2 ,那么 a , b , c 的大小关系为 ()3A. a c bB. c a bC. a b cD. c b a4.计算 ( 2)100 ( 2)99 所得的结果是 ()A.2B. 2C. 299D.2995.9m32m 2( 1)n , n 的值是 ()3A.2B. 2C. 0.5D.0.56.下列各式 : ① a 5 g[( a)2 ]3 ;② a 4 g( a)3 ;③ ( a 2 )3 g( a 3 )2;④ [( a)4 ]3 . 其中计算结果为a 12 的有 ()A. ①和③B. ①和②C.②和③D. ③和④7.a999, b119,则 a , b 的大小关系是 ()999 990A. abB. a bC. abD. 以上都不对8.定义这样一种运算 :a N ( a 0, N 0),那么b就叫做以 a 为底的 N的对数,如果 b记作 blog a N .例如 :因为 23 8 ,所以 log 2 8 3 ,那么 log 3 81 的值为 ()A. 27B. 9C. 3D. 4二、填空题 (每小题 2 分,共 20 分)9.计算 :( 2)3; x 3 gx 2; aga 7 a 4 ( a)4;(xy)5 g( y x)3.10. 若 a , b 为正整数,且 2a3b 3,则 9a g27b 的值为;若 3m 2 , 3n 5 ,则 3m n.11. 若 a2n25 , b 2 n 16 ,则 (ab) n;若 22 822n ,则 n 的值为.12. (1) 若 9n g27n320 ,则 n;(2) 若 x4 y 3 0,则 2x g16 y.13. (1) 若 a m2 ,则 (3a m )2 4( a 3) m ;(2) 若 2m9 , 3m6 ,则 62m 1.14. 某种电子元件的面积大约为0. 000 000 7 mm 2,用科学记数法表示该数为.15. 设 x 3m, y27m 1 ,用 x 的代数式表示 y 是.16. 计算 :(5 ) 2015 (2 2) 2016;125(2 103 )2 (3 103 ).( 结果用科学记数法表示 )17.已知实数 a , b满足 a b 2, ab 5 , (a b)3g(a b)3的值是.则18. 已知 a255 ,b 344,c433 ,d 522,则这四个数从大到小排列顺序是 .三、解答题 (共 56 分 )19. (12 分 )计算 :(1) ( x)gx 2 g( x)6 ;(2) ( 2x 2 ) 3 x 2 gx 4 ( 3x 3 )2(3) t 3 g( t )4 ( t )5(4) ( 1)20152 1(3) 2 ( 3.14) 02(5)( 0.25)14 230(6) 2( x3)2gx3(4 x3 )3( 3x) 4 gx520. ( 4 分 )已知n为正整数,且x m 2 , x n3(1)求x2m 3 n的值 ;(2)(2 x n )2 (x2 ) 2n的值21. ( 6 分 )已知2x3, 2y 5 .求:(1)2x y的值;(2)23 x的值(3)22 x y 1的值22. (6 分)(1) 已知3 9m27m316,求 m 的值.(2) 已知x2m 3 ,求 (2 x3 m) 2(3 x m )2的值.23. (4 分 )已知a m 2 , a n 4 , a k32(a0)(1)求 a3m 2 n k的值;(2)求k3m n 的值.24. (6分)(1) 已知10a 5 , 10b6,求102 a 3 b的值 .(2) 已知2x 5 y 30 ,求 4x g32 y的值.(3) 已知(32)n(4)n33,求 n 的值.2439825. (6 分)(1) 已知 2m g4m26 ,求 ( m 2 )6 (m 3 gm 2 )m 的值 .(2)先化简,再求值 : ( 2a)3 g( b 3 )2( ab 2 )3 ,其中 a1 , b 2226. (6分)(1)你发现了吗 ? (2) 222 ,(2) 21 113 3 由上述计算,我们发现33332 2222 2( )33(2)2(3) 2; 332(5)3 与 ( 4) 3之间的关系(2) 仿照 (1) ,请你通过计算,判断4 5(3) 我们可以发现: ( b) m( a)m (ab 0)ab(4)计算:(7)2( 7)215527. (6分)m11)n92)m n2)3 n (1)已知2, (,求 (1 x(1 x的值163(2)已知122232⋯ +n21n(n 1)(2n 1) ,试求 224262⋯ 502的值6参考答案一、 1.D 2. B 3. A 4. C5.B6. D7. A8. D二、 9.8x52a8( x y)810.271011.201112.(1)4(2)813.(1)4(2)48614.7 10715.y 27x316.12 1.21010517.100018. b c a d三、 19. (1)原式x3 gx6x9(2)原式8x6x69x616x6(3)原式t 3 gt 4(t5 )t 2(4)原式11411 2918(5)原式(1)14415(14)14 4 444(6)原式2x964x981x919x920. ( 1)x2 m 3n x2m gx3n( x m ) 2 g( x n )32233427108( 2)(2 x n)2( x2 )2 n4x2n x4n4( x n ) 2(x n ) 44 32344521. ( 1)2x y2x g2y35 15( 2)23 x(2 x ) 33327( 3) 22 x y 122 x2 y 2 (2 x ) 2 2y2 32 5 291022. ( 1)因为 3 32m33m316 ,所以 1 2m 3m 16解得 m 15( 2) (2 x 3 m ) 2 (3x m )24( x 2 m )3 9x 2m4 39 3 8 1323. ( 1) a 3 m 2n ka 3 m ga 2na k(a m )3 g(a n )2 a k23 42 324( 2 ) 因 为 a k 3 m na k a 3 m a n 32 234 1, 易 知 a 0 , 且 a1,所以k 3m n 024. ( 1) 102a3b (10a ) 2 g(10b )3 52 635400( 2) 4x g32 y 22 x g25 y 22 x5 y23 8( 3)因为 (32)n( 4 )n3324398所以 ( 2)5n( 2 )2n (2) 3 333所以 5n 2n3 , n 125. ( 1 ) 因 为 2m g4m26,即2m g22m 26 , 所 以 3m6 , m2.所以( m 2 ) 6 m(g 3 m m2 ) m 12m1 0m 4( 2) ( 2a)3 g( b 3 )2 ( ab 2 )3( 8a 3 )b 6 ( a 3b 6 ) 7a 3b 6当 a1 , b2 时2原式7( 1)32656226. ( 1)(2)因为 (5)35 5 5 , 44 4 4(4) 3 1 11 1 5 5 55(4 34 4 44 4 4)5 555所以 ( 5)3(4) 345( 3) (4)(7)2(7)2(15)2 (7)2(15 7 )2915575 7527. ( 1) (1x 2 ) m n(1x 2 )3 n (1x 2 )m n 3n (1 x 2 )m 2 n因为 2m1 2 4 , (1)n9 (1)21633所以 m 4 , n2所以原式 (1 x 2 ) 4 41(2)122222 22 32 22⋯ 252 2222(12 22 32 ⋯ 252)1 4 25 26 51 221006。

幂的运算单元测试题

幂的运算单元测试题

幂的运算检测题 姓名一、选择题(每小题3分,共24分) 1.下列各式中错误的是( )()[]()623y x y x -=- 84216)2(a a =-363227131nm n m -=⎪⎭⎫⎝⎛-6333)(b a ab -=-2.若2=ma,3=na ,则nm a+等于 ( )A.5B.6C.8D.9 3.在等式⋅⋅23a a( )11a =中,括号里填入的代数式应当是 ( )A.7a B.8a C.6a D.3a 4. 计算9910022)()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.992 5. 下列4个算式中,计算错误的有 ( )()()-=-÷-24c c 2c336)()(yy y -=-÷-33z z z =÷ 44a a a mm=÷ A.4个 B.3个 C.2个 D.1个6.如果(),990-=a()11.0--=b ,235-⎪⎭⎫ ⎝⎛-=c ,那么c b a ,,三数的大小为( )A.c b a >>B.b a c >>C.b c a>> D.a b c >>7.计算3112)(n n x x x +-⋅⋅的结果为( )A.33+n xB.36+n xC.nx12 D.66+n x8.已知 n 是大于1的自然数,则()()11+--⋅-n n c c 等于( )A.()12--n c B.nc 2- C.n c 2- D.n c 2二、填空题(每空2分,共22分)9.最薄的金箔的厚度为m 000000091.0,用科学记数法表示为 m ;10.()=-⋅⎪⎭⎫ ⎝⎛nn221 ;=÷-++112n n y y ;=-23])[(m .11.=+⋅+32)()(a b b a ;=-⋅-23)2()2(m n n m .12.( )242b a =; 32122+-=⨯n n .13.若2,xa =则3x a = .14.计算:20072006522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭= .15.,=+,,15441544833833322322222⨯⨯=+⨯=+··· 若bab a ⨯=21010+(b a 、为正整数),则 =+b a .三、解答题(共54分)16.计算(每小题3分,共21分):(1)3223)()(a a -⋅-(2)543)()(t t t -⋅-⋅-(3)234)()()(q p p q q p -⋅-÷-(4)23)3()()3(a a a -⋅---(5)022)14.3(3)2(4π-÷----(6) ()()2302559131-÷-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--(7) ()5.1)32(2000⨯1999()19991-⨯17.(5分)先化简,再求值:32233)21()(ab b a-+-⋅,其中441==b a ,.18.(5分)已知 1632793=⨯⨯m m,求m 的值.19.(5分)已知2x +5y -3=0,求y x324∙的值.20.(5分)已知a m =2,a n =3,求a 2m-3n的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算单元测试卷
班级__________姓名___________得分____________
一、选择题
1、下列计算正确的是( )
A 、x 3+ x 3=x 6
B 、x 3÷x 4=x
1 C 、(m 5)5=m 10 D 、x 2y 3=(xy)5 2、81×27可以记为( )
A 、93
B 、36
C 、37
D 、312
3、a 5可以等于( )
A 、(-a )2·(-a)3·
B 、(-a)·(-a)4
C 、(-a 2)·a 3
D 、(-a 3)·(-a 2)
4、若a m =6,a n =10,则a m-n 值为( )
A 、-4
B 、4
C 、 5
3 D 、35 5、计算- b 2·(-b 3)2的结果是( )
A 、-b 8
B 、-b 11
C 、b 8
D 、b 11
6、连结边长为1的正方形对边中点,可将一个正方形分成四个全等的小正方形,选右下
角的小正方形进行第二次操作,又可将这个小正方形分成四个更小的小正方形,……重复
这样的操作,则2004次操作后右下角的小正方形面积是( )
A 、
20041 B 、(2
1)2004 C 、(41)2004 D 、1-(41)2004 7、下列运算正确的是( )
A 、x 3+2x 3=3x 6
B 、(x 3)3=x 6
C 、x 3·x 9=x 27
D 、x ÷x 3=x -2
8、在等式a 2·a 3·( )=a 10中,括号内的代数式应当是( )
A 、a 4
B 、a 5
C 、a 6
D 、a 7
9、 (a 2)3÷(-a 2)2=( )
A 、- a 2
B 、a 2
C 、-a
D 、a
10、0.000000108这个数,用科学记数法表示,正确的是( )
A 、1.08×10-9
B 、1.08×10-8
C 、1.08×10-7
D 、1.08×10-6
11、若n 是正整数,当a=-1时,-(-a 2n )2n+1等于( )
A 、1
B 、-1
C 、0
D 、1或-1
12、计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2 表
示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数
(1111)2转换成十进制形式数是( )
A 、8
B 、15
C 、20
D 、30
二、填空题(每空3分,共42分)
7、(
2
1)-1= ,(-3)-3= , (π-3)0 ,(-21)100×2101= 。

8、0.0001=10( ),3.01×10-5= (写成小数)。

9、x 2·( )=x 6, x 2·x 3-x 6÷x=
(m 2)3÷(m 3)2= 。

10、比较大小:233 322(填>、=、<) 。

11、32÷8n-1=2n ,则n=
12、如果x+4y-3=0,那么2x ·16y =
13、一个长方体的长、宽、高分别为a 2,a ,a 3,则这个长方体的体积是 。

14、一种花粉的直径约为35微米,这种花粉的直径约为 米。

15、(-43)-2= ,8
1=( )-3。

16、[(a 4)3]2= a 6=( )3,-(2ab 2)3= 。

17、(-y)5×(-y)4×(-y)3= , x 10÷(x 4÷x 2)= 。

18、已知4x =2x+3,则x= 。

19、已知a m =2,a n =3,则a m+n = ,a m-n = 。

20、三个数(-31)-2,(-2
1)-3,(-1)0中最大的是 ,最小的是 。

21、一列数按以下规律排列1,2,4,8,16,……,则第2004个数是 。

22、计算机在1秒时间内可完成200万次存储,则计算机完成一次存储的时间为 秒。

三、解答题(15、16每小题6分,17、18每小题8分,共40分)
23、计算
(1)(
4
1)0×4-2
(2)(4×106)×(-
2
1×10-3)
24、计算
(1)(m-n )2·(n-m )3·(n-m)4 (2) (b 2n )3 (b 3)4n ÷(b 5)n+1
(3)(a 2)3-a 3·a 3+(2a 3)2 ; (4) (-4a m+1)3÷[2(2a m )2·a]
(5) (
1001×991×981×……×31×21×1)200×(100×99×98×……×3×2×1)200
25、已知a x =21,b k =-31,求3
1 (a 2)x ÷(b 3)k 的值。

26、请看下面的解题过程:
“比较2100与375大小,解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375”。

请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法。

思考题:
(1)今天是星期日,若明天算第1天,则第13+23+33+…+20023天是星期几?
(2)将一张长方形的纸对折,可得到一条折痕。

继续对折,对折时每次折痕与上次折痕保持平行,连续对折4次有多少条折痕?10次呢? n 次呢?。

相关文档
最新文档