多元函数微分法及其应用 ppt课件
合集下载
多元函数微分学的几何应用ppt课件
9.6 多元函数微分学的几何应用
2. 空间曲线的方程为 两个柱面 的交线
x
设曲线直角坐标方程为
x0 y y0 z z0
y z
y( x) ,
z( x)
x(t0 ) y(t0 ) z(t0 )
x x
令
x为参数,
曲线的参数方程是
y
y(
x)
z z( x) 由前面得到的结果, 在M(x0, y0, z0)处,
5
9.6 多元函数微分学的几何应用
(3)向量值函数的图像
设向量 r 的起点在坐标原点,则终
点M随t的改变而移动,点M的轨迹 Γ
称为向量值函数 r=f(t) 的终端曲 x
线,也称为该函数的图像,记作Γ
反过来,向量值函数
z
•M
rf
(t)
o
y
r f (t) ( f1(t), f2 (t), f3 (t))
f (2) (4,4,2), f (2) 42 42 22 6.
所求单位切向量一个是:(4,4,2) 2 , 2 , 1 6 3 3 3
另一个是: 2 , 2 , 1
其指向与t的增长方向一致
3 3 3 其指向与t的增长方向相反
16
9.6 多元函数微分学的几何应用
二、空间曲线的切线与法平面
lim
t t0
f
(t)
r0
7
9.6 多元函数微分学的几何应用
说明 设 f (t) ( f1(t), f2(t), f3(t))
r 0 (m, n, p),
则lim f (t) t t0
r0
lltt iimmtt00
f1(t) f3(t)
m,
多元函数微分法 PPT课件
x
y
z f [u( x, y), x, y]
z
x
y
z f u f , x u x x
两者的区别
变而对 x 的偏导数
z f u f . y u y y
把 z f (u, x, y) 中 的 u 及 y
把复合函数 z f [(x, y), x, y] 中的 y 看作不 看作不变而对 x 的
的偏导数都存在,函数在 z f (u, v) 对应点 (u, v) 可微,则 复合函数 z f [ ( x, y), ( x, y)] 在点 ( x, y ) 处存在对 x 、 y 的偏导数,且
z z u z v , x u x v x
z z u z v . y u y v y
z z u z v v 1 v vu x u ln u 1 y u y v y
xy(1 xy)
y
y 1
(1 xy) ln(1 xy)
y
xy (1 xy) [ ln(1 xy)] 1 xy
医用高等数学
推论:
”
医用高等数学
医用高等数学
第三节
多元函数微分法
一、复合函数微分法
二、隐函数微分法
医用高等数学
一、复合函数微分法
我们知道 : 如果函数u ( x )在点 x处可导 , 而 y f ( u)在 x点对应u处可导 , 则复合函数 y f [ ( x )] 在点 x处可导, 且其导数为
u
z
v
x
医用高等数学
全导数
例4-24 设 z e
u 2v
3 u sin x v x , 而 , ,求
多元函数微分学的几何应用.ppt
x1 y 1 z 1 , 123 法平面方程为
(x1)2(y1)3(z1)0ቤተ መጻሕፍቲ ባይዱ 即x2y3z6
首页
上页
返回
下页
结束
铃
曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
讨论:
1 若曲线的方程为y(x), z(x), 则切向量T?
2 若曲线的方程为F(x, y, z)0, G(x, y, z)0, 则切向量T? 提示:
(t0)(xx0)(t0)(yy0)(t0)(zz0)0
首页
上页
返回
下页
结束
铃
曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
例1 求曲线xt, yt2, zt3在点(1, 1, 1)处的切线及法平面 方程
解 点(1, 1, 1)所对应的参数t1 因为 xt1, yt2t, zt3t2, 所以切向量为T(1, 2, 3) 于是, 切线方程为
2dyddyxdzddxz11 dx dx
(x1)0(y2)(z1)0, 即 xz0
首页
上页
返回
下页
结束
铃
二、曲面的切平面与法线
设M0(x0, y0, z0)是曲面: F(x, y, z)0上的一点, 是曲面 上过点M0的任意一条曲线, 其参数方程为
x(t), y(t), z(t),
tt0对应于点M0(x0, y0, z0) 因为曲线在曲面上, 所以有
F[(t),(t),(t)]0
等式的两边在tt0点求全导数得
Fx(x0, y0, z0)(t0)Fy(x0, y0, z0)(t0)Fz(x0, y0, z0)(t0)0
(x1)2(y1)3(z1)0ቤተ መጻሕፍቲ ባይዱ 即x2y3z6
首页
上页
返回
下页
结束
铃
曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
讨论:
1 若曲线的方程为y(x), z(x), 则切向量T?
2 若曲线的方程为F(x, y, z)0, G(x, y, z)0, 则切向量T? 提示:
(t0)(xx0)(t0)(yy0)(t0)(zz0)0
首页
上页
返回
下页
结束
铃
曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
例1 求曲线xt, yt2, zt3在点(1, 1, 1)处的切线及法平面 方程
解 点(1, 1, 1)所对应的参数t1 因为 xt1, yt2t, zt3t2, 所以切向量为T(1, 2, 3) 于是, 切线方程为
2dyddyxdzddxz11 dx dx
(x1)0(y2)(z1)0, 即 xz0
首页
上页
返回
下页
结束
铃
二、曲面的切平面与法线
设M0(x0, y0, z0)是曲面: F(x, y, z)0上的一点, 是曲面 上过点M0的任意一条曲线, 其参数方程为
x(t), y(t), z(t),
tt0对应于点M0(x0, y0, z0) 因为曲线在曲面上, 所以有
F[(t),(t),(t)]0
等式的两边在tt0点求全导数得
Fx(x0, y0, z0)(t0)Fy(x0, y0, z0)(t0)Fz(x0, y0, z0)(t0)0
《多元函数的微积分》课件
最优化问题
在资源分配和生产计划中,多元函数微积分可以用于求解最优化问 题,例如最大化利润或最小化成本等。
风险评估
在金融学中,多元函数微积分可以用于评估投资风险和回报,以及 制定风险管理策略。
THANKS
感谢观看
多元函数的定义域
函数中各个自变量可以取值的范围。例如,对于函数z = f(x, y),其定义域是x和y的所有可能取值的集合。
多元函数的值域
函数中因变量可以取值的范围。例如,对于函数z = f(x, y) ,其值域是z的所有可能取值的集合。
多元函数的几何意义
平面上的曲线
对于二元函数z = f(x, y),其图像 在二维平面上表现为一条曲线。 例如,函数z = x^2 + y^2表示 一个圆。
体积计算
通过多元函数微积分,可以计算出由曲面围成的三维空间的体积 ,这在工程和科学领域中具有广泛的应用。
曲线积分
在几何学中,曲线积分是计算曲线长度的一种方法,而多元函数 微积分可以提供更精确和更高效的计算方法。
多元函数微积分在物理上的应用
力学分析
在分析力学中,多元函数微积分 被广泛应用于解决质点和刚体的 运动问题,例如计算物体的速度 、加速度和力矩等。
三维空间中的曲面
对于三元函数z = f(x, y, z),其图 像在三维空间中表现为一个曲面 。例如,函数z = x^2 + y^2表 示一个球面。
多元函数的极限与连续性
多元函数的极限
当自变量趋近于某个值时,函数值的趋近值。例如,lim (x, y) → (0, 0) (x^2 + y^2) = 0,表示当(x, y)趋近于(0, 0)时,函数x^2 + y^2的值趋近于0。
《多元函数的微积分》 ppt课件
在资源分配和生产计划中,多元函数微积分可以用于求解最优化问 题,例如最大化利润或最小化成本等。
风险评估
在金融学中,多元函数微积分可以用于评估投资风险和回报,以及 制定风险管理策略。
THANKS
感谢观看
多元函数的定义域
函数中各个自变量可以取值的范围。例如,对于函数z = f(x, y),其定义域是x和y的所有可能取值的集合。
多元函数的值域
函数中因变量可以取值的范围。例如,对于函数z = f(x, y) ,其值域是z的所有可能取值的集合。
多元函数的几何意义
平面上的曲线
对于二元函数z = f(x, y),其图像 在二维平面上表现为一条曲线。 例如,函数z = x^2 + y^2表示 一个圆。
体积计算
通过多元函数微积分,可以计算出由曲面围成的三维空间的体积 ,这在工程和科学领域中具有广泛的应用。
曲线积分
在几何学中,曲线积分是计算曲线长度的一种方法,而多元函数 微积分可以提供更精确和更高效的计算方法。
多元函数微积分在物理上的应用
力学分析
在分析力学中,多元函数微积分 被广泛应用于解决质点和刚体的 运动问题,例如计算物体的速度 、加速度和力矩等。
三维空间中的曲面
对于三元函数z = f(x, y, z),其图 像在三维空间中表现为一个曲面 。例如,函数z = x^2 + y^2表 示一个球面。
多元函数的极限与连续性
多元函数的极限
当自变量趋近于某个值时,函数值的趋近值。例如,lim (x, y) → (0, 0) (x^2 + y^2) = 0,表示当(x, y)趋近于(0, 0)时,函数x^2 + y^2的值趋近于0。
《多元函数的微积分》 ppt课件
多元函数全微分ppt课件-PPT精选文档
二 元 函 数 对 二 元 函 数 对 y y的 x和 和 对 的 偏 微 分 对 偏 改 变 量x
全改变量的概念
z f(x ,y )在 (x , y)的 如 果 函 数 点 某 邻 域 内 (x P x , y y)为 有 定 义 , 并 设 这 邻 域 内 的 任 意 一 点 , 则 称 这 两 点 的 函 数 值 之 差 f(x x , y y) f(x , y) x , y的 为 函 数 在 点 P对 应 于 自 变 量 改 变 量 全 z 改 变 量 ( 全 增 量 ) , 记 为
0 0
0 , x 0 , y 0 . 即 lim z lim f ( x x , y y ) f ( x , y ) 0 , 0 0 0 0 0 x 0
x 0 y 0
y 0 lim f( x x ,y y )f(x ,y ) 0 0 0 0
( x , y ) z f ( x , y ) 故 函 数 在 点 处 连 续 . 0 0
定理 2 :如果函数 z f (x , y)在点( x )可微 0, y 0 (x 则函数 z f (x , y) 的两个偏导数 fx 0, y 0), (x fy 存在,且 0, y 0) dz f ( x , y ) x f (x y x 0 0 y 0, y 0) (x , y )
0 0
即可微分定义中 z A x B y o ( ) A f ( x ,y ) , B f ( x ,y ) x 0 0 y 0 0
P ( x , y ) 证: 如 0 0 z f ( x , y ) 果 函 数 在 点 可 微 分 ,
全改变量的概念
z f(x ,y )在 (x , y)的 如 果 函 数 点 某 邻 域 内 (x P x , y y)为 有 定 义 , 并 设 这 邻 域 内 的 任 意 一 点 , 则 称 这 两 点 的 函 数 值 之 差 f(x x , y y) f(x , y) x , y的 为 函 数 在 点 P对 应 于 自 变 量 改 变 量 全 z 改 变 量 ( 全 增 量 ) , 记 为
0 0
0 , x 0 , y 0 . 即 lim z lim f ( x x , y y ) f ( x , y ) 0 , 0 0 0 0 0 x 0
x 0 y 0
y 0 lim f( x x ,y y )f(x ,y ) 0 0 0 0
( x , y ) z f ( x , y ) 故 函 数 在 点 处 连 续 . 0 0
定理 2 :如果函数 z f (x , y)在点( x )可微 0, y 0 (x 则函数 z f (x , y) 的两个偏导数 fx 0, y 0), (x fy 存在,且 0, y 0) dz f ( x , y ) x f (x y x 0 0 y 0, y 0) (x , y )
0 0
即可微分定义中 z A x B y o ( ) A f ( x ,y ) , B f ( x ,y ) x 0 0 y 0 0
P ( x , y ) 证: 如 0 0 z f ( x , y ) 果 函 数 在 点 可 微 分 ,
高等数学第九章第六节多元函数微分学的几何应用课件.ppt
当J (F,G) 0时, 可表示为 (y, z)
, 且有
dy 1 (F,G) , dz 1 (F,G) , dx J (z, x) dx J (x, y) 曲线上一点 M (x0 , y0 , z0 ) 处的切向量为
T 1, (x0 ), (x0 )
1 ,
1 J
(F,G) (z , x)
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
➢定义
设向量值函数 f (t )在点 t0的某一邻域内有定义, 如果
x x0 Fx (x0 , y0 , z0 )
y y0 Fy (x0 , y0 , z0 )
z z0 Fz (x0 , y0 , z0 )
T
M
特别, 当光滑曲面 的方程为显式
F(x, y, z) f (x, y) z
时, 令
则在点 (x, y, z),
故当函数
在点 ( x0, y0 ) 有连续偏导数时, 曲面
f (t)的三个分量函数 f1(t), f2(t), f3(t)都在 t0 可导.
当f (t)在 t0 可导时, f (t) f1(t)i f2(t) j f3(t)k.
➢运算法则
设u(t), v(t),(t)可导, C是常向量, c是任一常数,则
(1) d C 0 dt
(2) d [cu(t)] cu(t) dt
例1. 求圆柱螺旋线
在
对应点处的切线方程和法平面方程.
解: 由于
对应的切向量为 T (R , 0, k), 故
高等数学 多元函数微分法及其应用ppt课件
其余类推
fxy( x,
y)
lim
y0
fx(x, y
y) y
fx(x, y)
(2) 同样可得:三阶、四阶、…、以及n 阶偏导数。
(3) 【定义】二阶及二阶以上的偏导数统称为高阶偏导数。
【例
1】设 z
x3
y2
3 xy 3
xy
1,求二阶偏导数及
3z x 3
.
【解】 z 3x2 y2 3 y3 y, x
x2 y2 sin x2 y2 ( x2 y2 )3 2
y0
换元,化为一元 函数的极限
机动 目录 上页 下页 返回 结束
【阅读与练习】 求下列极限
5/51
x2
(1)lim sin( xy) (a 0); (2) lim (1 1 )x2 y2 ;
x0 x
x
x
ya
ya
1
(3)lim(1 sin xy)xy; x0
(2) 【复合函数求导链式法则】
①z
u
v
t t
dz z du z dv dt u dt v dt
全导数
u
x z z u z v y x u x v x
②z
v
x z z u z v
y y u y v y
③ z f (u, x, y)
u x z f f u
y x x u x
(
x,
y,
z)
lim
z0
z
.
机动 目录 上页 下页 返回 结束
10/51
4. 【偏导数的几何意义】 设 M0( x0 , y0 , f ( x0 , y0 )) 为曲面 z f ( x, y) 上一点, 如图
《高等数学教学课件》高数-第八章-多元函数微分学
高数-第八章-多元函数微分学
目
CONTENCT
录
• 多元函数微分学概述 • 多元函数的导数与偏导数计算 • 多元函数微分学在几何上的应用 • 多元函数微分学在极值问题中的应
用
目
CONTENCT
录
• 多元函数微分学在约束最优化问题 中的应用
• 多元函数微分学在实际问题中的应 用
01
多元函数微分学概述
04
多元函数微分学在极值问题中的应用
极值的第一充分条件
总结词
极值的第一充分条件是多元函数微分 学中用于判断函数极值的重要定理。
详细描述
极值的第一充分条件表明,如果一个 多元函数在某一点的偏导数等于零, 并且这个点的海森矩阵(Hessian matrix)是正定的或负定的,那么这 个点就是函数的极值点。
多元函数的概念
80%
多元函数
设D是n维空间的一个区域,对D 中的任意点P,若存在实数x、y、 z...与之对应,则称f(x,y,z...)是D上 的多元函数。
100%
多元函数的定义域函数f(x Nhomakorabeay,z...)中所有自变量x、y 、z...的取值范围共同构成的集合 称为多元函数的定义域。
80%
多元函数的几何意义
在三维空间中,二元函数f(x,y)表 示曲面上的点P(x,y,f(x,y))的轨迹 。
偏导数的定义与性质
偏导数的定义
对于多元函数f(x,y,z...),如果当 其他变量保持不变时,函数关 于某个特定变量的一阶导数存 在,则称这个导数为该函数在 该特定变量上的偏导数。
偏导数的几何意义
在三维空间中,二元函数f(x,y) 在点(x0,y0)处关于x的偏导数 表示曲面在点(x0,y0)处沿x轴 方向的切线斜率。
目
CONTENCT
录
• 多元函数微分学概述 • 多元函数的导数与偏导数计算 • 多元函数微分学在几何上的应用 • 多元函数微分学在极值问题中的应
用
目
CONTENCT
录
• 多元函数微分学在约束最优化问题 中的应用
• 多元函数微分学在实际问题中的应 用
01
多元函数微分学概述
04
多元函数微分学在极值问题中的应用
极值的第一充分条件
总结词
极值的第一充分条件是多元函数微分 学中用于判断函数极值的重要定理。
详细描述
极值的第一充分条件表明,如果一个 多元函数在某一点的偏导数等于零, 并且这个点的海森矩阵(Hessian matrix)是正定的或负定的,那么这 个点就是函数的极值点。
多元函数的概念
80%
多元函数
设D是n维空间的一个区域,对D 中的任意点P,若存在实数x、y、 z...与之对应,则称f(x,y,z...)是D上 的多元函数。
100%
多元函数的定义域函数f(x Nhomakorabeay,z...)中所有自变量x、y 、z...的取值范围共同构成的集合 称为多元函数的定义域。
80%
多元函数的几何意义
在三维空间中,二元函数f(x,y)表 示曲面上的点P(x,y,f(x,y))的轨迹 。
偏导数的定义与性质
偏导数的定义
对于多元函数f(x,y,z...),如果当 其他变量保持不变时,函数关 于某个特定变量的一阶导数存 在,则称这个导数为该函数在 该特定变量上的偏导数。
偏导数的几何意义
在三维空间中,二元函数f(x,y) 在点(x0,y0)处关于x的偏导数 表示曲面在点(x0,y0)处沿x轴 方向的切线斜率。
《多元函数微分学》PPT课件
0 V .
14
定义1 设D是xOy平面上的点集, 若变量z与D
多 元
函
中的变量x, y之间有一个依赖关系, 使得在D内
数 的
基
每取定一个点P(x, y)时,按着这个关系有确定的
本 概
z值与之对应, 则称z是x, y的二元(点)函数.记为 念
z f ( x, y) (或z f (P) )
称x, y为自变量,称z为因变量,点集D称为该函数
P0 称为 E 的内点:如果存在一个正数 使得U (P0 ) E P0 称为 E 的外点:如果存在一个正数 使得
U (P0 ) E
P0 称为 E 的边界点:如果对任意一个正数 使得
U (P0 ) 中即有E中点又有非E中点
P0 即不是E的内点也不是E的外点
闭区域: G G G
12
(3)Rn 中的集合到 Rm的映射
的 基 本
和方法上都会出现一些实质性的差别, 而多元
概 念
函数之间差异不大. 因此研究多元函数时, 将以
二元函数为主.
24
3、多元函数的极限
多
讨论二元函数 z f ( x, y),当x x0 , y y0 ,
元 函
即P( x, y) P0 ( x0 , y0 )时的极限.
数 的 基
怎样描述呢? 回忆: 一元函数的极限
多 元 函 数
的
基
解 定义域是 ( x 1)2 y2 1且x2 y2 1
本 概
念
y
•
O
1
x
有界半开半闭区域
18
3 求 f ( x, y) arcsin(3 x2 y2的) 定义域. x y2
解
3 x2 y2 1
多元函数微分学(共184张PPT)
z
sin
x2
1 y2
1
• 在 点圆 都周 是x2间 断y2 点1,是上一没条有曲定线义,. 所以该圆周上各
• 性质1(最大值和最小值定理) 在有界闭区域 D上的多元连续函数,在D上一定有最大值和最小
值.
• 在D上至少有一点 及一点 ,使得 为最大 值而 为最小值,P 即1 对于一切P 2 P∈D,有f ( P1 )
•
P
于E的点,也有不属于E的点,
•
E
则称P为E的边界点(图8-2).
•
设D是开集.如果对于D内的
• 图 8-1 任何两点,都可用折线连结起
上一页 下一页 返 回
•
来,而且该折线上的点都属于D,
•
P 则称开集D是连通的.
•
连通的开集称为区域或开区域.
•
E
开区域连同它的边界一起,称
•
为闭区域.
• 图 8-2
f( x x ,y ) f( x ,y ) A x ( x )
• 上式两边各除以 x ,再令 x 0而极限,就得
limf(xx,y)f(x,y)A • 从而 ,x 偏0导数 z 存 在x,而且等于A.同样可证
• =B.所以三式 x 成立.证毕.
z y
上一页 下一页 返 回
• 定理2(充分条件) 如果z=f(x,y)的偏导数
• 3.n维空间
• 设n为取定的一个自然数,我们称有序n元数组
•
的全体为n维空间,而每个有序n元数
(x1组,x2, ,xn) 称为n维空间中的一个点,数 称
(x1,x2, ,xn)
xi
上一页 下一页 返 回
• 为该点的第i个坐标,n维空间记为 .n
多元函数微分基本概念ppt课件
n 维向量. xi 称为 x 的第 i 个坐标 或 第 i 个分量.
10
Rn中两点x (x1,, xn ), y ( y1,, yn ) 的距离定义为
记作
特别, 点 x (x1, x2,, xn )与零元 0 的距离为
x x12 x22 xn2 当n 1,2,3时, x 通常记作 x .
显然, E 的内点必属于 E , E 的外点必不属于 E , E 的
边界点可能属于 E, 也可能不属于 E .
5
(2) 聚点
若对任意给定的 ,点P 的去心
E
邻域
内总有E 中的点 , 则
称 P 是 E 的聚点.
聚点可以属于 E , 也可以不属于 E (因为聚点可以为
E 的边界点 )
所有聚点所成的点集成为 E 的导集 .
6
(3) 开区域及闭区域
若点集 E 的点都是内点,则称 E 为开集;
E 的边界点的全体称为 E 的边界, 记作E ;
若点集 E E , 则称 E 为闭集;
若集 D 中任意两点都可用一完全属于 D 的折线相连 ,
则称 D 是连通的 ; 连通的开集称为开区域 ,简称区域 ; 开区域连同它的边界一起称为闭区域.
趋于不同值或有的极限不存在,则可以断定函数极限
不存在 .
例3. 讨论函数
f
(x,
y)
x2
xy y2
在点 (0, 0) 的极限.
解: 设 P(x , y) 沿直线 y = k x 趋于点 (0, 0) , 则有
lim
x0
f (x, y)
lim
x0
x2
kx2 k2x2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U (P0 , ) ={(x, y) | (x x0 )2 ( y y0 )2 } .
在几何上,U (P0 , ) 就是 xOy 平面上以 P0 为中心, 为半径
的圆的内部点 P(x, y) 的全体.
若在U (P0 , ) 中去掉中心 P0 ,则该点集
0
称为点 P0 的去心邻域,记为U (P0, ) ,即
P0 (x0 , y0 ) 处可以无定义),如果当点 P(x, y) 以任意方式趋向于点
P0 (x0 , y0 ) 时,相应的函数值 f (x, y) 无限接近于一个确定的常数 A ,
则称当 (x, y) (x0, y0 ) (或 P P0 )时,函数 f (x, y) 以 A 为极
限,记作
或 也记作
有界闭区域
y 无界开区域.
y
{x ,( y )|x y 0 }
o
x
o
x
二、多元函数的概念
1.二元函数的定义
V r2h.
设 D 是平面上的一个非空点集,如果对于 D 内的任一点 (x, y) ,
变量 z 按照一定法则 f ,总有唯一确定的值与之对应,则称 z 是变量
x, y 的二元函数,记为 z f (x, y) ,其中 x, y 称为自变量,z 称为因变
例4
证明
lim
x0
x3 y x6 y2
不存在.
y0
证 取 ykx3,
lim
x0
x3 y x6 y2
xl im0 xx63kk2xx36
k 1 k2 ,
y0
ykx3
其值随k的不同而变化,
故极限不存在.
确定极限不存在的方法:
( 1 ) 令 P ( x ,y ) 沿 y k 趋 向 x 于 P 0 ( x 0 ,y 0 ) , 若 极 限 值 与 k 有 关 , 则 可 断 言 极 限 不 存 在 ;
连通的开集称为区域或开区域.开区域连同它的边界
一起称为闭区域.
如果存在正数 K ,使某区域 E 包含于以原点为 中心以 K 为半径的圆内,则称 E 是有界区域.否则
为无界区域.
开区域.{x ,(y )|1 x 2 y 2 4 }.
y
闭区域. {x ,(y )|1 x 2 y 2 4 }. o
x
例如, E1 ={(x, y) |1 x2 y2 4} . 如果点 P 的任何一个邻域内既有属于 E 的
•P
E
点又有不属于 E 的点,则称 P 为 E 的边界
点. E 的边界点的全体,称为 E 的边界, 记为 E
例如, E1 的边界是圆周 x2 y2 1和 x2 y2 4 .
设 D 是开集,如果对于 D 内的任意两点,都可 以用折线连接起来,且该折线上的点都属于 D ,则 称 D 是连通的.
•P0
0
U (P0, ) ={(x, y) | 0 (x x0 )2 ( y y0 )2 } .
2.区域
设 E 是平面上的一个点集,点 P E .如 果存在 P 的一个邻域U (P, ) ,使U (P, ) E , 则称 P 为 E 的内点.显然, 的内点属于 .
如果点集 E 每一个点都是内点,则称 E 为开集.
解
3 x2 y2 1
x y2 0
2 x2 y2 4
x
y2
所求定义域为 D { x ,y ( ) |2 x 2 y 2 4 ,x y 2 }.
2.二元函数 zf(x,y)的几何意义
设函数z f (x, y)的定义域为D ,对于任意 取定的P(x, y)D,对应的函数值为 z f (x, y),这样,以x 为横坐标、y 为纵坐 标、z为竖坐标在空间就确定一点M(x, y,z), 当x取遍D上一切点时,得一个空间点集 {(x, y,z)| z f (x, y),(x, y)D},这个点集称
【例 1】 f (x, y) 2x 3y 2 , 求 f (1, 1) , 解: f ( 1 , 1 ) =2 1-3 (-1)2 1;
f (1, y ). x
f(1,
y x
)
2 1 3(
y )2 x
2x2 3y2 x2
.
【例 2】设 f (x y, x y) x2 y y2 ,求f (x, y)
量.点集 D 称为该函数的定义域,数集{z | z f (x, y),(x, y) D}称为 该函数的值域.
类似地,可定义三元及三元以上函数. 当 n 2 时, n 元函数统称为多
元函数.
多 元 函 数 中 同 样 有 定 义 域 、 值 域 、 自 变 量 、 因 变 量 等 概 念 .
f (x, y)
解: 设 x y u, x y v 解出 x 1 (u v), y 1 (u v)
2
2
代入所给函数化简
f (u,v) 1 (u v)2 (u v) 1 (u v)2
8
4
故 f (x, y) 1 (x y)2 (x y) 1 (x y)2
8
4
例3 求 f(x,y)arc3six2 ny (2)的定义域. xy2
为二元函数的图形.
(如下页图)
二元函数的图形通常是一张曲面.
例如, zsinxy 图形如右图.
例如, x2y2z2a2
z
左图球面.
D {x (,y)x 2y2a 2}.
o
y
单值分支: za2x2y2
x
za2x2y2.
三、多元函数的极限
设函数 z f (x, y) 在点 P0 (x0 , y0 ) 的某个邻域内有定义(在点
第八章 多元函数微分法及其应用
1
多元函数的基本概念
2
偏导数Βιβλιοθήκη 34多元复合函数微分法
5
微分法在几何上的应用
6
多元函数的极值
第一节 多元函数的基本概念
1
平面区域的概念
2
多元函数的概念
3
多元函数的极限
4
多元函数的连续性
5
小结
§8-1 多元函数的基本概念
一、平面区域的概念
1.邻域
设 P0 ( x0 , y0 ) 是 xOy 平面上的一个点, 是某一正数.与点 P0 ( x0 , y0 ) 的距离小于 的点 P(x, y) 的全体,称为点 P0 的 邻域, 记做:U (P0 , ) .即
lim f (x, y) A
xx0 y y0
f (x, y) A ( (x, y) (x0, y0 ) )
l i mf P( ) A
PP0
或
f (P) A (P P0 )
说明:
(1)定义中 PP0的方式是任意的;
(2)二元函数的极限也叫二重极限 limf(x, y); xx0 yy0
(3)二元函数的极限运算法则与一元函数类似.