K-means聚类算法基本思想讲解学习

合集下载

三维k-means聚类算法

三维k-means聚类算法

三维k-means聚类算法
在机器学习和数据挖掘领域,聚类是一种常见的数据分析技术,它通过将数据点分组成具有相似特征的簇来发现数据的内在结构。

而k-means算法是一种常用的聚类算法,它通过迭代的方式将数据
点分配到k个簇中,以最小化簇内的方差来实现聚类。

在三维空间中,数据通常具有更加复杂的特征和结构,因此传
统的二维k-means算法在处理三维数据时可能会面临一些挑战。


了解决这个问题,研究人员提出了三维k-means聚类算法,它是对
传统k-means算法的扩展,专门用于处理三维数据。

三维k-means聚类算法的核心思想与传统的k-means算法类似,都是通过迭代的方式不断优化簇的中心位置,以最小化簇内的方差。

然而,由于三维数据的特殊性,三维k-means算法在计算簇中心和
数据点之间的距离时需要考虑更多的因素,比如数据点在三个维度
上的坐标。

在实际应用中,三维k-means聚类算法可以被广泛应用于各种
领域,比如医学影像分析、气象数据分析、地质勘探等。

通过对三
维数据的聚类分析,可以帮助人们更好地理解数据的内在结构,发
现隐藏在数据中的规律和特征,为进一步的数据分析和应用提供有力的支持。

总之,三维k-means聚类算法是一种针对三维数据特点设计的聚类算法,它能够有效地处理三维数据,并在各种领域中发挥重要作用。

随着对三维数据分析需求的不断增加,相信三维k-means聚类算法将会得到更广泛的应用和进一步的发展。

kmeans聚类算法原理与步骤

kmeans聚类算法原理与步骤

kmeans聚类算法原理与步骤K-means聚类算法原理与步骤K-means聚类算法是一种常用的无监督学习算法,用于将数据集划分成不同的类别。

该算法的原理和步骤如下:一、算法原理1. 初始化:选择K个初始的聚类中心点,可以是随机选择或者根据领域知识进行选择。

2. 数据分配:根据欧氏距离等度量方式,将每个样本点分配到与其最近的聚类中心点所代表的类别。

3. 聚类中心更新:根据当前分配的聚类结果,重新计算每个类别的聚类中心点。

4. 重复步骤2和步骤3,直到聚类中心点不再发生变化或达到预设的迭代次数。

5. 输出最终的聚类结果。

二、算法步骤1. 选择聚类的数量K:根据问题的具体要求和领域知识,确定聚类的数量K。

2. 初始化聚类中心点:从数据集中随机选择K个样本点作为初始的聚类中心点。

3. 计算样本点到聚类中心点的距离:对于每个样本点,计算其与各个聚类中心点之间的距离,常用的距离度量方式是欧氏距离。

4. 将样本点分配到最近的聚类中心点所代表的类别:将每个样本点分配到与其最近的聚类中心点所代表的类别,形成初始的聚类结果。

5. 更新聚类中心点:根据当前的聚类结果,重新计算每个类别的聚类中心点,通常是计算类别内样本点的均值。

6. 重复步骤3和步骤5,直到聚类中心点不再发生变化或达到预设的迭代次数。

如果聚类中心点不再发生变化,则算法收敛;如果达到预设的迭代次数,但聚类中心点仍在发生变化,则可以考虑增加迭代次数或调整聚类的数量K。

7. 输出聚类结果:将最终的聚类结果输出,每个样本点属于某个类别。

三、算法优缺点1. 优点:- K-means算法简单易实现,计算效率高。

- 对大规模数据集有较好的可扩展性。

- 聚类结果具有较好的可解释性。

2. 缺点:- 对初始聚类中心点的选择敏感,可能会得到不同的聚类结果。

- 对噪声和异常点较为敏感,可能会影响聚类结果的准确性。

- 需要提前确定聚类的数量K,如果选择不当可能会影响聚类结果。

r语言的kmeans方法

r语言的kmeans方法

r语言的kmeans方法R语言中的k均值聚类方法(k-means clustering)是一种常用的无监督学习方法,用于将数据集划分为K个不相交的类别。

本文将详细介绍R语言中的k均值聚类算法的原理、使用方法以及相关注意事项。

原理:k均值聚类算法的目标是将数据集划分为K个簇,使得同一簇内的样本点之间的距离尽可能小,而不同簇之间的距离尽可能大。

算法的基本思想是:首先随机选择K个初始质心(簇的中心点),然后将每个样本点分配到与其最近的质心所在的簇中。

接下来,计算每个簇的新质心,再次将每个样本点重新分配到新的质心所在的簇中。

不断重复这个过程,直到质心不再发生变化或达到最大迭代次数。

最终,得到的簇就是我们需要的聚类结果。

实现:在R语言中,我们可以使用kmeans(函数来实现k均值聚类。

该函数的基本用法如下:kmeans(x, centers, iter.max = 10, nstart = 1)-x:要进行聚类的数据集,可以是矩阵、数据框或向量。

- centers:指定聚类的个数K,即要划分为K个簇。

- iter.max:迭代的最大次数,默认为10。

- nstart:进行多次聚类的次数,默认为1,选取最优结果。

聚类结果:聚类的结果包含以下内容:- cluster:每个样本所属的簇的编号。

- centers:最终每个簇的质心坐标。

- tot.withinss:簇内平方和,即同一簇内各个样本点到质心的距离总和。

示例:为了更好地理解k均值聚类的使用方法,我们将通过一个具体的示例来进行演示:```R#生成示例数据set.seed(123)x <- rbind(matrix(rnorm(100, mean = 0), ncol = 2),matrix(rnorm(100, mean = 3), ncol = 2))#执行k均值聚类kmeans_res <- kmeans(x, centers = 2)#打印聚类结果print(kmeans_res)```上述代码中,我们首先生成了一个包含两个簇的示例数据集x(每个簇100个样本点),然后使用kmeans(函数进行聚类,指定了聚类的个数为2、最后,通过print(函数来打印聚类的结果。

K-means算法详解

K-means算法详解

算法实例
O x y
1
2 3 4 5Βιβλιοθήκη 00 1.5 5 5
2
0 0 0 2
数据对象集合S见表1,作为一个聚类分析的二 维样本,要求的簇的数量k=2。 O (1)选择 O1 0,2 , 2 0,0 为初始的簇中心, 即 M 1 O1 0,2 , M 2 O2 0,0 。 (2)对剩余的每个对象,根据其与各个簇中心的 距离,将它赋给最近的簇。 对 O3 : 2 2

0 5
0 5
2

2 2
2
2
5
29
1
5
5
2



0 2

• 因为 d M 1 , O 5 d M 2 , O 5 所以将 O 5分配给 C
• 更新,得到新簇
E1 0 0
2 2
C1 O1 ,O5

2
C 2 O 2 , O 3 , O 4
xi1,xi2,„xid和xj1,xj2,„xjd分别是样本xi和xj对应d个描 述属性A1,A2,„Ad的具体取值。 • 样本xi和xj之间的相似度通常用它们之间的距离d(xi,xj) 来表示,距离越小,样本xi和xj越相似,差异度越小;距
离越大,样本xi和xj越不相似,差异度越大。
欧式距离公式如下:
d xi , x j
x
d k 1
ik
x jk
2
平均误差准则函数
• K-means聚类算法使用误差平方和准则函数来评价聚类 性能。给定数据集X,其中只包含描述属性,不包含类别
属性。假设X包含k个聚类子集X1,X2,„XK;各个聚类子集
中的样本数量分别为n1,n2,„,nk;各个聚类子集的均值代 表点(也称聚类中心)分别为m1,m2,„,mk。 • 误差平方和准则函数公式为:

k-means聚类算法研究及应用

k-means聚类算法研究及应用

k-means聚类算法研究及应用
K-means聚类算法研究及应用
一、简介
K-means聚类算法是一种非监督学习算法,它是一种广泛应用在模式分类和无监督式学习的数据挖掘技术。

它使用了基于距离的聚类算法,以相似性作为衡量子簇类别的标准,任务是将样本(属性)空间中的数据分为K个不同的类,使聚类的误差平方和最小化:通常假设样本由簇中心所处的子空间所构建,每个子空间由一个簇中心控制,因此K-means算法常常被形象地称为“均值聚类”算法。

二、原理
K-means聚类算法是一种迭代算法,它的基本思想是:首先,随机选取若干个“簇中心”,然后将其他的数据点根据其与“簇中心”的距离,归到最近的“簇中心”所代表的簇中。

然后根据新聚集的簇,重新更新这些“簇中心”;如此不断迭代,最终计算得到一组稳定的“簇中心”,这组“簇中心”所代表的簇就是最后的结果了。

三、应用
1、生物信息学:K-means聚类算法用于基因芯片和定量PCR,以及蛋白质表达数据。

2、计算机视觉:K-means用于图像分割,聚类,像素重新分配等。

3、自然语言处理:K-means用于文本聚类,文档分类,文本挖掘等方面。

4、机器学习:K-means用于各种拟合问题,比如参数估计,探索异常
值等等。

四、总结
K-means聚类算法是一种简单高效的聚类算法,它可以有效地将数据空间分割成几个簇,属于非监督学习算法,它的核心在于划分数据空间,对数据的模式分类和无监督式学习有较好的应用,如生物信息学、计
算机视觉、自然语言处理、机器学习等领域。

K-means算法讲解ppt课件

K-means算法讲解ppt课件
完整最新ppt 19
预测:预测是通过分类或估值起作用的,也就是说,通过 分类或估值得出模型,该模型用于对未知变量的预言。
聚类:在没有给定划分类的情况下,根据信息相似度将信 息分组。是一种无指导的学习。
关联规则:揭示数据之间的相互关系,而这种关系没有在 数据中直接表现出来。
偏差检测: 用于发现与正常情况不同的异常和变化。并分 析这种变化是有意的欺诈行为还是正常的变化。如果是异常 行为就采取预防措施。
完整最新ppt
13
决定性因素
Input & centroids
①数据的采集和抽象 ②初始的中心选择
Selected k
① k值的选定
MaxIterations & Convergence
①最大迭代次数 ②收敛值
factors?
Meassures
①度量距离的手段
完整最新ppt
14
主要因素
初始中 心点
Repeat 从簇表中取出一个簇
(对选定的簇进行多次二分实验) for i=1 to实验次数 do 试用基本K均值(k=2),二分选定的簇 end for 从实验中选取总SSE最小的两个簇添加到簇表中
Until 簇表中包含K个簇
17
谢谢!
完整最新ppt
18
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
6
什么是Kmeans算法?
Q1:K是什么?A1:k是聚类算法当中类的个数。 Q2:means是什么?A2:means是均值算法。
Summary:Kmeans是用均值算法把数 据分成K个类的算法!
完整最新ppt
7
Kmeans算法详解(1)

kmeans 归一化 标准化

kmeans 归一化 标准化

kmeans 归一化标准化K-means聚类算法,归一化,标准化都是在数据预处理阶段常用的技术方法,用于处理数据集中特征的尺度差异问题,以便更好地应用于机器学习模型的训练和预测过程。

在本文中,我们将讨论K-means 聚类算法及其在数据预处理中的应用,并详细介绍归一化和标准化的概念、方法和应用场景。

一、K-means聚类算法K-means聚类算法是一种常用的无监督学习算法,用于将具有相似特征的数据样本划分为不同的簇类。

其基本思想是通过计算样本之间的相似性或距离,将相似的样本划分为同一个簇类中。

K-means聚类算法的步骤如下:1.初始化:随机选择K个中心点作为初始簇类中心。

2.计算距离:计算每个样本与簇类中心之间的距离。

3.分配簇类:将每个样本分配到距离最近的簇类中心。

4.更新簇类中心:根据新分配的样本重新计算簇类中心。

5.重复步骤3和步骤4,直到簇类中心不再改变或者达到预定的迭代次数。

K-means聚类算法的性能受到数据集特征尺度差异的影响。

因此,数据预处理方法如归一化和标准化常被用于将数据特征尺度调整到合适的范围内,以提高K-means聚类算法的性能。

二、归一化归一化是指将数值特征缩放到一个固定的范围内,比如[0, 1]或[-1, 1]。

其中最常用的归一化方法是将特征值减去最小值,然后除以特征值的范围(最大值减最小值)。

这种方法被称为Min-Max归一化。

Min-Max归一化的公式为:x_normalized = (x - min(x))/(max(x) - min(x))归一化的主要应用场景有:1.特征尺度不一致:当数据集中的特征尺度差异很大时,归一化可以将它们统一到一个相对的范围内,以便更好地进行比较和分析。

2.数据分布不均匀:当数据集的特征分布不均匀时,归一化可以使数据更加符合正态分布,提高机器学习模型的性能。

三、标准化标准化是指通过减去特征均值,然后除以特征的标准差,将特征值转换为符合标准正态分布(均值为0,标准差为1)的数据。

k-means聚类法_标准化数值_概述及解释说明

k-means聚类法_标准化数值_概述及解释说明

k-means聚类法标准化数值概述及解释说明1. 引言1.1 概述在数据分析和机器学习领域中,聚类算法是一种常用的无监督学习方法,它可以将具有相似特征的数据点划分为不同的组或簇。

其中,k-means聚类法是一种经典且广泛使用的聚类算法。

它通过迭代计算数据点与各个簇中心之间的距离,并将数据点划分到距离最近的簇中心。

k-means聚类法在数据挖掘、图像处理、模式识别等领域有着广泛的应用。

1.2 文章结构本文主要围绕着k-means聚类法以及标准化数值展开讨论。

首先介绍了k-means聚类法的原理和应用场景,详细解释了其算法步骤和常用的聚类质量评估指标。

接下来对标准化数值进行概述,并阐述了常见的标准化方法以及标准化所具有的优缺点。

随后,文章从影响因素分析角度探讨了k-means聚类算法与标准化数值之间的关系,并深入剖析了标准化在k-means中的作用及优势。

最后,通过实例解释和说明,对文中所述的理论和观点进行了验证与分析。

1.3 目的本文旨在向读者介绍k-means聚类法及其在数据分析中的应用,并深入探讨标准化数值在k-means聚类算法中扮演的重要角色。

通过本文的阐述,希望读者能够理解k-means聚类法的基本原理、运行步骤以及质量评估指标,并认识到标准化数值对于提高聚类算法性能以及结果准确性的重要性。

最终,通过结论与展望部分,给出对未来研究方向和应用领域的展望和建议,为相关领域研究者提供参考和启示。

2. k-means聚类法:2.1 原理及应用场景:k-means聚类算法是一种常用的无监督学习方法,主要用于将数据集划分为k 个不同的簇(cluster)。

该算法基于距离度量来确定样本之间的相似性,其中每个样本被划分到距离最近的簇。

它的主要应用场景包括图像分割、文本分类、市场细分等。

2.2 算法步骤:k-means聚类算法具有以下几个步骤:1. 初始化: 选择k个随机点作为初始质心。

2. 分配: 对于每个数据点,计算其与各个质心之间的距离,并将其分配到最近的质心所属的簇中。

聚类kmeans算法

聚类kmeans算法

聚类kmeans算法聚类kmeans算法是一种常用的数据挖掘算法,它利用机器学习技术进行分类,可以有效解决大数据环境中的数据挖掘问题。

这种算法具有较高的精度和准确性,因此被广泛应用于各种环境中。

k-means聚类算法的基本原理是将数据点分成K个聚类,每一个聚类都与聚类中心具有最短的距离,即该聚类中心所形成的簇是所有数据点中距离最近的。

k-means算法可以自动从原始输入数据中挖掘出有价值的信息,是进行数据聚类分析的有力工具。

k-means算法的核心是聚类中心的改变,它将数据分为K个类。

该算法的运行过程包括:(1)确定聚类中心;(2)将数据集分组;(3)求出每个聚类的损失函数;(4)设置停止迭代的条件。

在每一次迭代中,算法根据损失函数更新聚类中心,直到最优聚类中心出现或者聚类中心不再变化,聚类结果即被输出。

由于k-means算法的算法精度依赖于聚类中心的选择,因此先进的变体算法添加了许多改进措施来提高聚类的准确性,也增强了聚类中心的可靠性。

改进的k-means算法还可以避免聚类中心收敛所需时间的过长,从而使大规模数据示例聚类的效率提高。

此外,该算法对超参数的选择和调节提供了更多的灵活性,它可以更好地满足多种类型的实际应用需求。

目前,k-means聚类算法广泛应用于不同领域,如市场营销、推荐系统、影响力分析、社会网络分析、计算机视觉等。

通过使用k-means 算法,可以有效地进行分类,从而提取有价值的信息,提升数据处理的准确性和效率,节省人力成本。

然而,k-means算法也存在一些缺点。

首先,该算法的计算复杂度较高,且依赖于聚类中心的选取,容易出现局部最优解,从而导致聚类精度不高。

其次,由于k-means算法的归纳模型有一定的局限性,因此不能处理无界和多维数据集。

最后,该算法只适用于某些特定的场景,并不能满足所有数据挖掘应用中的要求。

未来,k-means算法仍然将受到更多的关注,未来的研究将继续改进该算法,提升其精度和效率,使之能更好地满足实际应用的要求。

Kmeans聚类算法ppt课件

Kmeans聚类算法ppt课件

(5)对于“噪声”和孤立点数据敏感。
精选版课件ppt
8
K-means缺点以及改进 (1)要求用户必须事先给出要生成的簇的数目k。这个k并不是最好的。 解决:肘部算法 肘部算法是一种启发式方法来估计最优聚类数量,称为肘部法则(Elbow Method)。
各个类畸变程度(distortions)之和;每个类的畸变程度等于该类重心与其内 部成员位置距离的平方和;最优解以成本函数最小化为目标,其中uk是第k个 类的重心位置
第一次
第二次
精选版课件ppt
17
八、K-means聚类算法
在第五次迭代时,得到的三个簇与第四迭代结果相同,而且准则函数E收敛,迭代 结束,结果如下表所示:
k为迭代次数
精选版课件ppt
18
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选版课件ppt
精选版课件ppt
3
八、K-means聚类算法
2. K-means聚类算法原理 K-Means算法的工作框架:
(1)给出 n 个数据样本,令 I 1,随机选择 K 个初始聚类中心 Z j (I) , j 1, 2,3,, K ;
(2)求解每个数据样本与初始聚类中心的距离 D xi , Z j I ,i 1, 2,3,, n
假设A、B、C、D的D(x)如上图所示,当算法取值Sum(D(x))*random 时,该值会以较大的概率落入D(x)较大的区间内,所以对应的点会以 较大的概率被选中作为新的聚类中心。
精选版课件ppt
10
八、K-means聚类算法
3 K-means聚类算法特点及应用 3.2 K-means聚类算法应用
i=1,2
精选版课件ppt

Kmeans算法的K值和聚类中心的确定

Kmeans算法的K值和聚类中心的确定

Kmeans算法的K值和聚类中⼼的确定0 K-means算法简介K-means是最为经典的基于划分的聚类⽅法,是⼗⼤经典数据挖掘算法之⼀。

K-means算法的基本思想是:以空间中k个点为中⼼进⾏聚类,对最靠近他们的对象归类。

通过迭代的⽅法,逐次更新各聚类中⼼的值,直⾄得到最好的聚类结果。

算法过程如下:1)从N个⽂档随机选取K个⽂档作为2)对剩余的每个⽂档测量其到每个的距离,并把它归到最近的质⼼的类3)重新计算已经得到的各个类的4)迭代2~3步直⾄新的质⼼与原质⼼相等或⼩于指定阈值,算法结束参考Java代码public static Map<Integer, List<Integer>> kMeans(List<List<Double>> dataSet, int k,List<List<Double>> centerPointCp) {/*** 拷贝中⼼点,防⽌修改原始数据*/List<List<Double>> centerPoint = new ArrayList<List<Double>>();for(int i = 0; i < centerPointCp.size(); i++){List<Double> tmpCp = new ArrayList<Double>();for(int j = 0; j < centerPointCp.get(i).size(); j++){tmpCp.add(centerPointCp.get(i).get(j));}centerPoint.add(tmpCp);}int n = dataSet.size();int dim = dataSet.get(0).size();double[][] clusterAssment = new double[n][2];Boolean clusterChanged = true;while (clusterChanged) {clusterChanged = false;for (int i = 0; i < n; i++) {double minDist = Double.POSITIVE_INFINITY;int minIndex = -1;for (int j = 0; j < k; j++) {double distIC = PreData.distance(dataSet.get(i),centerPoint.get(j));if (distIC < minDist) {minDist = distIC;minIndex = j;}}if (clusterAssment[i][0] != minIndex) {clusterChanged = true;}clusterAssment[i][0] = minIndex;clusterAssment[i][1] = Math.pow(minDist, 2);}for (int i = 0; i < k; i++) {double[] tmp = new double[dim];int cnt = 0;for (int j = 0; j < n; j++) {if (i == clusterAssment[j][0]) {for (int m = 0; m < dim; m++) {tmp[m] += dataSet.get(j).get(m);}cnt += 1;}}if (cnt != 0) {for (int m = 0; m < dim; m++) {centerPoint.get(i).set(m, tmp[m] / cnt);}}}}//List<List<Double>>Map<Integer, List<Integer>> ret = new TreeMap<Integer, List<Integer>>();for(int i = 0; i < n; i++){for(int j = 0; j < k; j++){if(clusterAssment[i][0] == j){if(ret.containsKey(j)){ret.get(j).add(i);}else{List<Integer> tmp = new ArrayList<Integer>();tmp.add(i);ret.put(j, tmp);}break;}}}return ret;}View Code缺点:1 k-means算法容易收敛于局部最⼩值,基于此可以⽤⼆分K-均值(bisecting K-means)的算法。

lloyd算法和k-mean算法

lloyd算法和k-mean算法

Lloyd算法和K-means算法是在数据挖掘和机器学习领域中常用的聚类算法。

它们都是基于迭代优化方法,通过将数据点分配到不同的聚类中心来实现聚类。

在本文中,我们将对这两种算法进行详细的介绍和比较。

1. Lloyd算法Lloyd算法,也称为K-means算法,是一种迭代优化算法,用于将数据点分配到K个聚类中心中。

该算法的基本思想是不断迭代地更新聚类中心,直到达到收敛条件为止。

具体步骤如下:1) 随机初始化K个聚类中心;2) 将每个数据点分配到距离最近的聚类中心所在的类别中;3) 更新每个聚类中心为其所包含数据点的平均值;4) 重复步骤2和步骤3,直到满足收敛条件。

Lloyd算法的优点在于简单、直观,并且易于实现。

然而,该算法也有一些缺点,例如对初始聚类中心的选择敏感,容易陷入局部最优解等。

2. K-means算法与Lloyd算法相似,K-means算法也是一种聚类算法,用于将数据点分配到K个聚类中心中。

与Lloyd算法不同的是,K-means算法在每次迭代中优化的是目标函数,而不是直接更新聚类中心。

具体步骤如下:1) 随机初始化K个聚类中心;2) 将每个数据点分配到距离最近的聚类中心所在的类别中;3) 更新目标函数,如聚类距离的总平方和;4) 重复步骤2和步骤3,直到满足收敛条件。

K-means算法相对于Lloyd算法的优点在于可以更灵活地定义目标函数,从而更好地适应不同的数据分布。

然而,K-means算法也有一些缺点,如对初始聚类中心的选择敏感,容易陷入局部最优解等。

3. 对比分析在实际应用中,Lloyd算法和K-means算法都有各自的优劣势。

Lloyd算法相对简单直观,易于理解和实现,适用于大规模数据集。

但是,Lloyd算法容易受到初始聚类中心的选择影响,从而得到不理想的聚类结果。

相比之下,K-means算法可以更灵活地定义目标函数,适应不同的数据分布,提高聚类效果。

但是,K-means算法要求目标函数的连续性和可微性,适用范围相对较窄。

k均值聚类算法的收敛准则函数

k均值聚类算法的收敛准则函数

k均值聚类算法的收敛准则函数
摘要:
1.介绍k 均值聚类算法
2.讲解收敛准则函数的概念
3.详述k 均值聚类算法的收敛准则函数
4.结论
正文:
一、介绍k 均值聚类算法
k 均值聚类算法(K-means Clustering Algorithm)是一种最常用的聚类方法,其基本思想是将数据集中的点分为k 个簇(cluster),使得每个簇的内部点之间的距离尽可能小,而不同簇之间的点之间的距离尽可能大。

二、讲解收敛准则函数的概念
收敛准则函数是在优化问题中,用来判断算法是否收敛的一个标准。

如果算法的解满足这个函数,那么我们就可以说这个算法收敛了。

在k 均值聚类算法中,也有一个对应的收敛准则函数。

三、详述k 均值聚类算法的收敛准则函数
k 均值聚类算法的收敛准则函数主要看两点:1.簇内平方和(within-cluster sum of squares)最小;2.簇间平方和(between-cluster sum of squares)最大。

具体来说,如果一个算法的解满足以下两个条件,那么我们就可以说这个算法收敛了:
1.簇内平方和最小:每个簇的内部点之间的距离尽可能小。

也就是说,每个簇的内部点与其簇心的距离之和最小。

2.簇间平方和最大:不同簇之间的点之间的距离尽可能大。

换句话说,每个簇与其它簇的簇心之间的距离之和最大。

四、结论
k 均值聚类算法的收敛准则函数,是判断该算法是否收敛的一个重要标准。

K-Means聚类算法

K-Means聚类算法

K—means聚类算法综述摘要:空间数据挖掘是当今计算机及GIS研究的热点之一。

空间聚类是空间数据挖掘的一个重要功能.K—means聚类算法是空间聚类的重要算法。

本综述在介绍了空间聚类规则的基础上,叙述了经典的K-means算法,并总结了一些针对K-means算法的改进。

关键词:空间数据挖掘,空间聚类,K—means,K值1、引言现代社会是一个信息社会,空间信息已经与人们的生活已经密不可分。

日益丰富的空间和非空间数据收集存储于空间数据库中,随着空间数据的不断膨胀,海量的空间数据的大小、复杂性都在快速增长,远远超出了人们的解译能力,从这些空间数据中发现邻域知识迫切需求产生一个多学科、多邻域综合交叉的新兴研究邻域,空间数据挖掘技术应运而生.空间聚类分析方法是空间数据挖掘理论中一个重要的领域,是从海量数据中发现知识的一个重要手段。

K—means算法是空间聚类算法中应用广泛的算法,在聚类分析中起着重要作用。

2、空间聚类空间聚类是空间数据挖掘的一个重要组成部分.作为数据挖掘的一个功能,空间聚类可以作为一个单独的工具用于获取数据的分布情况,观察每个聚类的特征,关注一个特定的聚类集合以深入分析。

空间聚类也可以作为其它算法的预处理步骤,比如分类和特征描述,这些算法将在已发现的聚类上运行。

空间聚类规则是把特征相近的空间实体数据划分到不同的组中,组间的差别尽可能大,组内的差别尽可能小。

空间聚类规则与分类规则不同,它不顾及已知的类标记,在聚类前并不知道将要划分成几类和什么样的类别,也不知道根据哪些空间区分规则来定义类。

(1)因而,在聚类中没有训练或测试数据的概念,这就是将聚类称为是无指导学习(unsupervised learning)的原因。

(2)在多维空间属性中,框定聚类问题是很方便的。

给定m个变量描述的n个数据对象,每个对象可以表示为m维空间中的一个点,这时聚类可以简化为从一组非均匀分布点中确定高密度的点群.在多维空间中搜索潜在的群组则需要首先选择合理的相似性标准.(2)已经提出的空间聚类的方法很多,目前,主要分为以下4种主要的聚类分析方法(3):①基于划分的方法包括K—平均法、K—中心点法和EM聚类法。

k-means算法基本原理

k-means算法基本原理

k-means算法基本原理如下:
1.确定聚类数k:首先需要确定需要将数据集分成几个聚类,即
确定聚类数k。

2.随机初始化k个聚类中心:在数据集中随机选择k个数据点作
为聚类中心。

3.计算每个数据点到聚类中心的距离:计算每个数据点到k个聚
类中心的距离,并将每个数据点分配到距离最近的聚类中心所在的聚类中。

4.更新聚类中心:计算每个聚类中所有数据点的平均值,将其作
为新的聚类中心。

5.重复以上步骤,直到满足停止条件:重复步骤3和4,直到聚
类中心不再发生变化或者已达到最大迭代次数。

K-means算法的目标是最小化每个聚类中心与所属数据点之间的平均距离,即最小化聚类误差平方和(SSE)。

K-means算法的优点是速度快、易于实现,但其结果受到初始聚类中心和聚类数k的影响。

K-means聚类算法基本思想

K-means聚类算法基本思想

K-means聚类算法基本思想聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。

K-means 也是聚类算法中最简单的一种。

以星团划分为例,,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。

重复迭代第一步和第二步直到质心不变或者变化很小。

K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。

最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。

看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM 思想。

聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。

而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。

聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。

比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。

在聚类问题中,给我们的训练样本是,每个,没有了y。

K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:1、随机选取k个聚类质心点(cluster centroids)为。

2、重复下面过程直到收敛{对于每一个样例i,计算其应该属于的类对于每一个类j,重新计算该类的质心}K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。

质心代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。

python_一维数据的k-means算法_概述及解释说明

python_一维数据的k-means算法_概述及解释说明

python 一维数据的k-means算法概述及解释说明1. 引言1.1 概述本文将介绍K-means算法在处理一维数据上的应用。

K-means算法是一种常用的聚类分析方法,可帮助我们将数据集划分为不同的簇。

聚类分析是一种无监督学习方法,通过找到数据中的相似性来对其进行分类,从而提取出隐藏在数据背后的模式和特征。

1.2 文章结构本文共包含以下几个部分:引言、K-means算法概述、一维数据的K-means 算法解释、示例与实现讲解以及结论与展望。

在引言部分,我们将提供一个简要介绍并概括本文所要讨论的主题。

接下来,在K-means算法概述中,我们将详细解释该算法的原理、步骤说明以及适用的场景。

然后,我们会详细探讨如何在一维数据上应用K-means算法,并对其中涉及到的数据预处理、聚类中心计算与更新以及聚类结果评估与迭代调整进行解释。

紧接着,在示例与实现讲解部分,我们将通过具体示例来演示如何使用Python 编写代码实现一维数据的K-means算法,并给出结果可视化和分析解读。

最后,在结论与展望部分,我们将总结本文的主要观点和发现,并展望未来关于K-means算法在一维数据上的研究方向和应用场景的拓展。

1.3 目的本文的目标是为读者提供对K-means算法在处理一维数据时的全面了解和应用指导。

通过阅读本文,读者将了解K-means算法的基本原理、步骤说明以及适用场景,并能够根据具体需求编写代码实现该算法并进行结果分析和解释。

同时,我们还希望通过本文对一维数据的K-means算法进行详细讲解,加深读者对该算法在实际问题中的应用理解和掌握能力。

2. K-means算法概述:2.1 算法原理:K-means算法是一种基于聚类的机器学习算法,主要用于将一组数据分成k 个不同的簇。

该算法通过计算数据点与各个簇中心之间的距离来确定每个数据点所属的簇,并且不断迭代更新簇中心以优化聚类结果。

其核心思想是最小化数据点到其所属簇中心的欧氏距离平方和。

k-means聚类算法简介

k-means聚类算法简介

k-means聚类算法简介k-means 算法是一种基于划分的聚类算法,它以k 为参数,把n 个数据对象分成k 个簇,使簇内具有较高的相似度,而簇间的相似度较低。

1. 基本思想k-means 算法是根据给定的n 个数据对象的数据集,构建k 个划分聚类的方法,每个划分聚类即为一个簇。

该方法将数据划分为n 个簇,每个簇至少有一个数据对象,每个数据对象必须属于而且只能属于一个簇。

同时要满足同一簇中的数据对象相似度高,不同簇中的数据对象相似度较小。

聚类相似度是利用各簇中对象的均值来进行计算的。

k-means 算法的处理流程如下。

首先,随机地选择k 个数据对象,每个数据对象代表一个簇中心,即选择k 个初始中心;对剩余的每个对象,根据其与各簇中心的相似度(距离),将它赋给与其最相似的簇中心对应的簇;然后重新计算每个簇中所有对象的平均值,作为新的簇中心。

不断重复以上这个过程,直到准则函数收敛,也就是簇中心不发生明显的变化。

通常采用均方差作为准则函数,即最小化每个点到最近簇中心的距离的平方和。

新的簇中心计算方法是计算该簇中所有对象的平均值,也就是分别对所有对象的各个维度的值求平均值,从而得到簇的中心点。

例如,一个簇包括以下 3 个数据对象{(6,4,8),(8,2,2),(4,6,2)},则这个簇的中心点就是((6+8+4)/3,(4+2+6)/3,(8+2+2)/3)=(6,4,4)。

k-means 算法使用距离来描述两个数据对象之间的相似度。

距离函数有明式距离、欧氏距离、马式距离和兰氏距离,最常用的是欧氏距离。

k-means 算法是当准则函数达到最优或者达到最大的迭代次数时即可终止。

当采用欧氏距离时,准则函数一般为最小化数据对象到其簇中心的距离的平方和,即。

其中,k 是簇的个数,是第i 个簇的中心点,dist(,x)为X 到的距离。

2. Spark MLlib 中的k-means 算法Spark MLlib 中的k-means 算法的实现类KMeans 具有以下参数。

kmeans聚类算法与熵聚类算法

kmeans聚类算法与熵聚类算法

K-means聚类算法与熵聚类算法是机器学习和数据挖掘领域常用的无监督学习方法。

它们都是通过对数据进行分组来寻找数据内在的结构和模式。

一、 K-means聚类算法的原理和流程1.1 K-means算法的原理K-means聚类算法是一种基于中心点的聚类算法。

它的基本思想是将数据集划分为K个簇,每个簇内的数据点与该簇的中心点具有最小的距离,而不同簇之间的数据点的距离较大。

K-means算法的目标是最小化簇内数据点与其对应中心点之间的距离之和。

1.2 K-means算法的流程K-means算法的流程大致可以分为以下几步:(1)初始化K个中心点,可以随机选择数据集中的K个样本作为中心点;(2)对每个样本,计算其与K个中心点的距离,并将其归类到距离最近的簇中;(3)更新每个簇的中心点,将其设置为该簇内所有样本的平均值;(4)重复步骤(2)和(3),直到簇内数据点的分配不再发生变化或达到预设的迭代次数。

1.3 K-means算法的优缺点K-means算法的优点包括简单易实现、计算效率高等。

但其也存在一些缺点,例如K值需事先确定、对初始中心点敏感等。

二、熵聚类算法的原理和流程2.1 熵聚类算法的原理熵聚类算法是一种基于信息论的聚类方法。

其基本思想是通过最小化簇内数据点的信息熵来进行聚类。

熵聚类算法可以分为两种:簇内熵最小化算法和簇间熵最大化算法。

2.2 簇内熵最小化算法簇内熵最小化算法的目标是使得每个簇内的数据点相似度较高,即簇内的数据点之间的差异较小。

这可以通过最小化每个簇的熵来实现。

2.3 簇间熵最大化算法簇间熵最大化算法的目标是使得不同簇之间的差异较大,即簇之间的数据点之间的差异较大。

这可以通过最大化不同簇之间的信息熵来实现。

2.4 熵聚类算法的流程熵聚类算法的流程主要包括以下几步:(1)计算簇内每个数据点的信息熵;(2)将数据点归类到信息熵最小的簇中;(3)重复步骤(1)和(2),直到满足停止条件。

2.5 熵聚类算法的优缺点熵聚类算法的优点包括不需要预先设定簇的个数、对初始值不敏感等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K-m e a n s聚类算法基
本思想
K-means聚类算法基本思想
聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。

K-means也是聚类算法中最简单的一种。

以星团划分为例,,首先随机选取k个宇宙中的点(或者k个星星)作为k 个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为
,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的
星星坐标求平均)。

重复迭代第一步和第二步直到质心不变或者变化很小。

K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。

最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。

看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。

聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。

而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。

聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。

比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。

在聚类问题中,给我们的训练样本是,每个,没有了y。

K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:
1、随机选取k个聚类质心点(cluster centroids)为。

2、重复下面过程直到收敛 {
对于每一个样例i,计算其应该属于的类
对于每一个类j,重新计算该类的质心
}
K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。

质心
代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距
离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。

重复迭代第一步和第二步直到质心不变或者变化很小。

下图展示了对n个样本点进行K-means聚类的效果,这里k取2。

K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。

下面我们定性的描述一下收敛性,我们定义畸变函数(distortion function)如下:
J函数表示每个样本点到其质心的距离平方和。

K-means是要将J调整到最小。

假设当前J没有达到最小值,那
么首先可以固定每个类的质心,调整每个样例的所属的类别来让J函数减少,同样,固定,调整每个类的质心也可以使J减小。

这两个过程就是内循环中使J单调递减的过程。

当J递减到最小时,和c也同时收敛。

(在理论上,可以有多组不同的和c值能够使得J取得最小值,但这种现象实际上很少见)。

由于畸变函数J是非凸函数,意味着我们不能保证取得的最小值是全局最小值,也就是说k-means对质心初始位置的选取比较感冒,但一般情况下k-means达到的局部最优已经满足需求。

但如果你怕陷入局部最优,那么可以选取
不同的初始值跑多遍k-means,然后取其中最小的J对应的和c输出。

下面累述一下K-means与EM的关系,首先回到初始问题,我们目的是将样本分成k个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将x归类。

由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大似然估计来度量,这里是就是x和y的联合分布P(x,y)了。

如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x 顺手就聚类了。

但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y
的情况下,我们可以调整其他参数让P(x,y)最大。

但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。

这个过程有几个难点,第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。

第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。

这些问题在以后的篇章里回答。

这里只是指出EM的思想,E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。

然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。

上面的阐述有点费解,对应于K-means来说就是我们一开始不知道每个样例对应隐含变量也就是最佳类别。

最开始可以随便指定一个给它,然后为了让P(x,y)最大(这里是要让J最小),我们求出在给定c情况下,J最小时的(前面提到的其他未知参数),然而此时发现,可以有更好的(质心与样例距离最小的类别)指定给样例,那么得到重新调整,上述过程就开始重复了,直到没有更好的指定。

这样从K-means里我们
可以看出它其实就是EM的体现,E步是确定隐含类别变量,M步更新其他参数来使J最小化。

这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。

总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。

相关文档
最新文档