开关电源设计-Buck
开关直流降压电源(BUCK)设计
![开关直流降压电源(BUCK)设计](https://img.taocdn.com/s3/m/6260c8febd64783e08122b9c.png)
开关直流降压电源(BUCK)设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。
近年来,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论发展,新一代的电源开始逐步取代传统的电源电路。
该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。
开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。
开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。
本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计开关电源,利用MOSFET 管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。
关键词:直流,降压电源,TL494,MOSFET1目录摘要 (1)Abstract........................................................... ........ 错误!未定义书签。
1.方案论证与比较 (4)1.1 总方案的设计与论证 ...................................... 错误!未定义书签。
1.2 控制芯片的选择 (4)1.3 隔离电路的选择 .............................................. 错误!未定义书签。
2. BUCK电路工作原理 ......................................... 错误!未定义书签。
3. 控制电路的设计及电路参数的计算 ................ 错误!未定义书签。
3.1 TL494控制芯片................................................ 错误!未定义书签。
TL494开关电源设计--BUCK电路解析
![TL494开关电源设计--BUCK电路解析](https://img.taocdn.com/s3/m/57b86186f524ccbff12184c5.png)
+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
过载保护--过载时,降低输出电压使负载电流保持在保护值。 不论开关管T2是否导通,流过负载的电流都经过R9(由上向下),R9的下端
电位为负,当负载电流达一定值时,误差放大器2的反相端电位为负,误差
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
tON=TOSCVO/(VIN-Vsta)=13.0~21.4uS(Vsta~1.2V)。
七、参数选择 4.开关管:
开关速度<1uS,
IC VEC PT
VIN+VF
IECO tON tOFF
VSTA t
耐压>2(VIN)max,
电流>2(IO)max
图四:开关管开关速度与功耗分析
TIP127(100V/5A,
死区时间控制 触发器 时钟
反馈/PWM比较器输入
Q
Q
Q1射极
BUCK型DCDC开关电源芯片的设计与实现
![BUCK型DCDC开关电源芯片的设计与实现](https://img.taocdn.com/s3/m/a762a34ff02d2af90242a8956bec0975f465a48f.png)
BUCK型DCDC开关电源芯片的设计与实现一、Buck型DC-DC开关电源的原理Buck型DC-DC开关电源采用PWM(脉宽调制)技术实现降压功率转换。
其基本原理是通过开关管(MOSFET)的开关控制,使电源源电压经过电感产生瞬间高压脉冲,然后经过二极管和电容进行滤波,从而得到较低的输出电压。
1.选取合适的芯片2.电路设计在电路设计中,需要考虑以下关键元件:(1)开关管(MOSFET):选择合适的MOSFET型号,使其能够承受输入电压和输出电流,并具有低导通压降和低开关损耗。
(2)电感:选择合适的电感器件,使其具有足够的电感值,以满足电路的输出电流要求,同时要考虑其饱和电流和电流纹波等参数。
(3)二极管:选用具有较高效率和低电压降的二极管,以减小功率损耗。
(4)滤波电容:选择适当的电容容值和工作电压,以保证输出电压的稳定性和滤波效果。
3.控制电路设计(1)比较器:用于比较输出电压反馈和参考电压,生成PWM信号。
(2)误差放大器:通过调节反馈电压和参考电压之间的差值,实现输出电压的稳定控制。
(3)反馈电路:将输出电压反馈给误差放大器,使其可以实时调节PWM信号。
4.输出过压保护与过流保护为了确保开关电源在异常工作条件下能够保持安全可靠的操作,需要添加过压保护和过流保护电路。
过压保护电路通常通过监测输出电压,当输出电压超过设定阈值时,立即切断开关管的导通。
过流保护电路通过监测输出电流,当输出电流超过设定阈值时,同样会切断开关管的导通。
5.PCB布局与散热设计在设计过程中,需要合理布局电路元件,以减小元件之间的相互干扰,并降低热量产生。
合理进行散热设计,确保开关管和散热器的有效散热,以保证开关电源的稳定工作。
三、BUCK型DC-DC开关电源的测试与调试完成电路设计后,需要进行测试和调试来验证设计的正确性和可靠性。
主要包括以下测试:(1)输入电压测试:测试开关电源在不同输入电压下的输出电压和效率。
(2)输出电压稳定性测试:测试开关电源在稳定工作状态下,输出电压随负载变化的情况。
buck电路实例 -回复
![buck电路实例 -回复](https://img.taocdn.com/s3/m/5f7f61812dc58bd63186bceb19e8b8f67c1cef0a.png)
buck电路实例-回复什么是buck电路?buck电路是一种降压型直流-直流(DC-DC)电路,常用于将较高电压降低为较低电压。
它是一种开关电源设计,其主要组成部分包括输入导体、开关元件、电感、电容和负载。
步骤一:电路原理buck电路的基本原理是通过周期性切换的开关元件来控制电感储能和释放,从而降低输入电压,并在电容上提供稳定的直流输出电压。
当开关元件导通时,电感储能,当其断开时,电感释放能量。
通过调节开关元件的通断频率和占空比,可以控制输出电压的大小。
步骤二:电路设计在设计buck电路时,以下几个要素需要考虑:1. 输入电压(Vin):输入电压是buck电路的工作基准。
根据负载的要求和输入电压的范围,选择合适的输入电压。
2. 输出电压(Vout):输出电压是通过调整开关元件的占空比来实现的。
根据应用需求,选择合适的输出电压。
3. 输出电流(Iout):输出电流是buck电路能够提供给负载的最大电流。
它取决于负载的需求以及电路的设计能力。
4. 开关频率(fsw)和占空比(Duty Cycle):开关频率和占空比决定了开关元件的工作周期和导通时间。
合适的开关频率和占空比可以提高电路的效率和稳定性。
5. 电感和电容选择:电感和电容的选择取决于输入电压范围、输出电压范围和输出电流需求。
合适的电感和电容可以提供稳定的输出电压。
步骤三:buck电路实例现在,我们将通过一个具体的实例来详细讲解buck电路的设计过程。
假设我们需要设计一个输出电压为5V的buck电路,输入电压范围为12V-24V,输出电流需求为2A。
为了方便说明,我们选择一个典型的buck 电路芯片LM2596作为参考。
首先,根据输出电压要求,选择合适的调整电阻和反馈电阻,以便调整开关元件的占空比,使输出电压为5V。
然后,根据输入电压范围和输出电流需求,选择合适的电感和电容。
一般来说,电感的选择应该能够满足最大负载电流的要求,并且电容应该足够大,以提供稳定的输出电压。
BUCK变换器设计
![BUCK变换器设计](https://img.taocdn.com/s3/m/e4ba30bbaff8941ea76e58fafab069dc502247af.png)
BUCK变换器设计一、引言BUCK(降压)变换器是一种常见的开环降压电源设计,具有广泛的应用领域。
在本文中,我们将详细介绍BUCK变换器的设计原理和步骤。
二、BUCK变换器的基本原理1.输入电压通过一个开关管和一个电感器连接到输出电压。
开关管通过开关周期性地打开和关闭来调整输出电压。
2.当开关打开时,电流通过电感器,能量存储在电感器磁场中。
3.当开关关闭时,电感器上的磁场坍缩,通过一个二极管将存储的能量传递到输出负载电路中。
4.通过调整开关管的开关周期和占空比,可以实现对输出电压的精确控制。
三、BUCK变换器的设计步骤下面是设计BUCK变换器的基本步骤:1.确定输入电压和输出电压范围。
根据应用的需求,确定输入电压和输出电压的合适范围。
输入电压通常由电源提供,而输出电压则由负载需求决定。
2.选择合适的开关器件。
根据输入电压和输出电流的要求,选择合适的开关管和二极管,以确保电流和功率的可靠传输。
3.计算开关周期和占空比。
根据输入输出电压的比例以及工作频率,计算出合适的开关周期和占空比。
这两个参数直接影响输出电压的稳定性和效率。
4.计算电感器和输出电容。
根据预设的开关周期和占空比,计算出合适的电感器和输出电容值。
电感器和输出电容可以提供电流平滑和稳定输出电压的功能。
5.设计反馈电路。
设计一个反馈电路来控制开关管的工作,以实现对输出电压的精确调节。
常见的反馈电路包括PID控制器和比例控制器。
6.进行验证和测试。
在实际应用中,进行验证和测试以确保设计的BUCK变换器满足要求。
四、BUCK变换器的特点和应用1.高效率。
BUCK变换器通过周期性开关操作和能量传递来实现电流和功率的可靠转换,使得效率比传统的线性稳压器更高。
2.范围广。
BUCK变换器可以适应不同的输入电压和输出电压需求,可以应用于多种电子设备和系统。
3.体积小。
由于BUCK变换器的高效转换机制,可以采用较小的电感器和电容器,从而实现体积小巧的设计。
buck电路设计原则
![buck电路设计原则](https://img.taocdn.com/s3/m/4562dd45bb1aa8114431b90d6c85ec3a86c28b50.png)
buck电路设计原则Buck电路,也称为降压电路,是一种常见的开关电源拓扑结构,用于将输入电压降低到较低的输出电压。
以下是设计Buck电路时应考虑的一些基本原则:1.选择合适的元件:选择适当的功率开关器件(如MOSFET)、电感和电容是设计中的关键步骤。
这些元件的选取会影响电路的效率、稳定性和功率处理能力。
2.控制电路设计:选择合适的控制方案,如电压模式控制(Voltage Mode Control)或当前模式控制(Current Mode Control)。
电压模式控制通常用于轻负载条件,而当前模式控制则对于大范围负载变化具有更好的响应。
3.反馈回路设计:设计准确的反馈回路以确保输出电压的稳定性。
这可能包括使用反馈电压调节器、误差放大器和比较器等元件。
4.过电流和过温度保护:考虑加入过电流保护和过温度保护电路,以防止电路元件受损。
5.EMI和滤波设计:由于开关电源可能引起电磁干扰(EMI),设计中需要采取措施来降低这些干扰。
这可能包括使用滤波器和合适的线路布局。
6.稳定性分析:进行控制环路稳定性分析,以确保电路在各种工作条件下都能保持稳定。
这通常需要考虑控制环路的相位和幅度裕度。
7.效率优化:设计时需要考虑电路的整体效率。
这可能包括最小化开关损耗、导通损耗以及减小其他电源损耗。
8.温度管理:确保电路元件在正常工作条件下的温度不超过其规定的极限,可以通过选择合适的散热器和热管理方案来实现。
9.输入输出电容选择:选择合适的输入和输出电容以实现足够的滤波和稳压效果。
10.负载变化响应:考虑负载变化时电路的响应速度,确保在快速变化的负载条件下仍能维持稳定的输出。
在设计Buck电路时,综合考虑上述原则可以帮助确保电路的性能、稳定性和可靠性。
最终的设计选择将取决于特定的应用和要求。
TL494开关电源设计--BUCK电路
![TL494开关电源设计--BUCK电路](https://img.taocdn.com/s3/m/20af9b016c175f0e7cd13737.png)
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
L0 ~
VIN T 8I
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
t
I (10% ~ 20%) I O max
电流断续状态DCM
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
5. 较典型的设计验证方法和负载实验。
三、BUCK型DC-DC变换器(CCM工作模式)
1. 导通状态 U I UO UL I ON t1 t1 L L 2. 截止状态 UO UL I OFF t2 t2 L L 3. 输入输出关系
I ON I OFF
U O DU I
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
BUCK电路方案设计
![BUCK电路方案设计](https://img.taocdn.com/s3/m/1caa1c74ef06eff9aef8941ea76e58fafab045fe.png)
BUCK电路方案设计在电子领域中,BUCK电路是一种非常常见且重要的电路方案。
BUCK电路是一种降压型DC-DC转换器,也被称为降压开关电源。
它通过将输入电压降低到一个较低的输出电压来实现电源调节功能。
BUCK电路的工作原理是,当开关管导通时,输入电压源通过电感和开关管输出到输出电容上,输出电压上升。
当开关管截止时,电感中的能量继续通过电容供应负载,输出电压下降。
通过这种方式,BUCK电路能够稳定地将输入电压变为较低的输出电压。
1.确定输入和输出电压要求:根据具体应用需求确定输入和输出电压范围。
在此基础上,选择合适的开关管和电感。
2.计算工作频率:选择合适的工作频率,一般常见的有几十kHz到几MHz的范围。
工作频率的选择要平衡转换效率和滤波器尺寸。
3.计算电感和电容值:根据输入和输出电压范围,使用以下公式计算电感和电容值:电感值(L)=(输出电压/工作频率)*(输入电压-输出电压)/输出电流电容值(C)=输出电流/(工作频率*最大纹波电压)4.根据负载要求计算开关管的最大电流和功耗:通过确定负载电流以及开关管的最大导通时间和导通电阻,计算开关管的最大电流和功耗。
5.添加反馈控制:为了实现稳定的输出电压,需要使用反馈控制回路。
一般采用PID控制,通过调节开关管的导通时间来实现输出电压的调节。
6.性能评估和优化:通过仿真和实验评估BUCK电路的性能,包括效率、稳定性和纹波等。
根据评估结果进行优化,例如选择更合适的元件、调整控制参数等。
总之,BUCK电路是一种常用且重要的电路方案,适用于很多应用场景。
通过合理的设计和优化,可以实现稳定、高效的输出电压。
在实际应用中,还需考虑元件的选取、温度变化等因素,并根据具体需求进行优化调整,以实现最佳的电路性能。
(完整word版)基于Buck变换器的开关电源设计【适合做课程设计】
![(完整word版)基于Buck变换器的开关电源设计【适合做课程设计】](https://img.taocdn.com/s3/m/63740685f46527d3250ce08d.png)
基于Buck变换器的开关电源设计摘要一个高可靠性的电源系统需要大功率宽电压输入范围的DC/DC变换,在充分考虑不同DC/DC变换器拓扑特点的基础上,选用Buck作为系统的电路拓扑.本文介绍了Buck电路的工作原理,对整个闭环结构进行设计与研究,并附以相关电路图表示。
并选择符合规范的元器件,计算产品的成本.关键词Buck拓扑;DC/DC;开关电源;MC34063第一章概述开关电源是利用现代电子电力技术控制功率器件(MOSFET、三极管等)的导通和关断时间来稳定输出电压的一种稳压电源,具有转换效率高,体积小,重量轻,控制精度高等优点。
1。
1基本要求输入直流9V-12V,输出5V,5W;开关振荡频率40KHz。
1.2方案设计采用MOSFET作为功率转换元件,MOSFET具有压降小,输入电阻高,动态特性好等特点。
控制方案采用集成电路MC34063单路PWM控制芯片,极大简化电路设计。
第二章开关电源输入与控制部分设计2。
1 开关电源工作原理开关电源是指调整管工作在开关方式,只有导通和截止两个状态,图2-1为工作过程。
基准电压为固定值,由于输入波动或负载变化导致输出电压减小,采样电压将减小,经过比较放大后,脉冲调制电路根据这个误差,提高占空比使输出电压增大.同理,当由于输入波动或负载变化导致输入电压增大时,脉冲调制电路降低占空比使输出电压减小,以此来控制输出电压的稳定。
图2-1 开关电源原理框图2。
2 Buck 调整器的基本工作方式Buck 调整器的基本电路如图2-2所示,晶体管Q1与直流输入电压dc V 串联,通过Q1的开通与关断,在V1处产生方波电压,采用恒频占空比可调的方式(PWM),在V1出产生方波电压,Q1导通时间为on T 。
Q1导通时V1点电压为dc V ,电流通过串接的电感L0流入输出端,Q1关断时,电感L0产生反电动势,使V1点电压迅速下降到0并变负,直至被D1钳位于—0。
8V 。
假设二极管导通压降为0,则V1点电压为矩形波,该方波电压平均值为T T V on dc /。
buck开关电源工作原理
![buck开关电源工作原理](https://img.taocdn.com/s3/m/6688d5b5185f312b3169a45177232f60ddcce7a6.png)
buck开关电源工作原理今天咱们来唠唠buck开关电源的工作原理,这玩意儿可有趣啦。
buck开关电源呢,就像是一个超级智能的电力小管家。
你想啊,在我们的电子设备里,不同的部件需要不同大小的电压才能好好工作,就像不同的人有不同的食量一样。
而buck开关电源就能把输入的电压调整成设备需要的电压。
咱先说说它的基本组成部分吧。
这里面有个很重要的东西叫电感。
电感就像是一个储存电能的小仓库,不过这个小仓库有点特别哦。
当电路里的电流通过电感的时候,电感就开始储存能量啦,就像小松鼠把坚果藏起来过冬一样。
它会把电能以磁场的形式储存起来呢。
还有一个关键的元件是电容。
电容呀,就像是一个缓冲器。
你可以想象成它是一个小海绵,当电压有波动的时候,它就会吸收或者释放一些电能,让电压变得更稳定。
就好像是在波涛汹涌的大海里,它能让小船上的乘客感觉没那么晃悠。
那这个buck开关电源到底是怎么把电压降下来的呢?这就涉及到它的开关动作啦。
有一个开关管,这个开关管就像是一个超级快的闸门。
当这个闸门打开的时候,电流就从输入电源那里流进来,经过电感,然后给电容充电,同时也给负载供电。
这个时候,电感就开始欢快地储存能量啦。
但是呢,这个闸门可不会一直开着哦。
当开关管关闭的时候,就像是闸门突然关上了。
这时候电感就不乐意了,它储存了那么多能量怎么办呢?电感可聪明啦,它就会把自己储存的能量释放出来,继续给电容充电,也继续给负载供电。
在这个过程中,因为电感和电容的相互配合,就使得输出的电压比输入的电压低了。
而且通过控制这个开关管的开关频率和占空比,就能精确地控制输出电压的大小呢。
占空比就像是闸门打开的时间比例,如果闸门打开的时间短,关闭的时间长,那输出的电压就会比较低;反之,如果打开的时间长,关闭的时间短,输出电压就会高一些。
你看,这buck开关电源是不是很神奇呀?它就像是一个小小的电力魔术师,在电子设备的世界里默默地施展着魔法,让每个电子元件都能得到合适的电压,然后愉快地工作。
BUCK型DCDC开关电源芯片的设计与实现
![BUCK型DCDC开关电源芯片的设计与实现](https://img.taocdn.com/s3/m/46a5fd3b178884868762caaedd3383c4bb4cb4ae.png)
BUCK型DCDC开关电源芯片的设计与实现BUCK型DCDC开关电源芯片是一种常用于电子设备中的降压型直流到直流转换器。
它能够将输入电压降低到较低的输出电压,同时还能够提供高效的电力转换。
本文将介绍BUCK型DCDC开关电源芯片的设计与实现。
首先,BUCK型DCDC开关电源芯片的设计需要考虑以下几个关键因素:1.输入输出电压:确定所需的输入和输出电压范围。
输入电压应该大于最小额定输入电压,输出电压应小于输入电压。
2.输入输出电流:根据应用需求确定所需的输入和输出电流。
这将影响开关器件和滤波器的尺寸选择。
3.开关频率:选择适当的开关频率以平衡功率转换效率和电路尺寸。
较高的开关频率能够减小开关器件尺寸,但可能导致更多的开关损耗。
4.控制方式:选择合适的控制方式,比如PWM调制或恒定频率和变占空比调制。
PWM调制常用于高功率应用,而恒定频率和变占空比调制常用于低功率应用。
接下来是BUCK型DCDC开关电源芯片的实现过程:1.选择电源芯片:根据设计需求,选择适当的BUCK型DCDC开关电源芯片。
考虑芯片的输入输出电压范围、电流能力和控制功能等因素。
2.设计输入和输出滤波器:根据电源芯片的输入输出电流要求,设计适当的输入输出滤波器来减小电流纹波和噪音。
3.设计控制电路:根据选择的控制方式,设计控制电路来生成适当的PWM信号或调制信号。
这可以使用定时器、比较器和反馈电路等元件实现。
4.选择开关器件:根据输入输出电压和电流要求,选择合适的功率开关器件。
这些器件应能够处理所需的功率和频率要求,并具备低开关损耗和低导通电阻。
5.进行电路布局和焊接:根据设计要求,在PCB上进行电路布局和元器件焊接。
应留出足够的空间来放置所有的电路元件,并确保良好的热管理。
6.进行测试和调试:完成电路布局和焊接后,进行对电路的测试和调试。
这包括验证输入输出电压、电流和效率等参数。
如果有必要,进行相应的调整和优化。
最后,完成BUCK型DCDC开关电源芯片的设计与实现后,可以将其应用于各种电子设备中。
开关电源(Buck电路)的小信号模型及环路设计
![开关电源(Buck电路)的小信号模型及环路设计](https://img.taocdn.com/s3/m/9b99986ca98271fe910ef99d.png)
0 引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。
而环路的设计与主电路的拓扑和参数有极大关系。
为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。
在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。
由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。
好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。
开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。
采用其他拓扑的开关电源分析方法类似。
1 Buck电路电感电流连续时的小信号模型为理想开图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。
R为滤波电容C的等效串联电阻,R o为负载电阻。
各状态变量的正方向定义如图e1中所示。
图1 典型Buck电路S导通时,对电感列状态方程有L=U- U o (1)in续流导通时,状态方程变为S断开,D1L=-U(2)o占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U-U o)+(1-D)(-U o)=DU in-U o(3)in稳态时,=0,则DU in=U o。
这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压U in成正比。
由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得L=(D+d)(Uin+)-(U o+) (4)式(4)由式(3)的稳态值加小信号波动值形成。
BUCK电路设计
![BUCK电路设计](https://img.taocdn.com/s3/m/2d355bc48662caaedd3383c4bb4cf7ec4bfeb651.png)
BUCK电路设计BUCK电路设计是一种降压直流-直流(DC-DC)转换电路,被广泛应用于电子设备中。
其原理是通过控制功率晶体管的导通时间,将高电压输入转换为较低电压输出。
本文将以一种原创的BUCK电路设计为例,详细介绍其工作原理、设计步骤和关键参数。
一、工作原理:BUCK电路利用了电感元件的性质来实现电压降低,通过周期性的开关来控制电感上的电流。
当功率晶体管导通时,电感储存能量,并将电流传递到负载上;当功率晶体管关断时,电感释放储存的能量,维持电流并维持负载的电压。
二、设计步骤:1.确定输入和输出电压:根据实际应用需求,确定BUCK电路的输入电压和输出电压。
输入电压通常较高,仅能提供相对稳定的直流电源;输出电压通常较低,为电子设备正常工作所需的电压。
2.估算输出电流:根据负载特性和功率需求,估算出所需的输出电流。
输出电流大小决定了电感元件和功率晶体管的选型,以保证电路正常运行。
3.计算电感元件的值:根据输出电流的大小,选择适当的电感元件。
电感元件的值决定了电感的储能能力,传导电流的能力和电路的效率。
根据工作频率和输出电流,可以使用下列公式计算电感值:L = (V_in - V_out) * (1 - D) / (f * ΔI_L)其中,L为电感值,V_in为输入电压,V_out为输出电压,D为占空比,f为开关频率,ΔI_L为电感电流的变化幅度。
4.计算输出电容的值:为了减少输出的纹波电压并提供稳定的电压,需要加入适当的输出电容。
根据输出电流变化的速率和滤波要求,可以使用下列公式计算输出电容的值:C = ΔI_out / (f * ΔV_out)其中,C为输出电容的值,ΔI_out为输出电流的变化幅度,ΔV_out为输出电压的变化幅度。
5.设计反馈网络:为了确保输出电压的稳定性,需要设计一个反馈网络来控制占空比。
一般使用电压反馈方式,通过比较输出电压和参考电压,来控制功率晶体管的导通时间和关断时间,以调节输出电压。
buck开关稳压电源设计心得
![buck开关稳压电源设计心得](https://img.taocdn.com/s3/m/df90bd8adb38376baf1ffc4ffe4733687f21fc66.png)
buck开关稳压电源设计心得引言:设计一款高效稳定的开关稳压电源是电子工程师的重要任务之一。
在过去的项目中,我有幸参与了一款Buck开关稳压电源的设计,获得了宝贵的经验和体会。
本文将分享我在这个过程中所学到的知识和心得体会,希望对其他电子工程师在类似项目中起到一定的借鉴作用。
一、前期准备工作:在开始设计之前,了解原理和基本要求是非常重要的。
我充分阅读了有关Buck开关稳压电源的相关资料,掌握了其基本原理。
并认真核对了项目需求,包括输出电压、输出电流、效率等方面的要求。
明确项目要求对于设计电路的选择和后续的优化有着重要的指导作用。
二、电路选择和元件选型:从众多的电路拓扑中选择适合当前项目的Buck电路是首要任务。
在选择中要考虑影响因素包括输入电压、输出电压、输出电流、效率要求等。
在项目中,我选择了同步整流Buck电路,因其具有高效率、低功耗等优点。
接下来的任务是选型合适的电阻、电容、二极管和功率管等元器件。
选用优质的元器件可以提高电路性能和可靠性,要综合考虑价格、性能和供货等因素。
三、PCB设计:良好的PCB设计对于电路的性能和稳定性具有重要影响。
在进行布线设计时,我尽量缩短信号和功率的路径,减少阻抗和电感,降低串扰和干扰。
同时,合理的引脚布局和分离地平面设计可以减小回路的环路电流,提高电磁兼容性。
在最终的设计中,我还加入了滤波电容和保护元件,以提高电源的稳定性和可靠性。
四、开关频率和控制方式选择:选择适当的开关频率对于电源的性能和效率有着重要影响。
较高的开关频率能够减小滤波电感和电容的大小,从而减小整个电路的体积。
控制方式的选择可以根据具体的应用场景和性能要求来定,比如当前项目中我选择了脉宽调制(PWM)控制方式来实现电压的稳定输出。
五、测试和调试:设计完成后,进行测试和调试是非常重要的环节。
在测试中要精确测量输出电压、电流和效率等参数并与设计要求进行对比。
同时对于温度、短路和过电流等异常情况要进行保护测试,以确保电源在不同负载和环境下的稳定性和可靠性。
基于单片机的同步整流Buck稳压开关电源设计
![基于单片机的同步整流Buck稳压开关电源设计](https://img.taocdn.com/s3/m/a2ceca795627a5e9856a561252d380eb62942398.png)
基于单片机的同步整流Buck稳压开关电源设计随着电子设备的不断普及,稳定可靠的电源设计变得尤为重要。
本文将介绍一种基于单片机的同步整流Buck稳压开关电源设计,以满足电子设备对稳定电源供应的需求。
1. 概述同步整流Buck稳压开关电源是一种能够有效降低开关功率损耗的电源设计方案。
通过使用单片机控制同步整流MOS管的开关时间,可以实现高效率、低功耗的稳压功能。
本文将详细讨论该电源设计的工作原理和关键部件选择。
2. 设计原理同步整流Buck电源的工作原理基于Buck拓扑结构,通过单片机控制同步整流MOS管的开关时间来实现稳压功能。
具体的设计步骤如下:(1)选择适当的功率电感、电容和二极管,以满足输出电压和电流的需求。
(2)基于单片机的PWM控制器生成开关信号,控制主开关管和同步整流MOS管的开关时间。
(3)PWM控制器还监测输出电压的变化,并根据反馈信息调整开关时间,以保持稳定的输出电压。
3. 关键部件选择在同步整流Buck稳压开关电源设计中,几个关键的部件选择将决定电源性能的好坏。
以下是一些关键部件选择的建议:(1)功率电感:选择具有适当的电感值和电流能力的电感,确保能够提供稳定的电流输出。
(2)电容:选择低ESR值的电容,以减少输出纹波电流和电压。
(3)同步整流MOS管:选择低导通压降的MOS管,以减小开关功率损耗。
(4)PWM控制器:选择具有高精度和快速响应特性的PWM控制器,以实现精确的稳压功能。
4. 效果与改进基于单片机的同步整流Buck稳压开关电源设计具有以下优点和改进空间:(1)高效率:同步整流技术能够有效减小开关功率损耗,提高电源的整体效率。
(2)稳定性:通过单片机的PWM控制器,可以实现精确的输出稳压,并对输入电压和负载变化进行动态调整。
(3)改进空间:可以进一步优化电源设计,如改进PWM控制算法、使用高效率的元件等,以提高电源性能和稳定性。
综上所述,基于单片机的同步整流Buck稳压开关电源设计是一种高效、稳定的电源解决方案。
TL494开关电源设计BUCK电路
![TL494开关电源设计BUCK电路](https://img.taocdn.com/s3/m/25ada34a763231126edb11a0.png)
通,称为单端工 作方式。
死区 时间控 制
反馈 /PWM比较 器输入
图二 :TL494时序 图
3.功能描述
▪ 含有控制开关式电源所需的主要功能块。 ▪ 线性锯齿波振荡器(3V),频率Fosc = 1.1/ (RT* CT ) ▪ 输出开关管导通时间由“死区时间控制”和“反馈/PWM比
较器输入”两个信号中电平较高的一个控制,控制信号电 平与电容器CT 上的锯齿波进行比较,实现脉冲宽度的调整。 ▪ 控制信号电平线性增加时,Q1 和Q2 的导通时间线性减少。 ▪ “输出控制”=5V为推挽输出,最小死区2%,最大占空比 48%; “输出控制” =0为单端输出,最小死区4%。
2. TL494的时
序(续)
触发 器
时钟
当输出控制电压 =H时, Q和时钟 Q
信号均为0时, Q
Q1基极高电平导
通, /Q和时钟信 Q1射极
号均为0时, Q2
基极高电平导通, Q2射极
两管轮流导通,
称为推挽工作方 输出控制
式。
当输出控制电压 =L时,时钟信号 为0时, Q1和Q2 基极获高电平导
C7 C8
5 CT 6 RT
GND 7
I N2+ 16
I N215
10u/16V
C2
332 R3
R8
120
10K
R9
图三:由TL494组成降压型开关稳压电源
0.1
+12
104 C9
5K1 R17
R16 3K6
稳压原理--输出电压负反馈。
若某因致输出电压过高,则误差放大器1同向端电位升高,反馈/PWM端电位 上升,Q1管导通时间减少,占空比减少,输出电压减少。负反馈使输出电压 保持稳定,R17和R16中点电压为5V。R12/R10为误差放大器1的静态放大倍 数,影响控制精度。C3和R6、C4、C5和R13补偿网络,提高静、动态性能。
基于BUCK变换器开关电源设计
![基于BUCK变换器开关电源设计](https://img.taocdn.com/s3/m/4e4b2e5afbd6195f312b3169a45177232e60e455.png)
基于BUCK变换器开关电源设计一、引言开关电源是一种常见的电源系统,其主要由开关电路、滤波电路和稳压电路组成。
其中,开关电路是关键部分,负责将输入电源的直流电压转换为需要的电压形式。
BUCK变换器是开关电源中常用的一种变换器类型,在工业和电子设备中广泛应用。
本文将介绍基于BUCK变换器的开关电源设计的详细步骤和注意事项。
二、BUCK变换器的原理BUCK变换器是一种降压变换器,其工作原理是通过开关管控制输入电源的导通和断开,从而通过电感和电容的锁相环作用,实现输出电压的稳定调节。
具体工作步骤如下:1.开关管导通状态:当开关管导通时,输入电源与电感形成回路,电感里的能量被储存在磁场中,同时电容开始充电。
2.开关管断开状态:当开关管断开时,电感的磁场崩溃,释放能量,使得电流通过二极管回路,电容开始放电。
通过这种开关过程,BUCK变换器可以将输入电源的直流电压降低,达到需要的输出电压。
三、基于BUCK变换器的开关电源设计步骤1.确定输入电源和输出电压要求:根据具体应用需求,确定所需要的输入电压和输出电压,以及电流要求。
2.计算开关管的参数:根据输出电压和电流要求,计算开关管的额定电流和功率,选择合适的开关管类型。
3.计算电感和电容的参数:根据输入电压、输出电压和电流要求,计算出合适的电感和电容参数。
选择合适的电感和电容类型,并进行热稳定计算。
4.设计开关频率:根据应用需求和电路参数,选择合适的开关频率,以达到较高的功率转换效率。
5.设计控制电路:根据选择的开关频率和开关管类型,设计合适的控制电路,实现开关管的正常工作,如脉宽调制控制、开关管的驱动电路等。
6.选择滤波电路:根据输出电压的纹波和稳压要求,选择合适的滤波电路进行设计,如低通滤波器、电容滤波器等。
7.PCB布局和散热设计:根据电路参数和设计要求,进行PCB布局和散热设计,确保电路能够正常工作并具有较高的稳定性和可靠性。
四、注意事项1.在设计过程中,需根据电路参数和工作条件选择合适的元件,如开关管、电感、电容等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个基于Buck调压器结构的DC-DC变换 器的设计实例
• 规格: 1、输入电压(Vi):19V; 2、输出电压(Vo):5V; 3、最大输出电流(Imax):1.5A 4、开关频率(f):50KHz
原理图(1)
原理图(2)
参数 × (19 − 5) × 5 L= = = 246uH(取220uH) Vi I max f 19 ×1.5 × 50000
1 C5 < = 159 pF 2πR10 f co
开关电源设计
Buck调节器
Buck调节器的基本结构
Buck调节器的基本结构
• 占空比: • 电感:
Vo Duty = Vi
5(Vi − Vo )Vo L= Vi I max f Vo E= Vo + 1
• 理论效率:
Buck调节器环路稳定
• 环路稳定的三个原则: 1、在系统的剪切频率内,总开环相移要小于360°, 相位裕量:45°。 2、在幅度谱中应该以-1的增益斜率的曲线穿越剪 切频率; 3、剪切频率通常取1/5~1/4开关频率。
参数计算
• 电阻取样网络增益:-10dB (R9=1k) • 芯片TL3843内部衰减:-10dB • 采用II型误差放大器补偿网络,因此
R10 20 log ≤ −(−47.6 − 10 − 10 + 25.6)dB = 42dB R9
实际中,如果R9=1k,取R10=100k
参数计算
• •
1 C6 ≥ = 4.7nF 2πR10 f p ( LC )
• 输出电容:取1000uF,假设ESR=65m • LC共轭极点: 1 f p ( LC ) = = 339 Hz 2π L1C9
参数计算
• ESR增加的零点:
f z ( ESR ) 1 = = 2500 Hz 2πC9 RESR
• 剪切频率:10KHz • LC输出网络在10KHz的增益:-47.6dB • 锯齿波峰值:1V,所以调制器增益: 19V/1V=19倍=25.6dB