正比例函数的图像与性质优秀课件

合集下载

正比例函数的图像与性质说课课件

正比例函数的图像与性质说课课件

通过解析式可以方便地求出任意自变 量对应的函数值。
比例系数 k 决定了函数的斜率和图像 的形状。当 k > 0 时,函数图像为上 升直线;当 k < 0 时,函数图像为下 降直线。
正比例函数自变量取值范围
正比例函数的自变量 x 可以取全体实 数,即 x ∈ R。
由于正比例函数是线性函数,其自变量 x 的取值范围不受限制。
在实际应用中,自变量 x 的取值范围 可能会受到实际问题的限制。例如,在 某些物理问题中,x 可能表示时间或距 离等物理量,其取值范围会受到实际物
理条件的限制。
03
正比例函数图像特征
图像形状及位置
01
02
正比例函数的图像是一条经过原点的直线。
当比例系数为正时,图像位于第一、三象限;当比例系数为负时,图 像位于第二、四象限。
05
正比例函数应用举例
实际问题背景介绍
举例
某工厂生产一种产品,其成本与生产数量之间呈正比例关系 。
背景
在实际生活中,许多问题都涉及到两个量之间的正比例关系 ,如速度、时间、距离之间的关系,以及价格、数量、总价 之间的关系等。
建立数学模型过程演示
设定变量
设生产数量为 x,成本 为 y。
建立正比例函数
周期函数定义
对于函数$y=f(x)$,如果存在一个正数$p$,使得对于任意$x$,都有 $f(x+p)=f(x)$,则称$f(x)$为周期函数,$p$称为$f(x)$的周期。
正比例函数的周期性
正比例函数$y=kx$($k neq 0$)不具有周期性。因为对于任意非零实数$p$, 都不能使得$f(x+p)=kx+kp=kx=f(x)$恒成立。
函数图像特征

正比例函数ppt课件

正比例函数ppt课件

当k>0时,图像位于第一象限和 第三象限;当k<0时,图像位于
第二象限和第四象限。
正比例函数的情势
正比例函数的一般情 势为y=kx,其中k是 比例常数。
当x=0时,y=0,这 是正比例函数图像上 的一个重要点。
当k>0时,y随x的增 大而增大;当k<0时 ,y随x的增大而减小 。
正比例函数的图像
05 练习与问题解答
CHAPTER
基础练习题
总结词:理解正比例函数 的定义和性质
ห้องสมุดไป่ตู้
什么是正比例函数?
正比例函数的图像是怎样 的?
详细描写
正比例函数的一般情势是 什么?
正比例函数有哪些性质?
进阶练习题
总结词:掌握正比例函数的解析式和图像变换
01
02
详细描写
如何确定正比例函数的解析式?
03
04
如何通过平移得到正比例函数的图像?
在经济中的应用
收入与工作量的关系
价格与需求量的关系
在一定范围内,工资与工作量成正比 ,即收入 = 基本工资 + 计时工资 × 工作量。
在供需平衡下,价格与需求量成正比 ,即需求量 = 价格 / 边际效用。
成本与产量的关系
在规模经济下,单位产品的成本与产 量成反比,即成本 = 固定成本 + 可 变成本 / 产量。
在日常生活中的应用
身高与体重的关系
一般来说,身高越高的人体重也越重,但这并不是严格的正比关 系。
光照强度与植物生长的关系
在适宜的光照条件下,植物的生长速度与光照强度成正比。
药物剂量与疗效的关系
在一定范围内,药物剂量越大,疗效越好,但这也不是绝对的,需 要斟酌到副作用和个体差异等因素。

2024八年级数学下册第4章 一次函数的图像4.3.1正比例函数的图象与性质习题课件新版湘教版

2024八年级数学下册第4章 一次函数的图像4.3.1正比例函数的图象与性质习题课件新版湘教版

B.y1=y2
C.y1<y2
D.不能比较
8.对于函数y=-2x,下列说法不正确的是(
A.它的图象是一条直线
B.y随着x的增大而增大
C.它的图象过点(-1,2)
D.它的图象经过第二、四象限
B )

9.[2023·株洲景弘中学模拟]函数y=5x,y=-2x,y=- x的

共同特点是( D )
A.图象位于同样的象限
思维发散练2
利用正比例函数图象与性质求自变量的范围
12.已知y与x成正比例,且当x=3时,y=-9.
(1)求y与x之间的函数表达式.
【解】设y与x之间的函数表达式为y=kx.
由题意得-9=3k,解得k=-3,
∴y与x之间的函数表达式为y=-3x.
(2)画出函数图象.
【解】列表如下:
x

0
1

y


象上,故此选项错误.故选C.
【答案】C
6.下列是正比例函数的图象,且y随x的增大而减小的是( B )
【点拨】
正比例函数的图象过原点,若y随x的增大而减小,则函
数图象从左往右下降,故选B.


7.已知点(-4,y1),(2,y2)都在直线y=- x上,则y1与y2的
大小关系是(
A
)
A.y1>y2
根据三个函数图象所在象限可得a<0,b>0,c>0,再
根据直线越陡,|k|越大,得b>c,则a<c<b. 故选D.
4. [2023·广安 新考法·从特殊到一般的思想]如图,在平面直
角坐标系中,点A1,A2,A3,A4……在x轴的正半轴上,点
B1,B2,B3……在直线y=

正比例函数的图象和性质课件

正比例函数的图象和性质课件

们只相交于原点。
06
CHAPTER
03
正比例函数的性质
增减性
01
02
03
增减性
正比例函数在定义域内是 单调的,即随着x的增大 (或减小),y也相应增 大(或减小)。
增减性的判断
根据斜率k的正负来判断 。当k>0时,函数为增函 数;当k<0时,函数为减 函数。
增减性的应用
在解决实际问题时,可以 利用增减性判断函数的值 域或最值。
y=-3/x
提升练习题
01
总结词
深化理解与运用
02
03
04
题目1
已知某物体的速度v与时间t的 关系为v=kt,其中k为常数。 求该物体在t=3时的速度v。
题目2
画出函数y=0.5x和y=-0.2x的 图象,并比较它们的性质。
题目3
已知某物体的位移s与时间t的 关系为s=2t^2,求该物体在
t=5时的位移s。
斜率
1 2 3
斜率定义
正比例函数y=kx(k≠0)的斜率是k。
斜率与函数图像的关系
斜率决定了函数图像的形状和倾斜程度。当k>0 时,图像从左下到右上上升;当k<0时,图像从 左上到右下下降。
斜率的应用
在解决实际问题时,可以利用斜率判断函数的单 调性和变化趋势。
截距
截距定义
正比例函数y=kx(k≠0)的截距是0。
正比例函数的图象和性 质ppt课件
CONTENTS
目录
• 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 正比例函数的应用 • 练习与思考
CHAPTER
01
正比例函数的概念
正比例函数的定义

正比例函数的图象和性质课件

正比例函数的图象和性质课件

正比例函数的图象和性质 ppt课件
正比例函数的定义及公式,以及它在实际生活中的应用。图象和性质:与比 例系数的关系、定义域、值域、单调性、零点和特殊点,函数的极限。实例: 计算具体的正比例函数和解决实际问题。思考题和结论。
简介
正比例函数是一种重要的数学函数,它的图象和性质具有很多有趣的特点。 本课件将介绍正比例函数的定义及公式,并探讨它在实际生活中的应用。
思考题
如何确定一个函数是正比例函数?如何求正比例函数的比例系数?通过思考 这些问题,我们将加深对正比例函数的理解,并探索更多有关这一函数的性 质。
结论
通过总结正比例函数的特性和应用,我们将更好地理解这一重要的数学函数, 并认识考:《数学函数导论》、《正比例函数与实际应用》等。 网站及视频教程参考:数学学习网站、视频教程网站等。
图象
正比例函数的图象是一条直线,具有特殊的特征和规律。我们将研究正比例 函数的图象,并探讨它与比例系数的关系。
性质
正比例函数具有一些重要的性质,包括定义域、值域、单调性、零点和特殊 点,以及函数的极限。我们将了解这些性质,并分析它们的含义和应用。
实例
通过具体的计算和实际问题的解决,我们将深入理解正比例函数的应用。我们将计算具体的正比例函数,并使 用它们来解决各种实际问题。

正比例函数图像课件ppt

正比例函数图像课件ppt

正比例函数的应用场景
总结词
正比例函数在现实生活中有许多应用场景,如速度-时间关系 、加速度-时间关系等。
详细描写
在物理学中,速度和时间是成正比的,可以用正比例函数表 示。同样地,加速度和时间的关系也可以用正比例函数表示 。此外,在经济学、统计学等领域中也有许多应用场景,如 收入与工作时间的关系等。
k值变化时
当k的值产生变化时,图像的斜率也 会相应变化,但始终保持垂直于x轴 。
03 正比例函数图像的性质
函数的单调性
单调递增
当比例系数大于0时,随着x的增大 ,y的值也增大。
单调递减
当比例系数小于0时,随着x的增大,y 的值减小。
函数的对称性
关于原点对称
正比例函数的图像总是经过原点,并且关于原点对称。
正比例函数的基本性质
总结词
正比例函数具有一些基本性质,包括斜率固定、过原点、y 随 x 增大而增大或 减小等。
详细描写
正比例函数的斜率为 k,即当 x 增加时,y 会以 k 的比例增加或减少。如果 k>0,则函数图像为增函数;如果 k<0,则函数图像为减函数。由于图像过原 点,因此当 x=0 时,y=0。
解决代数问题
正比例函数是线性函数的一种特殊情势,通过正比例函数图像可以直观地表示函数的增减性、交点等性质,有助 于解决代数方程、不等式等问题。
在物理中的应用
描写光强与距离的关系
在光学中,光强与光源的距离成正比。通过正比例函数图像,可以表示光强与距离之间的关系,进而 分析光学现象。
描写声音强度与距离的关系
续的学习打下坚实的基础。
提高练习题
总结词:深化理解
详细描写:提高练习题是在学生掌握正比例函数的基本概念后,进一步深化对正 比例函数的理解。这些练习题将涉及更复杂的函数情势、参数变化对函数图像的 影响等内容,有助于培养学生的思维能力和解决问题的能力。

八年级数学上册课件正比例函数图像和性质

八年级数学上册课件正比例函数图像和性质

4、已知正比例函数的图象经过点(-3,6), 求比例系数k,并写出这个正比例函数的关系式;
5、已知y+1与2x+1成正比例关系,并且当 x=2时, y=-3。 (1)写出y与x之间的函数关系式; (2)当x=-3时,求y的值; (3)当y=2时,求x的值.

11.2.1 正比例函数(2) ——图像和性质

例1:画正比例函数 2x 的图象
画图步骤: 1、列表; 2、描点; 3、连线。

2x 的图象为:
x … -3 -2 -1 0 1 2 3 …
y … -6 -4 -2 0 2 4 6 …
y
5
2x
4
3
2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3 -4
-5 ​
练习:画出正比例函数
y 1 x 的图象?
2
y
5
2x
4
3
2 1
-5 -4 -3 -2 -1 0 -1 -2
-3 -4
-5
12 3 4 5

x
y1x 2
正比例函数 2x 的图象过(0,0)点和(1,2)点;
正比例函数
y


1 2
x
的图象过(0,0)点和(1
1)点; 2
那么正比例函数 (k≠0) 的图象是经过 原点(0,0)点和(1)点的一条直线。

例2:画函数 x 的图象
解:选取两点(0,0) ,(1,1) 图象为
y 5 4
3
2 1
y x
yx
-5 -4 -3 -2 -1 0 1 2 3 4 5
x

正比例函数图像(共16张PPT)

正比例函数图像(共16张PPT)


A.m=1
B.m>1
C.m<1
D.m≥1
3. 假设正比例函数图像又y=(3k-6)x的图像经过 点A〔x1,x2〕和B〔y1,y2〕,当x1<x2时 , y1>y2,那么k的取值范围B是 〔 〕 A.k>2 B.k<2 C.k=2 D.无法确定
4.正比例函数y=(3m-1)x的图像经过点A〔 x1,x2〕和B〔y1,y2〕,且该图像经过第二 、四象限.
思考
如图,三个正比例函数的图像分别对 应的解析式是 ①y=ax② y=bx ③ y=cx,那么a、b、c的大小关系是(
)
y= kx (k>0)
不同点:函数y=2x的图象经过第
象限,从左向右
,函数y=-2x的图象经过第

A.a>b>c ( 2 ) 正比例函数y=-2x的图象上的点(x,y)都满足
函数y=-7x的图象在第
5x,y=x,y=5x的图象,然后比较哪一个与x轴正方向所成的锐角最大,由此你得到什么猜测?再选几个图象验证你的猜测.
第十一章 一次函数

自学画图步骤,并在同一个直角坐标系上画出y=2x和y=-2x的图像并比较两个函数图像的相同点与不同点
自学画图步骤,并在同一个直角坐标系上画出y=2x和y=-2x的图像并比较两个函数图像的相同点与不同点
x增大时,y的值反而减小。 y随x的增大而减小
y y = 2x
y = 2x
3
y
4
4
2
2
0 12 x
-6 -3 0
x
画板演示
自学检测:
1.函数y=-7x的图象在第 二、四 象限内,经
过点(0,
0 )与点(1, -7 ),y随x的增大而

人教版八年级下册19.2.1正比例函数第2课时正比例函数的图象和性质课件

人教版八年级下册19.2.1正比例函数第2课时正比例函数的图象和性质课件

∴ y与∵x之当间x=函8时数,关y系=6式是∴:7yk==676 (∴x-1k ) 76
当x=4时,y=
6 7
×(4-1)= 18
7
当x=-3时,y=
6 7
×(-3-1)=
24 7
的图象?
y=-2x
y
2
y1x 2
5
4 -2小却更陡,说明
3 2 1
是k的绝对值越大, 函数图像越陡!
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
练一练
1. 正比例函数y=(m-1)x的图象经过一、三象限, 则m的取值范围是( B ) A. m=1 B. m>1 C. m<1 D. m≥1
当k >0时,直线y=kx经过第一、三象限,从左向右上升, 即随着x的增大y也增大;
当k <0时,直线y=kx经过第二、四象限,从左向右下降, 即随着x的增大y反而减小. 我们称它为直线y=kx.
随堂练习 画出正比例函数 y 2x , y 1 x
的图象?
y
2
这两个正比例函 比较上面两个函数的图象的相同点与不同点,考虑
的图象从左向右下降,经过第二、四象限.
么影响? ∴ y与x之间函数关系式是:y= (x-1)
当k>0时,图象(除原点外)在一,三象限, 就是函数y= x 的图象
2 1
K代表一次函数的斜率即倾斜程度,k的值越大函数图像越陡!
则m的取值范围是( )
-5 -4 x增大时,y的值也增大;
-3 -2 -1 0
x
-1
-2
-3
-4
-5
y 2x
y y=2x

正比例函数的图象与性质课件

正比例函数的图象与性质课件

THANKS
感谢观看
函数值的变化规律
总结词
正比例函数值随自变量的变化而变化
详细描述
对于正比例函数$y=kx$,当自变量 $x$增大或减小时,函数值$y$也会等 比例地增大或减小。
函数的极限状态
总结词
正比例函数的极限状态取决于函数的斜率
详细描述
正比例函数的极限状态是指当自变量$x$趋于无穷大或无穷小时,函数值$y$的极限状态。当$k>0$时,$y$的极 限为无穷大;当$k<0$时,$y$的极限为无穷小。
05
实例分析
实际应用场景
物理学中的速度与时间关系
正比例函数可以描述物体在恒定加速度下速度与时间的关系,即$v = v_0 + at$,其中$v_0$ 是初速度,$a$是加速度,$t$是时间。
经济学中的收入与工作时间关系
在经济学中,正比例函数可以用来描述收入与工作时间的关系,即$y = kx$,其中$y$是收 入,$k$是每小时的工资率,$x$是工作时间。
伸缩变换
正比例函数的图象可以在x轴和y轴方向上进行伸缩,但伸缩 不改变函数的性质。
04
正比例函数的性质
函数的增减性
总结词
正比例函数在定义域内具有单调性
详细描述
正比例函数是指形如$y=kx$($k neq 0$)的函数,当$k>0$时,函数在定义域内 单调递增;当$k<0$时,函数在定义域内单调递减。
正比例函数的图象与性质 课件
• 引言 • 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 实例分析 • 练习与思考
01
引言
主题简介
01
正比例函数是数学中一种基本的 函数类型,它描述了当一个变量 增加时,另一个变量按固定比例 增加的关系。

《正比例函数的图象与性质》PPT课件

《正比例函数的图象与性质》PPT课件
第一、第三
象限的直线.

01
知识讲解
(2)函数y=-1.5x,y=-4x的图象如下:
y=-4x
y=-1.5x
发现:这两个正比例函数的图象都是经过原点

第二、第四
象限的直线.
01
归纳
正比例函数y=kx (k是常数,k≠0)的图象是一条经过
原点的直线.我们称它为直线y=kx.
y=kx(k≠0)
经过的象限
(1)y=2x,y= ;
(2)y=-1.5x,y=-4x.
解:(1)函数y=2x中自变量x可为任意实数.
①列表如下:
x
y


-3 -2 -1 0
-6 -4 -2 0
1
2
2
4
3 …
6 …
01
知识讲解
y=2x
②描点.
y=
③连线.
1

3
同样可以画出
1
函数y=3 的图象.
发现:这两个正比例函数的图象都是一条经过 原点
k>0
第一、三象限
k<0
第二、四象限
01
思考
画正比例函数的图象时,怎样画最简单?为什么?
因为两点确定一条直线,所以可用两点法画正比
例函数y=kx (k是常数,k≠0) 的图象.
画正比例函数的图象时,我们只需描点(0,0)和
点 (1,k),连线即可.
02
练 一 练
LEARNING
OBJECTIVES
图象必经过的点
图象必经过(0,0)和(1,k)这两个点
谢谢观看!
1
(2)正比例函数y= -2x和y =-4x中,随着x值的增大y的值都减小了,其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
0-
1-
2-
3-
4-
5
小组讨论:观察、比较两个函数图象的相同 点与不同点
y 2x
y 2x
k>0
k<0
两图象都是经过原点的 直线 , 函y随数x的y=2增x的大图而象增从大左向右;上升,经过第 一、三象限,
函数y=-2x的图象从左向右下降,经过第 二、四 象
限,y随x的增大而 减小 。
正比例函数图象的性质:
2. 正比例函数y=(3-k) x,如果随着x的增大y反 而减小,则k的取值范围是 ______.
3. 函数y=-3x的图象在第
象限内,
ቤተ መጻሕፍቲ ባይዱ
经过点(0, )与点(1, ),y随x的增大而
.
4. 函数y= x的图象在第
象限内,经
过点 (0, )与点(1, ),y随x的增大而 .
4.函数y=-7x的图象经过第
一般地,形如 y=kx(k是常数,k≠0) 的函数,叫做正比例函数, 其中k叫 做比例系数.
注: 正比例函数解析式y=kx(k≠0)
的结构特征:
①k≠0
②x的次数是1
判断下列函数解析式是否是正比例函数? 如果是,指出其比例系数是多少?
画出下列正比例函数的图象
(1)y=2x (2)y=-2x
画图步骤:
A.y1>y2
B.y1<y2
C.y1=y2 D.以上都有可能
5.若函数y=(1-m)x+m-3是正比例函数
,则m的值是( )
A.m=-3 B.m=1
C.m=3 D.m>-3
1. 正比例函数y=(m-1)x的图象经过一、 三象限,则m的取值范围是( )
A. m=1 B. m>1 C. m<1 D. m≥1
1、列表; 2、描点;
3、连线。
画正比例函数 y =2x 的图象
解:1. 列表
y y=2x
… -4 -2 0 2 4 …
2. 描点 3. 连线
5 4
3
2
1
x
-3 -2 -1 0 1 2 3 -1
-2
-3
-4
y=-2x 的图象为:
6 4 2 0 -2 -4 -6
y
y=-2x
5
4
3
2 1
-5 -4 -3 -2 -1 1 2 3 4 5
11.一个正比例函数的图象经过点(2,—4) ,求这个函数解析式
5.函数y=-7x的图象在第
象限内,
经过点(0, )与点(1, ),y随x的增大

.
7、正比例函数y=(k+1)x的图像中y随x 的 增大而增大,求k的取值范围
9、直线y=(k2+3)x经过
随x的减小而

象限,y
达标练习: 1.正比例函数y=(m-1)x的图象经过一、 三象限,则m的取值范围是( )
两点 作图法
由于两点确定一条直线,画正 比例函数图象时我们只需描点 (0,0)和点 (1,k),连线即可.
画函数 y = 3 x 的图象
2
画函数y=3x的图象
(四)巩固练习:
1.正比例 函数 y=-4x的图像是经过

限的一条直线, y随x的
2. 已知正比例函数y=(1-2m)xm2-3的 图象经过第二、四象限,求m的值。
解析式。 守方接招:说出这个函数的图象
特征。
小结
这节课你学到了什么?
正比例函数图像的画法 正比例函数的图像和性质。
课后作业: P120 / 2
一般地,正比例函数y=kx(k是常数,k≠0)的图象是 一条经过原点的直线,我们称它为直线y=kx. 当k>0时,直线y=kx经过第一、三象限,从左向 右上升,即随着x的增大y也增大; 当k<0时,直线y=kx经过第二、四象限,从左向 右下降,即随着x的增大y反而减小.
讨论
怎样画正比例函数的 图象最简单?为什么?
2.若x、y是变量,且函数y=(k+1)xk2是 正比例函数,则k=_________.
3.下列函数中,y是x的正比例函数的
是( )
A.y=4x+1 B.y=2x2
C.y=-x
D.y=1/x
4.3x已上知的(两x点1,,y且1)x和1>x(2,x2则,yy12与)y是2 直的线大y小=关系是( )
A.m=1 B.m>1 C.m<1
D.m≥1
2.正比例函数y=(m-1)x的图象经过二、
四象限,则m的取值范围是( )
A.m=1 B.m>1 C.m<1
D.m≥1
3.若正比例函数y=(1-2m)x的图像经过点
A(x1,y1)和B(x2,y2),当x1<x2时,y1 >y2,
则m的取值范围是

1.正比例函数y=kx(k为常数,k<0)的图 象依次经过第________象限,函数值随 自变量的增大而_________.

限,y随x的增大而
.
5.正比例函数y=(k+1)x的图像中y随x 的增
大而增大,则k的取值范围是 。
6.直线y=(k2+3)x经过
减小而

象限,y随x的
7.当x0时,函数 y3x的图象在第
象限。
8.若 x、y是变量,且函数 y(k1)xk2是正比例函
数,则 k

现场比赛
两桌四个同学分成攻、守两方. 攻方出招:写出一个正比例函数
相关文档
最新文档