ProE机构运动仿真设计及分析

合集下载

PROE运动仿真分析

PROE运动仿真分析

PROE运动仿真分析PROE(Pro/ENGINEER)是由美国Parametric TechnologyCorporation(PTC)公司所开发的一套3D CAD软件系统。

它是一款功能强大的工程设计与制造软件,广泛应用于机械工程、汽车工程等领域。

在PROE中进行运动仿真分析可以帮助工程师们更好地了解和优化他们的设计方案。

运动仿真分析是一种通过模拟机械系统在给定条件下的运动来评估其性能和运行情况的方法。

通过对设备或产品的运动进行分析与仿真,可以预测其运动特性、动力学行为和相应的应力应变等情况。

这对于设计师来说非常重要,因为它可以在实际制造之前发现问题并进行相应的调整,从而节省时间和成本。

在PROE中进行运动仿真分析有几个基本步骤。

首先,我们需要创建一个装配模型,也就是包含了所有相关零部件的模型。

然后,我们需要为每个零件定义其运动关系和约束条件。

这些条件可以是固定的,也可以是变化的。

接下来,我们需要选择适当的运动学分析工具,例如正向动力学和逆向动力学。

运动学分析允许我们确定系统的运动规律和轨迹。

最后,我们需要对系统的受力和应力进行分析,以确定零件的强度和稳定性。

PROE中的运动仿真分析可以帮助工程师在设计过程中解决各种问题。

以下是一些典型的应用案例:1.碰撞检测:PROE可以模拟装配过程中各个零部件之间的碰撞情况。

这可以帮助设计师排除可能导致装配错误或故障的问题。

2.动力学分析:通过对装配模型进行运动仿真分析,可以确定各个零部件的运动规律和速度变化。

这对于设计运动机构和机械设备非常重要。

3.振动分析:PROE可以帮助评估系统的振动特性,包括自由振动频率和振幅。

这对于减少振动和噪音问题非常有用。

4.受力和应力分析:工程师可以使用PROE进行受力和应力分析,以确定系统中可能存在的弱点和潜在的破坏部位。

这对于优化设计方案和提高产品强度至关重要。

5.运动优化:PROE可以帮助工程师优化机械系统的运动性能,例如减少摩擦、优化速度和精度等。

曲柄滑块机构ProE结构分析与运动仿真

曲柄滑块机构ProE结构分析与运动仿真
曲柄滑块机构Pro/E结构 分析与运动仿真
曲柄滑块机构Pro/E结构分 析与运动仿真 班级: 学号: 指导教师:
工作条件:
本机构为曲柄滑块机构的简易模拟机 构,利用杆件机构,带动滑块往返运 动。假设滑块受200N横向摩擦力,小 齿轮电机设置为常量30,要求连杆最 大承受应力4MPa。 应用:曲柄滑块机构广泛应用于往复 活塞式发动机、冲床等的主机构中。
分析结束后的云文图:可以看到有应力集中
分析结束后的云文图:可以看到有位移集中
分析结束后的云文图:可以看到有应变集中
谢谢

连杆与滑块连接处的连接位置如下图:
连杆与滑块连接处的连接速度如下图:
连杆与滑块连接处的连接加速度如下图:
第三部分、连杆静态分析

1、静态分析: 打开连杆,进入分析模块,利用上面测量 的最大应力,来定义连杆所受的力,将所 受力进行合成,定义一端力为3.8e+06 另 外一段固定。材料选择 steel
底座

先在平面做大概的图 形尺寸不定连环用6毫 米的孔再拉伸 后再镜 像再底部做垂直平面 拉伸即可
共3个销钉简单不做陈述
第二部分、动态仿真与测量
1、组装:

把上章建的基座,连杆,滑块进行组装. 各个零件组装连接如下: 1)销钉与基座采用销连接约束面与面对齐 2)销钉与连杆采用销连接约束面与面对齐 3)滑块与连杆采用销连接同时约束面与面 对齐

仿真视频如下
第一部分
曲柄滑块机构零件的建立
滑块及垫板

底板长160宽80拉伸10

滑块长40宽30拉伸 19.4圆孔直径6
连杆机构1


前臂长55中间 半径为4圆角和2圆角 上过渡和半径为8的下 过渡厚度为4 后臂长48 拉伸12 另作垂直平面做圆环 最后镜像

基于PROE的曲柄滑块机构的结构设计及运动仿真分析毕业论文

基于PROE的曲柄滑块机构的结构设计及运动仿真分析毕业论文

湖北文理学院毕业设计(论文)正文2011年 5 月 25日基于PRO/E的曲柄滑块机构的结构设计及运动仿真分析摘要:曲柄滑块机构是用曲柄和滑块来实现转动和移动相互转换的平面连杆机构,也称曲柄连杆机构。

曲柄滑块机构广泛应用于往复活塞式发动机、压缩机、冲床等的主机构中。

活塞式发动机以滑块为主动件,把往复移动转换为不整周或整周的回转运动;压缩机、冲床以曲柄为主动件,把整周转动转换为往复移动。

偏置曲柄滑块机构的滑块具有急回特性,锯床就是利用这一特性来达到锯条的慢进和空程急回的目的。

关键词:曲柄滑块;机构;设计;回转;往复;急回The structural design of the slider-crank mechanism and motion simulation analysis based on PRO/EAbstract: The slider-crank mechanism is a crank and slider torotate and move the conversion between the planar linkage, also known as crank linkage. The slider-crank mechanism is widely used in the reciprocating piston engines, compressors, presses and other institutions. Piston engine slider initiative pieces, the reciprocating motion is converted to not weeks or rotary movement of the whole week; compressors, presses crank driving part, the whole week rotation converted to move back and forth. Slider offset slider-crank mechanism with quick-return characteristics of the sawing machine is to use this feature to achieve the purpose of the quick return of the saw blade slowly into the empty process.Key words: crank slider; institutions; design; rotation; back and forth; quick return目录1绪论 11.1课题提出的目的和意义 11.2国内外的研究现状及发展趋势 21.3运动仿真技术及国内外运动仿真技术现状和发展概况 21.4主要研究内容、途径及技术路线 31.5本章小结 52 曲柄滑块机构简介 62.1曲柄滑块机构定义 62.2曲柄滑块机构的特性及应用 62.3曲柄滑块机构的分类 62.4偏心轮机构简介 72.5 本章小结 83曲柄滑块机构的动力学与运动学特性 9 3.1曲柄滑块的动力学特性 93.2曲柄滑块的运动学特性 103.3本章小结 114曲柄滑块机构零件设计 114.1 曲柄滑块机构总体分析 114.2曲柄滑块机构零件的三维造型 114.3本章小结 175 曲柄滑块机构的装配 185.1曲柄滑块机构的模型的创建步骤 18 5.2本章小结 196曲柄滑块机构运动仿真 206.1运动机构仿真 206.2机构仿真 206.3本章小结 22参考文献 23致谢 241绪论1.1课题提出的目的和意义当今任何一个国家,若其要在综合国力上取得优势地位,就必须在科学技术上取得优势。

基于ProE的连杆机及运动仿真分析

基于ProE的连杆机及运动仿真分析

基于PRO/E的连杆机构设计及远动仿真分析摘要连杆机构是机械中常见的一种机构,是往复式内燃机的主要工作机构。

曲柄连杆机构是发动机实现工作循环,完成能量转换的主要远动零件。

虚拟装配与远动仿真是根据产品的形状特征.精度特性,利用计算计图形学和仿真技术,在计算机上模仿产品的实际装配过程.仿真模拟机器的远动过程。

通过对曲柄连杆机构进行有关运动学和理论分析与计算机仿真分析,利用PRO/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件.连杆组件和曲柄组件,从而完成内燃机曲柄连杆机构的虚拟装配与运动仿真。

在内燃机的开发设计阶段应用这种方法可以大大缩短产品的开发周期,减少样机实验次数,快速的对市场做出反应,降低产品的成本,提高企业的竞争力。

关键词:曲柄连杆机构:虚拟装配:运动仿真;装配功能Based on Pro/E internal combustion engine connecting rod assembly and motion simulation of the virtualAbstractThe crank is a common machinery, reciprocating internal engine is the main working body. Crank the engine duty to achieve of the main moving parts of energy. Virtual and motion simulation based on tee shape of product precision features the use of computer graphics and simulation technology, the product on the computer to imitate the actual assembly process the movement of the machine Crank through the relevant kinematics and dynamics of the theoretical analysis and computer simulation analysis, the use of Pro/E, assembly features, the crank assembly of the constituent parts into a piston, connecting rod assemblies and crankshaft components, to complete the internet combustion engine connecting rod assembly and motion simulation of the virtual. The development of internal combustion engine design using this method can greatly shorten the product development cycle and reduce prototype test times, respond quickly to market, lower product costs and improve the competitiveness of enterprises.Keywords: crank Vrtual assembly; Motion simulation;assembly features目录1绪论 (5)1.1本课题研究的目的和意义 (6)1.2国内外的研究现状及发展趋势 (7)2设计的方案 (9)2.1研究的基本内容 (9)2.1.1连杆机构的结构设计 (9)1手压抽水机的结构特点 (9)2手压抽水机的设计 (9)3连杆机构的装配 (13)3.1手压抽水机的装配 (13)3.2伺服电动机定义 (22)3.3运动分析定义 (23)4本文总结 (24)5参考文献 (25)6致谢 (26)1绪论1.1本课题研究的目的和意义基于虚拟现实的产品虚拟拆装技术在新产品开发、产品的维护以及操作培训方面具有独特的作用。

Proe活塞机构运动仿真分析毕设

Proe活塞机构运动仿真分析毕设

摘要使用Pro/E 软件构建活塞机构的三维模型,对模型进行装配,并用Mechanism 模块对活塞机构进行运动仿真,得到活塞的位移、速度、加速度的运动仿真曲线图;并从理论角度运用数理方法建立运动方程,借助Matlab simulink仿真模块对活塞机构进行仿真得到活塞的位移、速度、加速度的理论曲线。

根据Pro/E运动仿真结果分析表明设计的活塞机构满足要求,活塞运动正常;对比Matlab simulink仿真结果表明Pro/E进行模拟比数值理论方法更具优越性。

关键词:Pro/E Simulink 活塞机构运动仿真ABSTRACTThe paper constructs the three-dimensional model of piston mechanism by using Pro/E software ,gets the assembly model , makes the piston mechanism motion simulation by using Mechanism module and obtains the displacement, velocity , acceleration of slider and the motion simulation curve. From a theoretical point of view by means of mathematical methods to establish the motion equation ,and making simulation by means of Matlab Simulink simulation module and obtaining the displacement ,velocity, acceleration curve.According to the Pro/E simulation results show that the piston mechanism design to meet the requirements, the piston motion is normal; Compared with the Matlab Simulink simulation results show that the Pro/E simulation than numerical theory method is more superiority.Key words: Pro/E Simulink Piston mechanism Motion simulation目录第一章绪论 (1)1.1 选题依据及其意义 (1)1.2 国外研究现状及发展趋势 (2)1.3 课题容 (3)第二章活塞机构简介 (5)2.1 活塞机构的基本构造 (5)2.2 工作原理 (7)2.3 本章小结 (7)第三章Pro/E的建模及装配 (9)3.1 Pro/E简介 (9)3.1.1 简介 (9)3.1.2 主要特性 (9)3.1.3 主要模块 (10)3.2 机构的建模与装配 (11)3.2.1 三维造型建模 (11)3.2.2 整体装配 (14)3.3 本章小结 (18)第四章运动仿真及分析 (19)4.1 Pro/E运动仿真 (19)4.1.1 Mechanism模型的构建 (19)4.1.2 运动仿真 (23)4.2 Simulink仿真 (26)4.2.1 Simulink模型的构建 (26)4.2.2 仿真 (30)4.3 仿真结果对比分析 (32)4.4 本章小结 (33)第五章总结与展望 (35)致 (37)参考文献 (38)第一章绪论1.1 选题依据及其意义在产品的开发过程中,有关产品的结构、功能、操作性能、生产工艺、装配性能,甚至维护性能等许多问题都需要在开发过程的前期解决。

基于proe的机构运动仿真

基于proe的机构运动仿真

软件学习曲线
ProE软件功能强大但学习曲线较陡峭,需要 用户花费一定时间来熟悉和掌握。
未来展望
06
基于ProE的机构运动仿真实践建议
提高仿真的精度和准确性
建立精确的模型
在建模过程中,应充分考虑机构的实际尺寸 、材料属性、装配关系等因素,确保模型与 实际机构的一致性。
优化仿真参数
根据机构运动特性和仿真需求,合理设置仿真参数 ,如时间步长、摩擦系数等,以提高仿真的精度和 准确性。
通过各种渠道宣传推广ProE软件 在机构运动仿真领域的应用,提 高软件的市场知名度和占有率。
THANKS
感谢观看
度和实用性。
02
机构运动仿真概述
机构运动仿真定义
机构运动仿真是一种利用计算机技术对机械机构进行模拟分析的方法,通过建立机构的数学模型,模拟机构的运动轨迹、受 力情况等特性,为机构的设计、优化和性能分析提供依据。
基于ProE的机构运动仿真是指使用ProE软件进行机构运动仿真的过程,ProE是一款广泛应用的CAD/CAE/CAM一体化软件, 具有强大的机构运动仿真功能。
CAM功能
支持数控加工编程,实现自动 化加工。
ProE软件应用领域
机械设计
汽车制造
航空航天
家电行业
用于设计各种机械零件、 机构和装置,如减速器、
连杆机构等。
用于汽车零部件的设计、 分析和优化,提高生产
效率和产品质量。
用于飞机和航天器的零 部件设计、分析和优化,
确保安全可靠。
用于家电产品的设计和 分析,提高产品的美观
机构运动仿真的重要性
提高设计效率
通过机构运动仿真,可以在设计 阶段预测和分析机构的运动性能, 避免后期修改和优化,大大提高 设计效率。

ProE机构运动仿真设计及分析

ProE机构运动仿真设计及分析

活塞速度的测量结果,也可导出为EXCEL和文本格式
测量特征也可加入到运动分析中,进行结果查看,图形输出,如测量连杆大头最外边 与缸体裙部的距离。
应将测量保存为一个特征,然后才能进行测量分析
回放:轨迹曲线
轨迹曲线用来表示机构中某一元素相对于另一零件的运动。分为“轨迹曲线”与“凸轮 合成曲线”两种: “轨迹曲线”表示机构中某一点或顶点相对于另一零件的运动。 “凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。 菜单:插入--->轨迹曲线
序号
1 2 3 4 5 6 7
8 9 10 11
名称
自由度 旋转 平移
0
0
1
0
0
1
1
1
1
2
说明
使用一个或多个基本约束,交元件与组件连接在一起,连接后,元件与组件成为一个 主体,相互间没有自由度。 由一个轴对齐约束加一个与轴垂直的平移约束组成。元件可以绕轴旋转,不能平移。 例如,活塞销,齿轮、曲轴等。 由一个轴对齐约束与一个旋转约束组成,元件可沿轴平移,但不能旋转。如活塞。 由一个轴对齐约束组成,元件可绕轴旋转同时可沿轴向平移。如挺柱、气门等。
定义并约束相对运动的主体之间的关系。
自由度(Degrees 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的
of Freedom)
总自由度。
执行电动机( Force Motor)
作用于旋转轴或平移轴上(引起运动)的力。
机构(Joints)
特定的连接类型(例如销钉机构、滑块机构和球机构)
选取运动轴,曲柄连杆机构选 择曲轴的销钉连接图标 反向按钮改变旋向
定义轮廓,“规范”为位置时模选 项定义为斜坡曲轴旋转一圈360度, 图形中可以查看定义的轮廓,横坐 标为时间

PROE运动仿真分析

PROE运动仿真分析

第1章运动仿真本章重点应力分析的一般步骤边界条件的创建查瞧分析结果报告的生成与分析本章典型效果图1、1机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。

对于提高设计效率降低成本有很大的作用。

Pro/ engineer中“机构”模块就是专门用来进行运动仿真与动态分析的模块。

PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)与Mechanism dynamics(机械动态)两个方面的分析功能。

使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。

并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。

也可创建轨迹曲线与运动包络,用物理方法描述运动。

使用“机械动态”分析功能可在机构上定义重力,力与力矩,弹簧,阻尼等等特征。

可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。

如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力与力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。

1、2总体界面及使用环境在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。

系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。

下拉菜单的每一个选项与工具栏每一个图标相对应。

用户既可以通过菜单选择进行相关操作。

也可以直接点击快捷工具栏图标进行操作。

用ProE做机构运动仿真

用ProE做机构运动仿真

用Pro/E做机构运动仿真————凸轮机构一、做一个简单的凸轮机构需要三个实体凸轮cam、滑块block,承载板base。

(如下图所示)。

承载板base凸轮cam滑块block图1 凸轮组件零件图二、开始制作:1、设置工作目录。

2、新建一个asm组合件。

3、安装基板base零件:选择“插入/元件/装配”,从弹出的对话框中选择base.prt,从图二所示的装配面板中选择方式,即缺省方式。

即完成第一个零件base的装配。

4、安装凸轮:选择“插入/元件/装配”,从弹出的对话框中选择cam.prt,从图二所示的装配面板中点选“连接”出现连接面板(图三)。

5、接上一步,在连接类型中选择“销钉Pin”连接,要完成“销钉”连接,必须进行两个约束,即第一是“轴对齐”约束,可从绘图区点选凸轮上的圆柱体的圆柱面、接着点选基体上圆柱孔的圆柱表面(也可分别选择凸轮上圆柱体的轴线及基体上圆柱孔的轴线);第二个约束是“平移”,可分别点选凸轮与基板的两个接触平面,在连接面板输入偏移值为0。

单击“确定”完成“销钉”连接。

其连接效果如图4所示。

6、安装滑块:选择“插入/元件/装配”,从弹出的对话框中选择block.prt,从图二所示的装配面板中点选“连接”出现连接面板(图三)。

在连接面板中的“类型”选项下选择“滑动杆”。

7、点选滑块零件上的圆柱表面,紧接着选基体零件上的圆弧槽的圆柱面作为“轴对齐”限制条件,接着分别选两个接触平面作为“旋转”限制条件,偏移值为0。

如图5所示。

8、在连接面板(图三)中选“移动”选项卡。

拖拽滑块大致到这个图6这个位置,从而完成了我们凸轮机构的连接工作。

图2 装配面板对话框图3 连接面板对话框图4 凸轮与基体连接后的效果图图5 滑块的连接图6 滑块拖动后的位置。

proe机构仿真之运动分析

proe机构仿真之运动分析

机构仿真之运动分析关键词:PROE 仿真运动分析重复组件分析连接回放运动包络轨迹曲线版权:原创文章,转载请注明出处机构仿真是PROE的功能模块之一。

PROE能做的仿真内容还算比较好,不过用好的兄弟不多。

当然真正专做仿真分析的兄弟,估计都用Ansys去了。

但是,Ansys研究起来可比PROE麻烦多了。

所以,学会PROE的仿真,在很多时候还是有用的。

坛子里关于仿真的教程也有过一些,但很多都是动画,或实例。

偶再发放一份学习笔记,并整理一下,当个基础教程吧。

希望能对学习仿真的兄弟有所帮助。

术语创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。

连接(Connections) - 定义并约束相对运动的主体之间的关系。

自由度(Degrees of Freedom) - 允许的机械系统运动。

连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。

拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。

动态(Dynamics) - 研究机构在受力后的运动。

执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。

齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。

基础(Ground) - 不移动的主体。

其它主体相对于基础运动。

接头(Joints) - 特定的连接类型(例如销钉接头、滑块接头和球接头)。

运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。

环连接(Loop Connection) - 添加到运动环中的最后一个连接。

运动(Motion) - 主体受电动机或负荷作用时的移动方式。

放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。

回放(Playback) - 记录并重放分析运行的结果。

伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。

PROE运动仿真基础-四连杆机构

PROE运动仿真基础-四连杆机构

将各个杆件组装在一起,形成 一个完整的四连杆机构模型。
添加运动副和运动驱动
在装配模式下,将四连杆机构添加到 装配文件中。
添加运动驱动,指定运动副的运动方 式和运动参数,如速度和加速度。
选择合适的运动副类型,如旋转副或 移动副,将运动副添加到相应的杆件 上。
设置初始条件和运动参数
01
根据需要设置初始条件,如初始角度或初始位置。
ProE运动仿真基础-四 连杆机构
目 录
• 四连杆机构简介 • Pro/E运动仿真基础 • 四连杆机构在Pro/E中的建模 • 四连杆机构运动仿真分析 • 四连杆机构优化设计 • 案例分析与实践
01
四连杆机构简介
定义与特点
定义
四连杆机构是一种由四个杆件相互连 接而成的机械结构,通过改变杆件的 长度或相对位置,可以实现复杂的运 动轨迹和运动形式。
02
根据实际需求,设置运动参数,如运动时间、运动 轨迹等。
03
运行仿真,观察四连杆机构的运动情况,并调整参 数以优化机构性能。
04
四连杆机构运动仿真分 析
仿真运行与结果查看
01
启动Pro/E软件,打开四连杆机构 模型。
02
在菜单栏中选择“工具”-“机 构”-“仿真”,进入仿真界面。
在仿真界面中设置仿真参数,如 时间、步数等,然后点击“运行 ”按钮开始仿真。
机构的运动特性,如周期性、
死点等。
06
案例二:平面四杆机构的优化设计
总结词:通过Pro/E软件对 平面四杆机构进行优化设计
,提高其运动性能。
建立平面四杆机构的几何模 型。
定义设计变量、约束条件和 目标函数。
详细描述
使用Pro/E的优化工具进行 优化设计。

proe机构运动仿真教程

proe机构运动仿真教程

proe机构运动仿真教程Pro/E是一款专业的三维参数化设计软件,具备强大的建模、绘图和分析功能,同时也支持运动仿真。

Pro/E机构运动仿真可以帮助设计师在设计机构时预测机构在运动过程中的动态行为和工作状态,从而提高设计的准确性和效率。

本教程将介绍Pro/E机构运动仿真的基础知识和操作步骤。

一、机构运动仿真概述机构运动仿真是指通过计算机模拟机构在不同工作状态下的动态行为和运动学、动力学特性,以评估机构的工作效率、可靠性和稳定性等。

机构运动仿真可以帮助设计师预测机构在实际工作中的行为,包括运动范围、速度、加速度和力等指标。

与传统的试制方法相比,机构运动仿真可以极大地降低试制成本和时间,同时也提高了设计的准确性和效率。

二、机构运动仿真的基础知识1. 机构机构是由两个或多个刚体通过连杆、齿轮、曲柄等连接构成的机械系统。

机构的功能是将输入运动和输出运动分离,从而实现不同类型的运动转换。

机构的类型根据连接的刚体个数可分为二级机构和三级机构;根据传递运动的方式可分为平面机构和空间机构;根据传递运动的数量可分为单自由度机构和多自由度机构。

2. 运动学和动力学运动学是研究机构运动的几何学原理,包括机构末端轨迹、速度、加速度和角度等指标;而动力学是研究机构运动的动力学原理,包括机构的力学特性、动力特性和能量特性等。

机构运动仿真需要同时考虑机构的运动学和动力学特性,并进行分析和仿真。

3. 运动学链运动学链是指连接机构各个部件的连杆、齿轮和副件等构成的运动链路。

运动学链的结构会影响机构的运动学性能,因此在机构运动仿真前需要建立运动学链模型,并确定各个部件之间的关系和运动学指标等。

三、机构运动仿真的操作步骤机构运动仿真需要按照以下基本步骤进行:1. 建立模型并确定机构类型在Pro/E中打开新的机构模型,并根据实际需求从零开始建立机构模型。

确定机构类型,包括二级机构或三级机构、平面机构或空间机构、单自由度机构或多自由度机构等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可以检查运动件是否产生干涉,
干涉体积,运动件的轨迹等。
还可以进行运动的优化设计。
机构仿真主要术语。
序号
1 2 3 4 5 6 7 8 9 10
名称
主体(body) 基础(ground) 连接( connections) 自由度(Degrees of Freedom) 执行电动机( Force Motor) 机构(Joints) 齿轮副连接(Gear Pair Connection) 伺服电动机( Servo Motor) LCS WCS
也就是指定N个点,以这些点为节点,按线性或样条插值方式构建一条通过所有点的曲线。
这条曲线就是电动机的轮廓。样条拟合构建的曲线比线性拟合构建的曲线平滑一点。
创建,可以查看运行情况 定义时间及帧,根据前面 伺服电机的定义,2秒钟 曲轴转角720度 并产生一个结果集
的升程表.此处简化为0.01秒既5
度一个点.在轮廓中位置插值采 用线性拟合.在轮廓位置中填入 基圆半径生成零点.
4. 建立分析
新建一个机构分析,类型运动学,终止时间0.72秒(旋转一圈),帧频可设为250(越大运 转越平顺) 。 电动机分别加入凸轮和挺柱的伺服电机,点运行。 并在回放界面保存结果集mot.pbk
先装连杆,采用坐标系 对齐方式
技巧:装配完成后可以按住CTRL+ALT键,按鼠标左键拖动零
件可检查零件的运动情况。
曲轴及活塞连杆机构装配
基础件机 体按坐标 系对齐装 活塞连杆机 构的装配注 意需要添加
配,曲轴
按销钉连 接装配到 缸体上, 对齐止推 轴承中心 面。
两个连接。
连杆大头销 钉连接到曲 柄销,活塞 在缸孔内滑 动杆连接。
3. 设置机构分析要素:
需要分别定义凸轮和挺柱的伺服电机,也就是此机构中 有两个伺服电机。 a. 添加并定义凸轮的伺服电机,凸轮定义按匀角速度旋 转运动,根据时间定义角速度,可设定凸轮的模为0-500度, 旋转一周为0.72秒。 b. 添加并定义挺柱伺服电机, 连接轴为滑动轴,模选择表,表文 件为.tab的文本文件,是时间和 升程的函数,来自凸轮轴图纸中
回放:干涉与动画
利用回放来查看机构中零件的干涉情况、输出影片、显示力和扭矩对机构的影响,以
及在分析期间跟踪测量的值。
动画演示,输出影片界面
测量:
创建测量,用来分析机构在整个运动过程中的各种具体参数,如位置、速度、力等,为
改进设计提供资料。查看测量的结果必须有一个分析的结果集。(只有运动学分析才能对 速度、加速度进行测量)
检查模型:在装配中,拖动可以移动的零部件,观察装配连接情况。
添加模型化要素:在机构中添加伺服电机等运动分析要素。 准备进行分析:定义初始位置,建立测量方式。 创建分析模型:对所创建的机构模型进行运动学分析。 获取分析结果:可以使用回放功能对分析结果进行回放,进行零件之间的干涉检查,观察测 量结果,获取轨迹曲线和运动包络线,了解机构的设计合理性,可行性等工程分析。
运动学分析流程
创建模型 检查模型 添加模型化要素 准备进行分析 分析模型 获取分析结果
创建模型:建立模型是设计运动仿真的基础步骤,只有机构模型建立正确合理,机构的模拟 才能够顺利进行。主要包括定义机构中的主体、建立连接、设置连接轴属性,根据设计需要, 添加凸轮、槽轮、齿轮副、带轮副等特殊连接。
a. 凸轮轴只画出轴颈即可,轴颈大小不要过凸轮基圆大小;
b. 挺柱要在底面画出一条曲线,此曲线为挺柱底面的轮廓,
始终与凸轮面相接触,即凸轮面在此线上滑动. C. 基础件,需创建凸轮旋转轴、挺柱滑动轴及对齐平面。
2. 组装模型:装配各主体并设置连接
a. 新建一组件,装配基础零件,按坐标系对齐方式装配到组件中。 b. 装配凸轮零件,按销钉连接。 c. 装配挺柱零件,按滑动杆连接。 注意要使挺柱底面的曲线与凸轮旋转轴垂直。
5. 合成凸轮型线
点菜单中插入--->轨迹曲线--->进入轨迹曲线界面--->纸零件选择凸轮轴--->轨迹选 "凸轮合成曲线"--->曲线或边中选挺柱底面的曲线---->结果集选上步保存的mot.pbk.确 定后即可生成凸轮型线。此型线可另保存为草绘,绘制凸轮轴时可直接调入使用。
完成的运动模型
进入机构工作界面
在PROE装配模块下,点击应用程序-->机构,进入机构工作台,快捷菜单如下:
模型工具栏
运动工具栏
动态工具栏
结构树
在机构模块中包含模型树、机构树两种结构 树,分别对机构模型特征和动力学分析特征进
行管理。使用右键菜单对特征进行更改、查询
等操作。
拖动和快照 (检查模型)
机构完成连接定义后,可以使用拖动功能,来查看定义是否正确。可以使用快照功能 对拖动后结果拍照保存,快照结果也可以应用于动画模快的设计。
图形中可以查看定义的轮廓,横坐 标为时间
【伺服电机】分为两种,一种是连接轴伺服电机,用于定义某一旋转轴的旋转
运动,可用于运动分析,另一种是几何伺服电机,不能用于运动分析。
定义轮廓,“规范”为速度时,定义为常数,表示一秒钟旋转的角度。
模函数共有九种:常数、斜坡、余弦、SCCA、摆线、抛物线、多项式、表、用户
含义
一个元件或彼止无相对运动的一组元件,主体内自由度=0。 不移动的主体,其它主体相对于基础运动。 定义并约束相对运动的主体之间的关系。 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的 总自由度。 作用于旋转轴或平移轴上(引起运动)的力。 特定的连接类型(例如销钉机构、滑块机构和球机构) 应用到两连接轴的速度约束。 定义一个主体相对于另一个主体运动的方式,可在机构或几何图元上放置电动机 ,并可指定主体间的位置、速度或加速度运动。 与主体相关的局部坐标系。LCS是与主体中定义的第一个零件相关的缺省坐标系 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐 标系。
3
0 3 3 3 X
0
0 1 3
X
自定义组合约束,可根据需要指定一个或多个基本约束来形成组合约束。
槽连接例子
机构特殊连接
机构的连接是在机构工作台中进行定义的,PROE5.0中有4种特殊的连接。
序号
1 2 3 4
名称
凸轮连接 3D接触 齿轮连接 带传动
说明
凸轮连接需指定两个主体上的各一个(或一组)曲面或曲线,利用凸轮的轮廓控制从动件的运 动规律。如发动机凸轮轴控制摇臂的运动。 元件不作任何约束,只是对3D模型进行空间点重合来使元件与组件发生关联。元件可任意旋 转和平移。 用来控制两个旋转轴之间的速度关系。在定义齿轮前,需先定义含有旋转轴的机构连接(如销 钉) 通过两个带轮曲面与带平面重合连接。两带轮在装配中就进行销钉连接。按CTRL选两带轮的 曲面
运动影片
三、机构动力学分析
在PROE5.0中,运动仿真和动态分析功能集成于机构模块中,包括机械设计和动 态分析两方面的分析功能. 在机构动力学分析中简单一种的是不涉及重力、弹簧、阻尼、力和力矩等的 分析,实现机构的运动模拟,可以观察并测量记录如位置、距离、速度、加速度 等运动特征,并可以通过图形直观地显示这些测量值。 另外一种可以在机构上定义重力、弹簧、阻尼、力和力矩等特征,对机构设 置材料、密度等属性,使其更加接近现实中的机构,达到真实模拟现实的目的。
平移
0 0 1 1 2
说明
使用一个或多个基本约束,交元件与组件连接在一起,连接后,元件与组件成为一个 主体,相互间没有自由度。 由一个轴对齐约束加一个与轴垂直的平移约束组成。元件可以绕轴旋转,不能平移。 例如,活塞销,齿轮、曲轴等。 由一个轴对齐约束与一个旋转约束组成,元件可沿轴平移,但不能旋转。如活塞。 由一个轴对齐约束组成,元件可绕轴旋转同时可沿轴向平移。如挺柱、气门等。 由一个平面约束组成,元件可在平面上移动(可指定偏移量),且能绕垂直于平面的 轴旋转。 由一个点对齐约束组成,元件可绕着对齐点任意旋转。如挺柱与挺杆的连接。 两个坐标系对齐,元件自由度完全消除。焊缝连接与刚性连接是有本质区别的。 刚性连接带有“连接设计”的子组件装配到主组件时,子组件连接将不能运动。 由一个点对齐一条直边或轴线的约束组成。与机械上的“轴承”不同。 由元件坐标系和组件坐标系重合来使元件和组件发生关联,但元件可任意旋转和平移 ,一般不常用。 由两个主体间的一个点和一曲线连接,从动件上的一个点,始终在主动件上的一根曲 线上运动,不检查两个主体是否干涉。实例参考。
定义的。以下是六种模的数学表达式:
模:SCCA
只能用于加速度伺服电机,不能用于执行电机。它用来模拟凸轮轮廓输出。 它称为“正弦-常数-余弦-加速度”运动,缩写为SCCA。共有五个参数:
七种电动机模的函数图例
下图给出了七种函数的模所代表的电机轮廓。 各函数的参数值设定如下:
电动机的模:表
Pro/E机构运动仿真
设计及分析
商用车动力总成工程中心
2013年7月10日

一.机构设计基础

二.实例:曲柄活塞连杆机构装配
三.机构动力学分析 四.实例:利用机构运动画凸轮型线
一、机构设计基础
在Pro/E中的[应用程序]机构模块 进行装配的运动学分析和仿真。结 果可以以动画的形式表示,也可以 以参数和数值的形式输出。
“凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。
菜单:插入--->轨迹曲线
“轨迹曲线”可选2D或3D, “凸轮合成曲线”只能是2D。
连杆螺栓上一个顶点的轨迹曲线。
四、实例:利用机构运动画凸轮型线 问题: 已知的气门的升程表,怎样把画出正确的凸轮型线?
这就需要利用Pro/E机构分析中的“凸轮合成曲线”功能。详细步聚如下: 1. 模型准备:设计运动主体,包括凸轮、挺柱和基础件。
相关文档
最新文档