2018年天津市中考数学试卷 - A4打印版
2024年中考数学二模试卷(天津卷)(考试版A4)
![2024年中考数学二模试卷(天津卷)(考试版A4)](https://img.taocdn.com/s3/m/17a1a94253d380eb6294dd88d0d233d4b04e3f4d.png)
2024年中考第二次模拟考试数学(考试时间:100分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.的值为()A.﹣2B.﹣1C.D.2.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间3.如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是()A.B.C.D.4.汉字是世界上最美的文字,形美如画、有的汉字是轴对称图形,下面四个汉字中是轴对称图形的是()A.B.C.D.5.今年是共建“一带一路”倡议提出10周年,也是构建人类命运共同体理念提出10周年.2013年到2022年,中国与“一带一路”共建国家的累计双向投资超过3800亿美元.3800亿用科学记数法表示为()A.38×1010B.3.8×1011C.0.38×1012D.3.8×10126.计算+|﹣2|×cos45°的结果,正确的是()A.B.3C.2+D.2+27.化简的结果正确的是()A.B.C.D.8.点A(﹣3,y1)、B(﹣1,y2)、C(2,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y39.如果x1=a,x2=b是方程x2﹣2x﹣4=0的两根,则的值为()A.2B.﹣2C.D.﹣10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.120B.60C.45D.3011.如图,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转,得到△CBG.延长AE交CG于点F,连接DE.下列结论:①AF⊥CG;②四边形BEFG是正方形;③若DA=DE,则CF=FG;其中正确的是()A.①②③B.①②C.②③D.①12.某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m).有下列结论:①AB=24m;②池底所在抛物线的解析式为y=﹣5;③池塘最深处到水面CD的距离为1.8m;④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离减少为原来的.其中结论正确的是()A.①②B.②④C.③④D.①④第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)13.一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为.14.计算:(﹣5a3b)2=.15.计算的结果等于.16.将直线沿y轴向下平移2个单位,平移后的直线与y轴的交点坐标是.17.如图,Rt△ABC中,∠ACB=90°,延长BC至点D,使BD=12,E为边AC上的点,且AE=4,连接ED,P,Q分别为AB,ED的中点,连接PQ,则PQ的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B在格点上,C是小正方形边的中点.(1)AB的长等于;(2)M是线段BC与网格线的交点,P是△ABC外接圆上的动点,点N在线段PB上,且满足PN=2BN.当MN取得最大值时,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)19.(8分)解不等式组,并把解集在数轴上表示出来.(1)解不等式①,得;(2)解不等式②,得;(3)将不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20.(8分)某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).根据调查结果,绘制出统计图1和图2.请根据相关信息,解答下列问题:(1)本次接受调查的家庭个数为,图1中m的值为;(2)调查的这些家庭月均用水量的众数是,中位数是;(3)求调查的这些家庭月均用水量的平均数.21.(10分)如图,某校无人机兴趣小组为测量教学楼的高度,在操场上展开活动.此时无人机在离地面30m的D处,操控者从A处观测无人机D的仰角为30°,无人机D测得教学楼BC顶端点C处的俯角为37°,又经过人工测量测得操控者A和教学楼BC之间的距离AB为60m,点A,B,C,D都在同一平面上.(1)求此时无人机D与教学楼BC之间的水平距离BE的长度(结果保留根号);(2)求教学楼BC的高度(结果取整数)(参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).22.(10分)如图:已知⊙O的直径AB=10,点C为⊙O上一点,CF为⊙O的切线,P是半径OA上任一点,过点P作PE⊥AB分别交AC,CF于D,E两点.(1)如图1,当P与圆心O重合时,①求证:ED=EC;②若∠A=30°,求图中阴影部分的面积;(2)如图2,连接AE,当AE⊥CF时,AE交于⊙O点N,AN=6,求EN的长度.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小明家、体育馆、图书馆依次在同一条直线上.小明从家出发,匀速骑行0.5h到达体育馆:在体育馆停留一段时间后,匀速骑行0.4h到达图书馆:在图书馆停留一段时间后,匀速骑行返回家中.给出的图象反映了这个过程中小明离开家的距离ykm与离开家的时间xh之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:小明离开家的时间/h0.10.2 1.8 2.2 2.8小明离开家的距离/km 1.26(Ⅱ)填空:①体育馆与图书馆之间的距离为km;②小明从体育馆到图书馆的骑行速度为km/h;③当小明离开家的距离为5km时,他离开家的时间为h.(Ⅲ)当2≤x≤4时,请直接写出y关于x的函数解析式.24.(10分)如图,等腰直角△OEF在坐标系中,有E(0,2),F(﹣2,0),将直角△OEF绕点E逆时针旋转90°得到△ADE,且A在第一象限内,抛物线y=ax2+bx+c经过点A,E.且2a+3b+5=0.(1)求抛物线的解析式.(2)过ED的中点O′作O′B⊥OE于B,O′C⊥OD于C,求证OBO′C为正方形.(3)如果点P由E开始沿EA边以每秒2厘米的速度向点A移动,同时点Q由点A沿AD边以每秒1厘米的速度向点D移动,当点P移动到点A时,P,Q两点同时停止,且过P作GP⊥AE,交DE于点G,设移动的开始后为t秒.①若S=PQ2(厘米),试写出S与t之间的函数关系式,并写出t的取值范围?②当S取最小时,在抛物线上是否存在点R,使得以P,A,Q,R为顶点的四边形是平行四边形?如果存在,求出R的坐标;如果不存在,请说明理由.25.(10分)已知抛物线y=ax2+bx+4(a,b为常数,a≠0)经过A(﹣1,0),B(4,0)两点,与y轴交于点C,其顶点为D.(Ⅰ)求该抛物线的解析式;(Ⅱ)求四边形ACDB的面积;(Ⅲ)若P是直线BC上方该抛物线上一点,且∠ACO=∠PBC,求点P的坐标.。
2018年天津市中考数学
![2018年天津市中考数学](https://img.taocdn.com/s3/m/2eb6cf6176eeaeaad1f330f8.png)
2018年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3.00分)计算(﹣3)2的结果等于( ) A .5B .﹣5C .9D .﹣92.(3.00分)cos30°的值等于( )A .√22B .√32 C .1 D .√33.(3.00分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为( ) A .0.778×105 B .7.78×104C .77.8×103D .778×1024.(3.00分)下列图形中,可以看作是中心对称图形的是( )A .B .C .D .5.(3.00分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3.00分)估计√65的值在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间7.(3.00分)计算2x+3x+1−2x x+1的结果为( )A .1B .3C .3x+1D .x+3x+18.(3.00分)方程组{x +y =102x +y =16的解是( )A .{x =6y =4B .{x =5y =6C .{x =3y =6D .{x =2y =89.(3.00分)若点A (x 1,﹣6),B (x 2,﹣2),C (x 3,2)在反比例函数y=12x的图象上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 2<x 110.(3.00分)如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD=BDB .AE=AC C .ED +EB=DB D .AE +CB=AB11.(3.00分)如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP +EP 最小值的是( )A .AB B .DEC .BD D .AF12.(3.00分)已知抛物线y=ax 2+bx +c (a ,b ,c 为常数,a ≠0)经过点(﹣1,0),(0,3),其对称轴在y 轴右侧.有下列结论: ①抛物线经过点(1,0);②方程ax 2+bx +c=2有两个不相等的实数根; ③﹣3<a +b <3其中,正确结论的个数为( ) A .0 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分) 13.(3.00分)计算2x 4•x 3的结果等于 .14.(3.00分)计算(√6+√3)(√6﹣√3)的结果等于 .15.(3.00分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.(3.00分)将直线y=x 向上平移2个单位长度,平移后直线的解析式为 . 17.(3.00分)如图,在边长为4的等边△ABC 中,D ,E 分别为AB ,BC 的中点,EF ⊥AC 于点F ,G 为EF 的中点,连接DG ,则DG 的长为 .18.(3.00分)如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,B ,C 均在格点上,(I )∠ACB 的大小为 (度);(Ⅱ)在如图所示的网格中,P 是BC 边上任意一点,以A 为中心,取旋转角等于∠BAC ,把点P 逆时针旋转,点P 的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
2018年天津市中考数学试题及参考答案附原卷(word版)
![2018年天津市中考数学试题及参考答案附原卷(word版)](https://img.taocdn.com/s3/m/d87d6f332b160b4e767fcfa4.png)
2018年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.试卷满分120分.考试时间100分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()23-的结果等于()A.5 B.﹣5 C.9 D.﹣92.cos30°的值等于()B C.1 DA.23.今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为()A.0.778×105B.7.78×104C.77.8×103D.778×1024.下列图形中,可以看作是中心对称图形的是()A.B.C.D.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6)A.5和6之间B.6和7之间C.7和8之间D.8和9之间7.计算23211x xx x-+++的结果为()A.1 B.3 C.31x+D.31xx++8.方程组10216x yx y=⎧⎨+=⎩+的解是()A.64xy=⎧⎨=⎩B.56xy=⎧⎨=⎩C.36xy=⎧⎨=⎩D.28xy=⎧⎨=⎩9.若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数12yx=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x110.如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB11.如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.AB B.DE C.BD D.AF12.已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴的右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c =2有两个不相等的实数根;③﹣3<a+b<3.A.0 B.1 C.2 D.3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算2x4·x3的结果等于.14.计算的结果等于.15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y=x向上平移2个单位长度,平移后的直线的解析式为.17.如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF 的中点,连接DG,则DG的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.(1)∠ACB的大小为(度);(2)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′.当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组31, 413. xx x≥⎧⎨≤⎩++①②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20.(8分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?21.(10分)已知AB是Oe的直径,弦CD与AB相交,∠BAC=38°.(1)如图①,若D为»AB的中点,求∠ABC和∠ABD的大小;(2)如图②,过点D作Oe的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.22.(10分)如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈1.11,tan58°≈1.60.23.(10分)某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.24.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证:△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).25.(10分)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.(1)当抛物线经过点A时,求顶点P的坐标;(2)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(3)无论m取何值,该抛物线都经过顶点H.当∠AHP=45°时,求抛物线的解析式.。
2021年天津市中考中考数学试卷(附答案详解)
![2021年天津市中考中考数学试卷(附答案详解)](https://img.taocdn.com/s3/m/b633410d172ded630a1cb6de.png)
2021年天津市中考中考数学试卷一、选择题(本大题共12小题,共36.0分)1. (2021·天津市·历年真题)计算(−5)×3的结果等于( )A. −2B. 2C. −15D. 152. (2021·天津市·历年真题)tan30°的值等于( )A. √33B. √22C. 1D. 23. (2021·天津市·历年真题)据2021年5月12日《天津日报》报道,第七次全国人口普查数据公布,普查结果显示,全国人口共141178万人.将141178用科学记数法表示应为( )A. 0.141178×106B. 1.41178×105C. 14.1178×104D. 141.178×1034. (2021·天津市市辖区·模拟题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A.B.C.D.5. (2021·天津市·历年真题)如图是一个由6个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.6. (2017·重庆市市辖区·期中考试)估算√17的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间7. (2021·天津市·历年真题)方程组{x +y =23x +y =4的解是( )A. {x =0y =2B. {x =1y =1C. {x =2y =−2D. {x =3y =−38.(2021·天津市·历年真题)如图,▱ABCD的顶点A,B,C的坐标分别是(0,1),(−2,−2),(2,−2),则顶点D的坐标是()A. (−4,1)B. (4,−2)C. (4,1)D. (2,1)9.(2021·天津市·历年真题)计算3aa−b −3ba−b的结果是()A. 3B. 3a+3bC. 1D. 6aa−b10.(2021·天津市·历年真题)若点A(−5,y1),B(1,y2),C(5,y3)都在反比例函数y=−5x的图象上,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y1<y3<y2D. y3<y1<y211.(2021·天津市·历年真题)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A. ∠ABC=∠ADCB. CB=CDC. DE+DC=BCD. AB//CD12.(2021·天津市·历年真题)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(−1,−1),(0,1),当x=−2时,与其对应的函数值y>1.有下列结论:①abc>0;②关于x的方程ax2+bx+c−3=0有两个不等的实数根;③a+b+c>7.其中,正确结论的个数是()A. 0B. 1C. 2D. 3二、填空题(本大题共6小题,共18.0分)13.(2021·天津市·历年真题)计算4a+2a−a的结果等于______ .14.(2021·天津市·历年真题)计算(√10+1)(√10−1)的结果等于______ .15. (2021·天津市·历年真题)不透明袋子中装有7个球,其中有3个红球、4个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是______ . 16. (2021·天津市·历年真题)将直线y =−6x 向下平移2个单位长度,平移后直线的解析式为______ .17. (2021·天津市·历年真题)如图,正方形ABCD 的边长为4,对角线AC ,BD 相交于点O ,点E ,F 分别在BC ,CD 的延长线上,且CE =2,DF =1,G 为EF 的中点,连接OE ,交CD 于点H ,连接GH ,则GH 的长为______ .18. (2021·天津市·历年真题)如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,C 均落在格点上,点B 在网格线上. (Ⅰ)线段AC 的长等于______ ;(Ⅱ)以AB 为直径的半圆的圆心为O ,在线段AB 上有一点P ,满足AP =AC.请用无刻度的直尺,在如图所示的网格中,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) ______ .三、解答题(本大题共7小题,共66.0分)19. (2021·天津市·历年真题)解不等式组{x +4≥3,①6x ≤5x +3.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得______ ; (Ⅱ)解不等式②,得______ ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为______ .20.(2021·天津市·历年真题)某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为______ ,图①中m的值为______ ;(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.21.(2021·天津市·历年真题)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(Ⅱ)如图②,若CD//BA,连接AD,过点作⊙O的切线,与OC的延长线交于点E,求∠E的大小.22.(2021·天津市·历年真题)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长(结果取整数)参考数据:tan40°≈0.84,√3取1.73.23.(2021·天津市·历年真题)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km,陈列馆离学校20km.李华从学校出发,匀速骑行0.6ℎ到达书店;在书店停留0.4ℎ后,匀速骑行0.5ℎ到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5ℎ后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离y km与离开学校的时间xℎ之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学校的时间/ℎ0.10.50.813离学校的距离/km2______ ______ 12______(Ⅱ)填空:①书店到陈列馆的距离为______ km;②李华在陈列馆参观学习的时间为______ h;③李华从陈列馆回学校途中,减速前的骑行速度为______ km/ℎ;④当李华离学校的距离为4km时,他离开学校的时间为______ ℎ.(Ⅲ)当0≤x≤1.5时,请直接写出y关于x的函数解析式.24.(2021·天津市·历年真题)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(−72,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当52≤t≤92时,求S的取值范围(直接写出结果即可).25.(2021·天津市·历年真题)已知抛物线y=ax2−2ax+c(a,c为常数,a≠0)经过点C(0,−1),顶点为D.(Ⅰ)当a=1时,求该抛物线的顶点坐标;(Ⅱ)当a>0时,点E(0,1+a),若DE=2√2DC,求该抛物线的解析式;(Ⅲ)当a<−1时,点F(0,1−a),过点C作直线l平行于x轴,M(m,0)是x轴上的动点,N(m+3,−1)是直线l上的动点.当a为何值时,FM+DN的最小值为2√10,并求此时点M,N的坐标.答案和解析1.【答案】C【知识点】有理数的乘法【解析】解:(−5)×3=−(5×3)=−15,故选:C.根据有理数的乘法法则计算可得.本题主要考查有理数的乘法,解题的关键是掌握有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.【答案】A【知识点】特殊角的三角函数值.【解析】解:tan30°=√33故选:A.直接利用特殊角的三角函数值得出答案.此题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.3.【答案】B【知识点】科学记数法-绝对值较大的数【解析】解:141178=1.41178×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.4.【答案】A【知识点】轴对称图形【解析】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.利用轴对称图形的定义进行解答即可.此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.5.【答案】D【知识点】简单组合体的三视图【解析】解:从正面看,从左到右有三列,每列的小正方形的个数分别为1、2、2.故选:D.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.【答案】C【知识点】估算无理数的大小【解析】解:∵√17≈4.12,∴√17的值在4和5之间.故选:C.本题需先根据√17的整数部分是多少,即可求出它的范围.本题主要考查了估算无理数的大小,在解题时确定无理数的整数部分即可解决问题.7.【答案】B【知识点】灵活选择解法解二元一次方程(组)【解析】解:{x+y=2①3x+y=4② 由②−①,得:2x=2,∴x=1,把x=1代入①式,得:1+y=2,解得:y=1,所以,原方程组的解为{x =1y =1.故选:B .可以用代入消元法解二元一次方程组或者用加减消元法解二元一次方程组.本题主要考查了学生对解方程组方法的掌握情况.用代入法解方程组的时候建议选择系数绝对值最小的项转化,再代入求解;用加减消元不要急着加减,先观察消哪一个未知数最方便,解完方程组之后,一定要进行最后一步,写解.注意,①算完之后最好把得出的解代入原方程组验证;②对于选择题来说,实在不会解方程组的同学,可以把选项中的解代入原方程组,一一验证也可得出正确的答案.8.【答案】C【知识点】坐标与图形性质、平行四边形的性质 【解析】解:∵(−2,−2),(2,−2), ∴BC =2−(−2)=2+2=4, ∵四边形ABCD 是平行四边形, ∴AD =BC =4, ∵点A 的坐标为(0,1), ∴点D 的坐标为(4,1), 故选:C .首先根据B 、C 两点的坐标确定线段BC 的长,然后根据A 点的坐标向右平移线段BC 的长度即可求得点D 的坐标.考查了平行四边形的性质及坐标与图形性质的知识,解题的关键是求得线段BC 的长,难度不大.9.【答案】A【知识点】分式的加减 【解析】解:3aa−b −3ba−b=3a −3ba −b =3(a −b)a −b=3, 故选:A .根据同分母的分式相减的法则进行计算即可.本题考查了分式的加减,能熟记分式的加减法则是解此题的关键.10.【答案】B【知识点】反比例函数图象上点的坐标特征【解析】解:∵反比例函数y=−5中,k=−5<0,x∴函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大.∵−5<0,0<1<5,∴点A(−5,y1)在第二象限,点B(1,y2),C(5,y3)在第四象限,∴y2<y3<y1.故选:B.先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.【答案】D【知识点】旋转的基本性质、全等三角形的判定与性质【解析】解:由旋转的性质得出CD=CA,∠EDC=∠CAB=120°,∵点A,D,E在同一条直线上,∴∠ADC=60°,∴△ADC为等边三角形,∴∠DAC=60°,∴∠BAD=60°=∠ADC,∴AB//CD,故选:D.由旋转的性质得出CD=CA,∠EDC=∠CAB=120°,则可得出结论.本题考查了旋转的性质,灵活运用旋转的性质是本题的关键.12.【答案】D【知识点】二次函数与一元二次方程、二次函数图象上点的坐标特征、二次函数图象与系数的关系、根的判别式【解析】解:①∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(−1,−1),(0,1),∴c=1,a−b+c=−1,∴a=b−2,∵当x=−2时,与其对应的函数值y>1.∴4a−2b+1>1,∴4(b−2)−2b+1>1,解得:b>4,∴a=b−2>0,,∴abc>0,故①正确;②∵a=b−2,c=1,∴(b−2)x2+bx+1−3=0,即∴(b−2)x2+bx−2=0,∴△=b2−4×(−2)×(b−2)=b2+8b−16=b(b+8)−16,∵b>4,∴△>0,∴关于x的方程ax2+bx+c−3=0有两个不等的实数根,故②正确;③∵a=b−2,c=1,∴a+b+c=b−2+b+1=2b−1,∵b>4,∴2b−1>7,∴a+b+c>7.故③正确;故选:D.①当x=0时,c=1,由点(−1,−1)得a=b−2,由x=−2时,与其对应的函数值y>1可得b>4,进而得出abc>0;②将a=b−2,c=1代入方程,根据根的判别式即可判断;③将a=b−2,c=1代入a+b+c,求解后即可判断.本题考查二次函数的图象与性质,根的判别式;熟练掌握二次函数图象上点的特征,逐一分析三条结论的正误是解题的关键.13.【答案】5a【知识点】合并同类项【解析】解:4a+2a−a=(4+2−1)a=5a.故答案为:5a.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此计算即可.本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.14.【答案】9【知识点】二次根式的混合运算、平方差公式【解析】解:原式=(√10)2−1=10−1=9.故答案为9.利用平方差公式计算.本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】37【知识点】概率公式【解析】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是3,7故答案为:3.7根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事.件A出现m种结果,那么事件A的概率P(A)=mn16.【答案】y=−6x−2【知识点】一次函数图象与几何变换【解析】解:将直线y=−6x向下平移2个单位长度,平移后直线的解析式为y=−6x−2,故答案为:y=−6x−2.根据解析式“上加下减”的原则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知函数解析式“上加下减”的原则是解答此题的关键.17.【答案】√132【知识点】三角形的中位线定理、全等三角形的判定与性质、正方形的性质 【解析】解:以O 为原点,垂直AB 的直线为x 轴,建立直角坐标系,如图:∵正方形ABCD 的边长为4,CE =2,DF =1, ∴E(4,−2),F(2,3), ∵G 为EF 的中点, ∴G(3,12),设直线OE 解析式为y =kx ,将E(4,−2)代入得: −2=4k ,解得k =−12, ∴直线OE 解析式为y =−12x , 令x =2得y =−1, ∴H(2,−1),∴GH =√(3−2)2+(−1−12)2=√132, 故答案为:√132.以O 为原点,垂直AB 的直线为x 轴,由已知可得E(4,−2),F(2,3),又G 为EF 的中点,得G(3,12),设直线OE 解析式为y =kx ,可得y =−12x ,从而H(2,−1),GH =√(3−2)2+(−1−12)2=√132. 本题考查正方形的性质及应用,解题的关键是建立直角坐标系,求出G 和H 的坐标.18.【答案】√5 取BC 与网格线的交点D ,连接OD 延长OD 交⊙O 于D 点E ,连接AE交BC 于点G ,连接BE ,延长AC 交BE 的的延长线于F ,连接FG 延长FG 交AB 于点P,点P即为所求【知识点】勾股定理、圆周角定理【解析】解:(Ⅰ)AC=√22+12=√5.故答案为:√5.(Ⅱ)如图,取BC与网格线的交点D,连接OD延长OD交⊙O于D点E,连接AE交BC于点G,连接BE,延长AC交BE的的延长线于F,连接FG延长FG交AB于点P,点P即为所求.故答案为:取BC与网格线的交点D,连接OD延长OD交⊙O于D点E,连接AE交BC于点G,连接BE,延长AC交BE的的延长线于F,连接FG延长FG交AB于点P,点P即为所求(Ⅰ)利用勾股定理求解即可.(Ⅱ)取BC与网格线的交点D,连接OD延长OD交⊙O于D点E,连接AE交BC于点G,连接BE,延长AC交BE的的延长线于F,连接FG延长FG交AB于点P,点P即为所求.本题考查圆周角定理,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.【答案】x≥−1x≤3−1≤x≤3【知识点】在数轴上表示不等式的解集、一元一次不等式组的解法【解析】解:(Ⅰ)解不等式①,得x≥−1;(Ⅱ)解不等式②,得x≤3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为−1≤x≤3.故答案为:x≥−1,x≤3,−1≤x≤3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】50 20【知识点】加权平均数、中位数、条形统计图、众数【解析】解:(Ⅰ)本次接受调查的家庭个数为:8÷16%=50(个);m%=10×100%=20%,即m=20;50故答案为:50,20;=5.9(t),(Ⅱ)这组月均用水量数据的平均数是:5×8+5.5×12+6×16+6.5×10+7×450∵6出现了16次,出现的次数最多,∴这组数据的众数是6t;将这组数数据从小到大排列,其中处于中间的两个数都是6,∴这组数据的中位数是6t.(Ⅰ)根据每月用水5t的户数和所占的百分比即可得出接受调查的家庭个数,再用每月用水6.5t的户数除以总户数,即可得出m的值;(Ⅱ)根据平均数、众数和中位数的定义即可求解.本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.掌握平均数、中位数和众数的计算方法.21.【答案】解:(Ⅰ)如图①,∵AB=AC,∴∠ABC=∠ACB=1(180°−∠BAC)=21×(180°−42°)=69°,2∵BD为直径,∴∠BCD=90°,∵∠D=∠BAC=42°,∴∠DBC=90°−∠D=90°−42°=48°;∴∠ACD=∠ABD=∠ABC−∠DBC=69°−48°=21°;(Ⅱ)如图②,连接OD,∵CD//AB,∴∠ACD=∠BAC=42°,∵四边形ABCD为⊙O的内接四边形,∴∠B+∠ADC=180°,∴∠ADC=180°−∠B=180°−69°=111°,∴∠CAD=180°−∠ACD−∠ADC=180°−42°−111°=27°,∴∠COD=2∠COD=54°,∵DE为切线,∴OD⊥DE,∴∠ODE=90°,∴∠E=90°−∠DOE=90°−54°=36°.【知识点】圆周角定理、切线的性质、三角形的外接圆与外心【解析】(Ⅰ)如图①,利用等腰三角形的性质和三角形内角和计算出∠ABC=69°,再根据圆周角定理得到∠BCD=90°,∠D=42°,利用互余计算出∠DBC的度数,利用圆周角定理计算∠ABD的度数,从而得到∠ACD的度数;(Ⅱ)如图②,连接OD,利用平行线的性质得到∠ACD=∠BAC=42°,利用圆内接四边形的性质计算出∠ADC=111°,再根据三角形内角和计算出∠CAD=27°,接着利用圆周角定理得到∠COD=54°,然后根据切线的性质得到∠ODE=90°,最后利用互余计算出∠E的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.22.【答案】解:如图,过点B作BH⊥AC,垂足为H,由题意得,∠BAC=60°,∠BCA=40°,AC=257,在Rt△ABH中,∵tan∠BAH=BHAH ,cos∠BAH=AHAB,∴BH=AH⋅tan60°=√3AH,AB=AHcos60∘=2AH,在Rt△BCH中,∵tan∠BCH =BHCH , ∴CH =BH tan40∘=√3AHtan40°, 又∵CA =CH +AH , ∴257=√3AHtan40°+AH , 所以AH =tan40°+√3,∴AB =tan40°+√3≈2×257×0.841.73+0.84=168(海里),答:AB 的长约为168海里.【知识点】解直角三角形的应用【解析】通过作垂线,构造直角三角形,利用锐角三角函数的意义列方程求解即可. 本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的关键.23.【答案】10 12 20 8 3 28 15或316【知识点】一次函数的应用【解析】解:(Ⅰ)由题意得:当x =0.5时,y =10;当x =0.8时,y =12;当x =3时,y =20;故答案为:10;12;20; (Ⅱ)由题意得:①书店到陈列馆的距离为:(20−12)=8(km); ②李华在陈列馆参观学习的时间为:(4.5−1.5)=3(ℎ);③李华从陈列馆回学校途中,减速前的骑行速度为:(20−6)÷(5−4.5)=28(km/ℎ); ④当李华离学校的距离为4km 时,他离开学校的时间为:4÷(2÷0.6)=15(ℎ)或5+(6−4)÷[6÷(5.5−5)]=316(ℎ),故答案为:①8;②3;③28;④15或316; (Ⅲ)当0≤x ≤0.6时,y =20x ; 当0.6<x ≤1时,y =12;当1<x ≤1.5时,设y 关于x 的函数解析式为y =kx +b ,根据题意,得: {k +b =121.5k +b =20,解得{k =16b =−4, ∴y =16x −4,综上所述,y ={20x(0≤x ≤0.6)12(0.6<x ≤1)16x −4(1<x ≤1.5).(Ⅰ)根据函数图象横、纵坐标表示的意义填空即可; (Ⅱ)根据函数图象横、纵坐标表示的意义填空即可; (Ⅲ)根据分段函数,利用待定系数法求解即可.本题考查利用一次函数的图象解决实际问题,正确理解题意、理解函数图象横、纵坐标表示的意义是解题的关键.24.【答案】解:(1)如图①,过点B 作BH ⊥OA ,垂足为H , 由点A(4,0),得OA =4, ∵BO =BA ,∠OBA =90°, ∴OH =BH =12OA =12×4=2,∴点B 的坐标为(2,2); (2)①由点E(−72,0), 得OE =72,由平移知,四边形O′C′D′E′是矩形, 得∠O′E′D′=90°,O′E′=OE =72, ∴OE′=OO′−O′E′=t −72,∠FE′O =90°,∵BO =BA ,∠OBA =90°, ∴∠BOA =∠BAO =45°, ∴∠OFE′=90°−∠BOA =45°, ∴∠FOE′=∠OFE′, ∴FE′=OE′=t −72,∴S △FOE ′=12OE′⋅FE′=12(t −72)2,∴S =S △OAB −S △FOE ′=12×4×2−12(t −72)2, 即S =−12t 2+72t −178(4≤t <112);②(Ⅰ)当4<t ≤92时,由①知S =−12t 2+72t −178=−12(t −72)2+4,∴当t =4时,S 有最大值为318,当t =92时,S 有最小值为72,∴此时72<S ≤318; (Ⅱ)当72<t ≤4时,如图2,令D′C′与AB 交于点M ,D′E′与DB 交于点N ,∴S =S △OAB −S △OE′N −S △O’AM =4−12(t −72)2−12(4−t)2=−t 2+152t −118=−(t −154)2+6316, 此时,当t =154时,S 有最大值为6316,当t =4时,S 有最小值为318, ∴318≤S ≤6316; (Ⅲ)当52≤t ≤72时,如图3,令D′C′与AB交于点M ,此时点D′位于第二象限,∴S =S △OAB −S △O’AM =4−12(4−t)2=−12t 2+4t −4=−12(t −4)2+4,此时,当t =52时,S 有最小值为238,当t =72时,S 有最大值为318,∴238≤S ≤318;综上,S 的取值范围为238≤S ≤6316;∴S 的取值范围为238≤S ≤6316.【知识点】四边形综合【解析】(1)作BH ⊥OA 于H ,根据已知数据计算出OH 和BH 即可得出B 点坐标;(2)①先用t 表示出三角形FOE′的面积,再根据阴影部分的面积等于三角形AOB 的面积减三角形FOE′的面积得出函数关系式即可;②根据函数的性质求出S 在范围内的最大值和最小值即可得出取值范围.本题主要考查四边形的综合题,熟练掌握二次函数的性质,三角形的面积的知识点是解题的关键.25.【答案】解:抛物线y =ax 2−2ax +c(a,c 为常数,a ≠0)经过点C(0,−1),则c =−1, (Ⅰ)当a =1时,抛物线的表达式为y =x 2−2x −1=(x −1)2−2,故抛物线的顶点坐标为(1,−2);(Ⅱ)∵y =ax 2−2ax −1=a(x −1)2−a −1,故点D(1,−a −1),由DE =2√2DC 得:DE 2=8CD 2,即(1−0)2+(a +1+a +1)2=8[(1−0)2+(−a −1+1)2],解得a =12或32,故抛物线的表达式为y =12x 2−x −1或y =32x 2−3x −1;(Ⅲ)将点D 向左平移3个单位,向上平移1个单位得到点D′(−2,−a),作点F 关于x 轴的对称点F′,则点F′的坐标为(0,a −1),当满足条件的点M 落在F′D′上时,由图象的平移知DN =D′M ,故此时FM +ND 最小,理由:∵FM +ND =F′M +D′M =F′D′为最小,即F′D′=2√10,则D′F′=√(−2−0)2+(−a −2+1)2=2√10,解得a =72(舍去)或−52,则点D′、F′的坐标分别为(−2,52)、(0,−72),由点D′、F′的坐标得,直线D′F′的表达式为y =−3x −72,当y =0时,y =−3x −72=0,解得x =−76=m ,则m +3=116,即点M 的坐标为(−76,0)、点N 的坐标为(116,−1).【知识点】二次函数综合【解析】(Ⅰ)由y=x2−2x−1=(x−1)2−2,即可求解;(Ⅱ)由DE=2√2DC得:DE2=8CD2,则(1−0)2+(a+1+a+1)2=8[(1−0)2+ (−a−1+1)2],即可求解;(Ⅲ)当满足条件的点M落在F′D′上时,由图象的平移知DN=D′M,故此时FM+ND最小,进而求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2019年天津中考数学试题及答案
![2019年天津中考数学试题及答案](https://img.taocdn.com/s3/m/11c7d91458f5f61fb6366605.png)
2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。
第I 卷一、选择题(本大题12小题,每小题3分,共36分) 1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 2. 60sin 2的值等于A. 1B. 2C. 3D. 23.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×1044.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 209.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系A. 312y y y <<B.213y y y <<C.321y y y <<D.123y y y << 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC12.二次函数c b a c bx ax y ,,(2++=是常数,0≠a )的自变量x 与函数值y 的部分对应值如下表:且当x=21-时,与其对应的函数值0>y ,有下列结论:①0>abc ;② - 2和3是关于x 的方程t c bx ax =++2的两个根;③3200<+<n m 。
三年级中考数学试卷可打印
![三年级中考数学试卷可打印](https://img.taocdn.com/s3/m/73a035ab4793daef5ef7ba0d4a7302768e996f32.png)
考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,最小的正整数是:()A. 0.5B. 0.05C. 0.005D. 0.00052. 下列图形中,不是轴对称图形的是:()A. 正方形B. 等腰三角形C. 长方形D. 圆3. 下列各式中,计算错误的是:()A. 5 + 3 = 8B. 6 - 2 = 4C. 4 × 2 = 8D. 8 ÷ 2 = 34. 小明有5个苹果,小华有3个苹果,他们一共有多少个苹果?()A. 8B. 9C. 10D. 115. 小红把一根绳子剪成3段,每段长度分别是2米、3米和4米,这根绳子最长的一段比最短的一段长多少米?()A. 1米B. 2米C. 3米D. 4米6. 一个长方形的长是8厘米,宽是5厘米,这个长方形的周长是多少厘米?()A. 17厘米B. 18厘米C. 19厘米D. 20厘米7. 下列各数中,质数是:()A. 6B. 7C. 8D. 98. 一个平行四边形的面积是24平方厘米,底是6厘米,高是多少厘米?()A. 3厘米B. 4厘米C. 5厘米D. 6厘米9. 下列各数中,不是小数的是:()A. 0.25B. 1.5C. 2D. 3.1410. 小明从家出发,向东走了5千米,又向北走了3千米,他现在在家的哪个方向?()A. 东B. 南C. 西D. 北二、填空题(每题2分,共20分)1. 2 + 3 × 4 = ______2. 7 - 5 ÷ 2 = ______3. 0.25 × 100 = ______4. 8 ÷ 0.4 = ______5. 6 × 7 + 3 = ______6. 24 ÷ 4 = ______7. 5 - 3 + 2 = ______8. 9 + 9 ÷ 3 = ______9. 10 × 0.1 = ______10. 3 × 4 - 5 = ______三、解答题(每题10分,共30分)1. 小明骑自行车去图书馆,每小时可以行驶10千米,他用了1小时30分钟到达图书馆,请问小明家到图书馆的距离是多少千米?2. 小红有一块长方形的地毯,长是4米,宽是3米,她准备裁剪成若干个正方形的地毯,每个正方形地毯的边长是多少米?3. 小刚有一些硬币,其中5分硬币有20枚,1角硬币有10枚,2角硬币有5枚,他一共有多少角钱?。
2018年中考数学真题知识分类练习试卷:代数式(有答案)
![2018年中考数学真题知识分类练习试卷:代数式(有答案)](https://img.taocdn.com/s3/m/10167d245f0e7cd18425363f.png)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。
2018年中考数学真题知识分类练习试卷:代数式(含答案)
![2018年中考数学真题知识分类练习试卷:代数式(含答案)](https://img.taocdn.com/s3/m/bffcefae0242a8956aece42c.png)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
2023年天津市部分区中考一模数学试卷(含答案解析)
![2023年天津市部分区中考一模数学试卷(含答案解析)](https://img.taocdn.com/s3/m/e1c91b215e0e7cd184254b35eefdc8d377ee145f.png)
2023年天津市部分区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________....【答案】DA....【答案】C【分析】根据从正面看到的图形是主视图进行判断即可.【详解】解:由题意得,主视图如下:故选:C.【点睛】本题考查了主视图.解题的关键在于熟练掌握从正面看到的图形是主视图.6.估计37的值应在(A.5和6之间10,8B.(6,8 A.()【答案】D⊥轴,根据【分析】过A点作AC x【点睛】本题考查了点的坐标,等腰三角形的性质,勾股定理,掌握并会利用等腰三角形的性质,勾股定理是解题的关键.9.已知一元二次方程2x-∴123632y y y ==-=-,,,∴231y y y <<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,理解题意,求出1y ,2y ,3y 的值是解题关键,本题也可以利用反比例函数的性质求解.11.如图,ABC 与111A B C △,关于直线MN 对称,P 为MN 上任一点(P 不与1AA 共线),下列结论不正确...的是()A .1AP A P=B .ABC 与111A B C △的面积相等C .MN 垂直平分线段1AA D .直线11,AB A B 的交点不一定在MN 上【答案】D【分析】根据轴对称的性质依次进行判断,即可得.【详解】解:∵ABC 与111A B C △,关于直线MN 对称,P 为MN 上任一点(P 不与1AA 共线),∴1AP A P =,ABC 与111A B C △的面积相等,MN 垂直平分线段1AA ,即选项A 、B 、C 正确,∵直线11,AB A B 关于直线MN 对称,∴直线11,AB A B 的交点一定在MN 上,即选项D 不正确,故选:D .【点睛】本题考查了轴对称的性质,解题的关键是掌握轴对称的性质.12.已知拋物线()2<0y ax bx c a =++与x 轴交于()1,0x ,()()212,0x x x <,其顶点在线段AB 上运动(形状保持不变),且()4,3A -,()13B ,,有下列结论:①3c ≤;②当0x >时,y 随x 的增大而减小;③若2x 的最大值为4,则1x 的最小值为7-.其中,正确结论的个数是()A .0B .1C .2D .3【答案】C【分析】根据抛物线开口向下可知函数有最大值3,即可判断①;根据抛物线的性质可知当1x >时,y 随x 的增大而减小即可判断②;根据2x 的最大值为4,则此时对称轴为直线1x =,则由对称性可得1x 的最小值为()4417---=-,即可判断③.【详解】解:∵拋物线()2<0y ax bx c a =++与x 轴交于()1,0x ,()()212,0x x x <,且抛物线顶点在线段AB 上运动(形状保持不变),()4,3A -,()13B ,,∴抛物线的函数值有最大值3,∴3c ≤,故①正确;∵抛物线顶点在线段AB 上运动(形状保持不变),且()4,3A -,()13B ,,∴抛物线对称轴在直线4x =-和直线1x =之间,∴当1x >时,y 随x 的增大而减小,故②错误;∵2x 的最大值为4,∴此时对称轴为直线1x =,∴由对称性可知,1x 的最小值为()4417---=-,故③正确;故选C .【点睛】本题主要考查了抛物线的性质,熟知抛物线的性质是解题的关键.二、填空题【答案】2【分析】如图,连接AE ,490AE AEO =∠=︒,,在Rt OB OA =,根据BE OB OE =-【详解】解:如图,连接AE 由题意知,OF 是ACE △的中位线,∴12OF AE =,OF AE ∥,∴490AE AEO =∠=︒,,在Rt AEO △中,由勾股定理得由矩形的性质可得OB OA =∴2BE OB OE =-=,故答案为:2.【点睛】本题考查了中位线,勾股定理,矩形的性质等知识.解题的关键在于添加辅助线,构造中位线.18.如图,在每个小正方形的边长为B 在圆上.(1)线段AC 的长等于________(2)过点D 作DF AC ∥,直线∵90BAE ∠=︒,∴BE 为圆的直径,∵GK 垂直平分AB ,∴BE 鱼GK 的交点为圆心∵MN AH ∥,∴ AM HN=,∴ANM HMN ∠=∠,∴IM IN =,∵OM ON =,∴IP 垂直平分MN ,即MP NP =.故答案为:取圆与格线的交点连接FD ,与圆交于点M ,N ;取圆与AC 的交点H ,连接MH ,AN ,两线交于点I ;作射线OI ,交MN 于点P ,则点P 即为所求.【点睛】本题主要考查了勾股定理,圆周角定理,垂直平分线的判定,等腰三角形的判定,垂径定理,解题的关键是找出圆心O 和点I .三、解答题19.解不等式组2123x x x +≥⎧⎨≤+⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________.【答案】(1)1x ≥-(2)3x ≤(3)解集在数轴上表示见解析(4)13x -≤≤【分析】(1)根据解不等式的方法计算即可;(2)根据解不等式的方法计算即可;(3)根据解集在数轴上表示即可;(4)结合(3)中数轴的图形即可作答.【详解】(1)21x +≥2212x +-≥-1x ≥-,故答案为:1x ≥-;(2)23x x ≤+23x x x x -≤+-3x ≤,故答案为:3x ≤;(3)在数轴上表示如下:(4)结合数轴,取两个解集的公共部分:故答案为:13x -≤≤.【点睛】本题主要考查了求解不等式组的解集以及在数轴上表示不等式解集的知识.练掌握一元一次不等式的解法,熟知小找不到”的原则是解答此题的关键.20.某初中学校为了解学生课外阅读情况,随机调查了部分学生每周平均阅读时间.根据统计结果,绘制出如下统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为________,图①中m 的值为________(2)求统计的这组每周平均阅读时间数据的平均数、众数和中位数.【答案】(1)50,6(2)这组数据的平均数是9,众数为9,中位数为9【分析】(1)根据两个统计图可选由具体阅读时间的人数及所占百分比即可求出总人数,进而可求解.(2)根据条形统计图可求出阅读总时间数,可求出平均数,再找出出现次数最多的数据,将这组数据按从小到大的顺序排列,可找出处于中间的两个数,即可求解.【详解】(1)解:由统计图得:每周平均阅读时间7h 的学生有5人,占10%,∴调查的总人数:()55010%=人,由条形统计图得每周平均阅读时间11h 的学生有3人,3%6%50m ∴==.故答案:50,6.(2)解:由条形统计图得:(1)如图①,若D 为 AB 的中点,64A ∠=︒,求∠(2)如图②,若AB CD ⊥,过点D 作O 的切线与求ABD ∠的大小.【答案】(1)64D ∠=︒,45ABD ∠=︒(2)60ABD ∠=︒DE 是O 的切线,OD DE ∴⊥,即ODE ∠又DE CE ⊥ ,即DEC ∠180ODE DEC ∴∠+∠=︒C OD E ∴∥.则90AMF ∠=︒,8.8m CE DF ==在Rt AFM △中,45AFM ∠=︒,则45MAF AFM ∠=∠=︒,设AM FM x ==,在Rt ADM △中,38ADM ∠=︒,(1)如图①,求点B C ,的坐标;(2)将正方形AOBC 沿x 轴向右平移,得到正方形''''A O B C ,点A ,O ,别为A O B C '''',,,.设OO t '=,正方形''''A O B C 与MON △重合部分的面积为①如图②,当14t <≤时,正方形''''A O B C 与MON △重合部分为五边形,直线②当14t <≤时,由题意得21152S t t =-+-解得515t =-或515+当5t =时,点O '与点N 重合,此时2914482S =⨯⨯=>,∴59t <<,∴9A N A F t ''==-,由题意得()219922t -=,解得6t =或12t =(舍去);综上,t 的值是515-或6.故答案为:515-或6.【点睛】本题主要考查了正方形的性质,等腰直角三角形的性质,矩形的性质,平移的性质,图形的面积,二次函数的性质等知识,根据题意分别画出图形,通过面积的和差关系求出S 关于t 的函数表达式是解题的关键.25.抛物线()230y ax bx a =+-≠(1)求抛物线的顶点坐标;(2)点Q 在拋物线对称轴上,当△(3)P 是拋物线对称轴上的一点,M 腰的等腰直角三角形时,求出符合条件的所有点【答案】(1)抛物线顶点坐标为(-点A 、B 关于抛物线的对称轴对称,AQ BQ ∴=,∴当点A 、Q 、C 在一条直线上时, 抛物线23+=2y x x -与∴设直线AC 的解析式为把点()30A -,代入,得1k ∴=-.设点P 的坐标为()1,m -.由PAM PEA AFM ∠=∠=∠PAE MAF PAE ∴∠+∠=∠APE MAF ∴∠=∠.()AAS APE MAF ≌ ∴.PE AF ∴=,AE MF =.2AF PE ∴==,MF AE =∴点M 的坐标为(3,m -+ 点M 在抛物线2+=2y x ()()2323m m ∴-++-+-2420m m ∴-+=,解得22m =+或2m =-∴点M 的坐标为(21,-当点P 在x 轴下方时,如图:同理可以求得点M的坐标为综上所述,当PAM△是以()--或(61,221,2-【点睛】本题考查了求二次函数及一次函数的解析式,二次函数的图象及性质,最短路径问题,全等三角形的判定与性质,试卷第21页,共21页。
2018年天津市西青区中考数学二模试卷
![2018年天津市西青区中考数学二模试卷](https://img.taocdn.com/s3/m/0051df52852458fb770b56a4.png)
2018年天津市西青区中考数学二模试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3.00分)计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.182.(3.00分)2cos30°的值等于()A.1 B.C.D.23.(3.00分)下列图形中,属于中心对称图形的是()A.B.C.D.4.(3.00分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg5.(3.00分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C. D.6.(3.00分)比较4,,的大小,正确的是()A.4<<B.4<<C.<4<D.<<4 7.(3.00分)计算﹣的结果为()A. B. C. D.8.(3.00分)二元一次方程组的解是()A.B.C.D.9.(3.00分)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′10.(3.00分)a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a11.(3.00分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.712.(3.00分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题:本大题共6小题,每小题3分,共18分)13.(3.00分)计算(a3)2÷(a2)3的结果等于.14.(3.00分)计算(2﹣)2的结果等于.15.(3.00分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.16.(3.00分)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为.17.(3.00分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.18.(3.00分)如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(I)OM的长等于;(Ⅱ)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程)19.(8.00分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8.00分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(I)本次接受随机抽样调查的中学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.21.(10.00分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA 于点E.(I)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(Ⅱ)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.22.(10.00分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)23.(10.00分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(Ⅰ)根据题意,填写下表:(Ⅱ)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x 的函数解析式;(Ⅲ)设甲,乙两人之间的距离为y,当y=12时,求x的值.24.(10.00分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).25.(10.00分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(I)求该抛物线的解析式和顶点坐标;(Ⅱ)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).2018年天津市西青区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3.00分)计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.18【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=﹣3+6=3,故选:A.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.(3.00分)2cos30°的值等于()A.1 B.C.D.2【分析】根据特殊角的三角函数值直接解答即可.【解答】解:2cos30°=2×=.故选:C.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3.(3.00分)下列图形中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选:B.【点评】本题主要考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.4.(3.00分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3.00分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C. D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:由图可得,俯视图为:.故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.(3.00分)比较4,,的大小,正确的是()A.4<<B.4<<C.<4<D.<<4【分析】直接分别将与和4比较大小,进而得出答案.【解答】解:∵=4,∴<,∵<,∴>4,∴<4<.故选:C.【点评】此题主要考查了实数比较大小,正确化简各数是解题关键.7.(3.00分)计算﹣的结果为()A. B. C. D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式====故选:A.【点评】本题考查分式的运算法则,解题的熟练运用分式的运算法则,本题属于基础题型.8.(3.00分)二元一次方程组的解是()A.B.C.D.【分析】用加减消元法解方程组即可.【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选:B.【点评】本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法或代入消元法解方程组,属于中考常考题型.9.(3.00分)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选:C.【点评】本题考查了旋转的性质,角平分线的定义,等腰三角形的性质,正确的识别图形是解题的关键.10.(3.00分)a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a【分析】根据反比例函数的性质可以判断a、b的大小,从而可以解答本题.【解答】解:∵y=﹣,∴反比例函数y=﹣的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,∴a<b<0,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质.11.(3.00分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选:B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.12.(3.00分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选:C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分)13.(3.00分)计算(a3)2÷(a2)3的结果等于1.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:原式=a6÷a6=1.故答案为:1.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算等知识,正确掌握相关运算法则是解题关键.14.(3.00分)计算(2﹣)222﹣4.【分析】利用完全平方公式计算.【解答】解:原式=20﹣4+2=22﹣4.故答案为22﹣4.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.(3.00分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.16.(3.00分)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A(﹣1,2)关于y轴的对称点(1,2)代入,即可求出b的值.【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.∵点A(﹣1,2)关于y轴的对称点是(1,2),∴把点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=4.故答案为4.【点评】本题考查了一次函数图象与几何变换,关于y轴对称的点坐标特征,一次函数图象上点的坐标特征,熟练记忆函数平移规律是解题关键.17.(3.00分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【分析】方法1、根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.方法2、先判断出BF=FG,进而得出△ABF≌△CDG,即可得出DG=BF=FG,最后得出CF=CD即可得出结论.【解答】解:方法1、∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.方法2、如图,过点C作CG⊥BD,∵AE⊥BD,∴∠AFE=∠CGD=90°,EF∥CG,∵点E是BC中点,∴BF=FG,∵四边形ABCD是矩形,∴AB=CD=,AB∥CD,∴∠ABF=∠CDG,∴△ABF≌△CDG,∴CF=CD=,故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.18.(3.00分)如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(I)OM的长等于4;(Ⅱ)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR即可得到结果.【解答】解:(Ⅰ)OM==4;故答案为4.(Ⅱ)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴当a=时,PA2+PB2取得最小值,综上,需作出点P满足线段OP的长=;取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR 交OM于P,则点P即为所求.【点评】本题考查了作图﹣应用与设计作图,轴对称﹣最短距离问题,勾股定理等知识,正确的作出图形是解题的关键.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程)19.(8.00分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x<3;(Ⅱ)解不等式②,得x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣2≤x<3.【分析】求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可.【解答】解:(Ⅰ)解不等式①,得:x<3;(Ⅱ)解不等式②,得:x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为:﹣2≤x<3,故答案为:x<3、x≥﹣2、﹣2≤x<3.【点评】本题考查了一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是求出不等式组的解集.20.(8.00分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(I)本次接受随机抽样调查的中学生人数为250,图①中m的值是12;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.【分析】(I)由1h人数及其所占百分比可得总人数,根据百分比之和为1可得m的值;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中每天在校体育锻炼时间大于等于1.5h的人数所占比例可得.【解答】解:(I)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为:250、12;(Ⅱ)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(Ⅲ)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点评】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.21.(10.00分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA 于点E.(I)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(Ⅱ)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.【分析】(I)如图①,连接OQ.想办法求出∠OQB,∠AQB,∠OQE的大小即可解决问题;(Ⅱ)如图②中,连接OQ,想办法求出∠OQA即可解决问题;【解答】解:(I)如图①中,连接OQ.∵EQ是切线,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(Ⅱ)如图②中,连接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切线,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【点评】本题考查切线的性质.等腰三角形的性质.三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(10.00分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)【分析】在Rt△AOC中,求出AC、OA、OC,在Rt△BOC中求出OB,即可解决问题.【解答】解:由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的长为6.0km,AB的长为1.7km.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.23.(10.00分)A ,B 两地相距20km .甲、乙两人都由A 地去B 地,甲骑自行车,平均速度为10km/h ;乙乘汽车,平均速度为40km/h ,且比甲晚1.5h 出发.设甲的骑行时间为x (h )(0≤x ≤2) (Ⅰ)根据题意,填写下表:(Ⅱ)设甲,乙两人与A地的距离为y 1(km )和y 2(km ),写出y 1,y 2关于x 的函数解析式;(Ⅲ)设甲,乙两人之间的距离为y ,当y=12时,求x 的值. 【分析】(Ⅰ)根据“路程=速度×时间”可以得出表中数据;(Ⅱ)对于甲乙两者与A 地的距离的解析书把握住乙比甲晚1.5h 出发即可; (Ⅲ)甲,乙两人之间的距离为y 实际上是y 1,y 2的差的绝对值.【解答】解(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h 和40km/h ,且比甲晚1.5h 出发.当时间x=1.8 时,甲离开A 的距离是10×1.8=18(km ) 当甲离开A 的距离20km 时,甲的行驶时间是20÷10=2(时) 此时乙行驶的时间是2﹣1.5=0.5(时), 所以乙离开A 的距离是40×0.5=20(km ) 故填写下表:(Ⅱ)由题意知:y 1=10x (0≤x ≤1.5),(Ⅲ)根据题意,得当0≤x≤1.5时,由10x=12,得x=1.2当1.5<x≤2时,由﹣30x+60=12,得x=1.6因此,当y=12时,x的值是1.2或1.6【点评】本题根据题意写函数解析式的题目,需要注意分段函数的表达和应用,需要注意的是必须结合实际情况来解答问题.考查了学生的建模能力和分类思想.24.(10.00分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A 的长,然后利用相似三角形的对应边成比例与m=,即可求得t的值.【解答】解:(Ⅰ)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(,6).(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OP B′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴.∴m=(0<t<11).(Ⅲ)过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,∴AC′==,∴,∴,∴3(6﹣m)2=(3﹣m)(11﹣t)2,∵m=,∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2,∴t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2,∴t2=﹣t2+t﹣3,∴3t2﹣22t+36=0,解得:t1=,t2=,点P的坐标为(,6)或(,6).法二:∵∠BPO=∠OPC′=∠POC′,∴OC′=PC′=PC=11﹣t,过点P作PE⊥OA于点E,则PE=BO=6,OE=BP=t,∴EC′=11﹣2t,在Rt△PEC′中,PE2+EC′2=PC′2,即(11﹣t)2=62+(11﹣2t)2,解得:t1=,t2=.点P的坐标为(,6)或(,6).【点评】此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.25.(10.00分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(I)求该抛物线的解析式和顶点坐标;(Ⅱ)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).【分析】(I)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,转化为解方程组即可.(Ⅱ)①先求出直线OA的解析式,点B坐标,抛物线的对称轴即可得出AB=7及直线OA解析式,继而得点P坐标,如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程m2+()2=52,解方程即可解决问题.②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【解答】解:(I)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,得,解得,∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.所以抛物线的顶点坐标为(,);(Ⅱ)①由题意B(5,0),A(4,4),∴直线OA的解析式为y=x,AB==7,∵抛物线的对称轴x=,∴P(,).如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四边形BOQC是平行四边形,∵BO=BC,∴四边形BOQC是菱形,设Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴点Q坐标为(﹣,)或(,);②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.∵AB=7,BD=5,∴AD=2,D(,),∵OH=HD,∴H(,),∴直线BH的解析式为y=﹣x+,当y=时,x=0,∴Q(0,).【点评】本题考查二次函数综合题、一次函数的应用、平行四边形的判定和性质、菱形的判定和性质、勾股定理、圆等知识,解题的关键是灵活运用所学知识,学会用方程的思想思考问题,学会构建一次函数,利用方程组求交点坐标,属于中考压轴题.。
2020年天津市中考数学试卷 - A4打印版
![2020年天津市中考数学试卷 - A4打印版](https://img.taocdn.com/s3/m/c1b180bb0b1c59eef9c7b470.png)
min.
24.(10分)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°, ∠B=30°,点P在边OB上(点P不与点O,B重合). (Ⅰ)如图①,当OP=1时,求点P的坐标; (Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t. ①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接 写出t的取值范围; ②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).
分)
解不等
式组
3x
≤
2
x
+
1,①
2x+5≥-1.②
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得
;
(Ⅱ)解不等式②,得
;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为
.
20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图 的统计图①和图②.
C.∠AEF=∠D
D.AB⊥DF
12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=1 .有下列结论: 2
①abc>0;
②关于x的方程ax2+bx+c=a有两个不等的实数根; ③a<-1 .
2 其中,正确结论的个
25.(10分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点. (Ⅰ)当a=1,m=-3时,求该抛物线的顶点坐标; (Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点, EF=2⎷ 2. ①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标; ②取EF的中点N,当m为何值时,MN的最小值是⎷ 2 ?
最新-2018年天津市中招考试数学试题卷及答案【word版】 精品
![最新-2018年天津市中招考试数学试题卷及答案【word版】 精品](https://img.taocdn.com/s3/m/5de2efe4941ea76e58fa0432.png)
2018年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分.考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效.每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 60cos 的值等于( )A .21B .22C .23D .12.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有( ) A .1个B .2个C .3个D .4个3.边长为a 的正六边形的面积等于( ) A .243aB .2aC .2233a D .233a4.纳米是非常小的长度单位,已知1纳米=610 毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( ) A .210个B .410个C .610个D .810个5.把抛物线22x y =向上平移5个单位,所得抛物线的解析式为( ) A .522+=x yB .522-=x yC .2)5(2+=x yD .2)5(2-=x y6.掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于( )A .1B .21 C .41 D .07.下面的三视图所对应的物体是( )A .B .C .D . 8.若440-=m ,则估计m 的值所在的范围是( ) A .21<<mB .32<<mC .43<<mD .54<<m9.在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32,0),则以这四个点为顶点的四边形ABCD 是( ) A .矩形B .菱形C .正方形D .梯形10.在平面直角坐标系中,已知点A (4-,0),B (2,0),若点C 在一次函数221+-=x y 的图象上,且△ABC 为直角三角形,则满足条件的点C 有( ) A .1个 B .2个 C .3个 D .4个第(14)题2018年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚.2.第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分.请将答案直接填在题中横线上. 11.不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .12.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 .13.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .14.如图,是北京奥运会、残奥会赛会志愿者 申请人来源的统计数据,请你计算:志愿者申 请人的总数为 万;其中“京外省区市” 志愿者申请人数在总人数中所占的百分比约 为 %(精确到0.1%),它所对应的 扇形的圆心角约为 (度)(精确到度). 15.如图,已知△ABC 中,EF ∥GH ∥IJ ∥BC , 则图中相似三角形共有 对.16.如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF 的长为 .17.已知关于x 的函数同时满足下列三个条件: ①函数的图象不经过第二象限; ②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可).AG EH FJI BC 第(15)题第(16)题ADC B FG18.如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程.19.(本小题6分) 解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩,20.(本小题8分)已知点P (2,2)在反比例函数xky =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值; (Ⅱ)当31<<x 时,求y 的取值范围.第(18)题图① 第(18)题图②如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长.22.(本小题8分)下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1).ABD CE O热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格)(Ⅱ)列出方程(组),并求出问题的解.C A BC A B EF M N 图① CABE F MN 图②已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=; 思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了.请你完成证明过程:(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.2018年天津市初中毕业生学业考试数学参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分. 1.A 2.D 3.C 4.B 5.A 6.C 7.A 8.B9.B10.D二、填空题:本大题共8小题,每小题3分,共24分. 11.34<<-x12.513.(4,5)14.112.6;25.9,︒9315.616.317.2-=x y (提示:答案不惟一,如652-+-=x x y 等)18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).三、解答题:本大题共8小题,共66分. 19.本小题满分6分.解 ∵3582 1.x y x y +=⎧⎨-=⎩,①②由②得12-=x y ,③ ·················································································· 2分将③代入①,得8)12(53=-+x x .解得1=x .代入③,得1=y .∴原方程组的解为11.x y =⎧⎨=⎩,··············································································· 6分20.本小题满分8分.解 (Ⅰ)∵点P (2,2)在反比例函数xky =的图象上, ∴22k=.即4=k . ······················································································ 2分第(18)题图②∴反比例函数的解析式为xy 4=. ∴当3-=x 时,34-=y . ··············································································· 4分 (Ⅱ)∵当1=x 时,4=y ;当3=x 时,34=y , ·············································· 6分 又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ······································ 7分 ∴当31<<x 时,y 的取值范围为434<<y . ······················································· 8分 21.本小题满分8分. 解(Ⅰ)∵AB ∥CD ,∴︒=∠+∠180ADC BAD . ··········································································· 1分 ∵⊙O 内切于梯形ABCD ,∴AO 平分BAD ∠,有BAD DAO ∠=∠21,DO 平分ADC ∠,有ADC ADO ∠=∠21.∴︒=∠+∠=∠+∠90)(21ADC BAD ADO DAO .∴︒=∠+∠-︒=∠90)(180ADO DAO AOD . ·························································· 4分 (Ⅱ)∵在Rt △AOD 中,8=AO cm ,6=DO cm ,∴由勾股定理,得1022=+=DO AO AD cm . ·················································· 5分 ∵E 为切点,∴AD OE ⊥.有︒=∠90AEO . ······················································· 6分 ∴AOD AEO ∠=∠.又OAD ∠为公共角,∴△AEO ∽△AOD . ····················································· 7分 ∴AD AO OD OE =,∴8.4=⋅=ADODAO OE cm . ··························································· 8分 22.本小题满分8分. 解 观察直方图,可得车速为50千米/时的有2辆,车速为51千米/时的有5辆, 车速为52千米/时的有8辆,车速为53千米/时的有6辆, 车速为54千米/时的有4辆,车速为55千米/时的有2辆,车辆总数为27, ·························································································· 2分 ∴这些车辆行驶速度的平均数为4.52)255454653852551250(271≈⨯+⨯+⨯+⨯+⨯+⨯. ········································ 4分 ∵将这27个数据按从小到大的顺序排列,其中第14个数是52,B∴这些车辆行驶速度的中位数是52. ····························································· 6分 ∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52. ····································································· 8分 23.本小题满分8分.解 如图,过点A 作BC AD ⊥,垂足为D ,根据题意,可得︒=∠30BAD ,︒=∠60CAD ,66=AD . ······································ 2分 在Rt △ADB 中,由ADBDBAD =∠tan , 得322336630tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD . 在Rt △ADC 中,由ADCDCAD =∠tan , 得36636660tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD . ········································ 6分 ∴2.152388366322≈=+=+=CD BD BC .答:这栋楼高约为152.2 m . ·································································· 8分 24.本小题满分8分. 解··················································· 3分 (Ⅱ)根据题意,列方程得3121010+=x x . ························································ 5分 解这个方程,得15=x . ··········································································· 7分 经检验,15=x 是原方程的根. 所以,15=x .答:骑车同学的速度为每小时15千米. ···························································· 8分 25.本小题满分10分.(Ⅰ)证明 将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM . ············································································· 1分CABD有CA CD =,AM DM =,ACM DCM ∠=∠,A CDM ∠=∠. 又由CB CA =,得 CB CD =. ··································· 2分 由DCM DCM ECF DCN ∠-︒=∠-∠=∠45, ACM ECF ACB BCN ∠-∠-∠=∠ ACM ACM ∠-︒=∠-︒-︒=454590,得BCN DCN ∠=∠. ······················································································ 3分 又CN CN =,∴△CDN ≌△CBN . ··············································································· 4分 有BN DN =,B CDN ∠=∠.∴︒=∠+∠=∠+∠=∠90B A CDN CDM MDN . ···················································· 5分 ∴在Rt △MDN 中,由勾股定理,得222DN DM MN +=.即222BN AM MN +=. ················································ 6分 (Ⅱ)关系式222BN AM MN +=仍然成立. ···················································· 7分 证明 将△ACM 沿直线CE 对折,得△GCM ,连GN , 则△GCM ≌△ACM . ············································· 8分 有CA CG =,AM GM =,ACM GCM ∠=∠,CAM CGM ∠=∠.又由CB CA =,得 CB CG =.由︒+∠=∠+∠=∠45GCM ECF GCM GCN ,ACM ACM ECF ACN ACB BCN ∠+︒=∠-∠-︒=∠-∠=∠45)(90.得BCN GCN ∠=∠. ··················································································· 9分 又CN CN =, ∴△CGN ≌△CBN .有BN GN =, 45=∠=∠B CGN ,︒=∠-︒=∠=∠135180CAB CAM CGM , ∴ 9045135=-=∠-∠=∠CGN CGM MGN . ∴在Rt △MGN 中,由勾股定理,得222GN GM MN +=.即222BN AM MN +=. ················································ 10分 26.本小题满分10分.解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . CABEFDMNCABE FMN G∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. ········································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ·································· 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ···························· 4分 ②当31<c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤. 综上,31=c 或51c -<-≤. ····································································· 6分 (Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ···························································································· 7分 ∵关于x 的一元二次方程0232=++c bx ax 的判别式0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ························· 8分 又该抛物线的对称轴abx 3-=, 由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2,∴32331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ····································· 10分。
2018年天津市中考数学试卷(带解析)
![2018年天津市中考数学试卷(带解析)](https://img.taocdn.com/s3/m/795a40b7fab069dc50220184.png)
17.(3 分)如图,在边长为 4 的等边△ABC 中,D,E 分别为 AB,BC 的中点,
EF⊥AC 于点 F,G 为 EF 的中点,连接 DG,则 DG 的长为
.
【解答】解:连接 DE,
第 6页(共 18页)
∵在边长为 4 的等边△ABC 中,D,E 分别为 AB,BC 的中点, ∴DE 是△ABC 的中位线, ∴DE=2,且 DE∥AC,BD=BE=EC=2, ∵EF⊥AC 于点 F,∠C=60°, ∴∠FEC=30°,∠DEF=∠EFC=90°,
23.(10 分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,
每张会员证 100 元,只限本人当年使用,凭证游泳每次再付费 5 元;方式二:不
A.
B.
C.
D.
【解答】解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
第 1页(共 18页)
故选:A. 5.(3 分)如图是一个由 5 个相同的正方体组成的立体图形,它的主视图是( )
A.
B.Байду номын сангаасC.
第 7页(共 18页)
【解答】解:(1)由网格图可知
AC=
i
BC= h h i h
AB=
i
∵AC2+BC2=AB2
∴由勾股定理逆定理,△ABC 为直角三角形.
∴∠ACB=90°
故答案为:90°
(Ⅱ)作图过程如下:
取格点 D,E,连接 DE 交 AB 于点 T;取格点 M,N,连接 MN 交 BC 延长线于点
D.
【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三
(真题)天津市2018年中考数学试题(有答案)
![(真题)天津市2018年中考数学试题(有答案)](https://img.taocdn.com/s3/m/719e1a461711cc7931b716c2.png)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
湖北省十堰市2024年中考数学试题(word版-含解析)
![湖北省十堰市2024年中考数学试题(word版-含解析)](https://img.taocdn.com/s3/m/1bcafb3dcbaedd3383c4bb4cf7ec4afe04a1b1fd.png)
湖北省十堰市2024年中考数学试卷参考答案与试题解析一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)(2024•十堰)3的倒数是()C.3D.﹣3A.B.﹣考点:倒数.分析:依据倒数的定义可知.解答:解:3的倒数是.故选A.点评:主要考查倒数的定义,要求娴熟驾驭.须要留意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2024•十堰)如图,直线m∥n,则∠α为()A.70°B.65°C.50°D.40°考点:平行线的性质.分析:先求出∠1,再依据平行线的性质得出∠α=∠1,代入求出即可.解答:解:∠1=180°﹣130°=50°,∵m∥n,∴∠α=∠1=50°,故选C.点评:本题考查了平行线的性质的应用,留意:两直线平行,同位角相等.3.(3分)(2024•十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A.正方体B.长方体C.球D.圆锥考点:简洁几何体的三视图分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:A、正方体的左视图与主视图都是正方形,故此选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的不一样,故此选项符合题意;C、球的左视图与主视图都是圆,故此选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故此选项不合题意;故选:B.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(3分)(2024•十堰)下列计算正确的是()A.﹣=B.=±2 C.a6÷a2=a3D.(﹣a2)3=﹣a6考点:同底数幂的除法;实数的运算;幂的乘方与积的乘方分析:依据二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.解答:解:A、不是同类二次根式,不能合并,故选项错误;B、=2≠±2,故选项错误;C、a6÷a2=a4≠a3,故选项错误;D、(﹣a2)3=﹣a6正确.故选:D.点评:本题主要考查了二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.熟记法则是解题的关键.5.(3分)(2024•十堰)为了调查某小区居民的用水状况,随机抽查了若干户家庭的月用水月用水量(吨)3 4 5 8户数 2 3 4 1A.众数是4 B.平均数是4.6C.调查了10户家庭的月用水量D.中位数是4.5考点:众数;统计表;加权平均数;中位数.分析:依据众数、中位数和平均数的定义分别对每一项进行分析即可.解答:解:A、5出现了4次,出现的次数最多,则众数是5,故本选项错误;B、这组数据的平均数是:(3×2+4×3+5×4+8×1)÷10=4.6,故本选项正确;C、调查的户数是2+3+4+1=10,故本选项正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(4+5)÷2=4.5,则中位数是4.5,故本选项正确;故选A .点评:此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.(3分)(2024•十堰)如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10 C.11 D.12考点:平行四边形的性质;线段垂直平分线的性质.分析:依据线段垂直平分线的性质可得AE=EC,再依据平行四边形的性质可得DC=AB=4,AD=BC=6,进而可以算出△CDE的周长.解答:解:∵AC的垂直平分线交AD于E,∴AE=EC,∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10,故选:B.点评:此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是驾驭平行四边形两组对边分别相等.7.(3分)(2024•十堰)依据如图中箭头的指向规律,从2024到2024再到2024,箭头的方向是以下图示中的()A.B.C.D.考点:规律型:数字的改变类.分析:视察不难发觉,每4个数为一个循环组依次循环,用2024除以4,依据商和余数的状况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2024÷4=503…1,∴2024是第504个循环组的第2个数,∴从2024到2024再到2024,箭头的方向是.故选D.点评:本题是对数字改变规律的考查,细致视察图形,发觉每4个数为一个循环组依次循环是解题的关键.8.(3分)(2024•十堰)已知:a2﹣3a+1=0,则a+﹣2的值为()A.+1 B.1C.﹣1 D.﹣5考点:分式的混合运算.专题:计算题.分析:已知等式变形求出a+的值,代入原式计算即可得到结果.解答:解:∵a2﹣3a+1=0,且a≠0,∴a+=3,则原式=3﹣2=1,故选B.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.9.(3分)(2024•十堰)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.分析:依据直角三角形斜边上的中线的性质可得DG=AG,依据等腰三角形的性质可得∠GAD=∠GDA,依据三角形外角的性质可得∠CGD=2∠GAD,再依据平行线的性质和等量关系可得∠ACD=∠CGD,依据等腰三角形的性质可得CD=DG,再依据勾股定理即可求解.解答:解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.点评:综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.10.(3分)(2024•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.分析:将点(﹣1,0)代入y=ax2+bx+c,即可推断①正确;将点(1,1)代入y=ax2+bx+c,得a+b+c=1,又由①得a﹣b+c=0,两式相加,得a+c=,两式相减,得b=.由b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当a=时,b2﹣4ac=0,即可推断②错误;③由b2﹣4ac=(2a﹣)2>0,得出抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,依据一元二次方程根与系数的关系可得﹣1•x==﹣1,即x=1﹣,再由a<0得出x>1,即可推断③正确;④依据抛物线的对称轴公式为x=﹣,将b=代入即可推断④正确.解答:解:①∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),∴a﹣b+c=0,故①正确;②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a﹣b+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=.∵b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当2a﹣=0,即a=时,b2﹣4ac=0,故②错误;③当a<0时,∵b2﹣4ac=(2a﹣)2>0,∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则﹣1•x===﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;④抛物线的对称轴为x=﹣=﹣=﹣,故④正确.故选B.点评:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质,不等式的性质,难度适中.二、填空题:(本题有6个小题,每小题3分,共18分)11.(3分)(2024•十堰)世界文化遗产长城总长约6700 000m,用科学记数法可表示为6.7×106m.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将6700 000m用科学记数法表示为:6.7×106m.故答案为:6.7×106m.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2024•十堰)计算:+(π﹣2)0﹣()﹣1=1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简等考点.针对每个考点分别进行计算,然后依据实数的运算法则求得计算结果.解答:解:原式=2+1﹣=3﹣2=1.故答案为1.点评:本题考查实数的综合运算实力,是各地中考题中常见的计算题型.解决此类题目的关键是驾驭零指数幂、负指数幂、二次根式化简等考点的运算.13.(3分)(2024•十堰)不等式组的解集为﹣1<x≤2.考点:解一元一次不等式组.分析:先求出每个不等式的解集,依据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式x<2x+1得:x>﹣1,解不等式3x﹣2(x﹣1)≤4得:x≤2,∴不等式组的解集是﹣1<x≤2,故答案为:﹣1<x≤2.点评:本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能依据不等式的解集找出不等式组的解集.14.(3分)(2024•十堰)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD 及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是①(只填写序号).考点:菱形的判定.分析:首先利用对角线相互平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.解答:解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,∵邻边相等或对角线垂直的平行四边形是菱形,∴选择BE⊥EC,故答案为:①.点评:本题考查了菱形的判定,解题的关键是了解菱形的判定定理,难度不是很大.15.(3分)(2024•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A 处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)考点:解直角三角形的应用-方向角问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣35°=45°.在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.16.(3分)(2024•十堰)如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为2π﹣4.考点:扇形面积的计算;二次函数的最值;勾股定理.分析:由OC=4,点C在上,CD⊥OA,求得DC==,运用S△OCD=OD•,求得OD=2时△OCD的面积最大,运用阴影部分的面积=扇形AOC的面积﹣△OCD的面积求解.解答:解:∵OC=4,点C在上,CD⊥OA,∴DC==∴S△OCD=OD•∴=OD2•(16﹣OD2)=﹣OD4﹣4OD2=﹣(OD2﹣8)2+16∴当OD2=8,即OD=2时△OCD的面积最大,∴DC===2,∴∠COA=45°,∴阴影部分的面积=扇形AOC的面积﹣△OCD的面积=﹣×2×2=2π﹣4,故答案为:2π﹣4.点评:本题主要考查了扇形的面积,勾股定理,解题的关键是求出OD=2时△OCD的面积最大.三、解答题:(本题有9个小题,共72分)17.(6分)(2024•十堰)化简:(x2﹣2x)÷.考点:分式的混合运算.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=x(x﹣2)•=x.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.18.(6分)(2024•十堰)如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:首先依据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用SAS定理证明△ABE ≌△ACD,进而得到∠B=∠C.解答:证明:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).∴∠B=∠C.点评:本题主要考查三角形全等的判定方法和性质,关键是驾驭全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.19.(6分)(2024•十堰)甲、乙两人打算整理一批新到的图书,甲单独整理须要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书须要多少分钟完工?考点:分式方程的应用.分析:将总的工作量看作单位1,依据本工作分两段时间完成列出分式方程解之即可.解答:解:设乙单独整理x分钟完工,依据题意得:+=1,解得x=100,经检验x=100是原分式方程的解.答:乙单独整理100分钟完工.点评:本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.20.(9分)(2024•十堰)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会竞赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并依据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你依据统计图中所供应的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请依据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”竞赛时双方每次随意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只竞赛一局,请用树状图或列表法求两人打平的概率.考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出全部等可能的状况数,找出两人打平的状况数,即可求出所求的概率.解答:解:(1)依据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)依据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)全部等可能的状况有9种,其中两人打平的状况有3种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.21.(7分)(2024•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满意(x1﹣x2)2=16﹣x1x2,求实数m的值.考点:根的判别式;根与系数的关系.分析:(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x1+x2=﹣2(m+1),x1x2=m2﹣1;代入(x1﹣x2)2=16﹣x1x2,建立关于m的方程,据此即可求得m的值.解答:解:(1)由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,∴实数m的取值范围是m≥﹣1;(2)由两根关系,得x1+x2=﹣(2m+1),x1•x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1∵m≥﹣1∴m=1.点评:本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必需满意△≥0的条件.22.(8分)(2024•十堰)某市政府为了增加城镇居民抵挡大病风险的实力,主动完善城镇医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%y元.(1)干脆写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?考点:一次函数的应用;分段函数.分析:(1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;(2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值.解答:解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;③当30000<x≤50000时,y=(30000﹣8000)×50%+(x﹣30000)×60%=0.6x﹣7000;(2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,∵20000>11000,∴他的住院医疗费用超过30000元,把y=20000代入y=0.6x﹣7000中得:20000=0.6x﹣7000,解得:x=45000.答:他住院医疗费用是45000元.点评:此题主要考查了一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出函数关系式.23.(8分)(2024•十堰)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.考点:正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.分析:(1)把B的坐标代入求出即可;(2)设MD=a,OM=b,求出ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,证△ADM≌△BAN,推出BN=AM=3,MD=AN=a,求出a=b,求出a的值即可.解答:解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣(x<0)上,∴﹣ab=﹣4,即ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,A D=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,MD=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).点评:本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的实力,题目比较好,难度适中.24.(10分)(2024•十堰)如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.考点:圆的综合题.专题:计算题.分析:(1)连结OC,如图1,依据切线的性质得OC⊥DE,而AD⊥DE,依据平行线的性质得OC∥AD,所以∠2=∠3,加上∠1=∠3,则∠1=∠2,所以AC平分∠DAB;(2)如图1,由B为OE的中点,AB为直径得到OB=BE=2,OC=2,在Rt△OCE 中,由于OE=2OC,依据含30度的直角三角形三边的关系得∠OEC=30°,则∠COE=60°,由CF⊥AB得∠OFC=90°,所以∠OCF=30°,再依据含30度的直角三角形三边的关系得OF=OC=1,CF=OF=;(3)连结OC,如图2,先证明△OCG∽△DAG,利用相像的性质得==,再证明△ECO∽△EDA,利用相像比得到==,设⊙O的半径为R,OE=x,代入求得OE=3R;最终在Rt△OCE中,依据正弦的定义求解.解答:(1)证明:连结OC,如图1,∵DE与⊙O切于点C,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,∴∠1=∠2,即AC平分∠DAB;(2)解:如图1,∵直径AB=4,B为OE的中点,∴OB=BE=2,OC=2,在Rt△OCE中,OE=2OC,∴∠OEC=30°,∴∠COE=60°,∵CF⊥AB,∴∠OFC=90°,∴∠OCF=30°,∴OF=OC=1,CF=OF=;(3)解:连结OC,如图2,∵OC∥AD,∴△OCG∽△DAG,∴==,∵OC∥AD,∴△ECO∽△EDA,∴==,设⊙O的半径为R,OE=x,∴=,解得OE=3R,在Rt△OCE中,sin∠E===.点评:本题考查了圆的综合题:娴熟驾驭切线的性质、平行线的性质和锐角三角函数的定义;会依据含30度的直角三角形三边的关系和相像比进行几何计算.25.(12分)(2024•十堰)已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像?若存在,求出直线m的解析式;若不存在,说明理由.考点:二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;相像三角形的判定与性质;锐角三角函数的增减性.专题:压轴题;存在型.分析:(1)由抛物线的顶点式易得顶点A坐标,把点B的坐标代入抛物线的解析式即可解决问题.(2)依据平移法则求出抛物线C2的解析式,用待定系数法求出直线AB的解析式,再通过解方程组求出抛物线C2与直线AB的交点C、D的坐标,就可以求出S△OAC:S△OAD的值.(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形态、位置随着点G的改变而改变,故需对点G的位置进行探讨,借助于相像三角形的判定与性质、三角函数的增减性等学问求出符合条件的点G的坐标,从而求出相应的直线m的解析式.解答:解:(1)∵抛物线C1:y=a(x+1)2﹣2的顶点为A,∴点A的坐标为(﹣1,﹣2).∵抛物线C1:y=a(x+1)2﹣2经过点B(﹣2,﹣1),∴a(﹣2+1)2﹣2=﹣1.解得:a=1.∴抛物线C1的解析式为:y=(x+1)2﹣2.(2)∵抛物线C2是由抛物线C1向下平移2个单位所得,∴抛物线C2的解析式为:y=(x+1)2﹣2﹣2=(x+1)2﹣4.设直线AB的解析式为y=kx+b.∵A(﹣1,﹣2),B(﹣2,﹣1),∴解得:∴直线AB的解析式为y=﹣x﹣3.联立解得:或.∴C(﹣3,0),D(0,﹣3).∴OC=3,OD=3.过点A作AE⊥x轴,垂足为E,过点A作AF⊥y轴,垂足为F,∵A(﹣1,﹣2),∴AF=1,AE=2.∴S△OAC:S△OAD=(OC•AE):(OD•AF)=(×3×2):(×3×1)=2.∴S△OAC:S△OAD的值为2.(3)设直线m与y轴交于点G,与直线l交于点H,设点G的坐标为(0,t)当m∥l时,CG∥PQ.∴△OCG∽△OPQ.∴=.∵P(﹣4,0),Q(0,2),∴OP=4,OQ=2,∴=.∴OG=.∴t=时,直线l,m与x轴不能构成三角形.∵t=0时,直线m与x轴重合,∴直线l,m与x轴不能构成三角形.∴t≠0且t≠.①t<0时,如图2①所示.∵∠PHC>∠PQG,∠PHC>∠QGH,∴∠PHC≠∠PQG,∠PHC≠∠QGH.当∠PHC=∠GHQ时,∵∠PHC+∠GHQ=180°,∴∠PHC=∠GHQ=90°.∵∠POQ=90°,∴∠HPC=90°﹣∠PQO=∠HGQ.∴△PHC∽△GHQ.∵∠QPO=∠OGC,∴tan∠QPO=tan∠OGC.∴=.∴=.∴OG=6.∴点G的坐标为(0,﹣6)设直线m的解析式为y=mx+n,∵点C(﹣3,0),点G(0,﹣6)在直线m上,∴.解得:.∴直线m的解析式为y=﹣2x﹣6,联立,解得:或∴E(﹣1,﹣4).此时点E在顶点,符合条件.∴直线m的解析式为y=﹣2x﹣6.②O<t<时,如图2②所示,∵ta n∠GCO==<,tan∠PQO===2,∴tan∠GCO≠tan∠PQO.∴∠GCO≠∠PQO.∵∠GCO=∠PCH,∴∠PCH≠∠PQO.又∵∠HPC>∠PQO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.③<t≤2时,如图2③所示.∵tan∠CGO==≥,tan∠QPO===.∴tan∠CGO≠tan∠QPO.∴∠CGO≠∠QPO.∵∠CGO=∠QGH,∴∠QGH≠∠QPO,又∵∠HQG>∠QPO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.④t>2时,如图2④所示.此时点E在对称轴的右侧.∵∠PCH>∠CGO,∴∠PCH≠∠CGO.当∠QPC=∠CGO时,∵∠PHC=∠QHG,∠HPC=∠HGQ,∴△PCH∽△GQH.∴符合条件的直线m存在.∵∠QPO=∠CGO,∠POQ=∠GOC=90°,∴△POQ∽△GOC.∴=.∴=.∴OG=6.∴点G的坐标为(0,6).设直线m的解析式为y=px+q∵点C(﹣3,0)、点G(0,6)在直线m上,∴.解得:.∴直线m的解析式为y=2x+6.综上所述:存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像,此时直线m的解析式为y=﹣2x﹣6和y=2x+6.点评:本题考查了二次函数的有关学问,考查了三角形相像的判定与性质、三角函数的定义及增减性等学问,考查了用待定系数法求二次函数及一次函数的解析式,考查了通过解方程组求两个函数图象的交点,强化了对运算实力、批判意识、分类探讨思想的考查,具有较强的综合性,有肯定的难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x+3≥1,① 19.(8分)解不等式组
4x≤1+3x.② 请结合题意填空,完成本题的解答.
(I)解不等式①,得
;
(l1)解不等式②,得
;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为
.
20.(8分)某养鸡场有2500只鸡准备对外出售,从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图 ②.请根据相关信息,解答下列问题:
A.AD=BD
B.AE=AC
C.ED+EB=DB
D.AE+CB=AB
11.(3分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于 AP+EP最小值的是( )
A.AB
B.DE
C.BD
D.AF
12.(3分)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(-1,0),(0,3),其对称轴在y轴右侧.有下列结论: ①抛物线经过点(1,0); ②方程ax2+bx+c=2有两个不相等的实数根; ③-3<a+b<3 其中,正确结论的个数为( )
C.7和8之间
D.8和9之间
7.(3分)计算2x+3- 2x 的结果为( ) x+1 x+1
A.1
B.3
C. 3 x+1
D.x+3 x+1
8.
(3
分)
方程组
x
+y
=
10
的解是(
)
2x+y=16
A.
x=6
y=4
B.
x=5
y=6
C.
x=3
y=6
D.
x=2
y=8
9.(3
分
)
若
点
A
(
x
1
(Ⅰ)∠ACB的大小为
(度);
(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点
P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要
求证明)
.
三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)
,
-
6
)
,
B(x
2
,
-
2
)
,
C
(
x
3
,
2
)
在
反
比
例
函
数
y=
12 x
的
图
象
上
,
则
x
1,
x
2
,
x3的大小关系是(
)
A.x1<x2<x3
B.x2<x1<x3
C.x2<x3<x1
D.x3<x2<x1
10.(3分)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结 论一定正确的是( )
游泳次数
10
15
20
…
x
方式一的总费用
150
175
…
(元)
方式二的总费用
90
135
…
(元)
(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多? (Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.
24.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形 AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F. (Ⅰ)如图①,当点D落在BC边上时,求点D的坐标; (Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H. ①求证△ADB≌△AOB; ②求点H的坐标. (Ⅲ)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
它是红球的概率是
.
16.(3分)将直线y=x向上平移2个单位长度,平移后直线的解析式为
.
17.(3分)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接
DG,则DG的长为
.
18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,
22.(10分)如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为 58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈1.11,tan58°≈1.60.
23.(10分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次 再付费5元;方式二:不购买会员证,每次游泳付费9元. 设小明计划今年夏季游泳次数为x(x为正整数). (Ⅰ)根据题意,填写下表:
(I)图①中m的值为
;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?
21.(10分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°, (I)如图①,若D为⌢ AB 的中点,求∠ABC和∠ABD的大小;
(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.
2018年天津市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)计算(-3)2的结果等于( )
A.5
B.-5
C.9
D.-9
2.(3分)cos30°的值等于( )
A.⎷ 2 2
B.⎷ 3 2
C.1
D.⎷ 3
3.(3分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为( )
A.0
B.1
C.2
D.3
二、填空题(本大题共6小题,每小题3分,共18分)
13.(3分)计算2x4•x3的结果等于
.
14.(3分)计算(⎷ 6+⎷ 3)(⎷ 6-⎷ 3)的结果等于
.
15.(3分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则
A.0.778×105
B.7.78×104
C.77.8×103
D.778×102
4.(3分)下列图形中,可以看作是中心对称图形的是( )
A.
B.
C.
D.
5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )
A.
B.
C.
D.
6.(3分)估计⎷ 65的值在( )
A.5和6之间
B.6和7之间
25.(10分)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx-2m(m是常数),顶点为P. (Ⅰ)当抛物线经过点A时,求顶点P的坐标; (Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式; (Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.