巴特沃斯数字低通滤波器的设计

合集下载

数字信号处理实验数字巴特沃思滤波器的设计

数字信号处理实验数字巴特沃思滤波器的设计

数字信号处理实验数字巴特沃思滤波器的设计数字信号处理技术是现代通信、音频、图像等领域中不可或缺的一门技术。

数字信号处理的核心是数字滤波器设计,本文将介绍一种常用的数字滤波器——数字巴特沃斯滤波器的设计方法。

一、数字滤波器简介数字滤波器是将连续时间信号转换成离散时间信号,实现对离散时间信号的滤波处理,具有实时性好、精度高、可重复性强等优点。

数字滤波器有两种类型:有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

二、数字巴特沃斯滤波器数字巴特沃斯滤波器是一种常用的IIR滤波器,其主要特点是具有平坦的通/阻带,通/阻带边缘陡峭。

因此在实际应用中,数字巴特沃斯滤波器应用较为广泛。

数字巴特沃斯滤波器的设计方法一般包括以下步骤:确定滤波器类型、确定通/阻带的截止频率、确定滤波器的阶数、计算滤波器的系数。

1、确定滤波器类型在实际应用中,数字巴特沃斯滤波器有四种类型:低通、高通、带通和带阻滤波器,应根据实际需求选择。

2、确定通/阻带的截止频率通常情况下,固定本例中采用的是低通滤波器,需要确定的就是通带和阻带的截止频率。

对于低通滤波器,通带截止频率ωc应该比信号频率fs的一半小,阻带截止频率ωs 应该比ωc大一些,通常ωs/ωc取0.5~0.7比较好。

滤波器的阶数一般是与滤波器的性能相关的。

阶数越高,性能越好,但同时计算量也会更大。

在实际应用中,一般取4~8的阶数即可。

4、计算滤波器的系数根据上述参数计算滤波器的系数,这里介绍两种常用的方法:一种是脉冲响应不变法(Impulse Invariant Method),另一种是双线性变换法(Bilinear Transformation)。

脉冲响应不变法是一种较为简单的设计方法,但由于其数字滤波器与连续时间滤波器之间的不同,可能会引入一定程度的失真。

双线性变换法可以使二阶系统和一阶系统的增益分别为1和0dB,这是一种比较理想的设计方法。

四、实验步骤本实验采用Matlab软件进行数字滤波器的设计,具体步骤如下:1、打开Matlab软件,新建一个.m文件;2、输入需要滤波的数字信号,此处可以使用Matlab自带的signal工具箱中的一些模拟信号;4、使用filter函数实现数字滤波器对信号的滤波过程;5、通过比较信号的频谱图,评估滤波器的性能。

利用MATLAB设计巴特沃斯低通数字滤波器

利用MATLAB设计巴特沃斯低通数字滤波器

利用MATLAB设计巴特沃斯低通数字滤波器引言数字滤波器是数字信号处理中的重要组成部分,可以用于去除信号中的噪音和不需要的频率成分。

巴特沃斯滤波器是一种常见的数字滤波器,被广泛应用于信号处理领域。

本文将介绍如何利用MATLAB设计巴特沃斯低通数字滤波器,并给出详细的步骤和示例代码。

设计步骤利用MATLAB设计巴特沃斯低通数字滤波器主要包括以下步骤:1.设计滤波器的参数2.计算滤波器的传递函数3.绘制滤波器的幅频响应曲线4.通过频域图像观察滤波器的性能下面将分别介绍每个步骤的详细操作。

设计滤波器的参数巴特沃斯低通数字滤波器的参数包括截止频率和阶数。

截止频率决定了滤波器的通频带,阶数决定了滤波器的陡峭程度。

通过MATLAB的butter()函数可以方便地设计巴特沃斯低通数字滤波器。

该函数的参数为滤波器的阶数和截止频率。

示例代码如下:order = 4; % 阶数cutoff_freq = 0.4; % 截止频率[b, a] = butter(order, cutoff_freq);计算滤波器的传递函数通过设计参数计算得到滤波器的传递函数。

传递函数是一个复数,包括了滤波器的频率响应信息。

使用MATLAB的freqz()函数可以计算滤波器的传递函数。

该函数的参数为滤波器的系数b和a,以及频率取样点的数量。

示例代码如下:freq_points = 512; % 频率取样点数量[h, w] = freqz(b, a, freq_points);绘制滤波器的幅频响应曲线经过计算得到的传递函数能够提供滤波器的幅频响应信息。

通过绘制幅频响应曲线,可以直观地观察滤波器的频率特性。

使用MATLAB的plot()函数可以绘制滤波器的幅频响应曲线。

该函数的参数为频率点和传递函数的幅值。

示例代码如下:magnitude = abs(h); % 幅值plot(w/pi, magnitude);xlabel('归一化频率');ylabel('幅值');title('巴特沃斯低通数字滤波器幅频响应');通过频域图像观察滤波器的性能通过绘制滤波器的频域图像,可以直观地观察滤波器对不同频率的信号的响应情况。

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

C1 1.84776F C2 0.76537F
1NEW

0.76537 K 0.76537 4 12.29μH 5 M 2.512 10
L2NEW
1.84776 K 1.84776 4 29.42μH 5 M 2.512 10
待设计LPF的电容参数为 :
(1 2 )Hz
特征阻抗变换K 4 4 1 四阶Butterworth低通滤波器的电感电容参 数
2018/10/24
只因准备不足,才导致失败
7
四阶Butterworth低通滤波器的归一化LPF基 准滤波器的参数,设 L1 0.76537H L2 1.84776H 得:L
1.84776 1.84776 C1NEW 1.84 μF 5 M K 4 2.512 10 0.76537 0.76537 C2NEW 0.76μF 5 M K 4 2.512 10
2018/10/24 只因准备不足,才导致失败 8
电感采用无损磁芯及细包漆线绕制而成,其 电感值可用数字电桥测量仪器测量得到。
2018/10/24
只因准备不足,才导致失败
1
对滤波器截止角频率的变换是通过先求出待 设计滤波器截止角频率与基准角频率的比值 M,再用这个M去除滤波器中的所有元件值 来计算所需参数,其计算公式如下:
待设计滤波器的截止频 率 M 基准滤波器的截止频率
C (base) Cm(new) M
2018/10/24
5. 低通滤波器设计
1)归一化LPF设计方法 归一化低通滤波器设计数据,指的是特征阻 1 抗为 1 且截止频率为 0.159Hz 的基准 低通滤波器的数据。 2 在设计巴特沃思型的归一化LPF的情况下, 以巴特沃思的归一化LPF设计数据为基准滤 波器,将它的截止频率和特征阻抗变换为待 设计滤波器的相应值。

巴特沃斯数字低通滤波器课程设计

巴特沃斯数字低通滤波器课程设计

巴特沃斯数字低通滤波器课程设计目录1.题目.......................................................................................... .22.要求 (2)3.设计原理 (2)3.1 数字滤波器基本概念 (2)3.2 数字滤波器工作原理 (2)3.3 巴特沃斯滤波器设计原理 (3)3.4脉冲响应不法 (5)3.5实验所用MATLAB函数说明 (7)4.设计思路 (9)5、实验内容 (9)5.1实验程序 (9)5.2实验结果分析 (13)6.设计总结 (13)7.参考文献 (14)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,阻带截止频率120Hz,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应曲线。

并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。

用此信号验证滤波器设计的正确性。

三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。

正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。

如果要处理的是模拟信号,可通过A\DC和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。

2、数字滤波器的工作原理数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。

如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系y(n)=x(n) h(n)在Z域内,输入输出存在下列关系Y(Z)=H(Z)X(Z)式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。

巴特沃斯低通滤波器课程设计

巴特沃斯低通滤波器课程设计

电路基础课程设计巴特沃斯低通滤波器设计目标:通带边界频率ωc=4396rad/s (f c=700Hz);通带最大衰减αmax=3dB;阻带边界频率ωs=26376rad/s(f s=4200Hz); 阻带最小衰减αmin=30dB;1.设计步骤⑴设计电压转移函数①将给定的电压衰减技术指标进行频率归一化选取归一化角频率ωr=ωc,这样通带边界频率Ωc=ωc/ ωr=1,阻带边界频率Ωs=ωs/ ωr=ωs/ωc。

②根据归一化的技术指标求出电压转移函数巴特沃斯低通滤波器的阶数n=Log(100.1αmin−1) 2Log(Ωs)带入数据求得n=1.93 取整得n=2由a k=2sin(2k−1)π2n,b k=1和H(s)=U out(s)U in(s)=∏A ks2+a k s+b kn2k=1可得到电压转移函数H(s)=U out(s)U in(s)=1s2+√2s+1将转移函数进行反归一化,即另s=sωc 得到实际转移函数H(s)=U out(s)U in(s)=1s243962+√2s4396+1⑵转移函数的实现选取下图作为实现转移函数的具体电路:列节点方程求解转移函数节点1 U1(1R1+1R2+s∗C1)−1R1U in−1R2−s∗C1∗U2=0节点2 (1R2+s∗C2)U2−1R2U1=0又有U out=U3解得H(s)=U outU in=11+(R2+R2)s∗C2+C1C2R1R2s2对比解得的电压转移函数和推得的电压转移函数里各项的系数并且令R1= R2,C1=1μF,可以得到C1=11000000F=1μFR1=250000√21099Ω=321.705ΩR2=250000√21099Ω==321.705ΩC2=12000000F=0.5μF因实验室没有0.5μF的电容因此取C2=0.47μF2.计算机仿真⑴软件环境:Multisim 10⑵电路图:⑶仿真结果:①700Hz下的波形图②4200Hz下的波形图③波特图◎700Hz下衰减2.673dB◎4200Hz下衰减30.491dB3.实验室实际操作因实验室没有0.5μF的电容和321.705Ω的电阻,因此取C2=0.47μFR1=R2=330Ω实际连电路时,选取集成电路块的第1、2、3引脚分别作为放大器的输出端、负端和正端,第4和11引脚作为供电端,C2一端连接电压源的接地线。

c 2巴特沃斯低通滤波器的设计方法

c 2巴特沃斯低通滤波器的设计方法
4
2.数字滤波器的技术指标
我们通常用的数字滤波器一般属于选频滤波器。假设数字滤 波器的传输函数H(ejω)用下式表示:
H (e j ) H (e j ) e j ()
通带纹波幅度 阻带纹波幅度 通带截止频率 3dB通带截止频率 阻带截止频率
数字低通滤波器的技术要求
5
通带内和阻带内允许的衰减一般用dB数表示,通带内允许的
脉冲响应不变法 阶跃响应不变法 双线性变换法
Desired IIR
7
5.2 模拟滤波器的设计
模拟滤波器的理论和设计方法已发展得相当成熟, 且有若干典型的模拟滤波器供我们选择,如巴特沃斯 (Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭 圆(Elliptic)滤波器、贝塞尔(Bessel)滤波器等,这些滤 波器都有严格的设计公式、现成的曲线和图表供设计 人员使用。
输函数
Ha ( p) N 1 1
( p pk )
(5.2.12)
k 0
15
式中,pk为归一化极点,用下式表示:
pk

sk c
最大衰减用ap表示,阻带内允许的最小衰减用as表示,ap和as分别 定义为:
H (e j0 ) ap 20 lg H (e jp ) dB
H (e j0 ) as 20 lg H (e js ) dB
(5.1.3) (5.1.4)
如将|H(ej0)|归一化为1,(5.1.3)和(5.1.4)式则表示成:
11
2.巴特沃斯低通滤波器的设计方法
幅度平方函数:
Ha(
j) 2

1 (
1
)2N
c
(5.2.6) 两个参数:N, Ωc

设计一个巴特沃斯模拟低通滤波器

设计一个巴特沃斯模拟低通滤波器

1. 设计一个巴特沃斯模拟低通滤波器,要求通带截止频率为Hz f p 25=,通带最大衰减dB a p 3=,阻带起始频率Hz f s 50=,阻带最小衰减dB a s 25=。

解:根据已知条件确定巴特沃斯低通滤波器的阶数N :053.01010202520===--sa s δ()()2355.46021.05502.22lg 21053.01lg lg211lg 22==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-≥p s s ΩΩδN取N =5。

低通滤波器3dB 截止频率为)/(157502s rad πf πΩΩp p c ====则五阶巴特沃斯滤波器的传输函数为:1021.010719.110095.110326.510048.111236.3236.4236.4236.31)(2436495112345++⨯+⨯+⨯+⨯=+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=----s s s s s Ωs Ωs Ωs Ωs Ωs s H c c c c c2. 设计一个切比雪夫模拟低通滤波器,要求通带截止频率为kHz f p 3=,通带最大衰减dB a p 2.0=,阻带起始频率kHz f s 12=,阻带最小衰减dB a s 50=。

解:由()2.01lg 20-=-p δ,求得9772.0101202.0==--p δ。

则2171.019772.011)1(122=-=--=p δε 由50lg 20-=s δ,求得0032.0102050==-s δ,则23.31610032.011122=-=-=s δδ 所需滤波器的阶数为:()()()()8604.30634.29770.7312arccos 2171.0/23.316arccos arccos arccos ===≥h h ΩΩh εδh N p s取N =4。

则该模拟低通滤波器的幅度表示为:⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎪⎭⎫⎝⎛+=32422210322171.01111)(πΩC ΩΩC εΩj H pNa归一化的系统函数表示为:∏∏==--=-⋅=Nk k Nk k N a p p p p εp H 111)(7368.11)(21)(其中极点k p 为:0715.14438.01j p +-=,4438.00715.12j p +-=,4438.00715.13j p --=,0715.14438.01j p --=将)(p H a 去归一化,求得实际滤波器的系统函数)(s H a()()()8428426414107790.4100394.4107791.4106731.1102687.77368.1)()(⨯+⨯+⨯+⨯+⨯=-==∏==s s s s p Ωs Ωp H s H k k p pΩsp a a p3. 设计一个巴特沃斯模拟高通滤波器,要求通带截止频率为kHz f p 20=,通带最大衰减dB a p 3=,阻带起始频率kHz f s 10=,阻带最小衰减dB a s 15=。

数字信号处理巴特沃斯滤波器设计

数字信号处理巴特沃斯滤波器设计

数字信号处理巴特沃斯滤波器设计数字信号处理在当今科技领域中扮演着至关重要的角色,滤波器作为数字信号处理领域中的重要组成部分,广泛应用于信号去噪、信号增强、信号分析等方面。

巴特沃斯滤波器作为数字信号处理领域中的一种重要类型,具有平滑的频率响应曲线和较陡的截止特性,被广泛应用于语音处理、图像处理、生物医学信号处理等领域。

本文将介绍数字信号处理中巴特沃斯滤波器的设计原理和方法。

在数字信号处理中,滤波器是一种通过对信号进行处理来实现滤除或增强某些频率成分的系统。

巴特沃斯滤波器是一种典型的低通滤波器,其特点是在通频带范围内频率响应平坦,截止频率处有较 steependifferentiation,可有效滤除非所需频率信号。

要设计一个巴特沃斯滤波器,首先需要确定滤波器的截止频率和阶数。

巴特沃斯滤波器的阶数决定了滤波器的频率选择性能,在实际应用中可根据信号处理的要求进行选择。

一般来说,阶数越高,滤波器的截止特性越陡,但相应的频率选择性能也会增强。

确定好阶数后,接下来需要进行巴特沃斯滤波器的参数计算,包括极点位置和幅频特性。

根据巴特沃斯滤波器的传递函数形式,可以通过公式计算各个极点的位置,并绘制出滤波器的幅频特性曲线。

设计完巴特沃斯滤波器的参数后,接下来是实现滤波器的数字化。

数字巴特沃斯滤波器一般通过模拟滤波器的模拟频率响应和数字频率响应之间的变换来实现。

常用的数字化方法包括脉冲响应不变法和双线性变换法,通过这些方法可以将模拟滤波器的参数转换为数字滤波器的参数,实现数字滤波器的设计。

在实际应用中,巴特沃斯滤波器的设计需要根据具体的信号处理要求和系统性能来选择合适的截止频率和阶数,确保滤波器设计的稳定性和性能。

同时,在设计过程中需要考虑到滤波器的实现复杂性和计算成本,选择合适的设计方法和参数计算技术,以实现滤波器设计的有效性和可靠性。

综上所述,巴特沃斯滤波器作为数字信号处理领域中的重要组成部分,在信号处理、通信系统、生物医学等领域中有着广泛的应用前景。

数字巴特沃斯滤波器的设计

数字巴特沃斯滤波器的设计

目录第1章摘要 (2)第2章巴特沃斯滤波器的设计 (2)第3章脉冲响应不变法 (4)第4章 MATLAB简介 (7)4.1 MATLAB介绍 (7)4.2 MATLAB命令介绍 (8)第5章仿真过程及仿真图 (8)5.1 仿真程序 (8)5.2 仿真波形 (9)第6章设计结论 (10)第7章结束语 (10)参考文献 (11)第1章 摘要随着科学技术的发展,信号处理理论和分析方法已应用于许多领域和学科中。

本题目是设计一个脉冲响应不变法设计数字低通滤波器。

在对信号进行分析与处理时,信号中经常伴有噪声。

根据有用信号和噪声的不同特征,消除或削弱干扰噪声.提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。

从本质上说,滤波就是改变信号中各频率分量的相对幅度和相位。

根据性质分为模拟滤波器和数字滤波器。

前者处理的是连续时间信号,后者处理的是离散时间信号。

模拟滤波器的理论和设计方法已发展的相当成熟,如巴特沃斯滤波器,切比雪夫滤波器,椭圆滤波器,贝塞尔滤波器等,这些滤波器都有严格的设计公式,现成的曲线和图表供设计人员使用。

设计要求要设计一个巴特沃斯滤波器,在用脉冲响应不变法转换为数字滤波器。

第2章 巴特沃斯滤波器的设计2.1巴特沃斯滤波器的幅度平方函数及其特点巴特沃斯模拟滤波器幅度平方函数的形式是()N c N c a j j j H 222)/(11)/(11ΩΩ+=ΩΩ+=Ω (5-6)式中N 为整数,是滤波器的阶次。

Ω=0时,)(Ωj H a =1时;当Ω=c Ω时,)(c a j H Ω=1/2 ,所以c Ω又称为3dB 截止频率。

2.2幅度平方函数的极点分布及)(s H a 的构成将幅度平方函数2)(Ωj H a 写成s 的函数 Nc s j N c a a j s j j s H s H 22)/(11)/(11)()(Ω+=ΩΩ+=-=Ω(5-7) 此式表明幅度平方函数有2N 个极点,极点k s 用下式表示 )21221(2)212(2/1*)()1(N k j c c j N k j c N k e e e j s +++Ω=Ω=Ω-=πππ k=0,1,2,……(5-8)这2N 个极点分布在s 平面半径为c Ω的圆上,角度间隔是π/N 弧度。

巴特沃斯低通滤波器设计

巴特沃斯低通滤波器设计

巴特沃斯低通滤波器一、设计要求(1)设计一巴特沃斯数字低通滤波器,在0.3π通带频率范围内,通带幅度波动小于1dB ,在0.5π~πrad 阻带频率范围内,阻带衰减大于12dB 。

二.设计过程巴特沃斯双线性变换法(1)数字指数:p w =0.3π,s w =0.5π,(2)求p Ω,s Ω利用频率预畸变公式得:p Ω=2T tan 2p w =2T tan 320π=1.019⨯1Ts Ω=2T tan 2s w =2T tan 4π=2T (3)确定滤波器阶数sp λ=s p ΩΩ=211.019TT ⨯=1.963 sp k≈0.132 N=—lg lg sp sp k λ=—lg 0.132lg1.963≈3.0023 N=4 (4)确定系统函数G(p)= 43212.613 3.4142 2.61311p p p p ++++ c Ω=p Ω()10.12101p a N --=1.019⨯1T⨯()10.1124101-⨯⨯-=1.2065T P=11211c s z s T z ---=Ω+=1c Ω⨯2T ⨯1111z z ---+=11211.20651z z ---+ H(z)=G(p)=12341234146434.1675441.3465432.542711.06234 1.69864z z z z z z z z--------++++-+-+三.软件仿真(1)将分子分母带入Matlab 验证b=[1 4 6 4 1];a=[34.16754 -41.34654 32.5427 -11.06234 1.69864];[H,w]=freqz(b,a,1000);plot(w,20*log10(abs(H)/max(H)),'-');grid;xlabel('frequency');ylabel('magnitude');-250-200-150-100frequency m a g n i t u d e图(a )频率——幅度衰减图0.3π≈0.940.9250.930.9350.940.9450.950.955frequency m a g n i t u d e图(b)0.5π≈1.57frequency m a g n i t u d e图(c)(2)用Matlab 直接仿真出低通滤波器wp=2*tan(0.3*pi/2)*1000;ws=2*tan(0.5*pi/2)*1000;ap=1;as=12;[n,wn]=buttord(wp,ws,ap,as,'s');[b,a]=butter(n,wn,'s');[bn,an]=bilinear(b,a,1000);[H,w]=freqz(bn,an);plot(w,abs(H),'-');grid;xlabel('frequency');ylabel('magnitude');legend('双线性变化法');figure(2);plot(w,20*log10(abs(H)/max(H)),'-');grid;00.51 1.522.533.5frequency m a g n i t u d e0.3π≈0.94图(d)0.5π≈1.57图(e)四.分析将计算得出的低通滤波器系统函数H(z)的分子分母各项系数用Matlab验证,得图(a)幅频关系图。

一阶归一化数字巴特沃斯低通滤波器

一阶归一化数字巴特沃斯低通滤波器

一阶归一化数字巴特沃斯低通滤波器数字巴特沃斯滤波器是一种常用的数字信号处理滤波器,可用于滤波和去噪等应用。

本文将介绍一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。

1.原理概述一阶归一化数字巴特沃斯低通滤波器是一种理想滤波器。

其设计目标是实现信号在截止频率以下的完美衰减,而在截止频率以上则不进行滤波。

该滤波器的频率响应特点可用模拟巴特沃斯低通滤波器的频率响应特点进行近似。

2.设计步骤实现一阶归一化数字巴特沃斯低通滤波器的设计,可以按照以下步骤进行:步骤一:确定截止频率根据滤波器的应用需求,选择合适的截止频率。

截止频率是指滤波器开始滤波的频率点,一般以赫兹为单位。

步骤二:计算模拟巴特沃斯低通滤波器的阶数根据所选截止频率,使用模拟巴特沃斯低通滤波器的阶数公式计算阶数。

对于一阶滤波器,阶数为1。

步骤三:计算截止频率对应的模拟巴特沃斯低通滤波器的增益根据所选截止频率,使用模拟巴特沃斯低通滤波器的增益公式计算增益。

对于一阶滤波器,增益为-3dB。

步骤四:进行归一化在设计数字巴特沃斯滤波器时,需要对模拟滤波器进行归一化。

归一化处理可将截止频率与折返频率映射到数字滤波器的单位圆上。

步骤五:数值实现根据归一化的模拟滤波器参数,使用双线性变换将其转换为数字滤波器的差分方程。

假设我们需要设计一个一阶归一化数字巴特沃斯低通滤波器,截止频率选取为1kHz。

根据步骤一,确定截止频率为1kHz。

根据步骤二,计算阶数为1。

根据步骤三,计算增益为-3dB。

在步骤四中,进行归一化处理,将1kHz映射到单位圆上。

最后,在步骤五中,根据归一化的模拟滤波器参数,使用双线性变换转换为数字滤波器的差分方程。

本文介绍了一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。

通过明确的设计步骤,我们可以根据所需的截止频率实现滤波器设计。

在应用中,可以根据实际需求调整截止频率和滤波器的阶数,以获得更好的滤波效果。

巴特沃斯低通滤波电路设计

巴特沃斯低通滤波电路设计

巴特沃斯低通滤波电路设计:
巴特沃斯低通滤波电路的设计主要包括以下几个步骤:
1.确定系统函数的极点:巴特沃斯滤波器的极点位于Z平面的单位圆上,因此可以通
过选取适当的滤波器阶数和电气参数,使得滤波器的极点位于单位圆上。

2.设计传递函数:根据滤波器的性能要求,如通带增益、阻带增益、过渡带宽度等,
设计出传递函数。

巴特沃斯滤波器的传递函数具有固定的形式,可以通过选取电气参数来调整其性能。

3.实现电路结构:将设计好的传递函数转换为实际电路结构。

根据不同的电路形式,
可以选择不同的电路元件和结构,如运算放大器、RC电路等。

4.参数调整:对电路中的元件参数进行适当调整,以保证滤波器的性能符合设计要求。

参数调整是滤波器设计中非常关键的一步,需要通过实验和仿真反复验证和调整。

5.测试和验证:对设计好的滤波器进行测试和验证,包括频率响应、相位响应、群延
迟等性能指标的测试。

如果测试结果不符合设计要求,需要对电路或参数进行调整。

八阶巴特沃斯低通滤波器的设计方法

八阶巴特沃斯低通滤波器的设计方法

八阶巴特沃斯低通滤波器的设计方法设计八阶巴特沃斯低通滤波器可以通过以下步骤进行:
1. 确定滤波器的规格:首先确定滤波器的截止频率和通带衰减。

截止频率是指滤波器开始降低信号幅度的频率,通带衰减是指滤波器在通带内允许的最大幅度变化。

2. 计算极点位置:使用巴特沃斯滤波器的公式可以计算出滤波器极点的位置。

对于八阶低通滤波器,共有四对共轭极点。

这些极点会决定滤波器的频率响应。

3. 进行归一化:对于滤波器的极点位置,需要对其进行归一化处理,将其转换为标准低通滤波器的情况。

4. 进行极点频率转换:通过将归一化后的极点位置转换为实际的截止频率,即可得到实际滤波器的极点位置。

5. 构造传递函数:使用极点位置构造滤波器的传递函数,可以表示为巴特沃斯多项式的形式。

6. 计算滤波器系数:通过将传递函数展开并与标准低通滤波器的传递函数进行比较,可以计算滤波器的系数。

7. 实施滤波器:将计算得到的滤波器系数应用于数字滤波器的差分方程中,从而实现滤波器的效果。

需要注意的是,设计巴特沃斯滤波器需要一定的信号处理和滤波器设计知识。

如果不熟悉滤波器设计或数字信号处理的相关概念,建议咨询专业的工程师或使用现成的滤波器设计软件来完成滤波器设计任务。

巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理

巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理

巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

关于“巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理”的详细说明。

1.巴特沃斯低通滤波器公式
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:
其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

2.巴特沃斯低通滤波器设计原理
巴特沃斯型低通滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。

其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。

滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。

滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的
所有电容元件值来实现的。

巴特沃斯低通滤波器设计

巴特沃斯低通滤波器设计

L1'
2
600 1.304 104
0.7654H
5.61mH
C2
1 c RS
C2'
2
1 1.304 104
600
1.8478F
0.038uF
L3
RS c
L'3
2
600 1.304 104
1.8478H
13.53mH
C4
1 c RS
C4'
2
1 1.304 104
600
0.7654F
0.016uF
设计实现电路
巴特沃斯低通滤波器迅速设计总结
一:根据滤波器性
能指标(通带内旳
最大衰减 c ,阻带
内旳最小衰减 s ,
截至频率 c ,阻带
起始频率 s )利用
公式
N
lg
1
s2
-1
2 lg s / c
求巴特沃斯低通滤波 器旳阶次N。
二:根据阶次N和考尔 型电路
RS' 1
L1' 0.7654
L'3 1.8478
一般情况下,电路是在匹配情况下工作,所以取
信源内阻 Rs 和负载电阻 RL 相等。
此时满足
Ha ( j0)
RL RS RL
1 2
根据反射系数公式
(s)
(
s)=1- 4RS RL
s' s
H
a
s
H
a
-s
j
达林顿电路构造
Rs 源电阻 RL 负载电阻
RS
I1
Es
V1
1
2
LC
I2
无损

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计引言巴特沃斯阶跃阻抗低通滤波器是一种常用于信号处理和电子电路设计中的滤波器类型。

它的设计原理是通过调整滤波器的阶数和截止频率,来实现对输入信号的频率成分进行筛选和衰减。

本文将详细介绍巴特沃斯阶跃阻抗低通滤波器的设计方法及其在实际应用中的一些注意事项。

巴特沃斯阶跃阻抗低通滤波器概述巴特沃斯阶跃阻抗低通滤波器是一种I IR(无无限冲激响应)滤波器,具有平坦的通带、陡峭的衰减特性以及相对较低的群延迟。

它广泛应用于音频处理、通信系统等领域。

巴特沃斯滤波器的设计步骤1.确定滤波器的阶数(n):阶数决定了滤波器的衰减程度和复杂度,一般取偶数值。

2.确定滤波器的截止频率(f c):截止频率即信号通过滤波器时频率衰减到原来的1/√2,是决定滤波器频率特性的关键参数。

3.计算滤波器的极点位置:根据巴特沃斯滤波器的特性方程,计算极点位置。

4.标准化滤波器:对计算得到的极点位置进行标准化处理,使得滤波器的截止频率为1。

巴特沃斯滤波器设计实例以下是一个以设计一个4阶巴特沃斯阶跃阻抗低通滤波器为例的设计过程。

步骤1:确定滤波器的阶数我们选择设计一个4阶的巴特沃斯阶跃阻抗低通滤波器。

步骤2:确定滤波器的截止频率假设我们需要将信号的截止频率设置在1k H z。

步骤3:计算滤波器的极点位置根据巴特沃斯滤波器的特性方程,我们可以计算出滤波器的极点位置。

对于一个4阶的巴特沃斯低通滤波器,其极点位置可以通过下式计算得到:p_k=-s in h(π*fc)*s in(π*(2k-1)/(2n)),k=1,2,...,n式中,f c是截止频率,n是滤波器阶数。

步骤4:标准化滤波器标准化滤波器是将计算得到的极点位置通过变换使得滤波器的截止频率为1。

标准化后的滤波器的特性方程为:H(s)=1/((s+p1)(s+p2)...(s+pn))巴特沃斯滤波器的应用注意事项-在实际设计中,应根据需要调整滤波器的阶数和截止频率,以满足对信号的频率特性要求。

(完整word版)巴特沃斯数字低通滤波器的设计—双线性变换法

(完整word版)巴特沃斯数字低通滤波器的设计—双线性变换法

课程设计任务书2010—2011学年第一学期专业: 通信工程 学号: 080110509 姓名: 郭威课程设计名称: 数字信号处理课程设计设计题目: 巴特沃斯数字低通滤波器的设计—双线性变换法完成期限:自 2011 年 1 月 3 日至 2011 年 1 月 9 日共 1 周一.设计目的1.巩固所学的理论知识。

2.提高综合运用所学理论知识独立分析和解决问题的能力。

3.更好地将理论与实践相结合。

4.掌握信号分析与处理的基本方法与实现。

5.熟练使用MATLAB 语言进行编程实现。

二.设计内容已知四阶归一化低通巴特沃斯模拟滤波器系统函数为()16131.24142.36131.21234++++=s s s s s H a ,编写MATLAB 程序实现从()s H a 设计3dB 截止频率为2π=c w 的四阶低通巴特沃斯数字滤波器。

三.设计要求1、设采样周期为s T 1=,用双线性变换法进行设计;2、绘出滤波器的的幅频响应曲线并分析所得结果是否满足技术指标;3、和同组另一同学采用的脉冲响应不变法设计的结果进行比较分析。

四.设计条件计算机、MATLAB 语言环境五、参考资料[1] 丁玉美,高西全.数字信号处理.西安:电子科技大学出版社,2006.[2] 陈怀琛,吴大正,高西全. MATLAB 及在电子信息课程中的应用.北京:电子科技大学出版社,2003.[3] 楼顺天,李博苗.基于MATLAB的系统分析与设计一信号处理西安:西安电子科技大学出版社,1998.指导教师(签字):教研室主任(签字):批准日期:年月日数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数字处理来达到频域滤波的目的。

本文是设计一个数字低通滤波器。

根据滤波器的设计思想,通过双线性变换法将巴特沃斯模拟低通滤波器变换到数字低通滤波器,利用MATLAB绘制出数字低通滤波器的系统幅频函数曲线。

关键词:数字滤波器;双线性变换法;巴特沃斯;MATLAB1课题描述 (1)2设计原理 (1)2.1 IIR数字滤波器设计原理 (1)2.2巴特沃斯低通滤波器的原理 (2)2.3双线性变换法 (3)3设计过程 (6)4结果分析 (8)总结 (11)参考文献 (12)1课题描述数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书一.设计目的1.巩固所学的理论知识。

2.提高综合运用所学理论知识独立分析和解决问题的能力。

3.更好地将理论与实践相结合。

4.掌握信号分析与处理的基本方法与实现。

5.熟练使用MATLAB 语言进行编程实现。

二.设计内容已知四阶归一化低通巴特沃斯模拟滤波器系统函数为()16131.24142.36131.21234++++=s s s s s H a ,编写MATLAB 程序实现从()s H a 设计3dB 截止频率为2π=c w 的四阶低通巴特沃斯数字滤波器。

三.设计要求1、设采样周期为s T 1=,用双线性变换法进行设计;2、绘出滤波器的的幅频响应曲线并分析所得结果是否满足技术指标;3、和同组另一同学采用的脉冲响应不变法设计的结果进行比较分析。

四.设计条件计算机、MATLAB 语言环境五、参考资料[1] 丁玉美,高西全.数字信号处理.西安:电子科技大学出版社,2006.[2] 陈怀琛,吴大正,高西全. MATLAB 及在电子信息课程中的应用.北京:电子科技大学出版社,2003.[3] 楼顺天,李博苗.基于MATLAB 的系统分析与设计一信号处理 西安:西安电子科技大学出版社,1998.指导教师(签字): 教研室主任(签字): 批准日期: 年 月 日摘 要数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数字处理来达到频域滤波的目的。

本文是设计一个数字低通滤波器。

根据滤波器的设计思想,通过双线性变换法将巴特沃斯模拟低通滤波器变换到数字低通滤波器,利用MATLAB绘制出数字低通滤波器的系统幅频函数曲线。

关键词:数字滤波器;双线性变换法;巴特沃斯;MATLAB1课题描述数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。

可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。

如果系统是一个连续系统,则滤波器称为模拟滤波器。

如果系统是一个离散系统,则滤波器称为数字滤波器。

数字滤波实质上是一种运算过程,实现对信号的运算处理。

输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为是一台计算机。

描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。

时域离散系统的频域特性:()()()ωωjωj ejeY=XeH其中()ωj e Y、()ωj e X分别是数字滤波器的输出序列和输入序列的频域特性(或称为频谱特性),()ωj e H是数字滤波器的单位取样响应的频谱,又称为数字滤波器的频域响应。

输入序列的频谱()ωj e X经过滤波后()ωj e X()ωj e H,因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择()ωj e H,使得滤波后的()ωj e X()ωj e H满足设计的要求,这就是数字滤波器的滤波原理。

2设计原理2.1 IIR数字滤波器设计原理IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel 函数、椭圆滤波器函数等。

IIR 数字滤波器的设计步骤:① 按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标;② 根据模拟滤波器技术指标设计为响应的模拟低通滤波器;③ 跟据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; ④ 如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。

在MATLAB 中,经典法设计IIR 数字滤波器主要采用以下步骤:图2.1 IIR 数字滤波器设计步骤2.2巴特沃斯低通滤波器的原理巴特沃斯滤波器的特点是同频带内的频率响应曲线最为平坦,没有起伏,而在组频带则逐渐下降为零。

在振幅的对数对角频率的波特图上,从某一边界见频率开始,振幅随着角频率的增加而逐渐减少,趋向于负无穷大。

一阶巴特沃斯滤波器的衰减率为每倍频20分贝,二阶巴特沃斯滤波器的衰减率为每倍频12分贝,三阶的衰减率为每分贝18分贝,如此类推,巴特沃斯滤波器的振幅对角频率单调下降,并且滤波器的结束越高,在组频带振幅衰减速度越快,其他滤波器高阶的振幅对角频率图和低阶数的振幅对角频率有不同的形状。

N c s s H s H )(11)()(22Ω-+=- 上述函数的特点是等距离分布在半径为Ω的圆上。

因此,极点用下式表示为N k j j c k e e s )12(2+∏Ω=1,2,1,0-=N k)(s H a 的表示式:∏-=-Ω=10)()(N k k n ca ss s H 为了使设计公式和图表统一,将频率归一化。

巴特沃斯滤波器采用3dB 截止频率c Ω归一化,归一化后的系统函数为∏-=Ω-Ω=Ω10)(1)(N k c k c c a s s s G 令c c s j p ΩΩ=Ω=+=λλη,,λ称为归一化频率,p 称为归一化复变量,这样巴特沃斯滤波器的归一化低通原型系统函数为∏-=-=10)(1N k k a p p G 式中,c k s p Ω=,为归一化极点,用下式表示: )21221(N k j k e p ++=π 1,2,1,0-=N k2.3双线性变换法双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。

为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到T pi 一段上,可以通过以下的正切变换来实现:)21tan(21T T Ω=Ω这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。

将这个关系延拓到整个s 平面和1s 平面,则可以得到T s Ts ee T T s T s ⋅-⋅-+-=⋅=11112)21tan(2 再将1s 平面通过标准变换关系映射到z 平面,即令)*1exp(T s z =得到11112--+-=z z T s 同样对z 求解,得到s TsTz -+=22 这样的变换叫做双线性变换。

为了验证这种映射具有s 平面的虚轴映射到z 平面单位圆上的特性,考虑 Ω=j s ,ωj e z =,得ωωj j e e T j --+-=Ω112 ω21tan 2T =Ω 除了使s 平面的虚轴映射到单位圆上之外,s 平面的左半部分映射到单位圆的内部,s 平面的右半部分映射到单位圆的外部。

如图所示图2.2 双线性变化映射关系示意图观察式子s T s T z -+=22,发现s 的实部为负时,因子s TsT -+22的幅度小于1,相当于单位圆的内部。

反之,当s 的实部为负时,该比值的幅度大于1,相当于单位圆的外部。

这样就可以看出使用双线性变换可从稳定的模拟滤波器得到稳定的数字滤波器。

双线性变换法还避免了使用脉冲响应不变法所遇到的混叠问题,因为它把s 平面的这个虚轴映射到z 平面的单位圆上。

然而,付出的代价是在频率轴上引入了失真。

因此,只有当能容忍或补偿这种失真时,使用双线性变换法设计数字滤波器的方法才是实用的。

仅在零频率附近时Ω与ω之间的频率变换关系接近于线性关系,所产生的数字滤波器的幅频响应相对于原模拟滤波器的幅频响应有畸变。

对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸变来加以校正,也就是将临界频率事先加以畸变,然后经变换后正好映射到所需要的频率上。

通过ω21tan 2T =Ω的关系变换成一组模拟频率。

图2.3 双线性变化法的频率关系为了克服冲击响应不变法产生的频率混叠现象,我们需要使s 平面与z 平面建立一一对应的单值关系,即求出)(z f s =,然后将其代入)(s G 就可以求得)(z H ,即)()()(z f s s G z H ==3设计过程已知四阶归一化低通巴特沃斯模拟滤波器系统函数为()16131.24142.36131.21234++++=s s s s s H a ,编写MATLAB 程序实现从()s H a 设计3dB 截止频率为2π=c w 的四阶低通巴特沃斯数字滤波器。

步骤一:将设计内容题所给归一化巴特沃斯低通滤波器以3dB 截止频率为2π=c w 进行去归一化。

0000.169048,206568.132262.50000.16)(234++++=s s s s s H a 步骤二:用双线性变化法将低通模拟滤波器)(s H a 变换为低通数字滤波器)(z H421210177.04860.010940.03759.05639.03759.00940.0)(-----++++++=z z z z z z H 设计程序如下:clear all; clc; close allT=1; fs=1/T; N=4;wc=pi/2; omegach=2*tan(wc/2)/T;M=1; N=[1,2.6131,3.4142,2.6131,1][h,w]=freqs(M,N,512); %模拟滤波器的幅频响应 subplot(2,1,1);plot(w,20*log10(abs(h)));grid; axis([0,10,-90,0])xlabel('Hz');ylabel('幅度'); title('归一化模拟低通滤波器');[Ms,Ns]=lp2lp(M,N,omegach); %对低通滤波器进行频率变换[hs,ws]=freqs(Ms,Ns,512); %模拟滤波器的幅频响应 subplot(2,1,2);plot(ws,20*log10(abs(hs)));grid;axis([0,10,-90,0])xlabel('Hz');ylabel('幅度'); title('去归一化模拟低通滤波器');[Mz,Nz]=bilinear(Ms,Ns,1/T); %对模拟滤波器双线性变换[h1,w1]=freqz(Mz,Nz); %数字滤波器的幅频响应figureplot(w1/pi,20*log10(abs(h1))); grid;xlabel('ω/π');ylabel('幅度(dB)'); title('数字低通滤波器');axis([0,1,-160,0])运行结果如下图所示:图3.1模拟滤波器的幅频响应图形图3.2低通数字滤波器的幅频响应图形4结果分析比较脉冲响应不变法设计的低通滤波器和双线性法设计的低通滤波器进行比较:ω,如果不考虑频率混叠现象,优点:是频率坐标变换是线性的,即T=Ω用这种方法设计的数字滤波器会很好的重现原模拟滤波器的频率特性。

相关文档
最新文档