微分中值定理的证明题[1](1)
微分中值定理例题
![微分中值定理例题](https://img.taocdn.com/s3/m/f749de65f111f18582d05a46.png)
理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。
12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。
微分中值定理(2024版)
![微分中值定理(2024版)](https://img.taocdn.com/s3/m/0150af5c366baf1ffc4ffe4733687e21ae45ff50.png)
由 的任意性知, 在(a,b)上为常数 . 推论2 设x (a,b),有f (x) g(x),则f (x) g(x) C,x (a,b)
C为确定的常数
例10 证明等式 证: 设
令x=0,得
又
故所证等式在定义域
(常数) 上成立.
例
用微分法证 sin2x cos2 x 1
题型五:用柯西中值定理证明不等式
则 (a,b),使得 F() 0.
即 f () f (b) f (a) 0 ba
或 f (b) f (a) f ()(b a).
拉格朗日中值公式
注意:拉氏公式精确地表达了函数在一个区间上的 增量与函数在这区间内某点处的导数之间的关系.
几何解释:
在曲线弧 AB 上至少有 一点 C ,在该点处的切 线平行于弦 AB.
至少存在一点 (0,1),使 f ( ) 2[ f (1) f (0)].
分析: 结论可变形为
f (1) f (0) 10
f () 2
f ( x) ( x 2 )
x .
证 设 g(x) x2 ,
则 f ( x), g( x) 在[0,1]上满足柯西中值定理的条件,
在(0,1)内至少存在一点, 有
例5 设f(x)在[a,b]连续,在(a,b)可导,且f(a)=f(b), 证明 (a,b),使f ()-f()=0
例6 证明方程 x5 5x 1 0 有且仅有一个小于
1 的正实根.
证 设 f ( x) x5 5x 1, 则 f ( x)在[0,1]连续,
且 f (0) 1, f (1) 3.
lim
x 0
f
(
x) x
f
()
0;
f()
微分中值定理的证明
![微分中值定理的证明](https://img.taocdn.com/s3/m/d2fe93e85727a5e9846a618f.png)
2014届本科毕业论文(设计)题目:微分中值定理的证明及其应学院:数学科学学院专业班级:数学09-3班学生姓名:迪丽尼格尔■艾来提指导教师:依力夏提答辩日期:2014年月日新疆师范大学教务处1引言 (2)1.1最大最小定理............................... 错误!未定义书签。
1.2介值性定理 .................................. 错误!未定义书签。
1.3根的存在性定理 .............................. 错误!未定义书签。
1.4 一致连续性定理 .............................. 错误!未定义书签。
1.5费马定理.................................... 错误!未定义书签。
1.6有界性定理.................................. 错误!未定义书签。
2微分中值定理错误!未定义书签。
2.1罗尔中值定理 ............................... 错误!未定义书签。
2.2拉格朗日中值定理 ............................ 错误!未定义书签。
2.3柯西中值定理 ............................... 错误!未定义书签。
3微分中值定理的证明.................................................. 错误!未定义书签。
3.1罗尔中值定理的证明......................... 错误!未定义书签。
3.2拉格朗日中值定理的证明..................... 错误!未定义书签。
3.3柯西中值定理的证明......................... 错误!未定义书签。
4微分中值定理的证明的几何解释........................ 错误!未定义书签。
微分中值定理例题
![微分中值定理例题](https://img.taocdn.com/s3/m/f749de65f111f18582d05a46.png)
理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。
12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。
考研:微分中值定理的证明题汇总
![考研:微分中值定理的证明题汇总](https://img.taocdn.com/s3/m/c6df569ac77da26925c5b038.png)
f ( )
唯一性: (反证法) 假设有两个点 1 , 2 (0,1) ,且 1 2 ,使得 F (1 ) F ( 2 ) 0
F ( x) 在 [0,1] 上连续且可导,且 [1 , 2 ] [0,1] F ( x) 在 [1 , 2 ] 上满足 Rolle 定理条件 必存在一点 (1 , 2 ) ,使得: F () f () 1 0
而 f (a) 0 故在 (a, a
f (a) ) 内 f ( x) 0 有唯一的实根 k
1 2 t0 t sin 12. 试问如下推论过程是否正确。对函数 f (t ) 在 [0, x] 上应用拉 t t 0 0
格朗日中值定理得:
f ( x ) f ( 0 ) x0 1 x2 s i n 0 1 1 1 x x s i n f ( ) 2 s in co s x) (0 x0 x
即: cos
1
2 sin
1
x sin
1 x
( 0 x )
因0 x, 故当 x 0 时, 由m i l 2 n s i 0 0,
0
1
x 0
lim x sin
1 0 x
得: lim cos
x 0
1
0 ,即 lim cos
0
【证明】令 G( x) f (a x) f ( x) , x [0, a] . G( x) 在[0,a]上连续,且
G(a) f (2a) f (a) f (0) f (a) G(0) f (a) f (0)
微积分中值定理习题课
![微积分中值定理习题课](https://img.taocdn.com/s3/m/ea3f7ee5856a561252d36f20.png)
ek f ( ) ek kf ( ) 0
[e kx f ( x ) (e kx ) f ( x )]x 0
[e
kx
f ( x )]x 0.
1
设f (x)在[a, b]上连续, 在(a, b)内可导, 且
f (a ) f (b) 0, f ( x ) 0, x (a , b). 证明: f ( ) k. 对任意的实数k, 存在点 (a b), 使 f ( ) 证 设g( x ) ekx f ( x ) [e kx f ( x )]x 0 ; 则(1) g( x )在[a, b]上连续 ;(2) g( x )在(a, b)内可导
设函数 f (x)在[0, 3]上连续,在(0, 3)内可导, 且f (0) f (1) f ( 2) 3, f ( 3) 1. 试证必存在 (0,3), 使f ( ) 0. x 在 f[( 在 [0, 2]上连续 , 证 因为 因为 ff(( (x)在 cx , )3] 上连续 , c)) [0, 1 3] f上连续 ( 3), 且 ,f 所以 且在 2]上必有最大值 M和最小值 必存在 ,于是 在(c,[0, 3)内可导 , 所以由Rolle 定理知,m m (cf,3 (0 (M , ), m f f 1) 0 M (( )) 0,3 使 . , m f ( 2) M . f (0) f (1) f ( 2) m M. 故 3 由介值定理知,至少存在一点 c [0,2], 使
综上, 存在 (a, b), 使得h( ) 0.
6分
4
考研数学(一、二、三)11分
(1) 证明拉格朗日中值定理: 若函数 f (x)在
[a, b]上连续, 在(a, b)内可导, 则存在 (a , b ), 使得f (b) f (a ) f ( )(b a ). (2) 证明: 若函数f ( x )在x 0处连续, 在(0, ) ( x ) A, 则f (0)存在, ( 0)内可导, 且 lim f
微分中值定理题目
![微分中值定理题目](https://img.taocdn.com/s3/m/bc3eb4227375a417866f8f12.png)
例1设()x f '在[]b a ,上存在,且()()b f a f '<',而r 为()a f '与()b f '之间的任一值,则在()b a ,内存在一点ξ,使得()r f ='ξ[7].例2设()x f 在()+∞,a 内可导,且()()A x f x f x a x ==+∞→→+lim lim ,试证:至少存在一点 ()+∞∈,a ξ,使得()0='ξf [7].例3设函数()x f 在[]b a ,上可导,且()()0_<'⋅'+b f a f ,则在()b a ,内至少存在一个ξ,使得()0='ξf [7].例4()x f 在[]b a ,上连续,在()b a ,内二阶可导,且()()()b f c f a f ==,()b c a <<, 试证:至少存在一个()b a ,∈ξ,使得()0=''ξf [2].例5设()x f 在[]1,0上有三阶导数,()()010==f f ,设()()x f x x F 3=,证明:存在 ()1,0∈ξ使得()0='''ξF .例6设()x f 在[]b a ,上可微,且()x f 在a 点的右导数()0<'+a f ,在b 点的左导数 ()0<'-b f ,()()c b f a f ==,证明:()x f '在()b a ,内至少有两个零点.例7设()x f 在R 上二次可导,()0>''x f ,又存在一点0x ,使()00<x f ,且 ()0lim <='-∞→a x f x ,()0lim >='+∞→b x f x ,证明:()x f 在R 上有且仅有两个零点. 例8()[]1,0在x f 上二次可导,()()010==f f ,试证明:存在()1,0∈ξ,使得()()()ξξξf f '-=''211[4].例9设()[]1,0在x f 上连续,在()1,0上可导, ()()010==f f ,121=⎪⎭⎫ ⎝⎛f .证明: 至少存在一点()1,0∈ξ使得()1='ξf .例10设函数()x f 在闭区间[]b a ,上连续,在开区间()b a ,上二次可微,连结()()a f a ,与()()b f b ,的直线段与曲线()x f y =相交于()()c f c ,,其中b c a <<.证明在()b a ,上至少存在一点ξ,使得()0=''ξf [1].例11设()x f 在[]b a ,上连续,在()b a ,内可导,且()()1==b f a f 试证:存在ξ, ()b a ,∈η使得 ()()[]1='+-ηηξηf f e [1].例12 设函数()x f 在[]b a ,上连续,在()b a ,上二阶可微,并且()()b f a f =,证明:若存在点()b a c ,∈,使得()()a f c f >,则必存在点()b a ,,,∈ζηξ,使得()0>'ξf ,()0<'ηf ,()0<''ζf [6].例13设()x f 定义在[]1,0上,()x f '存在且()x f '单调递减,()00=f ,证明: 对于 10≤+≤≤≤b a b a ,恒有()()()b f a f b a f +≤+.例14 设()x f 在[]b a ,上连续,在()b a ,可导,b a <≤0,()()b f a f ≠.证明:存在η,()b a ,∈ξ,使得()()ηηξf b a f '+='2 [6]. 例15 设()x f 在[]b a ,上连续,在()b a ,可导,且()0≠'x f ,试证:存在η,()b a ,∈ξ,使得()()ηηξ---=''e ab e e f f ab [1]. 例16设函数()x f 在[]b a ,上连续,在()b a ,可导,证明:存在()b a ,∈ξ,使得()()()()ξξξf f ab a af b bf '+=--[1]. 例17设()[]b a x f ,在上连续()0>a ,在()b a ,可导,证明:在()b a ,内存在ξ,η,使()()ab f f ηηξ'='2[1].例18 设()[]b a x f ,在上连续,在()b a ,内可微,0>>a b ,证明:在()b a ,内存在321,,x x x ,使得()()()()33223222211ln42x f x a b a b x x f a b x x f '-='+='. (3) 例19设()x f 在()b a ,内二次可微,试用柯西中值定理证明:任意x ,()b a x ,0∈,存在ξ在x 与0x 之间,使()()()()()()2000021x x f x x x f x f x f -''+-'+=ξ成立[6]. (8)。
数学分析简明教程答案数分5_微分中值定理及其应用
![数学分析简明教程答案数分5_微分中值定理及其应用](https://img.taocdn.com/s3/m/bfa13ef6afaad1f34693daef5ef7ba0d4a736ddb.png)
壹第五章微分中值定理及其应用第一节微分中值定理331231.(1)30()[0,1];(2)0(,,),;(1)[0,1]30[0,1]()3nx x c c x px q n p q n n x x c x x f x x x c证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。
证明:设在区间内方程有两个实根,即有使得函数值为零012023(,)[0,1],'()0.'()33(0,1)(3,0)30()[0,1] (2)2220nx x x f x f x x x x c c n n k x px q x 。
那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。
因此有:方程为常数在区间内不可能有两个不同的实根。
当时,方程至多只可能有两个实根,满足所证。
当时,设方程有三个实根,即存在实数1230112022301021010110202()0(,),(,),'()'()0,'()0(*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p使得函数成立。
那么由罗尔定理可知存在使得即0010220000102),(,),''(0)0,''()(1)0,0,0,0.2(*).212n nx x x f f x n n x x x x n k p n n k x px q 再次利用罗尔定理可以知道,存在使得即显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。
当时,设方程1234111212231334111213111110()0(,),(,),(,)'()0,'()0,'()0,'()0'(nn x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x 有三个实根,即存在实数使得函数成立。
微分中值定理的证明题660
![微分中值定理的证明题660](https://img.taocdn.com/s3/m/ebb75b33312b3169a451a4c8.png)
微分中值定理的证明题1.若在上连续,在上可导,,证明:,使得:。
证:构造函数,则在上连续,在内可导,且,由罗尔中值定理知:,使即:,而,故。
2.设,证明:,使得。
证:将上等式变形得:作辅助函数,则在上连续,在内可导,由拉格朗日定理得:,即,即:。
3.设在内有二阶导数,且,有证明:在内至少存在一点,使得:。
证:显然在上连续,在内可导,又,故由罗尔定理知:,使得又,故,于是在上满足罗尔定理条件,故存在,使得:,而,即证4.设函数在[0,1]上连续,在(0,1)上可导,,.证明:(1)在(0,1)内存在,使得.(2)在(0,1)内存在两个不同的点,【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】(I)令,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在使得,即.(II)在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,于是5.设在[0,2a]上连续,,证明在[0,a]上存在使得.【分析】在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。
辅助函数可如下得到【证明】令,.在[0,a]上连续,且当时,取,即有;当时,,由根的存在性定理知存在使得,,即.6.若在上可导,且当时有,且,证明:在内有且仅有一个点使得证明:存在性构造辅助函数则在上连续,且有,,由零点定理可知:在内至少存在一点,使得,即:唯一性:(反证法)假设有两个点,且,使得在上连续且可导,且在上满足Rolle定理条件必存在一点,使得:即:,这与已知中矛盾假设不成立,即:在内仅有一个根,综上所述:在内有且仅有一个点,使得7.设在[0,1]上连续,在(0,1)内可导,且==0,=1。
试证至少存在一个(0,1),使=1。
分析:=1=1=x=0令()=证明:令F()=()在[0,1]上连续,在(0,1)内可导,(1)=()=由介值定理可知,一个(,1),使()=0又(0)=0=0对()在[0,1]上用Rolle定理,一个(0,)(0,1)使=0即=18.设在上连续,在内可导,且试证存在和.满足,使。
数学分析6微分中值定理及其应用总练习题详解
![数学分析6微分中值定理及其应用总练习题详解](https://img.taocdn.com/s3/m/e8b03534de80d4d8d05a4f13.png)
第六章 微分中值定理及其应用总练习题1、证明:若f(x)在(a,b)内可导,且+→a x lim f(x)=-→b x lim f(x),则至少存在一点ξ∈(a,b),使f ’(ξ)=0.证:定义f(a)=+→a x lim f(x),f(b)=-→b x lim f(x),则f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),由罗尔中值定理知 至少存在一点ξ∈(a,b),使f ’(ξ)=0.2、证明:若x>0,则 (1)1x +-x =θ(x)x 21+,其中41<θ(x)<21;(2)0x lim →θ(x)=41,+∞→x lim θ(x)=21. 证:(1)由拉格朗日中值定理得:1x +-x =θ(x)x 21+, (0<θ(x)<1),∴θ(x)x 2+=x1x 1-+=1x ++x ,∴θ(x)=41+21[1)x(x +-x].∵1)x(x +-x>2x -x=0,∴41+21[1)x(x +-x]>41; 又1)x(x +-x=x1)x(x x ++<xx x 2+=21,∴41+21[1)x(x +-x] <21.∴41<θ(x)<21.(2)(1)中已证θ(x)=41+21[1)x(x +-x],∴0x lim →θ(x)=0x lim →{41+21[1)x(x +-x]}=41; +∞→x lim θ(x)=+∞→x lim {41+21[1)x(x +-x]}=41+21+∞→x lim 1x111++=21.3、设函数f 在[a,b]上连续,在(a,b)内可导,且ab>0. 证明: 存在ξ∈(a,b),使得f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).证:记F(x)=xf (x),G(x)=x 1,根据柯西中值定理,存在ξ∈(a,b),使得)(G )(F ξξ''=G(a)-G(b)F(a)-F(b),又)(G )(F ξξ''=f(ξ)- ξf ’(ξ),∴f(ξ)- ξf ’(ξ)=G(a)-G(b)F(a)-F(b).又f(b)f(a)b a b -a 1=b -a bf (a)-af (b)=a1-b 1a f(a)-bf(b)=G(a)-G(b)F(a)-F(b), ∴f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).4、设函数f 在[a,b]上三阶可导,证明: 存在ξ∈(a,b),使得f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ). 证:记F(x)=f(x)-f(a)-21(x-a)[f ’(x)+f ’(a)],G(x)=(x-a)3,则 F,G 在[a,b]上二阶可导,F ’(x)=f ’(x)-21[f ’(x)+f ’(a)]-21(x-a)f ”(x),G ’(x)=3(x-a)2,F ”(x)=f ”(x)-21f ”(x)-21f ”(x)-21(x-a)f ’”(x)=-21(x-a)f ’”(x);G ”(x)=6(x-a).且F(a)=F ’(a)=0,G(a)=G ’(a)=0.根据柯西中值定理,存在η∈(a,b),使得)(G )(F ηη''=G(a)-G(b)F(a)-F(b)=G(b)F(b)=3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+', 又根据柯西中值定理,存在ξ∈(a, η),使得)(G )(F ξξ''''=(a)G -)(G (a)F -)(F ''''ηη=)(G )(F ηη'',又)(G )(F ξξ''''=a)-6()(f )a (21-ξξξ'''-=-121f ”’(ξ).∴3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+'=-121f ”’(ξ). ∴f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ).5、对f(x)=ln(1+x)应用拉格朗日中值定理,证明: 对x>0,有0<x)ln(11+-x1<1.证:f ’(x)=x11+. 对f 在区间[0,x]应用拉格朗日中值定理得: f ’(ξ)=0-x f (0)-f (x)=x ln1-x)ln(1+= x x)ln(1+,∴ln(1+x)=xf ’(ξ)=ξ1x+. ∴x)ln(11+=x ξ1+=x 1+x ξ;即x)ln(11+-x 1=xξ.又0<xξ<1,∴0<x)ln(11+-x1<1.6、设a 1,a 2,…,a n 为n 个正实数,且f(x)=(na a a x n x 2x 1+⋯++)x1. 证明:(1)0x lim →f(x)=nx n x 2x 1a ··a ·a ⋯;(2)∞→x lim f(x)=max{a 1,a 2,…,a n }. 证:(1)0x lim →f(x)=e na a a ln x 1lim x n x 2x 10+⋯++→x = exn x 2x 1nx n 2x 21x 10a a a a ln a a ln a a ln a lim+⋯+++⋯++→x= ena ln a ln a ln n21+⋯++=n xn x 2x 1a ··a ·a ⋯. (2)记A=max{a 1,a 2,…,a n },则0<Aa k≤1, (k=1,2,…,n)∵f(x)=A[n)A a()A a ()Aa (x n x 2x 1+⋯++]x 1,∴A(n 1)x 1<f(x)≤A , 又∞→x lim A(n1)x1=A ,∴∞→x lim f(x)=A=max{a 1,a 2,…,a n }.7、求下列极根: (1)=→1x lim (1-x 2)x)-ln(11;(2)2xx x x)ln(1-xe lim+→;(3)sinxx 1sinx lim20x →.解:(1)=→1x lim (1-x 2)x)-ln(11=e)x 1ln()x 1ln(lim21x --=→= e21x x1)x 1(x 2lim--=→=ex 1x 2lim1x +=→=e.(2)2x 0x x x)ln(1-xe lim +→=2xx 11-xe e lim xx0x ++→=2x)(11xe 2e lim 2x x 0x +++→=23. (3)sinxx 1sinx lim20x →=)sinx x ·x 1sin x (lim 0x →=)x 1sin x (lim 0x →·sinx x lim 0x →=0·1=0.8、设h>0,函数f 在U(a,h)内具有n+2阶连续导数,且f (n+2)(a)≠0, f 在U(a,h)内的泰勒公式为:f(a+h)=f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )θh a (f 1)(n +++h n+1, 0<θ<1.证明:θlimh →=2n 1+. 证:f 在U(a,h)内带皮亚诺型余项的n+2阶泰勒公式为:f(a+h)= f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )a (f 1)(n ++h n+1+2)!(n )a (f 2)(n ++h n+2+o(h n+2),与题中所给泰勒公式相减得:1)!(n )a (f )θh a (f 1)(n 1)(n +-+++h n+1=2)!(n )a (f 2)(n ++h n+2+o (h n+2).∴1)!(n θ+·θh )a (f )θh a (f 1)(n 1)(n ++-+=2)!(n )a (f 2)(n +++2n 2n h )h (++o .令h →0两端取极限得:1)!(n )a (f 2)(n ++θlim 0h →=2)!(n )a (f 2)(n ++,∴θlim 0h →=2n 1+.9、设k>0,试问k 为何值时,方程arctanx-kx=0存在正根.解:若方程arctanx-kx=0有正根x 0,∵f(x)=arctanx-kx 在[0,x 0]上可导, 且f(0)=f(x 0)=0,由罗尔中值定理知,存在ξ∈(0,x 0),使得 f ’(ξ)=2ξ11+-k=0. 可见0<k<1. 反之,当0<k<1时,由f ’(x)=2x11+-k 连续,f ’(0)=1-k>0, ∴存在某邻域U(0,δ),使得在U(0,δ)内,f ’(x)>0,f(x)严格递增, 从而存在a>0,使f(a)>f(0)=0. 又+∞→x lim f(x)=-∞,∴存在b>a ,使f(b)<0, 由根的存在定理知,arctanx-kx=0在(a,b)内有正根. ∴当且仅当0<k<1时,原方程存在正根.10、证明:对任一多项式p(x)来说,一定存在点x 1与x 2,使p(x)在(x 1,+∞)与(-∞,x 2)上分别严格单调.证:设p(x)=a 0x n +a 1x n-1+…+ a n-1x+a n ,其中a 0≠0,不妨设a 0>0. 当n=1时,p(x)=a 0x+a 1,p ’(x)=a 0>0,∴p(x)在R 上严格增,结论成立. 当n ≥2时,p ’(x)=na 0x n-1+(n-1)a 1x n-2+…+ a n-1,若n 为奇数,则∞→x lim p ’(x)=+∞,∴对任给的G>0,存在M>0,使 当|x|>M 时,有p ’(x)>G>0,取x 1=M ,x 2=-M ,则 p(x)在(x 1,+∞)与(-∞,x 2)上均严格增.若n 为偶数,则+∞→x lim p ’(x)=+∞,-∞→x lim p ’(x)=-∞, ∴对任给的G>0,存在M>0,使当x>M 时,有p ’(x)>G>0,当x<-M 时,p ’(x)<-G<0,取x 1=M ,x 2=-M , 则p(x)在(x 1,+∞)上严格增,在(-∞,x 2)上严格减. 综上原命题得证。
微分中值定理有关证明
![微分中值定理有关证明](https://img.taocdn.com/s3/m/2c051cfad15abe23482f4dad.png)
☆例1 设)(x f 在[0,3]上连续,在(0,3)内可导,且3)2()1()0(=++f f f ,1)3(=f .试证:必存在)3,0(∈ξ,使()0f ξ'=证:∵ )(x f 在[0,3]上连续,∴ )(x f 在[0,2]上连续,且有最大值和最小值.于是M f m ≤≤)0(;M f m ≤≤)1(;M f m ≤≤)2(,故M f f f m ≤++≤)]2()1()0([31. 由连续函数介值定理可知,至少存在一点[0,2]c ∈使得1)]2()1()0([31)(=++=f f f c f ,因此)3()(f c f =,且)(x f 在[,3]上连续,(,3)内可导,由罗尔定理得出必存在)3,0()3,(⊂∈c ξ使得()0f ξ'=。
☆例2 设)(x f 在[0,1]上连续,(0,1)内可导,且⎰=132)0()(3f dx x f求证:存在)1,0(∈ξ使0)('=ξf证:由积分中值定理可知,存在2[,1]3c ∈,使得⎰-=132)321)(()(c f dx x f得到 ⎰==132)0()(3)(f dx x f c f对)(x f 在[0,c]上用罗尔定理,(三个条件都满足) 故存在)1,0(),0(⊂∈c ξ,使()0f ξ'=☆例3 设)(x f 在[0,1]上连续,(0,1)内可导,对任意1>k ,有⎰-=k x dx x f xe k f 11)()1(,求证存在)1,0(∈ξ使1()(1)()f f ξξξ-'=-证:由积分中值定理可知存在1[0,]c k∈使得)01)(()(1101-=--⎰k c f ce dx x f xe ck x令)()(1x f xex F x-=,可知)1()1(f F =这样1110(1)(1)()()()x c k F f kxe f x dx ce f c F c --====⎰,对)(x F 在]1,[c 上用罗尔定理(三个条件都满足)存在)1,0()1,(⊂∈c ξ,使()0F ξ'= 而111()()()()xx x F x ef x xe f x xe f x ---''=-+∴ 11()[()(1)()]0F ef f ξξξξξξ-''=--=又01≠-ξξe,则1()(1)()f f ξξξ'=-在例3的条件和结论中可以看出不可能对)(x f 用罗尔定理,否则结论只是()0f ξ'=,而且条件也不满足。
微分中值定理的证明及其应1正文
![微分中值定理的证明及其应1正文](https://img.taocdn.com/s3/m/b4d1de33eefdc8d376ee32ff.png)
微分燕美辰摘 要:对微分中值定理的概念和一些相关基础知识进行了归纳, 以及一些相关定理的证明,同时介绍了它们在数学领域的应用,并给出了一些典型例题.关键词:罗尔中值定理;拉格朗日中值定理;柯西中值定理;泰勒公式微分中值定理是微分学理论的重要组成部分,不仅在理论上有着重要意义,而且在应用中也起着特殊的作用,因此学习研究微分中值定理是非常重要的.1.罗尔中值定理的证明及其应用1.1罗尔中值定理的证明定理1.1.1 (罗尔中值定理) 若函数f 满足如下条件:()i f 在闭区间[],a b 上连续; ()ii f 在开区间(),a b 内可导; ()iii ()f a =()f b ,则在(),a b 内至少存在一点ξ,使得()f ξ'=0.几何意义:()1在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等则至少存在一条水平切线.()2若()f a =()f b =0,可导的函数f 的任意两根之间必定会有其导函数的根.下面我们来介绍罗尔定理的证明.定理1.1.2 (费马定理)设函数f 在点0x 点某邻域内有定义,且在点0x 可导,若点0x 为f 的极值点,则必有()0f x '=0.证 因为f 在[],a b 上连续,所以有最大值和最小值,分别用M 与m 表示,现分两种情况来讨论:()1若m M =,则f 在[],a b 上必为常数,从而结果显然成立.()2若m M <,则因()()f a f b =,使得最大值M 与最小值m 至少有一个在(),a b 内某点ξ处取得,从而ξ是f 的极值点.由条件()ii ,f 在点ξ处可导,故由费马定理推知()0f ξ'=.1.2罗尔中值定理的应用微分中值定理是数学分析中最为重要的内容之一,其中罗尔定理是基础中的基础.由于罗尔定理应用比较广泛,所以它在解题中也常用到.例1 设f 为R 上的可导函数,证明:若方程()0f x '=没有实根,则方程()0f x =至多只有一个实根.证 这可反证如下:倘若()0f x =有两个实根1x 和2x (设12x x <),则函数f 在[]12,x x 上满足罗尔定理三个条件,从而存在()12,x x ξ∈,使()0f ξ'=,这与()0f x '≠的假设相矛盾,命题得证.2 拉格朗日中值定理的证明及其应用2.1 拉格朗日中值定理的证明定理2.1.1 (拉格朗日中值定理)若函数f 满足如下条件:()i f 在闭区间[],a b 上连续; ()ii f 在开区间(),a b 内可导,则在(),a b 内至少存在一点ξ,使得()()()f b f a f b aξ-'=-.几何意义:连续曲线()y f x =()a x b ≤≤,除端点之外处处有切线,则曲线上至少有一点的切线与连接两端点的弦相等.注1 拉格朗日中值定理还有其他几种表示形式()()()()f b f a f b a ξ'-=-,;a b ξ<<()()()()()()()(),01;,0 1.f b f a f a b a b a f a h f a f a h h θθθθ'-=+--<<'+-=+<<注2 下面我们来介绍拉格朗日中值的几个推论.推论 1 若函数f 在区间I 上可导,且()0,f x x I '≡∈,则f 为I 上的一个常量函数.推论 2 若函数f 和g 均在区间I 上可导,且()(),,f x g x x I ''≡∈则在区间I 上()f x 与()g x 只相差某一个常数,即()()f x g x c =+ (c 为某一个常数).推论3 (导数极限定理) 设函数f 在点0x 的某邻域()0U x 内连续,在()0U x内可导,且极限()0lim x x f x →'存在,则f 在点0x 可导,且()()00lim x x f x f x →''=.证明拉格朗日中值定理的方法多种多样,一般来说采用的是构造辅助函数法,除此之外还有利用弦倾角法,利用面积构造辅助函数法,利用区间套证明等等,在这里我们只详细介绍两种证明方法 方法一:证 设()()()()f b f a F x f x x b a-=-⋅- [],x a b ∈,由()f x 连续知()F x 在[],a b 上连续,由()f x 可导知()F x 在(),a b 内可导()()()()()()()()f b f a F a f a ab af b f a F b f b bb a-=---=--,经计算()()F a F b =,由罗尔中值定理,()(),0a b F ξξ'∃∈∍=,即()()()0f b f a f b aξ-'-=-.由此可知()()()f b f a f b aξ-'=-,结论成立.方法二:证 分别用左右等式证明等式成立.()1任取()0x U x +∈ ,()f x 在[]0,x x 上满足拉格朗日定理条件,则存在()0,x x ξ∈,使得()()()00f x f x f x x ξ-'=-.由于0x x ξ<<,因此当0x x +→时,随之有0x ξ+→,对等式两边取极限,便得()()()()00000lim lim 0x x x x f x f x f f x x x ξ++→→-''==+-.()2同理可得()()000f x f x -''=-.因为()0lim x x f x k →'=存在,所以()()0000f x f x k ''+=-=,从而()()00f x f x k +-''==,即()0f x k '=.2.2拉格朗日中值定理的应用拉格朗日中值定理在数学分析中应用非常广泛,如应用拉格朗日中值定理证明不等式,证明恒等式,利用拉格朗日中值定理求极限,描绘函数图象,解决最大小值等等,在此就不一一列举了.2.2.1应用拉格朗日中值定理证明不等式例1 ln ,b a b b ab a a --<<其中0a b <<. 证 ln ln ln b b a a =-,令()ln f x x =,则()1f x x'=,因为0a b <<,所以()f x 在[],a b 上满足拉格朗日中值定理的条件,故至少存在一点(),a b ξ∈,使得()()()ln ln f b f a b af b a b aξ--'==--,而()1f ξξ'=,于是1ln ln b ab aξ-=-,由0a b ξ<<<知111b aξ<<, 因而1ln ln 1b a b b a a-<<-, 故ln b a b b ab a a--<<. 2.2.2利用拉格朗日中值定理求极限例2 计算()()0tan 2tan 44limarctan 1arctan 12x x x x x ππ→⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭+--.解 由拉格朗日中值定理可知:21tan 2tan sec 344x x x ππξ⎛⎫⎛⎫+--=⋅ ⎪ ⎪⎝⎭⎝⎭,其中1ξ介于4x π-与24x π+之间,且当0x →时,14πξ→.()()221arctan 1arctan 1231x x x ξ+--=⋅+,其中2ξ 介于()1x +与()12x -之间且当0x →时,21ξ→,所以,原式210223sec lim 4131x x x ξξ→⋅==⋅+.2.2.3利用拉格朗日中值定理证明恒等式例3 求证()f x 在区间I 上恒等于常数的充分必要条件是()0f x '≡ x I ∈. 证 必要性 常值函数的导数恒等于零结论成立.充分性 假设()0f x '≡ ()x I ∈,在区间I 中任取两点12,x x 根据拉格朗日中值定理,在12,x x 之间存在ξ,使得()()()120f x f x f ξ'-== 这说明()f x 在区间I 上恒等于常数.3 柯西中值定理的证明及其应用3.1 柯西中值定理的证明定理3.1.1 (柯西中值定理你)设函数f 和g 满足:()i 在[],a b 上连续; ()ii 在(),a b 内可导;()iii ()f x '和()g x '不同时为零; ()iv ()()g a g b ≠,则存在(),a b ξ∈,使得()()()()()()f f b f ag g b g a ξξ'-='-.几何意义:连续曲线()y f x =()a x b ≤≤,除端点之外处处有切线,则曲线上至少有一点的切线与连接两端点的弦相等.利用罗尔定理来证明柯西中值定理的关键是构造辅助函数,下面我们就来介绍柯西中值定理的证明.证 作辅助函数()()()()()()()()()()f b f a F x f x f a g x g a g b g a -=----. 易见F 在[],a b 上满足罗尔定理条件,故存在(),a b ξ∈,使得()()()()()()()0f b f a F f g g b g a ξξξ-'''=-=-.故()()()()()()f f b f ag g b g a ξξ'-='-, 所以,结论成立.3.2拉格朗日中值定理的应用柯西中值定理之所以重要, 是因为它在数学分析解题中有着广泛的应用, 下面就着重介绍柯西中值定理的应用, 以达到对其更深刻的认识和理解.3.2.1 求极限例1)lim 1n n→∞0x >.解 由柯西中值定理得,111,01n nξξξ-=>,即111ln ,n x nξ=有)11ln nnx ξ=,故)1lim1lim ln,nn nn xξ→∞→∞=因1,n=故)lim1lnnn x→∞=.3.2.2 证明不等式例2试证若()f x,()g x都是可微函数,且当x a≥时,()()f xg x'≤,则当x a≥时,()()()()f x f ag x g a-≤-.证令()()G x g x xε=+,则()()0G x g xε''=+>,而()()()()()()f b f a fG x G a Gξξ'-='-,a xξ<<,()()()()G x g x f x f xεε''''=+≥+>,故()()()1f b f a fG x G a Gξξ'-=<'-,有()()()()()()()f x f a G x G ag x g a x aε-<-=-+-,由于ε为任意小正数,令0ε→,有()()()()f x f ag x g a-≤-.注综上我们可以看出罗尔定理,拉格朗日中值定理,柯西中值定理三者关系非常密,罗尔定理是拉格朗日中值定理的一种特殊形式,当罗尔定理中()()f a f b≠时即为拉格朗日中值定理,反之在拉格朗日中值定理中,当()()f a f b=时即为罗尔中值定理,在大多数学分析和数学教材中,拉格朗日中值定理一般是采用构造辅助函数使之满足罗尔定理的方法来证明,柯西中值定理与前两个中值定理有着相类似的几何意义,而柯西中值定理较前两者更具有一般性,现在只需把函数f和g写作以x为参量的参量方程,即()()()f x xg x g x=⎧⎪⎨=⎪⎩,我们便可得到拉格朗日中值定理.4 泰勒公式的证明及其应用泰勒公式是高等数学中一个非常重要的内容,它将一些复杂的函数近似的表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力工具,而泰勒多项式则泰勒公式的基础.下面我们来介绍泰勒多项式.对于一般函数f ,设它在点0x 存在直到n 阶导数,由这些导数构成一个n 次多项式()()()()()()()()()200000001!2!!nnn f x f x f x T x f x x x x x x x n '''=+-+-+⋅⋅⋅+-,称为函数f 在点0x 处的泰勒多项式,()n T x 的各项系数()()()01,2,3!nf x k n k =⋅⋅⋅称为泰勒系数.4.1泰勒公式的证明定理4.1.1 若函数f 在点0x 存在直至n 阶导数,则有()()()()0n n f x T x x x ο=+-,即()()()()()()()()()()()2000000002!!nn n f x f x f x f x f x x x x x x x x x n ο'''=+-+-+⋅⋅⋅+-+-注 )1上式称为函数f 在点0x 处的泰勒公式.)2()()()n n R x f x T x =-称为泰勒公式余项,形如()()0nx x ο-的余项称为佩亚诺型余项.)3所以上式也称为带有佩亚诺型余项的泰勒公式,记()()()()0nn f x T x x x ο=+-.定理4.1.2 泰勒公式在0x =时的特殊形式,()()()()()()()200002!!nnn f f f x f f x x x x n ο'''=+++⋅⋅⋅++.称为带有佩亚诺余项的麦克劳林公式.定理4.1.3 (泰勒定理)若函数f 在[],a b 上存在直至n 阶的连续导函数,在(),a b 内存在()1n +阶导数,则对任意给定的x ,[]0,x a b ∈,至少存在一点(),a b ξ∈,使得()()()()()()()()()()()()()121000000002!!1!n n n n f x f x f f x f x f x x x x x x x x x n n ξ++'''=+-+-+⋅⋅⋅+-+-+注 )1上式同样称为泰勒公式.)2它的余项为()()()()()()()()()11000,1!,01n n n n f R x f x T x x x n x x x ξξθθ++=-=-+=+-<<称为拉格朗日型余项. )3所以原式又称为带拉格朗日型余项的泰勒公式.定理4.1.4 当00x =时,得到泰勒公式()()()()()()()()()12100002!!1!n n n n f f f x f x f f x x x x n n θ++'''=+++⋅⋅⋅+++ 01θ<<称为带拉格朗日余项的麦克劳林公式.下面我们来介绍泰勒定理的证明 证 作辅助函数()()()()()()()()()()1,!n n n f t F t f x f t f t x t x t n G t x t +⎡⎤'=-+-+⋅⋅⋅+-⎢⎥⎢⎥⎣⎦=- 所以要证明的等式即为()()()()()1001!n f F x G x n ξ+=+或()()()()()1001!n F x f G x n ξ+=+.不妨设0x x <,则()F t 与()G t 在[]0,x x 上连续,在()0,x x 内可导,且()()()()()()()1!10n nnf t F t x t n G t n x t +'=--'=-+-≠,又因()()0F x G x ==,所以由柯西中值定理证得()()()()()()()()()()()10000,1!n F x F x F x F f G x G x G x G n ξξξ+'-==='-+其中()()0,,x x a b ξ∈⊂.4.2应用泰勒公式在高中数学中是一个十分重要的内容,在许多方面有着广泛的应用.下面给出在求极限方面的应用.4.2.1利用泰勒公式求极限对于函数多项式或有理项的极限问题的计算十分简单的,因此,对于一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理式的极限问题. 例1 求极限21lim log 1x x x x →∞⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦.解 由0=x 点泰勒公式得;222211111111log(1)22o o x x x x x x x ⎛⎫⎛⎫⎛⎫+=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭于是,21lim log 1x x x x →∞⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦22111lim 22x x o x →∞⎡⎤⎛⎫=-= ⎪⎢⎥⎝⎭⎣⎦. 参考文献:[1] 华东师范大学数学系:数学分析(第三版),高等教育出版社,2001版。
微分中值定理的一个证明
![微分中值定理的一个证明](https://img.taocdn.com/s3/m/3e2881c9b14e852459fb571d.png)
一
f (二
十
毕
石
)一 l (
二
)一
才 I丝二赵,
`
,
有
当 F ( e ) = 0时
e
,
F `
c
’
一
=
F
.
(书
` 因此时 ,
可取
e
`
=
e
、
d
’
宁
_
、
(
. ` _
c
十 d
2
)
_
一 0
,
所 以 也可取
+ d
2
d
、
,
= d)
_ _
、
.
`
_
兰厂 (
) 今 时 c
`
U
二
,
_ 一~
_
、
,
二
_
卜
,
.
*
二
。
、
_
田 团 区 同 士 连 软 困 数田 夕 r
一
半
,
这一 列 弦 最 后 退 缩 为
( 下转 第 2 5页 )
一
它 的横 坐标就是 、
〔 〕 杭 州 长 征 中学 数 学 组
g 〕刘 洪 钧 〔
: “
“
平 面 几 何 题 的 三 角 解法 ”
”
,
,
《 数学 教 学 ( 杭 州 )》
,
197 9
;
数学 问 题 三 角 解 法 的 新 认 识
《 教 学 与 研 究 ( 浙 师 院舟 山 分 校 )
,
1 9 8 0 年 第 1 期; 3
、
解析 法
微分中值定理(1)
![微分中值定理(1)](https://img.taocdn.com/s3/m/f42b5a42a26925c52cc5bfd1.png)
f ( x) C 0, 对于一切x (a, b). 取 x.
(2)若M m,则f ( x)在[a, b]上不是常数. f (a) f (b), 则M , m不可能同时在端点取得. 不妨设M f (a),
f ( x) f (b) f (a) x 0 ba
f (x)
f (b) f (a) ba
x
0
Proof. 设 F ( x) f ( x) f (b) f (a) x, x [a, b] ba
则 F ( x) 在[a, b] 上连续, 在 (a, b)内可导.
由 f ( x1 ) f ( x2 ),
至少存在一点1 ( x1, x2 ), 使得 f (1 ) 0.
由 f ( x2 ) f ( x3 ),
至少存在一点2 ( x2, x3 ), 使得 f (2 ) 0.
而 f ( x) 在 [1,2]上连续; f ( x) 在 (1,2 )内可导. f (1 ) 0 f (2 ).
ba
当b a时, f (a) f (b) f ( )(a b) f (b) f (a) f ( )(b a).
注意: (1) 令 f (a) f (b), 则 Lagrange 中值定理 Rolle定理.
(2) 在Lagrange 中值公式 f (b) f (a) f ( )(b a)中, a b, 0 a b a, 0 a 1,
几何意义: y
oa
b
Rolle定理指出在两个高度相同 的点之y 间的一段连续曲线上,若 除端点外,它在每一点都有不垂 直于 x 轴的切线,则在其中必有 一条切线平行于 x 轴.
微分中值定理及其应用习题课(整理)
![微分中值定理及其应用习题课(整理)](https://img.taocdn.com/s3/m/055e8504fc4ffe473368ab55.png)
1)设 f 在点 x 0 的右邻域 U ( x0 ) 内连续,在 U ( x0 ) 内可导,且极限 lim f ( x) f x0 0 存在,则 f 在点 x 0
x x0
令 h b a ,则有
内连续,则会导致错误的结论,例如 f ( x)
x, x 0 1, x 0
x 0
f ( x) 在 u 0 (0) 中可导,且 f ( x) 1 ,于是有 lim f ( x) ,若认为 f (0) 存在,且 f (0) 1 ,这就导致
1, 0 x 1, 所以在开区间 (1,1) 内找不到使得等式 g ( ) 0 成立的点 ,如图, 1, 1 x 0,
3
无水平切线( 图 2). 函数 h( x) x, x [0,1] .h( x) 在 [0,1] 上不满足罗尔中值定理的条件(3),因为 h( x) 在区间端点的函数 值不相等, 即 h(0) h(1) . 由于 h( x) 1, x (0,1) , 所以在开区间 (0,1) 内找不到使得等式 h( ) 0 成 立的点 ,如图,无水平切线( 图 3).
2 x 2 x
在 x 0 处没有定义,则原函数在 x 0 不可导) ,即不符合加强条件;但它满足定理的三个条件,有水 平切线(图) 6.罗尔定理结论中的 值唯一吗? 答 不一定唯一,可能有一个,几个,甚至无限多个. 例如
0
y y=f (x)
3
x
1 4 x sin 2 , x 0; f ( x) 在 1,1 上满足罗尔定理的三个条件.显然, x 0, x 0.
3.1 微分中值定理
![3.1 微分中值定理](https://img.taocdn.com/s3/m/d3bd24ff9b89680203d82539.png)
2 1 3 4 2 1
4 4
(2) 设 f ( x) ( x 1)( x 2)( x 3)(x 4), 方程 f ( x) 0.
有 3 个根 , 它们分别在区间 (1, 2) , (2 , 3) , (3 , 4) 内.
高等数学
目录
上页
下页
返回
结束
(0 ,1) 可导,且 f (1) 0. 2 设 f ( x) 在 [0,1] 连续,
高等数学
目录 上页 下页 返回 结束
例3.1.6
x 证明不等式 1 x ln(1 x) x ( x 0) .
证明 设 f (t ) ln(1 t ) , 则 f (t ) 在[0, x] 上满足拉格朗日 中值定理条件, 因此
f ( x) f (0) f ( )( x 0)
即 因为 故
(0 x) (0 x)
x , ln(1 x) 1 x x x 1 x 1 x ln(1 x) x 1 x
( x 0)
目录 上页 下页 返回 结束
高等数学
内容小结
1. 微分中值定理的条件、结论及关系
f (b) f (a)
得
20 2 2 (0, 2). 3x 3 1, x 3
注 (1) 若 f (a) = f (b), Lagrange定理即为 Rolle定理
y
(2) Lagrange定理的几何意义:
若连续曲线 y f ( x) 的弧 AB
O
上除端点外处处具有不垂直于 x轴的切线,
a
b x
则弧上至少 有一点C 的切线平行于弦AB.
高等数学
目录 上页 下页 返回 结束
微分中值定理的证明与应用
![微分中值定理的证明与应用](https://img.taocdn.com/s3/m/6fb1f723581b6bd97f19ea80.png)
微分中值定理的证明与应用B09030124 孙吉斌一 中值定理及证明:1. 极值的概念和可微极值点的必要条件:定理 ( Fermat ) 设函数f 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为f 的极值点,则必有 0)(0='x f 罗尔中值定理:若函数f 满足如下条件:(i )f 在闭区间[a ,b]上连续;(ii )f 在开区间(a ,b )内可导;(iii ))()(b f a f =,则在(a ,b )内至少存在一点ξ,使得f '(ξ)=0。
证明:因为f 在[a,b ]上连续,所以有最大值与最小值,分别用M 与m 表示,现分两种情况讨论:(i)若M = m , 则 f 在[a,b ]上必为常数,从而结论显然成立。
(ii)若m < M ,则因 f (a)=f (b),使得最大值M 与最小值m 至少有一个在(a,b)内某点ξ处取得,从而ξ是f 的极值点,由条件(ii) f 在点ξ处可导,故由费马定理推知)(ξf '=0.注1:罗尔定理的几何意义:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线。
注2:习惯上把结论中的ξ称为中值,罗尔定理的三个条件是充分而非必要的,但缺少其中任何一个条件,定理的结论将不一定成立。
例如: ⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-<=2x 1,11x 2,01|x |,x F(x)x易见,F 在x=-1不连续,在x=±1不可导,F(-2)≠F (2), 即罗尔定理的三个条件均不成立,但是在(-2,2)内存在点 ξ, 满足 0)(='ξF注3:罗尔定理结论中的ξ值不一定唯一,可能有一个,几个甚至无限多个,例如:⎪⎩⎪⎨⎧=≠=0x 0,0x ,sin x f(x)x 142在 [-1,1] 上满足罗尔定理的条件,显然⎪⎩⎪⎨⎧=-='0x 0,cos sin 2x sin 4x (x)f x 1x 1x 1232在(-1,1)内存在无限多个 n c =)(21z n n ∈π使得)(n c f '=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分中值定理的证明题1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ∀∈,(,)a b ξ∃∈使得:()()0f f ξλξ'+=。
证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ∃∈(,使()0F ξ'=即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。
2. 设,0a b >,证明:(,)a b ξ∃∈,使得(1)()b a ae be e a b ξξ-=--。
证:将上等式变形得:1111111111(1)()b ae e e b a b aξξ-=--作辅助函数1()xf x xe =,则()f x 在11[,]b a 上连续,在11(,)b a内可导,由拉格朗日定理得:11()()1()11f f b a f b aξ-'=- 1ξ11(,)b a ∈ , 即 11111(1)11b ae eba eb a ξξ-=-- 1ξ11(,)b a ∈ , 即: )()1(b a e be ae a b --=-ξξ (,)a b ξ∈。
3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0F ξ''=。
证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ∃∈,使得0()0F x '=又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈⊂(0,1),即证4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f .(2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II )在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是,由问题(1)的结论有.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.【分析】)(x f 在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。
辅助函数可如下得到0)()(0)()()()(=-+→=-+→=+x f x a f f a f f a f ξξξξ【证明】令)()()(x f x a f x G -+=,],0[a x ∈.)(x G 在[0,a]上连续,且 )()0()()2()(a f f a f a f a G -=-=)0()()0(f a f G -=当)0()(f a f =时,取0=ξ,即有)()(ξξf a f =+;当)0()(f a f ≠时,0)()0(<a G G ,由根的存在性定理知存在),0(a ∈ξ使得,0)(=ξG ,即)()(ξξf a f =+.6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<<x f ,且1)(≠'x f ,证明:在)1,0( 内有且仅有一个点ξ使得ξξ=)(f 证明:存在性构造辅助函数x x f x F -=)()(则)(x F 在]1,0[上连续,且有00)0()0(>-=f F ,01)1()1(<-=f F ,∴由零点定理可知:)(x F 在)1,0(内至少存在一点ξ,使得0)(=ξF ,即:ξξ=)(f唯一性:(反证法)假设有两个点)1,0(,21∈ξξ,且21ξξ<,使得0)()(21==ξξF F)(x F 在]1,0[上连续且可导,且⊂],[21ξξ]1,0[ ∴)(x F 在],[21ξξ上满足Rolle 定理条件∴必存在一点),(21ξξ∈η,使得:01)()(=-'='ηηf F 即:1)(=η'f ,这与已知中1)(≠'x f 矛盾∴假设不成立,即:x x f x F -=)()(在)1,0(内仅有一个根,综上所述:在)1,0(内有且仅有一个点ξ,使得ξξ=)(f7. 设)(x f 在[0,1]上连续,在(0,1)内可导,且)0(f =)1(f =0,)21(f =1。
试证至少存在一个∈ξ(0,1),使()f =1。
分析:)('ξf =1⇒)('x f =1⇒)(x f =x ⇒x x f -)(=0 令 F (x )= x x f -)( 证明: 令 F(x )= x x f -)(F (x )在[0,1]上连续,在(0,1)内可导, F (1)= )0)1((011)1(=<-=-f fF (21)= )1)21((02121)21(=>=-f f由介值定理可知,∃一个∈η(21,1),使F (η)=0 又 F (0)=-)0(f 0=0对F (x )在[0,1]上用Rolle 定理,∃一个∈ξ(0,η)⊂(0,1)使 )('ξF =0 即 )('ξf =18. 设)(x f 在]1,0[上连续,在)1,0(内可导,且)1()0(f f =试证存在ξ和η.满足10<<<ηξ,使0)()(='+'ηξf f 。
证 由拉格朗日中值定理知,)(021)0()21(ξf f f '=-- )21,0(∈ξ)1,21()(211)21()1(∈'=--ηηf f f021)21()1(21)0()21()()(=-+-='+'f f f f f f ηξ 9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη∃∈使得()().2a bf f ξηη+''=(1) 证: (用()b a -乘于(1)式两端,知)(1)式等价于22()()()().12f f b a b a ξηη''-=- (2)为证此式,只要取()(),F x f x =取()G x x =和2x 在[,]a b 上分别应用Cauchy 中值定理,则知22()()()()()(),12f f f b f a b a b a ξηη''-=-=- 其中,(,)a b ξη∈.10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ,使)()()(3/22/2ηξηf b ab a f ++=解:利用柯西中值定理332/)()(3)(ab a f b f f --=ηη 而))(()()(/a b f a f b f -=-ξ 则22/33/332/)())(()()(3)(bab a f a b a b f a b a f b f f ++=--=--=ξξηη(后面略) 11. 设)(x f 在a x ≥时连续,0)(<a f ,当a x >时,0)(/>>k x f ,则在))(,(ka f a a -内0)(=x f 有唯一的实根解:因为0)(/>>k x f ,则)(x f 在))(,(ka f a a -上单调增加 0])(1)[()()()())((//>-=-=-kf a f k a f f a f k a f a f ξξ(中值定理)而0)(<a f 故在))(,(ka f a a -内0)(=x f 有唯一的实根 12. 试问如下推论过程是否正确。
对函数21sin0()00t t f t tt ⎧≠⎪=⎨⎪=⎩在[0,]x 上应用拉格朗日中值定理得:21sin 0()(0)111sin ()2sin cos 00x f x f x x f x x x ξξξξ--'====--- (0)x ξ<< 即:111cos2sinsinx xξξξ=- (0)x ξ<<因0x ξ<<,故当0x →时,0ξ→,由01lim 2sin 0ξξξ+→= 01lim sin 0x x x+→= 得:0lim x +→1cos 0ξ=,即01lim cos0ξξ+→=解:我们已经知道,01lim cos0ξξ+→=不存在,故以上推理过程错误。
首先应注意:上面应用拉格朗日中值的ξ是个中值点,是由f 和区间[0,]x 的端点而定的,具体地说,ξ与x 有关系,是依赖于x 的,当0x →时,ξ不 一定连续地趋于零,它可以跳跃地取某些值趋于零,从而使01lim cos0x ξ+→=成立,而01lim cos0ξξ+→=中要求ξ是连续地趋于零。
故由01lim cos 0x ξ+→=推不出1lim cos0ξξ+→=13. 证明:02x π∀<<成立2cos xx tgx x<<。
证明:作辅助函数()f x tgx =,则()f x 在[0,]x 上连续,在(0,)x 内可导, 由拉格朗日定理知:2()(0)1()0cos f x f tgx f x x ξξ-'===-(0,)x ξ∈ 即:2cos x tgx ξ=,因cos x 在(0,)2π内单调递减,故21cos x 在(0,)2π内单调递增,故222111cos 0cos cos x ξ<<即:22cos cos x xx xξ<< 即:21cos x tgx x<<。