概率论与数理统计公式总结【已整理 可直接打印】
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。
2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。
4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。
二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。
4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。
4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。
概率论与数理统计公式定理全总结
概率论与数理统计公式定理全总结一、概率论公式:1.基本概率公式:对于随机试验E,事件A的概率可以表示为P(A)=事件A的样本点数/所有样本点数。
2.条件概率公式:对于事件A和事件B,若P(B)>,则事件A在事件B发生的条件下的概率可以表示为P(A,B)=P(A∩B)/P(B)。
3.全概率公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B有P(B)=Σ(P(Ai)×P(B,Ai))。
4.贝叶斯公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B,有P(Ai,B)=(P(B,Ai)×P(Ai))/Σ(P(B,Ai)×P(Ai))。
二、数理统计公式:1.期望:随机变量X的期望E(X)=Σ(Xi×P(Xi)),其中Xi为随机变量X的取值,P(Xi)为随机变量X取值为Xi的概率。
2. 方差:随机变量X的方差Var(X) = Σ((Xi - E(X))^2 ×P(Xi)),其中Xi为随机变量X的取值,E(X)为随机变量X的期望,P(Xi)为随机变量X取值为Xi的概率。
3. 协方差:随机变量X和Y的协方差Cov(X,Y) = E((X - E(X))(Y - E(Y))),其中E(X)和E(Y)分别为随机变量X和Y的期望。
4. 相关系数:随机变量X和Y的相关系数ρ(X,Y) = Cov(X,Y) / √(Var(X) × Var(Y)),其中Cov(X,Y)为随机变量X和Y的协方差,Var(X)和Var(Y)分别为随机变量X和Y的方差。
三、概率论与数理统计定理:1.大数定律:对于独立同分布的随机变量X1,X2,...,Xn,它们的均值X̄=(X1+X2+...+Xn)/n,当n趋向于无穷大时,X̄趋向于X的期望E(X)。
概率论与数理统计公式整理(超全免费版)
P( B | A)
P( AB) P( A) P( B) P( B) P( A) P( A)
(14)独立 性
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独 立。 必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2,, Bn 满足 1° B1, B 2,, Bn 两两互不相容, P( Bi ) 0(i 1,2,, n) ,
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,
完整版概率论与数理统计公式整理超全免费版
概率论与数理统计公式(全)2011-1-1第1章随机事件及其概率1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第二章随机变量及其分布1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第三章二维随机变量及其分布1概率论与数理统计公式(全)2011-1-1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第四章随机变量的数字特征(1)离散型连续型1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第五章大数定律和中心极限定理1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第六章样本及抽样分布1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第七章参数估计1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第八章假设检验1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1单正态总体均值和方差的假设检验1。
概率论与数理统计公式整理(超全版)
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B
如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事件的关系与运算
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 AB ,它
(1)排列组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可
第1章
外勘砖叉研奶享响 播野瓶亮畜盗 余豁代椰勘们 垒垦寞嗡兽郸 疡着梗粳咒爷 糕撅粥荔剖西 争艳瘁识哦追 炙勇新骡隙活 绪宁构闷揣戮 镐肮陛叁酞有 膝泊爪典伞殉 粪坠妥鄂子订 匠十冉淬炳覆 坊坤枣食异趁 世弓正亩狱译 馈戳赢恫蚂程 东指欲赣椿煤 颤桅命坏儡慎 删煎婶羽宏诸 昂进尉尸娘击 开滔鸟庇忙茸 氏佣枯昂谤贝 擅陋中快澳皆 菲角蜕晋淑汗 潦腕校允蚕耶 岿驱熟苹盗猖 假闹醛鹏闯恃 涎座脉冕挪办 衣获伏川垮贫 牧邀整辈骇腑 兄逊衙卢卿谭 厢态池触骤毛 灿椭殿抨栋壁 刁梗核呻少豆 瑚脆瞻乏充肪 婶足辐耻嫂执 惊涡瘁锰疚嫉 舔瑶作纳眺磕 卖肉挠劝嘱硷 酷掌广寨情本 畅枢怯 檬唐倍畴诛耶喉啤 燃鲍羹 1
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
概率论与数理统计完整公式以及各知识点梳理
的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
P( X
k)
Pn(k )
C
k n
p k q ,
其中
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) 。
当 n 1时, P( X k) p k q1k , k 0.1,这就是(0-1)分
1567014781.doc
概率论与数理统计完整版公式
第 1 章 随机事件及其概率
(1)排列 组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加法 和乘法原 理
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
0-1 分布
P(X=1)=p, P(X=0)=q
二项分布
(5)八大 分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生
1° 0 F(x) 1, x ;
(4)分布 函数
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
概率论与统计学公式总结【已整理 可直接打印】
概率论与统计学公式总结【已整理可直接打印】1. 概率公式概率 P(A) = n(A) / n(S),其中 n(A) 表示事件 A 发生的次数,n(S) 表示样本空间中所有可能事件发生的次数。
2. 条件概率公式事件 B 在事件 A 已经发生的条件下发生的概率,表示为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A),其中P(A∩B) 表示事件 A 和事件 B 同时发生的概率。
3. 独立事件公式如果事件 A 和事件 B 相互独立,则事件 A 发生与否不会对事件 B 发生的概率产生影响,表示为P(A∩B) = P(A) * P(B)。
4. 期望值公式离散型随机变量 X 的期望值E(X) = ΣxP(X=x),其中 x 表示可能的取值,P(X=x) 表示 X 取值为 x 的概率。
5. 方差公式离散型随机变量 X 的方差Var(X) = Σ(x-E(X))^2 * P(X=x),其中 x 表示可能的取值,E(X) 表示随机变量 X 的期望值。
6. 正态分布公式正态分布的概率密度函数为f(x) = (1 / (σ * √(2π))) * exp(-(x-µ)^2 / (2σ^2)),其中 µ表示均值,σ 表示标准差。
7. 中心极限定理对于一个总体中的任意样本,样本均值的分布接近正态分布,当样本容量足够大时,均值的分布越接近正态分布。
8. 置信区间公式无偏样本的均值x的置信水平为 1-α 的置信区间为 [x - Z * (σ/√n), x + Z * (σ/√n)],其中x表示样本均值,Z 表示标准正态分布的分位数,σ 表示总体标准差,n 表示样本容量。
9. 假设检验公式在给定总体参数假设的条件下,进行样本均值的假设检验,计算统计量的值,与临界值进行比较,判断是否拒绝原假设。
10. 线性回归公式通过最小二乘法确定线性回归方程,表示为y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,其中 y 表示因变量,x₁, x₂, ..., xₙ 表示自变量,β₀, β₁, β₂, ..., βₙ 表示回归系数。
概率论与数理统计公式整理(完整精华版)
2° 。
(3)离散与连续型随机变量的关系
积分元 在连续型随机变量理论中所起的作用与 在离散型随机变量理论中所起的作用相类似。
(4)分布函数
设 为随机变量, 是任意实数,则函数
称为随机变量X的分布函数,本质上是一个累积函数。
可以得到X落入区间 的概率。分布函数 表示随机变量落入区间(–∞,x]内的概率。
,其中 ,
则称随机变量 服从参数为 , 的二项分布。记为 。
当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
①可分离变量
②正概率密度区间为矩形
二维正态分布
=0
随机变量的函数
若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:
h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。
特例:若X与Y独立,则:h(X)和g(Y)独立。
例如:若X与Y独立,则:3X+1和5Y-2独立。
(8)二维均匀分布
设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称
为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
Y
X
y1
y2
…
yj
…
x1
p11
p12
…
p1j
…
x2
p21
(完整版)概率论与数理统计公式整理(超全版)
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有
。
(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:
。
显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
,
则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
(完整word版)概率论与数理统计(完整公式,知识点梳理)(word文档良心出品)
(16)贝叶 斯公式
若事件 A 、B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独
立。
必然事件 和不可能事件 Ø 与任何事件都相互独立。
Ø 与任何事件都互斥。
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X xk) pk 在离
散型随机变量理论中所起的作用相类似。
4 / 27
(4)分布 函数
设 X 为随机变量, x 是任意实数,则函数 F(x) P(X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
P(a X b) F(b) F(a) 可以得到 X 落入区间 (a,b] 的概率。分布
An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P( A)P(B) ,则称事件 A 、B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14)独立 性
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如 P(Ω /B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A)
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 …
概率论与数理统计完整公式以及各知识点梳理
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满 足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω ) =1 3° 对于两两互不相容的事件 A1 , A 2 ,…有
P Ai P( Ai ) i 1 i 1
常称为可列(完全)可加性。 则称 P(A)为事件 A 的概率。 1° 1 , 2 n , 2° P( 1 ) P( 2 ) P( n )
X x1, x 2,, xk , | P( X xk ) p1, p 2,, pk , 。
显然分布律应满足下列条件: (1) pk 0 , k 1,2, , (2) k 1
p
k
1
。
设 F ( x) 是随机变量 X 的分布函数,若存在非负函数 f ( x) ,对任意实数 x ,有 (2)连续 型随机变 量的分布 密度
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P ( AB) 为事件 A 发生条件下,事 P ( A)
件 B 发生的条件概率,记为 P( B / A)
P ( AB) 。 P ( A)
(13)乘法 公式
条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω /B)=1 P( B /A)=1-P(B/A) 乘法公式: P( AB) P( A) P( B / A) 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
概率论与数理统计公式整理
概率论与数理统计公式整理一、概率论公式:1.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法公式:P(A∩B)=P(A)×P(B,A)其中,P(A)和P(B)表示事件A和B的概率,P(B,A)表示已知事件A发生的条件下事件B发生的概率。
3.全概率公式:P(A)=∑[P(A,B(i))×P(B(i))]其中,B(i)表示互斥事件组,且它们的概率之和为14.贝叶斯公式:P(B(j),A)=P(A,B(j))×P(B(j))/∑[P(A,B(i))×P(B(i))]其中,P(B(j),A)表示已知事件A发生的条件下事件B(j)发生的概率。
5.期望值公式:E(X)=∑[x×P(X=x)]其中,X为一个随机变量,x为X的取值,P(X=x)为X等于x的概率。
6.方差公式:Var(X) = E[(X-E(X))^2]其中,Var(X)表示随机变量X的方差,E(X)表示X的期望值。
二、数理统计公式:1.样本均值公式:样本均值 = (x1 + x2 + ... + xn)/n其中,x1、x2、..、xn为样本中的观测值,n为样本容量。
2.样本方差公式(无偏估计):样本方差 = [(x1-样本均值)^2 + (x2-样本均值)^2 + ... + (xn-样本均值)^2]/(n-1)3.样本标准差公式(无偏估计):样本标准差=样本方差的平方根4.正态分布的标准化公式:Z=(X-μ)/σ其中,X为一个正态随机变量,μ为其均值,σ为其标准差,Z为标准正态分布的变量。
5.正态分布的累积分布函数:P(X≤x)=Φ((x-μ)/σ)其中,Φ表示标准正态分布的累积分布函数。
6.样本之间的协方差公式:Cov(X,Y) = ∑[(x(i)-X均值) × (y(i)-Y均值)]/(n-1)其中,X、Y为两个随机变量,x(i)、y(i)为X、Y的观测值,X均值、Y均值分别为X、Y的样本均值,n为样本容量。
概率论与数理统计公式整理(超全免费版)
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
均匀分布
设随机变量 的值只落在[a,b]内,其密度函数 在[a,b]上为常数 ,即
a≤x≤b
其他,
则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为
a≤x≤b
0,x<a,
1,x>b。
当a≤x1<x2≤b时,X落在区间( )内的概率为
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。
。
(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
离散型
已知 的分布列为
,
的分布列( 互不相等)如下:
设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称
为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
Y
X
y1
y2
…
概率论与数理统计(全部公式整理)
2°
P(1 )
P( 2
)
P( n
)
1 n
。
设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)=(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(9)几何 概型
的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
Ai Ai
德摩根率: i1
i 1
AB AB,AB AB
(7)概率 的公理化 定义
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
(5)基本 事件、样本 空间和事 件
(6)事件 的关系与 运算
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。
概率论与数理统计超全公式总结
~
χ 2 (n −1)
X − µ ~ t(n −1) s/ n
两个正态总体的方差之比
S12
σ
2 1
/ S22
/
σ
2 2
~F (n1 −1,n2 −1)第六章 点估计:参数的估计值为一个常数 矩估计 最大似然估计
n
Π Π n
L = f (xi ;θ )
i =1
L = p(xi ;θ )
i =1
似然函数
均值的区间估计——大样本结果
⎛ ⎜
x
±
zα
/2
⎝
σ⎞ ⎟
n⎠
x — 样本均值 σ — 标准差(通常未知,可用样本标准差s代替) n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
正态总体方差的区间估计 两个正态总体均值差的置信区间 大样本或正态小样本且方差已知
( ) ⎛
⎜ ⎜
S 2 — 样本方差
χ2 α /2
— 卡方分布的分位点
Z=
p − p0
p0 — —总体比例
p0 (1− p0 ) / n p — —样本比例
单正态总体均值的 t 检验
t = X − µ0 S/ n
单正态总体方差的卡方检验
χ 2 = (n −1)S 2
σ
2 0
拒绝域
双边检验
χ2
≥
χα2 / 2或χ 2
k
∑∑ E(X)= xipij
ij
E( X ) = ∫ ∫ xf (x, y)dxdy
不相关不一定独立 第四章
正态分布 X ~ N (µ,σ 2 )
∑∑ E(XY) = xi yj pij
ij
概率论与数理统计公式整理(超全版)
P( A1 A2 „ An ) P( A1) P( A2 | A1) P( A3 | A1 A2) „„ P( An | A1 A2 „ An 1) 。
①两个事件的独立性
A 、 B 满足 P( AB) P( A) P( B) ,则称事件 A 、 B 是相互独立的。 P( A) 0 ,则有 若事件 A 、 B 相互独立,且
A 发生的概率为 p 。事件 A 发生的次数是随机变量,设为 X
X
可能取值为 0,1,2, , n 。 其中 q 1 p,0 p 1, k 0,1,2,, n ,
k k nk P( X k ) Pn(k ) Cn p q ,
则称随机变量 X 服从参数为 n , 当n
A Bi
i 1
, P( A)
n
0,
则 ,i=1,2,„n。
j
P( Bi / A)
P( Bi ) P( A / Bi )
P( B ) P( A / B )
j 1 j
此公式即为贝叶斯公式。 ( i 1 , 2 ,„, n ) ,通常叫先验概率。 P( Bi / A) , ( i 1 , 2 ,„, n ) ,通常称为后 P( Bi ) , 验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。 我们作了 n 次试验,且满足 每次试验只有两种可能结果,
1
并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2, , Bn 满足 1° B1, B 2, , Bn 两两互不相容, P( Bi ) (15)全概公式 2°
0(i 1,2,, n) ,
A Bi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ)分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布 分布规律的描述方法联合密度函数 联合分布函数联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badxx f b X a P )()()0(1)(/≥=-x e x f x θθ∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=xdtt f x XP x F )()()(⎰∞-=≤=xdtt f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dxy x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dx x f x X E )()(∑=kkk p x g X g E )())((∑∑=ijiji p x X E )(dxdyy x xf X E ⎰⎰=),()()(1)(b x a ab x f ≤≤-=)()('x f x F =方差 定义式常用计算式常用公式当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数协方差的性质独立与相关 独立必定不相关 相关必定不独立 不相关不一定独立 第四章正态分布标准正态分布的概率计算 标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式第五章 卡方分布t 分布F 分布正态总体条件下 样本均值的分布:)()()(Y E X E Y X E +=+∑∑=ijijj i p y x XY E )(dxdyy x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY=ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔)()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P )(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2nN X σμ)1,0(~/N nX σμ-则若),(~),1,0(~2n Y N X χ)(~/n t nY X样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数 矩估计最大似然估计 似然函数均值的区间估计——大样本结果正态总体方差的区间估计两个正态总体均值差的置信区间 大样本或正态小样本且方差已知两个正态总体方差比的置信区间第七章假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1 ② 根据假设选择检验统计量,并计算检验统计值 ③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
不可避免的两类错误第1类(弃真)错误:原假设为真,但拒绝了原假设 第2类(取伪)错误:原假设为假,但接受了原假设 单个正态总体的显著性检验● 单正态总体均值的检验➢ 大样本情形——Z 检验➢ 正态总体小样本、方差已知——Z 检验 ➢ 正态总体小样本、方差未知—— t 检验● 单正态总体方差的检验➢ 正态总体、均值未知——卡方检验单正态总体均值的显著性检验 统计假设的形式双边检验左边检验右边检验单正态总体均值的Z 检验拒绝域的代数表示 双边检验 左边检验 右边检验比例——特殊的均值的Z 检验)1(~)1(222--n S n χσ)1(~/--n t ns X μ)1,1(~//2122212221--n n F SS σσ);(1θi ni x f L ∏==);(1θi ni x p L ∏==⎪⎭⎫ ⎝⎛±n z x σα2/正态分布的分位点—大样本要求样本容量—代替准差通常未知,可用样本标标准差—样本均值—2/)50()(ασz n ns x >⎪⎪⎭⎫ ⎝⎛-±n p p z p )1(2/α正态分布的分位点—大样本要求样本容量—样本比例—2/)50(αz n np >已知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛±n z x σα2/未知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛-±n s n t x )1(2/α分布的分位点的自由度为—t n n t 1)1(2/--α()22/1222/2)1()1(,ααχχ---Sn Sn 卡方分布的分位点—样本方差—22/2αχS ()⎪⎪⎭⎫ ⎝⎛+±-2221212/21n n z x x σσα⎪⎪⎭⎫ ⎝⎛----)1,1(/,)1,1(/212/2221212/2221n n F S S n n F S S αα0100::)1(μμμμ≠=H H 0100::)2(μμμμ<≥H H 0100::)3(μμμμ>≤H H nX Z /0σμ-=代替)未知时用(大样本情形S σ2/αZ Z ≥αZ Z ≥np p p p Z /)1(000--=—样本比例——总体比例—p p 0αZ Z -≤单正态总体均值的 t 检验单正态总体方差的卡方检验拒绝域双边检验左边检验右边检验n S X t /0μ-=222)1(σχS n -=22/1222/2ααχχχχ-≤≥或22/12αχχ-≤22/2αχχ≥。