第七章应力状态和强度理论习题答案
孙训方材料力学第五版1课后习题答案
第七章应力状态和强度理论7-17-27-37-47-57-67-77-87-97-107-117-127-137-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。
由于实用的原因,图中的角限于范围内。
作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应力分别与相应的许用应力比较。
现设胶合缝的许用切应力为许用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。
为了使杆能承受最大的荷载F,试问角的值应取多大?解:按正应力强度条件求得的荷载以表示:按切应力强度条件求得的荷载以表示,则即:当时,,,时,,,时,,时,,由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。
若按胶合缝的达到的同时,亦达到的条件计算则即:,则故此时杆件承受的荷载,并不是杆能承受的最大荷载。
返回7-2(7-7)试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。
解:=由应力圆得返回7-3(7-8)各单元体面上的应力如图所示。
试利用应力圆的几何关系求:(1)指定截面上的应力;(2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,,(b),,,,(c), , ,(d),,,,,返回7-4(7-9) 各单元体如图所示。
试利用应力圆的几何关系求:(1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,(b),,,(c),,,(d),,,返回7-5(7-10)已知平面应力状态下某点处的两个截面上的应力如图所示。
试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的夹角值。
解:由已知按比例作图中A,B两点,作AB的垂直平分线交轴于点C,以C 为圆心,CA或CB为半径作圆,得(或由得半径)(1)主应力(2)主方向角(3)两截面间夹角:返回7-6(7-13) 在一块钢板上先画上直径的圆,然后在板上加上应力,如图所示。
第7章应力状态和强度理论(答案)
17.1已知应力状态如图所示(单位:MPa ),试求:⑴指定斜截面上的应力; ⑵主应力;⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。
解:100x MPa σ=200y MPa σ=100x MPa τ=030α=-(1)cos 2sin 2211.622x yx yxασσσσσατα+-=+-=sin 2cos 293.32x yx MPa ασστατα-=+=(2)max 261.82x yMPa σσσ+==min 38.22x yMPa σσσ+==MPa 8.2611=σMPa 2.382=σ03=σ(3)13max 130.92MPa σστ-==7.2扭矩m kN T ⋅=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο30=α方向上的正应变。
设E=200GPa,0.3υ=。
解:表面上任一点处切应力为:max 59PTMPa W τ== 表面上任一点处单元体应力状态如图30sin 251MPa στα=-=-120sin 251MPa στα=-=()004303012013.310Eεσυσ-=-=⨯2σττ7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应变4100.2-⨯=ε,已知转速min /120r ,G=80GPa ,试求轴所传递的功率。
解:表面任一点处应力为max 9550PPP T n W W τ==max 9550P W nP τ∴=纯剪切应力状态下,045斜截面上三个主应力为:1στ=20σ=3στ=-由广义胡克定律 ()11311E E υεσυστ+=-=又()21E G υ=+Q V 2G τε∴= 代入max 9550P W nP τ=,得109.4P KW =7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο60方向上的正应变460101.4-⨯=οε,E=200GPa ,0.3υ=,试求荷载P 。
应力状态分析与强度理论-习题与答案
(A)受力构件横截面上各点的应力情况
(B)受力构件各点横截面上的应力情况
(C)构件未受力之前,各质点之间的相互作用力状况
(D)受力构件内某一点在不同横截面上的应力情况
2、一实心均质钢球,当其外表面迅速均匀加热,则球心O点处的应力状态是()
(A)单向拉伸应力状态(B)平面应力状态
(A)铸铁为塑性材料
(B)铸铁在三向压应力状态下产生塑性变形
(C)铸铁在单向压应力作用下产生弹性变形
(D)材料剥脱
7、混凝土立方试块在作单向压缩试验时,若在其上、下表面上涂有润滑剂,则试块破坏时将沿纵向裂开,其主要原因是()
(A)最大压应力(B)最大剪应力
(C)最大伸长线应变(D)存在横向拉应力
8、一中空钢球,内径d=20cm,内压p=15Mpa,材料的许用应力 =160Mpa,则钢球壁厚t只少是()
(A)t=47㎜(B)t=2.34㎜
(C)t=4.68㎜(D)t=9.38㎜
9、将沸水注入厚玻璃杯中,有时玻璃杯会发生破裂,这是因为()
(A)热膨胀时,玻璃杯环向线应变达到极限应变,从内、外壁同时发生破裂
(B)玻璃材料抗拉能力弱,玻璃杯从外壁开始破裂
(C)玻璃材料抗拉能力弱,玻璃杯从内壁开始破裂
(D)水作用下,玻璃杯从杯底开始破裂
因圆柱与钢筒之间的空隙 ,而 > ,故圆柱受钢筒弹性约束。设柱与筒之间的作用力为p,则铝柱中各点处主应力为
钢筒中各点处主应力为
设铝柱和钢筒的径向应变分别为 ,变形协变条件为
即
于是
得
p=2.74Mpa
故钢筒周向应力为
即
得
所以则其相当应力为
由于 <0.5
材料力学B试题7应力状态_强度理论.docx
40 MPa.word 可编辑 .应力状态强度理论1. 图示单元体,试求60100 MPa(1)指定斜截面上的应力;(2)主应力大小及主平面位置,并将主平面标在单元体上。
解: (1)x y xy cos 2x sin 276.6 MPa22xy sin 2x cos232.7 MPa231 (2)max xy( x y) 2xy281.98MPa39.35min22121.98181.98MPa,2,3121.98MPa12xy12000arctan()arctan39.352x y24020060602. 某点应力状态如图示。
试求该点的主应力。
129.9129.9解:取合适坐标轴令x25 MPa,x由120xy sin 2xy cos20 得y2所以m axx y( xy ) 2xy 2m in 22129.9 MPa2525(MPa)125MPa50752( 129.9)250 150100 MPa2001 100MPa,20 ,3200MPa3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。
解:y150 MPa,x120 MPa.word 可编辑 .由得45xy sin 2xy cos 2x 15080 22x10MPa所以max xy(x y)2222xy min yx454545214.22 MPa 74.221214.22 MPa,20 ,45374.22MPa4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。
求靠圆筒内壁任一点处的主应力。
0.19210 3解:xπ(0.10440.14)0.05 5.75MPat32x y pd MPa504tpd MPa1002tM e p M emax x y(x y ) 2xy2min22100.7 MPa 49.351100.7MPa,249.35 MPa,3 4 MPa5.受力体某点平面上的应力如图示,求其主应力大小。
材料力学带答疑
第七章应力和应变分析强度理论1.单元体最大剪应力作用面上必无正应力答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。
拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。
)2. 单向应力状态有一个主平面,二向应力状态有两个主平面答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零)3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。
)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零)5.应力超过材料的比例极限后,广义虎克定律不再成立答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。
)6. 材料的破坏形式由材料的种类而定答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。
)二、选择1.滚珠轴承中,滚珠与外圆接触点为应力状态。
A:二向; B:单向C:三向D:纯剪切答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。
)2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。
A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。
)3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面中。
A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面;答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力状态为二向不等值拉伸,其σx =pD/4t、σy=pD/2t。
材料力学第五版 第七章 应力状态 答案
第七章应力状态与强度理论一、教学目标和教学内容1.教学目标通过本章学习,掌握应力状态的概念及其研究方法;会从具有受力杆件中截取单元体并标明单元体上的应力情况;会计算平面应力状态下斜截面上的应力;掌握平面应力状态和特殊空间应力状态下的主应力、主方向的计算,并会排列主应力的顺序;掌握广义胡克定律;了解复杂应力状态比能的概念;了解主应力迹线的概念。
掌握强度理论的概念。
了解材料的两种破坏形式(按破坏现象区分)。
了解常用的四个强度理论的观点、破坏条件、强度条件。
掌握常用的四个强度理论的相当应力。
了解莫尔强度理论的基本观点。
会用强度理论对一些简单的杆件结构进行强度计算。
2.教学内容○1应力状态的概念;○2平面应力状态分析;○3三向应力状态下的最大应力;○4广义胡克定律•体应变;○5复杂应力状态的比能;⑥梁的主应力•主应力迹线的概念。
讲解强度理论的概念及材料的两种破坏形式。
讲解常用的四个强度理论的基本观点,并推导其破坏条件从而建立强度计算方法。
介绍几种强度理论的应用范围和各自的优缺点。
简单介绍莫尔强度理论。
二、重点难点重点:1、平面应力状态下斜截面上的应力计算,主应力及主方向的计算,最大剪应力的计算。
2、广义胡克定律及其应用。
难点:1、应力状态的概念,从具体受力杆件中截面单元体并标明单元体上的应力情况。
2、斜截面上的应力计算公式中关于正负符号的约定。
3、应力主平面、主应力的概念,主应力的大小、方向的确定。
4、广义胡克定律及其应用。
5 强度理论的概念、常用的四个强度理论的观点、强度条件及其强度计算。
6 常用四个强度理论的理解。
7 危险点的确定及其强度计算。
三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
四、建议学时10学时五、讲课提纲1、应力状态的概念所谓“应力状态”又称为一点处的应力状态(state of stresses at a given point),是指过一点不同方向面上应力的集合。
材料力学 第07章 应力状态分析与强度理论
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
材料力学习题册答案_第7章_应力状态
第 七 章 应力状态 强度理论一、 判断题1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。
(√)2、单元体中正应力为最大值的截面上,剪应力必定为零。
(√)3、单元体中剪应力为最大值的截面上,正应力必定为零。
(×) 原因:正应力一般不为零。
4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。
(×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。
三向等拉或等压倒是为一个点。
5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。
(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上6、材料在静载作用下的失效形式主要有断裂和屈服两种。
(√)7、砖,石等脆性材料式样压缩时沿横截面断裂。
(×)8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。
(×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论9、纯剪应力状态的单元体既在体积改变,又有形状改变。
(×) 原因:只形状改变,体积不变10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管的冰不会被破坏,只是因为冰的强度比铸铁的强度高。
(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态二、 选择题1、危险截面是( C )所在的截面。
A 最大面积B 最小面积C 最大应力D 最大力2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。
A 单元体的形状可以是任意的B 单元体的形状不是任意的,只能是六面体微元C 不一定是六面体,五面体也可以,其他形状则不行D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B )A 单向应力状态B 二向应力状态C 三向应力状态D 各向等应力状态 5、分析处于平面应力状态的一点,说确的是( B )。
工程力学c材料力学部分第七章 应力状态和强度理论
无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
应力状态分析及强度理论习题讲解
答案:
D
四、计算
1. 构件内危险点应力状态如图所示,试作强度校核: 1)材料为铸铁,已知许用拉应力 t 30MPa,压应力 90MPa;3)材料仍为铸铁,应力分量中 为压应力。
15MPa
c 90MPa,泊松比 =0.25;2)材料为铝合金,
15MPa
45 , 45
90 90
45 45
45
x
O
45 , 45
(b)
45
45
x
(c)
(d)
4.用电阻应变仪测得空心钢轴表面一点与母线成45 方向 上的正应变 45 200 103。已知该轴转速为120r / min , 外径D 120mm,内径d 80mm,钢材E 210GPa, =0.28, 求轴传递的功率。
45
a b
1
45
1
3
O
45 3
x
(b)
4 WP D 1 12 10 1 8 /12 16 16 272.3 106 m 3 n E 所以 N WP 45 9550 1 120 210 109 272.3 106 200 103 112kW 9550 1 0.28 3 4 3 6
n
dA
y
30
120
1
t
30
20
1 2
x
2
40 30
(b)
4 5,26 B C
68
240
3)作应力圆(图(c)) (1)取比例尺,1cm-20MPa,在 - 坐标平 面内作点1(+20,0)、2(-40,0);
材料力学 第七章 应力状态和强度理论
y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
德州学院,材料力学,期末试题7章习题讲解
德州学院,材料⼒学,期末试题7章习题讲解第七章⼒和应变分析强度理论 §7.1应⼒状态概述1.过受⼒构件内⼀点,取截⾯的不同⽅位,这⼀点在各个⾯上的(D ). (A )正应⼒相同,切应⼒不同;(B )正应⼒不同,切应⼒相同;(C )正应⼒和切应⼒都相同;(D )正应⼒和切应⼒都不同。
2.关于单元体的描述,下列正确的是A(A )单元体的三维尺⼨必须是微⼩的;(B )单元体是平⾏六⾯体;(C )单元体必须是正⽅体;。
(D )单元体必须有⼀对横截⾯。
3.对于图⽰承受轴向拉伸的锥形杆上的A 点,哪⼀种应⼒状态是正确的Dxτxx4.在单元体的主平⾯上()。
(A )正应⼒⼀定最⼤;(B )正应⼒⼀定为零;(C)切应⼒⼀定最⼩;(D )切应⼒⼀定为零。
§7.2⼆向应⼒状态实例1. Q235钢制成的薄壁圆筒形蒸汽锅炉,壁厚δ,内径D ,蒸汽压⼒p ,试计算锅炉壁内任意⼀点处的三个主应⼒。
注:薄壁圆筒受⼒均匀,因此,任意点的应⼒状态均相同。
1.求⽔平⽅向上的正应⼒σx2.求竖直⽅向上的正应⼒σy3.求垂直于纸⾯⽅向上的正应⼒σz 薄壁圆筒与纸⾯垂直⽅向上的σz 为零.总结:薄壁圆筒的三个主应⼒为:薄壁圆筒为两向应⼒状态注意事项:1.注意单位配套使⽤;2. 纵向截⾯上正应⼒是横截⾯正应⼒的两倍;3.按规定排列正应⼒。
课本215页例7.1如下由Q235钢制成的蒸汽锅炉,壁厚δ=10mm,内径D=1m,蒸汽压⼒p=3MPa,试计算锅炉壁内任意⼀点处的三个主应⼒。
经分析,薄壁圆筒为两向应⼒状态2. 圆球形容器的壁厚为δ,内径为D,内压为p,求容器内任意⼀点的应⼒。
注:薄壁圆球受⼒均匀,因此,任意点的应⼒状态均相同。
1.求⽔平⽅向上的正应⼒σx2.求竖直⽅向上的正应⼒σy3.求垂直于纸⾯⽅向上的正应⼒σz薄壁圆筒与纸⾯垂直⽅向上的σz为零.球形薄壁容器的三个主应⼒为:受内压的球形薄壁容器为⼆向应⼒状态§7.3 ⼆向应⼒状态分析——解析法⼆向应⼒状态下,单元体各⾯上应⼒分量皆为已知,如下图所⽰:求垂直于xy平⾯的任意斜截⾯ef上的应⼒及主应⼒和主平⾯⼀.符号规定1.正应⼒正负号规定2.切应⼒正负号规定使微元或其局部顺时针⽅向转动为正;反之为负。
第7章-应力状态和强度理论03
3)最大切应力理论(第三强度理论)
假设最大切应力max是引起材料塑性屈服的因 素,则:
max jx
对低碳钢等塑性材料,单向拉伸时的屈服是 由45°斜截面上的切应力引起的,因而极限应力 jx可由单拉时的屈服应力求得,即:
jx
因为: max
ss
2
常数
s1 s 3
对图示平面应力状态,不能分别用
s max [s ]
max [ ]
来建立,因为s与之间会相互影响。 研究复杂应力状态下材料破坏的原因,根据一 定的假设来确定破坏条件,从而建立强度条件,这 就是强度理论的研究内容。
4)材料破坏的形式 常温、静载时材料的破坏形式大致可分为: • 脆性断裂型: 例如: 铸铁:拉伸、扭转等; 低碳钢:三向拉应力状态。 • 塑性屈服型: 例如: 低碳钢:拉伸、扭转等; 铸铁:三向压缩应力状态。 可见:材料破坏的形式不仅与材料有关,还与 应力状态有关。
单拉: s r 4 3 s s s 由此可得: s
1
3 [ ] 0.577[s ] 0.6[s ]
s s 0.577s s
例:两端简支的工字钢梁承受荷载如图a所示。已 知材料(Q235钢)的许用应力为[s]=170MPa和[]= 100MPa。试按强度条件选择工字钢号码。
W 508 10 m
6
3
再按切应力强度条件进行校核。对28a号工 字钢,查表可得截面几何性质为:
I z 71.14 10 6 m 4
Iz S z ,max
d 0.85 10 m
2
24.62 10 2 m
中性轴处的最大切应力(纯剪应力状态)为:
max
家电公司研发部资料材料力学习题答案(七)
第七章 应力状态和强度理论7-1 围绕受力构件内某点处取出的微棱柱体的平面图如图所示,已知该点处于平面应力状态,AC 面上的正应力σ=-14MPa ,切应力为零,试从平衡方程确定σx 和τx 值。
答:σx =37.9MPa ,τx =74.2MPa 解:利用公式求解x x x x x cos 2sin 222sin 2cos 22yyyαασσσσσατασστατα+-=+--=+代入数据得x x x x x 9292140.3430.94229200.940.3432σστστ+--=+⨯-⨯-=⨯+⨯σx =37.9MPa ,τx =74.2MPa7-2 试绘出图示水坝内A 、B 、C 三小块各截面上的应力(只考虑平面内受力情况)。
A: B: C:7-3 已知平面应力状态如图所示,已知σx =100MPa ,σy =40MPa,以及该点处的最大主应力σ1=120MPa ,试用应力圆求该点处的τx 及另外两个主应力σ2,σ3和最大剪应力τmax。
答:MPa,60,0MPa,20max 32===τσσx τ=40 MPa 解:由应力圆分析可得A BC题 7 - 2 图题 7 - 1 图111(100,),(40,),(,0)x x c D D C ττσ'-x 121004070MPa221207050MPa 705020MPayc c c r r σσσσσσσ++====-=-=∴=-=-=是平面应力状态3=0σ∴222x x 13max (100)40MPa120060MPa 22c r σττσστ∴=-+⇒=--===7-4 已知平面应力状态一点处互相垂直平面上作用有拉应力90MPa 和压应力50MPa ,这些面上还有剪应力,如果最大主应力为拉应力100MPa ,试求:(1) 上述面上的切应力; (2) 此平面上另一主应力; (3) 最大切应力平面上的正应力; (4) 最大切应力。
材料力学 第七章 应力状态与强度理论
取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2
cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2
x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2
第七章应力状态习题答案
( 2 )图解法作应力圆如题 7 . 4 图( d 1)所示。应力圆与 σ 轴的两个交点的坐标,即是 σ 1 、 σ 3 的数 值。由 CDx ,顺时针旋转 2α 0 ,可确定主平面的方位。 CDx 的长度即为最大切应力的数值。主应力单 元体如题 7 . 4 图(d2)所示。
5
( e )如题 7 . 4 图( e )所示。
τα =
σ x −σ y
2
⎛ 100 − 50 ⎞ sin 2α + τ xy cos 2α = ⎜ sin120D + 0 ⎟ MPa = 21.7 MPa 2 ⎝ ⎠
( 2 )图解法 作应力圆如题 7 . 3 图( cl )所示。从图中可量得 Dα 点的坐标,此坐标便是 σ α 和 τ α 数值。 ( d )如题 7 . 3 图( d )所示。
按照主应力的记号规定
σ 1 =4.7MPa, σ 2 =0, σ 3 =-84.7MPa
tan 2α 0 = − 2τ xy
σ x −σ y
=
=
−2 × 20 = −0.5 , α 0 =-13.3° 0 + 80
τ max =
σ1 − σ 3
2
4.7 + 84.7 MPa = 44.7 MPa 2
。
1
斜截面 AB 与 x 平面的夹角 a2 = 105 ,其上应力 σ a2=45MPa,τ a = 25 3MPa 。将这些数据代入斜截面
。
2
上应力公式中,对 AB 斜截面有
σx +σ y
2
+
σ x −σ y
2
cos 210。− τ xy sin 210。= 45 ①
σ x −σ y
应力状态和强度理论(答案)
7.1已知应力状态如图所示(单位:MPa ),试求:⑴指定斜截面上的应力; ⑵主应力;⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。
解:100x MPa σ=200y MPa σ=100x MPa τ=030α=-(1)cos 2sin 2211.622x yx yxασσσσσατα+-=+-=sin 2cos 293.32x yx MPa ασστατα-=+=(2)max 261.82x yMPa σσσ+==min 38.22x yMPa σσσ+==MPa 8.2611=σMPa 2.382=σ03=σ(3)13max 130.92MPa σστ-==7.2扭矩m kN T ⋅=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο30=α方向上的正应变。
设E=200GPa,0.3υ=。
解:表面上任一点处切应力为:max 59PTMPa W τ== 表面上任一点处单元体应力状态如图30sin 251MPa στα=-=-120sin 251MPa στα=-=()004303012013.310Eεσυσ-=-=⨯2σττ7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应变4100.2-⨯=ε,已知转速min /120r ,G=80GPa ,试求轴所传递的功率。
解:表面任一点处应力为max 9550PPP T n W W τ==max 9550P W nP τ∴=纯剪切应力状态下,045斜截面上三个主应力为:1στ=20σ=3στ=-由广义胡克定律 ()11311E E υεσυστ+=-=又()21E G υ=+Q V 2G τε∴= 代入max 9550P W nP τ=,得109.4P KW =7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο60方向上的正应变460101.4-⨯=οε,E=200GPa ,0.3υ=,试求荷载P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 应力状态和强度理论习题答案
一、单项选择题
1、A
2、B
二、填空题
1、主平面 主应力
2、 脆性 塑性
3、主平面 主应力 4 、eq313
s s s =-
5、主平面 主应力
6、单向
7、二向
8、三向
二、填空题
1、解: (1)应力分量
MPa
MPa xy y x 200
50-===τσσ
max min
57.0507.022x y MPa MPa σσσσ+⎧⎧==±=⎨⎨-⎩⎩ MPa MPa
0.70
0.57321-===∴σσσ
(2)最大剪应力
MPa 0.3220
.70.572
3
1max =+=
-=
σστ
2、解:
(1)应力分量
MPa
MPa MPa xy y x 253060-===τσσ
max min
74.2603015.822x y MPa MPa σσσσ+⎧⎧+=±=
±=⎨⎨⎩⎩
08
.152.74321===∴σσσMPa
(2)最大剪应力
MPa 1.3720
2.742
3
1max =-=
-=σστ
三、计算题
1、 解 简化力系
()
()()
[]
200m m d 32
109.11025.1W T M m 25KN .12
1
5.22D F -2F M 9.5KN 522.52F F F F 3
2
62
6Z
2
Max
2Max r3P ≈≤⨯+⨯=
+=⋅=⨯===++=++=解出总σπσd
2、解 由题
()
()()
[]
σπσ≤≈⨯+⨯=
+=-=⋅⨯=⨯⨯=⋅=≤≤⋅-==⋅⨯=⨯⨯=⋅=∑MPa d W T M M
T m m N L X X F Z
r AB 12932
104.1105.1105.1150101L F M 0M 0M
mm
N 104.1140101L F M 3
2
52
52
2353AB Max 1A
53BC
所以符合强度 3、解:
(1)外力分析,将作用在胶带轮上的胶带拉力F1、F2向轴线简化,结果如图 传动轴受竖向主动力:
kN 1436521=++=++=F F G F , 此力使轴在竖向平面内弯曲。
附加力偶为:
()()m kN 8.16.03621⋅=⨯-=-=R F F M e , 此外力偶使轴发生变形。
故此轴属于弯扭组合变形。
(2)内力分析
分别画出轴的扭矩图和弯矩图如图。
危险截面上的弯矩m kN 2.4⋅=M ,扭矩m kN 8.1⋅=T (3)强度校核
[]
346.6r Z
MPa W σσ=
=
=≤
故此轴满足强度要求。
=17747.3(N )
4、解:(1) 轴的计算简图
画出铰车梁的内力图:
险截面在梁中间截面左侧,P T P M 18.02.0max ==
(2) 强度计算
第三强度理论:
()
()[]
σπσ≤+=+=2
2
3
22318.02.032
P P d W T M Z r
[]()()()()
mm
m d 5.320325.010118.01012.0108032
10118.01012.032
3
2
32
36
32
32
3==⨯⨯+⨯⨯⨯⨯=⨯⨯+⨯⨯≥πσπ
所以绞车的轴的最小直径为32.5mm 。