冲压成型原理
冲压工作原理
![冲压工作原理](https://img.taocdn.com/s3/m/cb71474fbb1aa8114431b90d6c85ec3a87c28bb9.png)
冲压工作原理
冲压工作原理是指利用模具对金属材料进行塑性变形的加工过程。
冲压一般分为单冲和连续冲,下面分别介绍其工作原理。
1. 单冲工作原理:
在单冲冲压过程中,金属板材首先被放置在冲床的工作台上,并通过夹紧机构固定。
然后,冲床上的冲头受到上冲程操作,向下以一定的速度运动,冲头与金属板材之间的模具空腔会逐渐与金属板材产生接触。
随着冲头继续向下运动,冲头和模具之间的接触面积逐渐增大,从而对金属材料施加了相应的压力。
最终,金属材料在冲床的压力下发生塑性变形,形成所需的形状,并将多余的材料通过模具空腔的排出系统排出。
2. 连续冲工作原理:
连续冲的工作原理与单冲类似,但是在连续冲中,模具是由连续不断的上下运动来实现的。
连续冲冲床上通常安装有多个冲头和模具,并且工作台会连续向上和向下运动。
在连续冲中,金属板材在工作台上被连续供给,在模具的作用下,金属板材在连续运动过程中逐渐变形,并通过冲头和模具之间的接触来完成冲压加工。
与单冲相比,连续冲具有更高的生产效率和更快的工作速度。
总的来说,冲压工作原理是通过冲头和模具之间的接触,对金属材料施加压力,使其发生塑性变形,最终形成所需的形状。
冲压工艺具有高效、精确和重复性好的特点,广泛应用于各种金属制品的生产中。
冲压工艺的原理和特点
![冲压工艺的原理和特点](https://img.taocdn.com/s3/m/5e7b074326284b73f242336c1eb91a37f11132c1.png)
冲压工艺的原理和特点冲压工艺是一种常见的金属加工方法,用于将金属板材通过冲压机械设备加工成所需的形状和尺寸。
冲压工艺具有一些独特的原理和特点。
冲压工艺的原理是利用冲压机械设备对金属板材施加压力,将其弯曲、剪切、拉伸或压制成所需的形状和尺寸。
冲压机通常由上下两个模具组成,金属板材被夹紧在两个模具之间,然后通过压力施加在金属板上,使其发生塑性变形。
通过控制模具的形状和施加的压力,可以实现对金属板材的精确加工和成型。
冲压工艺具有一些特点。
首先,冲压工艺可以高效地进行批量生产。
由于冲压机械设备具有高速、高力度的特点,可以在短时间内对大批量的金属板材进行加工,提高生产效率。
冲压工艺具有以下几个主要的优点。
首先,冲压工艺可以实现高效率的生产,提高生产效率。
由于冲压机械设备具有高速、高力度的特点,可以在短时间内对大批量的金属板材进行加工,提高生产效率。
其次,冲压工艺可以实现高精度的加工,提高产品的质量。
冲压机械设备具有较高的重复性和精度,可以精确控制模具的形状和施加的压力,从而实现对金属板材的高精度加工,提高产品的质量。
此外,冲压工艺还可以加工复杂的形状和结构,满足多样化的需求。
通过设计和制造不同形状的模具,可以实现对金属板材的多种加工操作,从而满足不同形状和结构的需求。
最后,冲压工艺还具有较低的成本。
冲压工艺可以高效地进行批量生产,减少人工和设备的成本,降低生产成本。
然而,冲压工艺也存在一些限制和局限性。
首先,冲压工艺对金属板材的材料性能有一定要求。
由于冲压过程中会对金属板材施加较大的力和压力,因此需要选择具有足够强度和韧性的金属材料,以避免出现断裂或变形的情况。
其次,冲压工艺对模具的设计和制造要求较高。
模具的形状和尺寸需要与所需的加工形状和尺寸相匹配,否则会导致加工效果不理想。
此外,模具的制造成本较高,需要投入一定的资金和时间。
最后,冲压工艺对操作人员的技术要求较高。
操作人员需要具备一定的技术和经验,才能正确使用冲压机械设备和模具,确保加工过程的顺利进行。
冲压拉伸成型工艺
![冲压拉伸成型工艺](https://img.taocdn.com/s3/m/23eacb0b326c1eb91a37f111f18583d049640fb3.png)
冲压拉伸成型工艺冲压拉伸成型工艺是一种常用的金属加工方法,它能够将金属板材通过模具的作用力,使其在拉伸的同时产生塑性变形,从而得到所需形状的产品。
本文将从冲压拉伸成型工艺的原理、应用范围以及发展趋势等方面进行介绍。
一、冲压拉伸成型工艺的原理冲压拉伸成型工艺是通过将金属板材置于模具之间,施加拉力使其产生塑性变形,从而得到所需形状的产品。
在拉伸过程中,金属板材受到的应力和应变分布不均匀,在变形过程中产生各种应力状态,如剪切应力、压缩应力和拉伸应力等。
通过合理设计模具结构和控制成型参数,可以使金属板材得到均匀的塑性变形,从而得到满足要求的产品。
冲压拉伸成型工艺广泛应用于汽车、家电、航空航天等各个领域。
在汽车制造中,冲压拉伸成型工艺被广泛应用于车身件、发动机罩、门板等部件的制造。
在家电制造中,冲压拉伸成型工艺被应用于电视机壳、洗衣机罩等产品的制造。
在航空航天领域,冲压拉伸成型工艺被应用于飞机外壳、发动机零件等的制造。
三、冲压拉伸成型工艺的发展趋势随着科技的不断进步,冲压拉伸成型工艺也在不断发展。
一方面,现代模具技术的进步使得冲压拉伸成型工艺的精度和效率得到了提高。
另一方面,新材料的出现也为冲压拉伸成型工艺的发展提供了新的机遇。
例如,高强度钢、铝合金等材料的应用使得产品的强度和轻量化得到了提升。
此外,数字化技术的应用也为冲压拉伸成型工艺的优化提供了新的思路。
通过建立数学模型和仿真分析,可以更加准确地预测产品的形状和性能。
冲压拉伸成型工艺是一种常用的金属加工方法,它在汽车、家电、航空航天等领域得到了广泛应用。
随着科技的进步,冲压拉伸成型工艺也在不断发展,为各行各业的产品制造提供了更加高效、精确的解决方案。
冲床的原理是什么
![冲床的原理是什么](https://img.taocdn.com/s3/m/59659a7ea9956bec0975f46527d3240c8447a188.png)
冲床的原理是什么
1. 冲床的主要结构
冲床主要由冲压机构、模具定型机构、送料装置、控制系统组成。
2. 冲压成型的原理
冲头在驱动机构带动下迅速下移,模具在其作用下闭合,对工件进行压力成型。
3. 利用冲击力进行成型
冲头在高速移动过程中获得动能,并在瞬间作用转换为冲击力,对工件实现压力成型。
4. 模具实现成型定型
上下模具的相互闭合运动,使工件在冲击压力下获得所需的形状和尺寸。
5. 不同结构实现各向压力
通过不同的冲头结构,可以实现单向冲压、两向冲压或包围冲压,获得全方位压力。
6. 送料装置进行定位
送料装置将工件准确定位在模具间,保证每个工件的成型质量。
7. 控制系统精确控制冲击
电气或电子控制系统精确控制冲头的运动曲线,实现对冲击过程的精确控制。
8. 具有高效率和质量稳定性
冲床冲压可实现高速加工,并保证产品的尺寸精度和质量稳定性。
冲压的原理
![冲压的原理](https://img.taocdn.com/s3/m/7ef09dbaf80f76c66137ee06eff9aef8941e483f.png)
冲压的原理冲压是一种常见的金属加工工艺,它通过模具对金属板材进行变形,从而制造出各种形状复杂的零部件。
冲压工艺具有高效、精度高、成本低等优点,被广泛应用于汽车制造、家电制造、航空航天等领域。
那么,冲压的原理是什么呢?首先,冲压的原理可以简单概括为利用模具对金属板材进行塑性变形。
在冲压过程中,金属板材被置于模具之间,通过模具的上下运动,对金属板材施加压力,使其发生塑性变形,最终得到所需形状的零部件。
这一过程需要满足金属材料的屈服特性,即在一定的应力作用下,金属材料发生塑性变形而不会恢复原状。
其次,冲压的原理还涉及到金属材料的流动性。
在冲压过程中,金属材料会随着模具的形状发生流动,从而使得金属板材得以变形成所需的形状。
这就需要模具的设计要符合金属材料的流动规律,以确保最终产品的质量和精度。
此外,冲压的原理还与金属板材的应力状态密切相关。
在冲压过程中,金属板材受到的应力是不均匀的,不同部位会受到不同方向的应力作用,从而导致金属板材的变形。
因此,冲压模具的设计需要考虑到金属板材的应力分布,以减小应力集中区域,避免产生裂纹和变形。
最后,冲压的原理还需要考虑金属板材的回弹性。
在冲压完成后,金属材料会有一定程度的回弹,即部分变形会恢复原状。
因此,在模具设计和工艺控制中,需要考虑到金属材料的回弹性,以保证最终产品的尺寸和形状精度。
总的来说,冲压的原理涉及到金属材料的塑性变形、流动性、应力状态和回弹性等多个方面。
只有充分理解这些原理,并合理应用于冲压工艺中,才能够确保冲压零部件的质量和精度。
同时,随着科技的不断进步,冲压工艺也在不断发展和完善,为各行各业提供更加高效、精密的零部件加工解决方案。
冲压模具工艺成型原理与要求
![冲压模具工艺成型原理与要求](https://img.taocdn.com/s3/m/355ae1beaff8941ea76e58fafab069dc502247f2.png)
冲压模具工艺成型原理与要求
冲压模具工艺成型原理是利用冲压模具对金属材料进行塑性变形,使其获得所需的形状和尺寸。
冲压模具工艺成型的要求主要包括以下几点:
1. 材料的选择:冲压模具工艺要求使用具有良好塑性和可加工性的金属材料,如钢材、铝材等。
2. 模具的设计:冲压模具的设计要考虑到成型工艺的要求,包括产品的形状、尺寸、表面质量等。
同时还要考虑到模具的强度、刚度和耐磨性等因素。
3. 成型过程的控制:冲压模具的成型过程需要进行精确的控制,包括料的进给、下模、冲击等,以确保产品的质量和尺寸的精度。
4. 模具的维护和保养:冲压模具工艺成型需要定期对模具进行清洁、润滑和修复,以保证模具的使用寿命和成型效果。
5. 成品的质量检验:冲压模具工艺成型完成后,需要对成品进行质量检验,包括尺寸、外观、材质等方面的检验。
冲压模具工艺成型原理与要求是通过合理设计模具、精确控制成型过程、对模具进行维护和保养,并对成品进行质量检验,以获得满足要求的成型产品。
冲压模具工艺成型原理与要求
![冲压模具工艺成型原理与要求](https://img.taocdn.com/s3/m/715aa91676232f60ddccda38376baf1ffc4fe32b.png)
冲压模具工艺成型原理与要求冲压模具的工艺成型原理是利用冲压机械设备对金属板材施加压力,使其在塑性变形条件下发生所需的形状和尺寸的工件。
冲压模具通常由上下两个模具组成,金属板材被夹紧在两个模具之间,然后通过压力施加在金属板上,使其发生塑性变形。
冲压模具工艺成型的要求包括:1. 模具间隙:模具间隙是指上模和下模之间的距离。
根据金属材料的厚度和硬度调整模具间隙,使其符合冲裁要求。
2. 冲裁力:冲裁力是指冲裁过程中所需的最大压力。
根据冲裁的工艺要求,选择合适的冲裁力和压力机,以确保冲裁的精度和模具的寿命。
3. 模具强度和刚性:模具的强度和刚性是保证冲压过程中模具不变形的重要因素。
模具应具有足够的强度和刚性,以承受冲裁时产生的冲击力和压力,保证工件的精度和模具的使用寿命。
4. 排样与搭边:合理的排样和搭边是冲裁过程中提高材料利用率和减小废料的关键。
根据材料的厚度、硬度、韧性和强度等特性,选择合适的排样方式和搭边尺寸。
5. 刃口锋利度:刃口锋利度是影响冲裁质量和模具寿命的重要因素。
刃口应保持锋利,以减小冲裁力、减小热处理变形和开裂等缺陷的发生率。
6. 润滑与冷却:润滑剂的作用是减小冲裁力、降低温度、防止材料与刃口粘连和减小摩擦。
冷却剂的作用是降低温度,防止材料过热开裂。
根据不同的材料和工艺要求,选择合适的润滑剂和冷却剂。
7. 凸模与凹模的对中性:凸模与凹模的对中性是指二者的中心线在同一垂直平面内,以保证工件的形状和尺寸精度。
如果对中性不好,会导致工件产生扭曲或局部不均匀变形。
以上就是冲压模具工艺成型原理与要求的一些主要内容,希望对您有所帮助。
简述金属罐成型原理
![简述金属罐成型原理](https://img.taocdn.com/s3/m/a9710b2ac381e53a580216fc700abb68a982ad09.png)
简述金属罐成型原理金属罐成型原理简单来说,是通过金属材料在一定的温度和压力下,通过模具或压力设备,将其变形成为一种特定形状的工艺。
金属罐成型可以是冲压、拉伸、锻造、压铸、浇铸、焊接等方式进行。
下面将详细介绍各种金属罐成型原理。
1.冲压成型:冲压成型是利用模具和冲床等设备,将金属材料以较大的冲击力冲击或压入模具中,从而使其产生塑性变形,最终形成所需的形状。
冲压成型适用于薄板、中板或异型板材料。
2.拉伸成型:拉伸成型是将金属材料通过张力拉伸,使其在弹性和塑性变形的作用下,逐渐变成所需形状的工艺。
拉伸成型适用于成型深度较大、壁厚较薄的罐体。
3.锻造成型:锻造成型是将金属材料放在加热的模具中,通过锤击或压力机等设备,使材料发生塑性变形,最终得到所需的形状。
锻造成型适用于制作较大尺寸、复杂形状的金属罐。
4.压铸成型:压铸成型是将金属材料加热至液态并注入模具中,然后施加高压,使其凝固成型的工艺。
压铸成型适用于制作高精度、高复杂度的金属罐。
5.浇铸成型:浇铸成型是将金属材料加热至液态,并以一定的方式注入预先制作好的模具中,在冷却过程中形成所需的形状。
浇铸成型适用于制作大尺寸、形状复杂的金属罐。
6.焊接成型:焊接成型是利用焊接设备,将金属材料通过熔接或固态焊接的方式连接在一起,形成所需形状的工艺。
焊接成型适用于制作大型、高强度、密封性要求较高的金属罐。
总而言之,金属罐成型原理主要是通过施加压力和加热,使金属材料发生塑性变形,从而得到所需的形状。
不同的金属罐成型方式适用于不同材料和形状的制作,每种方式都有其特定的优势和适用范围。
在实际生产中,选择合适的成型方式对于罐体质量和生产效率都有重要影响。
冲压成型的基本原理
![冲压成型的基本原理](https://img.taocdn.com/s3/m/8535ca2eb4daa58da0114a12.png)
上模
压料 下模
冲模工作的基本原理
• 3) 翻边 • 一端压料,材料不流动。凸凹模为圆角,
且间隙大于0.8料厚,为翻边
上模
压料 下模
冲模工作的基本原理
• 4) 整形 • 一端压料,材料不流动。间隙大于0.8料厚,
下面有模具,为整形
上模
压料 下模
下模
冲模工作的基本原理
• 5) 压形 • 无压料,上下有模具,为压型
• 两侧压料,材料有流动,凸凹模间隙大于
等于料厚。
凹模 压边圈
凸模
凹模 压边圈
单动拉延
凹模在上并向下运动,压边圈在下,随凹模运动,凸模在下不动, 凹模在上并向下运动 压边圈在下,随凹模运动,凸模在下不动, 压边圈在下 为单动拉延
冲模工作的基本原理
• 2) 修冲 • 一端压料,材料不流动。凸凹模为尖角,
冲压成型的基本原理
A.基本原理
• 1. 板料成型中的材料特性
1)材料特性曲线
2)成型极限图 )
成型极限图
3)材料参数
• n 、r值 • 应变刚指数n 值大,材料强化效应大,应
变分布比较均匀。 • 厚向异性指数r值下降,极限应变值也下 降。但,n值对成型极限曲线的影响远比 r值重要。 • 延伸率
拉延成型裕度
裂
变薄
充分 不充分 增厚 褶
2.冲模工作的基本原理
• 1) 拉延 • 两侧压料,材料有流动,凸凹模间隙大于
等于料厚。
压边圈 凹模
凸模
压边圈 凹模
双动拉延
凹模在下不动。压边圈在上,先压料。凸模在上并向下运动 为双 凹模在下不动。压边圈在上,先压料。凸模在上并向下运动,为双 动拉延
冲压成型原理范文
![冲压成型原理范文](https://img.taocdn.com/s3/m/46b4ff6fcec789eb172ded630b1c59eef8c79aab.png)
冲压成型原理范文冲压成型是一种常见的金属加工方法,它是将金属板材置于模具中,施加轴向力和径向力来改变材料形状的过程。
冲压成型是一种成本低、生产效率高的加工方法,在汽车、电子、家电等各个领域得到广泛应用。
下面将详细介绍冲压成型的原理。
1.冲压成型的基本原理:冲压成型主要依靠模具来完成工作。
模具是一种特殊的工装,它能够给金属板材施加所需的压力和形状,使其在一个固定的几何形状中迅速变形。
冲压模具一般由上模和下模组成,其中上模固定在冲床上,下模则放置在工作台上。
金属板材被放置在上下模之间,并由冲床施加压力,使其迅速变形。
2.冲压成型的工艺流程:(1)模具设计:模具设计是冲压成型的关键步骤,它直接决定了成型的质量和成本。
模具设计需考虑到金属板材的材料、厚度、形状和成品的要求等因素,合理设计模具的结构和尺寸。
(2)金属板材准备:冲压成型需用到金属板材,所选择的金属板材应符合成型要求。
金属板材准备包括切割、切断和折弯等工序,以便于后续的成型工艺。
(3)装夹板材:将准备好的金属板材放置在模具中,并进行装夹固定,确保成型时不会出现移动或松动。
(4)冲床加压:冲床作为冲压成型的主要设备,其压力通过机械方式施加于材料上,通过冲床的上下运动来实现零件的成形。
(5)脱模:成型后,需要将零件从模具中取出,即进行脱模。
脱模通常需要用到辅助工具,如钳子、吹风机等。
3.冲压成型的优势:(1)高效率:冲压成型是一种高效率的加工方法,可以通过冲床的多次循环工作,实现对大批量零件的高速生产。
(2)精度高:冲压成型的模具精度高,可以实现对复杂形状的低成本生产。
由于模具是通过数控加工设备制造的,因此可以保证零件的高精度和一致性。
(3)材料利用率高:冲压成型是通过对金属板材进行切割和成型,因此可以最大限度地利用材料,减少浪费,实现成本的控制。
(4)生产适应性强:冲压成型可以用于各种材料的加工,如铁、铝、不锈钢等。
此外,模具可以根据产品的需要进行设计和制造,适应性强。
冲压成型实训报告
![冲压成型实训报告](https://img.taocdn.com/s3/m/6937a75d03020740be1e650e52ea551810a6c923.png)
一、实训目的本次冲压成型实训旨在使学生了解和掌握冲压成型的基本原理、工艺过程及设备操作,提高学生的动手能力和实际操作技能。
通过实训,使学生能够熟练运用冲压成型技术,为以后从事相关行业打下坚实基础。
二、实训内容1. 冲压成型基本原理(1)冲压工艺:冲压工艺是指利用冲模对板材、带材、管材等金属材料进行压力加工,使其产生塑性变形或分离,从而获得所需形状、尺寸和性能的零件或产品的加工方法。
(2)冲压设备:冲压设备主要包括压力机、模具、冲压机械手等。
其中,压力机是冲压工艺的核心设备,其作用是提供冲压所需的压力。
2. 冲压成型工艺过程(1)下料:根据零件图纸,将原材料切割成所需尺寸的板材。
(2)定位:将下料后的板材放置在模具上,确保其位置准确。
(3)冲压:在压力机的作用下,将板材通过模具进行塑性变形或分离,形成所需形状和尺寸的零件。
(4)整形:对冲压后的零件进行整形,使其达到规定的尺寸和形状。
(5)检查:对冲压后的零件进行质量检查,确保其符合要求。
3. 冲压成型设备操作(1)熟悉设备结构:了解压力机、模具、冲压机械手等设备的结构和工作原理。
(2)设备调试:根据生产需求,对设备进行调试,确保其正常运行。
(3)设备操作:按照操作规程,正确、安全地操作设备,完成冲压成型工艺。
三、实训过程1. 实训前期准备(1)了解冲压成型基本原理、工艺过程及设备操作。
(2)熟悉实训场地、设备、工具等。
(3)制定实训计划,明确实训目标。
2. 实训实施(1)按照实训计划,分组进行实训。
(2)在指导老师的指导下,学习设备操作,掌握冲压成型工艺。
(3)完成规定数量的冲压成型零件,并确保质量。
3. 实训总结(1)总结实训过程中的收获和不足。
(2)提出改进措施,提高实训效果。
四、实训结果1. 学生掌握了冲压成型基本原理、工艺过程及设备操作。
2. 学生的动手能力和实际操作技能得到提高。
3. 实训过程中,学生培养了团队合作精神,提高了沟通协调能力。
冲压成型机工作原理
![冲压成型机工作原理](https://img.taocdn.com/s3/m/4c1ee37f11661ed9ad51f01dc281e53a58025128.png)
冲压成型机工作原理
冲压成型机是一种专门用于金属成形加工的机械设备,其工作原理基于冲击力和压力的作用。
首先,操作人员将待加工的金属板材放置在冲压机的工作台上,并根据加工要求进行定位和夹紧。
然后,冲压机开始工作。
冲压成型机主要包括冲头、下模具和上模具三个主要部分。
通常情况下,冲头和下模具固定在机器底座上,上模具与冲头配合并置于传动系统的顶端。
工作时,传动系统会通过驱动装置提供动力,使上下模具以一定的冲击力和压力对金属板材进行加工。
冲击力主要通过冲头的下降产生。
冲头下降时,可以根据需要调整下降速度和冲击力大小。
当冲头与金属板接触时,冲头会施加冲击力将金属板材迅速冲击穿孔或形成凹凸。
冲头下降后,上模具开始下降。
上模具下降的过程中,会通过一定的压力将金属板材弯曲或压制形成所需的形状。
上模具的下降速度和压力大小也可以进行调整。
当上下模具完成全部的冲击和压制工序后,冲压机的动作会停止。
此时,操作人员将加工好的金属件取下,并进行后续的处理和加工。
总之,冲压成型机的工作原理是通过冲击力和压力的作用,使
上下模具对金属板材进行加工,从而获得所需的成型形状。
这种机器设备在加工过程中具有高效、精确和可重复性的特点,广泛应用于各个领域的金属成形加工中。
冲压的原理和方法
![冲压的原理和方法](https://img.taocdn.com/s3/m/9bbc8fff0d22590102020740be1e650e52eacfa9.png)
冲压的原理和方法
冲压是一种金属加工方法,其原理是将金属板材置于冲压模具中,通过外力使模具对金属板材施加压力,使其发生塑性变形,从而得到所需的工件形状。
冲压的方法主要有以下几种:
1. 单冲:以一次冲压完成工件的成形。
适用于简单的工件形状。
2. 连续冲:
- 前进式连续冲压:连续冲压机上设置多个冲压模具,通过连续前进的方式依次完成各个工序。
适用于多工序复杂工件。
- 旋转式连续冲压:连续冲压机上设置一个或多个工作台,通过旋转工作台将工件进行连续加工。
适用于对称或半对称的工件形状。
3. 多工位冲压:在一台机床上设置多个工作位,通过分工分位的方式逐步加工工件。
适用于多工序复杂工件。
冲压的具体方法包括:
1. 剪切:利用冲压模具的剪切边缘对金属板材进行剪切,得到所需的形状。
2. 冲孔:利用冲压模具的冲孔部分对金属板材进行冲孔加工。
3. 弯曲:利用冲压模具的弯曲部分对金属板材进行弯曲变形,得到所需的形状。
4. 拉伸:利用冲压模具的拉伸部分对金属板材进行拉伸,使其发生塑性变形,得到所需的形状。
冲压方法的选择取决于工件的形状、尺寸和加工要求等因素。
冲压成型模具工作原理
![冲压成型模具工作原理](https://img.taocdn.com/s3/m/490f54cff80f76c66137ee06eff9aef8951e4846.png)
冲压成型模具工作原理一、引言冲压成型模具是冲压工艺中不可或缺的关键设备,它通过对金属板材施加力量来使其产生塑性变形,从而实现所需形状的加工。
本文将介绍冲压成型模具的工作原理,从材料选择、模具结构、工作过程等方面进行阐述。
二、材料选择冲压成型模具通常采用优质的工具钢材料制造,如Cr12MoV、Cr12等。
这些材料具有高硬度、良好的耐磨性和抗拉强度,能够满足冲压过程中对模具的高强度要求。
同时,模具材料的选择还应考虑到工件的材料特性和加工要求,以确保模具在工作过程中能够有效地完成成型任务。
三、模具结构冲压成型模具由上模、下模和导向机构组成。
上模和下模之间设置一定的间隙,以便在冲压过程中容纳金属板材的塑性变形,并保证成型件的尺寸精度。
导向机构用于确保上模和下模的对齐和运动平稳,以提高模具的使用寿命和加工精度。
四、工作过程冲压成型模具的工作过程可以分为五个阶段:送料、定位、下冲、上冲和退料。
1. 送料:将金属板材送入模具的送料区,通常采用机械手或送料装置完成。
送料过程中需要保证金属板材的位置准确,并且要避免与模具发生碰撞,以免损坏模具。
2. 定位:金属板材进入模具后,通过定位销或定位孔等定位装置确保其位置准确。
定位的准确性对于成型件的尺寸和形状具有重要影响。
3. 下冲:上模下压,施加压力使金属板材在下模的作用下发生塑性变形。
下冲过程中,模具的设计应考虑到金属板材的弹性回弹和变形特性,以确保成型件的几何形状和尺寸精度。
4. 上冲:上模向上运动,脱离金属板材,完成一次冲压。
上冲过程中,模具的导向机构起到了关键作用,确保上模和下模的对齐和运动平稳。
5. 退料:上模上升后,成型件通过退料装置从模具中脱离,进入下一道工序。
退料过程中需要保证成型件的完整性和位置准确,以确保后续加工的顺利进行。
五、总结冲压成型模具作为冲压工艺中的核心设备,其工作原理对于成型件的质量和加工效率具有重要影响。
通过合理的材料选择、优化的模具结构和精细的工作过程控制,可以实现高效、精确的冲压加工。
冲压工艺及模具设计(3篇)
![冲压工艺及模具设计(3篇)](https://img.taocdn.com/s3/m/a2c8987dc4da50e2524de518964bcf84b8d52d53.png)
第1篇一、引言冲压工艺是一种常见的金属成形工艺,广泛应用于汽车、家电、电子、航空等行业。
冲压工艺具有生产效率高、成本低、精度高、尺寸稳定性好等优点。
模具是冲压工艺中的关键设备,其设计质量直接影响到冲压产品的质量和生产效率。
本文将对冲压工艺及模具设计进行简要介绍。
二、冲压工艺概述1. 冲压工艺原理冲压工艺是利用模具对金属板材施加压力,使其产生塑性变形,从而获得所需形状、尺寸和性能的零件。
冲压工艺的基本原理是金属的塑性变形,即金属在受到外力作用时,产生塑性变形而不破坏其连续性的过程。
2. 冲压工艺分类(1)拉深:将平板金属沿模具凹模形状变形,形成空心或实心零件的过程。
(2)成形:将平板金属沿模具凸模形状变形,形成具有一定形状的零件的过程。
(3)剪切:将平板金属沿剪切线剪切成一定形状和尺寸的零件的过程。
(4)弯曲:将平板金属沿模具凸模形状弯曲,形成具有一定角度的零件的过程。
三、模具设计概述1. 模具设计原则(1)满足产品精度和尺寸要求:模具设计应保证冲压产品具有高精度和尺寸稳定性。
(2)提高生产效率:模具设计应优化工艺流程,减少不必要的加工步骤,提高生产效率。
(3)降低生产成本:模具设计应选用合适的材料,降低模具成本。
(4)确保模具寿命:模具设计应考虑模具的耐磨性、耐腐蚀性等性能,延长模具使用寿命。
2. 模具设计步骤(1)产品分析:分析产品的形状、尺寸、材料等,确定模具设计的基本要求。
(2)工艺分析:根据产品形状和尺寸,确定冲压工艺类型,如拉深、成形、剪切、弯曲等。
(3)模具结构设计:根据工艺要求,设计模具结构,包括凸模、凹模、导向装置、压边装置等。
(4)模具零件设计:根据模具结构,设计模具零件,如凸模、凹模、导向装置、压边装置等。
(5)模具加工:根据模具零件设计,进行模具加工。
(6)模具调试:完成模具加工后,进行模具调试,确保模具性能符合要求。
四、冲压工艺及模具设计要点1. 冲压工艺要点(1)合理选择材料:根据产品形状、尺寸、性能要求,选择合适的金属材料。
冲压及模具的原理
![冲压及模具的原理](https://img.taocdn.com/s3/m/322f9b61302b3169a45177232f60ddccdb38e669.png)
冲压及模具的原理一、引言冲压是一种常见的金属成形加工方法,通过将金属材料置于模具内,在外力的作用下使其发生塑性变形,从而得到所需的零件形状。
模具是冲压过程中不可或缺的工具,它通过对金属材料的限制和形状设计,使其能够按照预定的形状和尺寸进行变形。
本文将从冲压和模具的原理进行详细介绍。
二、冲压的原理冲压是将金属材料置于模具内,通过外力的作用使其产生塑性变形,并最终获得所需形状的加工方法。
它主要依靠模具和外力两个方面来实现。
1. 模具的作用模具是冲压过程中起到限制和塑性变形的关键工具。
它由上模和下模组成,上模和下模之间的空间称为模腔。
当金属材料置于模腔内时,上下模通过外力的作用将其限制在模腔内,从而使金属材料按照模腔的形状和尺寸进行塑性变形。
模具的设计和制造要考虑到金属材料的性质和所需零件的形状,以确保冲压过程中的准确性和稳定性。
2. 外力的作用外力是冲压过程中实现金属材料塑性变形的动力来源。
外力可以是机械力、液压力或气压力等。
外力的作用方式可以分为两种:拉伸和压缩。
拉伸是指外力使金属材料在模具腔内拉伸变形,而压缩则是使金属材料在模具腔内发生压缩变形。
外力的大小和方向需要根据具体的工件形状和材料特性来确定,以保证冲压过程中的合理变形。
三、模具的原理模具是冲压过程中的重要工具,它通过对金属材料的限制和形状设计,使其能够按照预定的形状和尺寸进行塑性变形。
模具的原理主要包括几个方面。
1. 材料选择和处理模具的材料选择要根据所需加工零件的材料和形状来确定。
常见的模具材料有工具钢、合金钢和硬质合金等。
材料选择要考虑到模具的使用寿命、耐磨性和耐腐蚀性等因素。
另外,模具的材料还需要经过适当的热处理和表面处理,以提高其硬度和耐磨性。
2. 模具结构设计模具的结构设计是模具制造中的关键环节。
它要考虑到金属材料的塑性变形特性和所需零件的形状、尺寸等要求。
模具的结构包括上模、下模、导向装置、顶针和弹簧等部分。
上模和下模之间的空间形状和尺寸则决定了最终成型零件的形状和尺寸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 1 0 , 且 2 3 0时, 材料受单向拉应力,由上式可得:
1 0 , 2 3 (1 / 2 ) 1
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
变形时的硬化现象和硬化曲线
1.硬化现象的表现形式: 材料的强度指标随变形程度的增加而增加,塑性随之降低.
0 90 45
第1章 冲压变形的基本原理
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
1.4.4常用冲压材料及其力学性能
黑色金属 金属材料
冲压材料
有色金属
非金属材料 板料:大型零件 条料:中小型零件
坯料类型
卷料:大批量生产的自动送料 块料:少数钢种和有色金属的冲压
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
1.4 板料冲压成形性能及冲压材料
1.4.1 板料的冲压成形性能
冲压成形性能: 板料对各种冲压成形加工的适应能力. 抗破裂性、 贴模性、定形性
成形极限
冲压件形状尺寸精度
1(图1.4.2) 伸长率、屈服点、屈强比、硬化指数、 板厚方向性系数、板平面方向性 2、直接试验 胀形成形性能试验、拉深成形性能试验(图1.4.1) 《冲压工艺及模具设计》
1. 冲压毛坯两向受拉应力的作用 (可分两种情况):
r 0, 且 t 0 r 0, 且 t 0 r 0, 且 t 0 r 0, 且 t 0
(图1.3.2Ⅰ象限)
2.冲压毛坯变形区受两向压应力的作用 (图1.3.2Ⅲ象限)
第1章 冲压变形的基本原理 5.主应变及主应变状态 点的应变状态 主应变状态 6.体积不变定律 1 2 3 0 该式说明:金属塑性变形前后,只有形状的变化,而无体 积的变化。
三个推论:
﹡塑性变形时,只有形状的变化,而无体积的变化; ﹡不论什么应变状态,其中一个主应变的符号与另外两个 主应变的符号相反; ﹡已知两个应变就可求第三个应变。 《冲压工艺及模具设计》
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
图1.2.2 单向拉应力-应变曲线
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
图1.2.3 几种常用冲压板料的硬化曲线 《冲压工艺及模具设计》
第1章 冲压变形的基本原理
1.3 各种冲压成形方法的力学特点与分类
1.3.1 变形毛坯的分区(如图1.3.1) 1.3.2 变形区的应力与应变特点
图1.4.1 拉深试验试样 《冲压工艺及模具设计》
第1章 冲压变形的基本原理
图1.4.2拉伸曲线 《冲压工艺及模具设计》
第1章 冲压变形的基本原理
《冲压工艺及模具设计》
伸长率: LK L0 L0 断面收缩率: 镦粗率: c 100 % 100 % A0 AK A0 H0 H
0 K
100 %
H 2.变形抗力及其指标 金属产生塑性变形的力为变形力,金属抵抗变形的力称为 变形抗力。通常以真实应力作为变形抗力的指标。
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
1.2.2 屈服准则(塑性条件)
屈服准则:材料进入塑性状态的力学条件。当材料中的某
点的应力满足屈服准则,该点就进入塑性状态。 1.屈雷司加准则 2.密席思准则 3.工程上常采用屈服准则通式:
1 2
《冲压工艺及模具设计》
s
第1章 冲压变形的基本原理
1.2.3 塑性变形时应力与应变的关系
第1章 冲压变形的基本原理
1.1金属塑性变形的基本概念
1.2塑性变形的力学基础
1.3各种冲压成形方法的力学特点与分类 1.4板料的冲压成形性能及冲压材料
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
1.1金属塑性变形的基本概念
外力的作用下,金属产生形状和尺寸变化为变形,变形分 为弹性变形与塑性变形.
1.1.1塑性变形的物理概念
外力破坏原子间原有的平衡状态,造成排列的畸变,引起 金属形状和尺寸的变化。
1.1.2塑性变形的基本方式
滑移 \孪生 \多晶体的塑性变形(变形后形成纤维组织、变 形织构)(如图)
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
1.1.3金属的塑性与变形抗力
1.塑性及塑性指标 塑性:指金属在外力的作用下,能稳定的发挥塑性变形而 不破坏其完整性的能力。 塑性指标:常用的塑性指标
第1章 冲压变形的基本原理
1.1.4影响金属的塑性与变形抗力的因素
1.影响塑性的因素 内因 :化学成分的影响;组织结构的影响 外因:变形温度 ;变形速度 ;变形的应力状态 2.影响金属变形抗力的主要因素 1)化学成分及组织的影响 2)变形温度对变形抗力的影响(如图1.1.3) 3)变形速度对变形抗力的影响 4)变形程度对变形抗力的影响 5)应力状态对变形抗力的影响
2.加工硬化的结果 引起材料力学性能的变化.
3.加工硬化有利及不利方面 有利方面:板料硬化能够减小过大的局部变形,使变形趋于均 匀,增大成形极限,同时也提高了材料的强度 不利方面:使进一步变形困难. 4.硬化曲线(如图1.2.3) 《冲压工艺及模具设计》
第1章 冲压变形的基本原理
图1.2.1 点的应力状态 a)任意坐标系; b) 主轴坐标系
r 0 , t 0且
r
0 r , t 0且 r
综上所述: 冲压变形可分为伸长类变形和压缩类变形 《冲压工艺及模具设计》
第1章 冲压变形的基本原理
1.3.3 冲压成形过程中变形趋向性及其控制
1、变形趋向性(如图1.3.3) 弱区必先变形,变形区应为弱区
外力 模具 毛坯 内力 零件
1.2.1 点的应力与应变状态
1.应力:内力的强度,用σ表示。 2.点的应力状态(如图1.2.1) 3.应变:微小六面体的变形,用ε表示。
主应变
1 2 3
4.点的应变状态 空间一点无论受多少个力,都可简化为九个应力分量。在 静力平衡时,根据剪应力互等定理,可简化为六个应力分量。 主平面:剪应力为零的平面。 主应力:主平面上的应力。 《冲压工艺及模具设计》
1.1.5金属塑性变形对组织和性能的影响
晶粒形状和方位变化; 产生应力; 产生加工硬化。 《冲压工艺及模具设计》
第1章 冲压变形的基本原理
图1.1.1 晶体变形
图1.1.2多晶体的塑 性变形
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
1.2 塑性变形的力学基础
单向拉伸应力-应变曲线(如图1.2.2)
1.增量理论
d1 d 2
1 2
d 2 d 3
2 3
d 3 d1
3 1
C
C
2.全量理论
1 2 1 2
2 3 2 3
3 1 3 1
3.例:全量理论分析应力应变关系 1) 2 0时, 称平面应变(或称平面变形),由上式可得出:
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
3.冲压毛坯变形区受异号应力的作用,而且拉应力的绝对值 大于压应力的绝对值。(可以分为两种情况) (图1.3.2) r 0 , t 0且 r
0 r , t 0且
r
4.冲压毛坯变形区受异号应力的作用而且压应力的绝对值大 于拉应力的绝对值。 (可以分为以下两种情况)
1.4.3 板料的力学性能与冲压成形性能的关系
1、屈服极限 屈服极限 s 小,材料容易屈服,则变形抗力小. 2、屈强比 屈强比小,说明 s值小而 b 值大 3、伸长率 拉伸实验中,试样拉断时的伸长率称总伸长率 4、硬化指数 单向拉伸硬化曲线可写成 k n 其中n为硬化指数 5、厚向异性指数 厚向异性指数是指单向拉伸试样宽度应变和厚度应 变之比 b / t 6、板平面各向异性指数 ( 2 ) / 2
2、变形趋向性的控制 ﹡ 改变坯料各部分的相对尺寸
﹡改变模具工作部分的几何形状和尺寸 ﹡改变坯料和模具之间的摩擦阻力
﹡改变坯料局部区域的温度
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
《冲压工艺及模具设计》
第1章 冲压变形的基本原理
A-变形区;B-传力区;C-已变形区 图1.3.3 变形趋向性对冲压工艺的影响