高等数学B(上)复习资料
《高等数学B》答案
《高等数学B 》复习资料一、选择题:A 、奇函数;B 、偶函数;C 、非奇非偶函数;D 、既是奇函数又是偶函数;E 、不能确定。
若)(x f 为奇函数,)(x g 为偶函数,则下列函数是: 1、)]([x g f ( B ); 2、)]([x f g ( B );A.x y =; B 、1+-=x y ; C 、1+=x y ; D.5132+=x y ; E 、5132-=x y 。
3、 曲线x y ln 2+=在点1=x 的切线方程是( C );4、 曲线53)12()25(+=+x y 在点)51,0(-处的切线方程是( E ); A 、不存在; B 、1; C 、0; D 、-1; E 、2。
5、函数|sin |)(x x f =在点0=x 处的导数是( A ); 6、函数x x f sin )(=在点0=x 处的导数是( B );A 、 -1;B 、-3;C 、3;D 、-9;E 、-12。
若3)(0'-=x f ,则: 7、=--+→h h x f h x f h )2()(lim000( D );8、=-+→hx f h x f h )()(lim000( B );A.满足罗尔定理条件;B.满足拉格朗日中值定理条件;C.满足柯西定理条件;D.三个定理都不满足;E.不能确定。
9、652+-=x x y 在]3,2[上( A ); 10、)1ln(2x y +=在]3,0[上( B ); A 、c x f +)(; B 、)(x f ; C 、dx x f )(; D 、dx x f )('; E 、)('x f ;设)(x f 在],[b a 上可积,则: 11、=⎰dx x f d )('( D ); 12、=⎰dx x f dxd)('( E );A 、x y x x f y x f x ∆∆--→∆),(),(lim 00000;B 、xy x x f y x f x x x ∆∆--→∆),(),(lim 00'00'0;C 、y y x f y y x f y ∆-∆+→∆),(),(lim 00000;D 、y y x f y y x f y y y ∆-∆+→∆),(),(lim 00'00'0;E 、yy x f y y x f x x y ∆-∆+→∆),(),(lim 00'00'0。
高等数学B(上)复习资料
华南理工大学网络教育学院 《高等数学(上)》辅导一、 求函数值 例题:1、若2()f x x =,()x x e ϕ=,则(())f x ϕ= . 解:()22(())()xx x f x f e ee ϕ===2、若(1)21f x x -=+,则()f x = . 解:令1x t -=,则1x t =+ 所以()2(1)123f t t t =++=+即 ()23f x x =+二、 常见的等价无穷小及等价无穷小替换原理 常见的等价无穷小:无穷小替换原理:在求极限过程中,无穷小的因子可以用相应的等价无穷小替换例题:1、320sin 3lim x xx →=? 解:当0sin3~3x x x →,, 原式=3200(3)lim lim270x x x x x→→==2、0sin3limx xx→=?解:原式=03lim 3x xx →=3、201-cos limx xx→=? 解:当210cos ~2x x x →,1-原式=220112lim 2x xx →=4、0ln(13)lim x x x →+=?解:当03)~3x x x →,ln(1+原式=.03lim 3x x x →=.5、201lim x x e x→-=?解:当201~2x x e x →-,原式=.02lim 2x x x →=.三、 多项式之比的极限2lim 03x xx x →∞=+,2211lim 33x x x x →∞-=+,23lim x x x x→∞+=∞四、 导数的几何意义(填空题)0()f x ':表示曲线()y f x =在点00(,())M x f x 处的切线斜率曲线..()y f x =..在点00(,())M x f x 处的切线方程为: 曲线()y f x =在点00(,())M x f x 处的法线方程为: 例题:1、曲线44xy x +=-在点(2,3)M 的切线的斜率.解:222(4)'(4)(4)(4)(4)x x x x x x y x =='+--+-'=- 2、曲线cos x xy e =在点(0,1)M 处的切线方程.解:2(cos )'cos ()()x x x x x x e x e y e =='-'= 所以曲线cos x xy e=在点(0,1)M 处的切线方程为:1(0)y x -=--,即10x y +-=3、曲线y =在点(1,1)M 处的切线方程. 解:53112233x x y x =='=-=-所以曲线y =在点(1,1)M 处的切线方程为:21(1)3y x -=--,即2350x y +-=五、 导数的四则运算、复合函数的导数、微分 复合函数求导的链式法则: 微分:()dy f x dx '= 例题:1、设y =,则'y =?解:()()1'2221112y x x -'=+⋅+=2、设2sin y x =,则'y =? 解:()''222cos 2cos y x xx x =⋅=3、设sin 2x y =,则dy =?解:()''sin sin 2ln 2sin 2cos ln 2x x y x x =⋅= 则dy =sin 2cos ln 2x x dx 4、设sin x y e =,则dy =? 解:()''cos cos xx xx y e eee =⋅=所以cos x x dy e e dx = 5、设2x y e-=,则dy =?(答案:22x xedx --)六、 运用导数判定单调性、求极值 例题:1、求ln y x x =的单调区间和极值. 解:定义域(0,)x ∈+∞令ln 10y x '=+=,求出驻点1x e -=函数的单调递减区间为1(0,]e -,单调递增区间为1(,)e -+∞极小值为11()y e e =-.2、求x y xe -=的单调区间和极值. 解:定义域(,)x ∈-∞+∞令(1)0x x x y e xe x e --'=-=-=,求出驻点1x =函数的单调递减区间为[1,)+∞,单调递增区间为(,1)-∞,极大值为1(1)y e -=. 3、求函数.2()x f x e-=.的单调区间和极值.解:定义域(,)x ∈-∞+∞ 令2()2x f x xe-'=-,得0x =极大值为(0)1f =.4、求函数31()3f x x x =-的极值.答案:极小值为2(1)3y =-,极大值为2(1)3y -=七、 隐函数求导 例题:1、求由方程2sin 0x e y xy +-=所确定的隐函数()y y x =的导数dydx. 解:方程两边关于x 求导,得:即 2cos 2xy e y y xy-'=-2、求由方程cos()y x y =+所确定的隐函数()y y x =的导数dy dx. 解:方程两边同时关于x 求导,得: 即3、求由方程sin()y x y =+所确定的隐函数()y y x =的导数dydx. 答案: cos()1cos()dy x y dx x y +=-+4、求由方程ln ln 0xy x y ++=所确定的隐函数()y y x =的导数dydx. 答案: dy y dx x =-八、 洛必达法则求极限,注意结合等价无穷小替换原理 例题:1、求极限011lim 1sin x x e x →⎛⎫- ⎪-⎝⎭ 解:原式0sin (1)lim (1)sin x x x x e e x→--=-20sin (1)lim x x x e x→--=.()0sin ~,1~xx x x e x →- 当时,. 2、求极限30sin lim tan x x x x →-00⎛⎫⎪⎝⎭ 解:原式=3sin limx x xx→-()0tan ~x x x → 当时, =22012lim 3x xx → 2101cos ~2x x x ⎛⎫→- ⎪⎝⎭ 当时, 3、求201lim x x e x x →--00⎛⎫ ⎪⎝⎭(答案:12) 九、 原函数、不定积分的概念及其性质 知识点:设()()F x f x '=,则称()F x 是()f x 的一个原函数,()F x C +是()f x 的全体原函数,且有:例题:1、( )是函数33x x +的原函数.A .233x + B .421342x x + C .42x x + D .421142x x +解:因为42313342x x x x '⎛⎫+=+ ⎪⎝⎭所以421342x x +是33x x +的原函数.2、( )是函数2cos x x 的原函数. A .22sin x -B .22sin xC .21sin 2x -D .21sin 2x解:因为22211sin (cos )2cos 22x x x x x '⎛⎫=⋅= ⎪⎝⎭g所以21sin 2x 是2cos x x 的原函数.3是( )的原函数A .12xBC .ln xD解:因为'=的原函数.4、( )是函数1x的原函数.A .21xB .21x -C .ln x -D .ln ||x解:因为()1ln ||x x'=所以ln ||x 是1x的原函数.十、 凑微分法求不定积分(或定积分)简单凑微分问题:2x e dx ⎰,sin 4xdx ⎰,cos5xdx ⎰,ln ln xd x ⎰ 一般的凑微分问题:⎰,⎰,sin 1cos x dx x +⎰,ln x dx x ⎰例题: 1、⎰解:注意到2(1)2x x '-=-原式=()2112x --⎰C ⎛⎫=+ ⎪⎝⎭参考公式 2、⎰解:注意到2(23)6x x '-=-原式21=(23)6x --3223x C ⎛⎫=+ ⎪⎝⎭⎰参考公式=319C -+ 3、sin 1cos x dx x+⎰解:注意到(1cos )sin x x '+=-原式1=(1cos )1cos d x x -++⎰1ln ||dx x C x ⎛⎫=+ ⎪⎝⎭⎰参考公式=ln |1cos x |C -++ 4、5x e dx +⎰解:原式=5(5)x e d x ++⎰()x x e dx e C =+⎰参考公式=5x e C ++5、cos5xdx ⎰ 解:原式1cos5(5)5xd x =⎰()cos sin xdx x C =+⎰参考公式 6、sin 3xdx ⎰ 解:原式1sin3(3)3xd x =⎰()sin cos xdx x C =-+⎰参考公式 十一、 不定积分的第二类换元法——去根号(或定积分)等 例题: 1、求不定积分t =,则221ln(1)x e t x t =-⇒=-原式=22121211t dt dt t t t ⋅=--⎰⎰2、4⎰.t =,则22x t dx tdt =⇒= 当0042x t x t ====时,;当时,原式=2200111221+t 1+tt tdt dt +-⋅=⎰⎰3、1⎰t =,则21x t =-,2dx tdt =当0x =时,1t =;当1x =时,t =原积分211)2t t tdt =-⋅ 十二、 不定积分的分部积分法(或定积分)诸如sin x xdx ⎰,cos x xdx ⎰,x xe dx ⎰,x xe dx -⎰,ln x xdx ⎰,可采用分部积分法分部积分公式:()()()()()()u x dv x u x v x v x du x =-⎰⎰ 例题:1、求不定积分sin x xdx ⎰. 解 sin (cos )x xdx xd x =-⎰⎰2、求不定积分x xe dx -⎰ 解 x x xe dx xde --=-⎰⎰3、求不定积分ln x xdx ⎰解 21ln ln ()2x xdx xd x =⎰⎰十三、 定积分的概念及其性质知识点:定积分的几何意义,奇偶对称性等 例题:1、定积分23ax a x e dx -⎰等于 .解: 因为23x x e 是x 的奇函数,所以原式=0 2、定积分23sin aa x xdx -⎰等于 .解: 因为23sin x x 是x 的奇函数,所以原式=0 3、定积分22sin 1x xdx x π-π+⎰等于 . 解: 因为22sin 1x xx+是x 的奇函数,所以原式=0十四、 变上限积分函数求导 例题:1、 设函数()f x 在[,]a b 上连续,3()()x aF x f t dt =⎰,则()F x '=( C ).A .()f xB .3()f xC .233()x f xD .23()x f x2、设21()arctan x f x tdt =⎰,则()f x '=22arctan x x .3、设30()sin xf x t dt =⎰,则()f x '=3sin x .十五、 凑微分法求定积分(或不定积分) 思想与不定积分类似 例题:1、10x ⎰解:注意到32(1)3x x '+=原式301(1)3x =+⎰3223x C ⎛⎫=+ ⎪⎝⎭⎰参考公式=13029 十六、 定积分的第二类换元法——去根号(或不定积分, 思想与不定积分类似 例题:1、4⎰.t =,则22x t dx tdt =⇒= 当0042x t x t ====时,;当时,原式=2200111221+t 1+tt tdt dt +-⋅=⎰⎰2、1⎰t =,则21x t =-,2dx tdt =当0x =时,1t =;当1x =时,t =原积分211)2t t tdt =-⋅ 十七、 定积分的分部积分法(或不定积分) 思想与不定积分类似 例题:1、求定积分20sin x xdx π⎰. 解220sin (cos )x xdx xd x ππ=-⎰⎰2、求定积分10x xe dx -⎰ 解11xx xe dx xde --=-⎰⎰十八、 求平面图形面积知识点:X 型积分区域的面积求法 Y 型积分区域的面积求法通过作辅助线将已知区域化为若干个X 型或Y 型积分区域的面积求法 例题:1、求由ln y x =、0x =,ln 2y =及ln 7y =所围成的封闭图形的面积.解:由ln y x =得y x e =面积为ln 7ln 2(0)y S e dy =-⎰2、计算由曲线y =1y =及0x =所围成的图形的面积.解:由1y y ⎧=⎪⎨=⎪⎩A 为(1,1)面积为1(1S dx =-⎰3、求由曲线1y x =与直线y x =及2x =所围成的平面图形的面积.解:由2y xx =⎧⎨=⎩得交点A 为(2,2)由1y x y x =⎧⎪⎨=⎪⎩得交点B 为(1,1)面积为211()S x dx x =-⎰。
高等数学B上
华南理工大学高等数学B上(随堂练习)第一章函数与极限1.函数的定义域是( )A. B. C. D.参考答案:A2.函数的定义域是 ( )A. B.C. D.参考答案:C3.函数的定义域是( )A. B.C. D.参考答案:A4.函数的定义域为( )A. B.C. D.参考答案:B5.函数的定义域是()A. B. C. D.参考答案:C6.函数的定义域是( ) A. B. C. D.参考答案:C7.函数的定义域是()A. B. C. D.参考答案:A8.若,则( )A. B.C. D.参考答案:A9.若,,则( ) A. B. C. D.参考答案:D10.设,则( ) A. B. C. D.参考答案:A11. ( ) A. B. C. D.参考答案:B12.( ) A. B.不存在 C. D.参考答案:D13. ( ) A.不存在 B. C. D.参考答案:C14.( ) A. B.不存在 C. D.参考答案:D15.( ) A. B. C. D.参考答案:A16.( ) A. B. C.不存在 D.参考答案:B17.当时,下列变量是无穷小的是( ) A. B. C. D.参考答案:C18.当时,与等价的无穷小是( ) A. B. C. D.参考答案:A19. ( )A.0 B. C. D.1参考答案:B20.( )A.8 B.2 C. D.0参考答案:D21.( )A.0 B.1 C. D.2参考答案:D22.下列等式成立的是( )A. B.C. D.参考答案:C问题解析:23.( )A. B.1 C.不存在 D.参考答案:A24.( )A.1 B. C.不存在 D.参考答案:D25.( )A.0 B.1 C. D.参考答案:C26.设函数在点处极限存在,则( ) A.2 B.4 C.1 D.0参考答案:A27.设,则 ( )A.0 B.-1 C.1 D.2参考答案:C28.设,则( )A.1 B.2 C.0 D.不存在参考答案:A29.设在处连续,则=( ) A.1 B.2 C.0 D.不存在参考答案:A第一章函数与极限·第二节数列的极限1.曲线在点处的切线的斜率为( ) A.-2 B.2 C.-1 D.1参考答案:B2.曲线在点处的切线方程为( )A. B.C. D.参考答案:B3.曲线在点处的切线方程为( )A. B.C. D.参考答案:C4.曲线在点(1,1)处的切线方程为( )A. B.C. D.参考答案:B5.设直线是曲线的一条切线,则常数( ) A. -5 B. 1 C.-1 D.5参考答案:D6.设函数,则( )A. B. C. D.参考答案:C7.设函数,则 ( )A. B.C. D.参考答案:A8.设函数,则( )A. B.C. D.参考答案:A9.设函数,则 ( )A. B.C. D.参考答案:D10.设函数,则( )A. B.C. D.参考答案:B11.设函数,在( )A. B.C. D.参考答案:C12.设函数,则( ) A. B.C. D.参考答案:A13.设函数,则( )A. B. C. D.参考答案:C14.设函数,则( )A. B. C. D.参考答案:D15.设函数,则 ( )A. B.C. D.参考答案:C16.设函数,则( )A. B. C. D.参考答案:A17.设函数,则( )A. B. C. D.参考答案:B18.设确定隐函数,则( )A. B. C. D.参考答案:B19.设函数,则( )A.4 B.-4 C.1 D.-1参考答案:C20.设方程所确定的隐函数为,则( )A. B. C. D.参考答案:B21.设函数由方程所确定,则( ) A.0 B. C. D.参考答案:B22.设方程所确定的隐函数为,则( ) A. B. C. D.参考答案:A23.设方程所确定的隐函数为,则( ) A. B.0 C. D.参考答案:D问题解析:24.设,则( )A. B.C. D.参考答案:A25.设函数,则( )A. B.C. D.参考答案:B26.设函数,则( )A. B.C. D.参考答案:B27.设,则( )A. B.C. D.参考答案:A第一章函数与极限·第三节函数的极限1.( )A. B.0 C. D.1参考答案:C2.( )A. B.0 C. D.13.( )A. B. C. D.不存在参考答案:B4.( )A. B. C.1 D.不存在参考答案:A5.( )A. B. C.1 D.不存在参考答案:A6.( )A. B. C.1 D.0参考答案:A7.函数的单调减少区间是 ( ) A. B. C. D.参考答案:A8.函数的单调区间是 ( ) A. B. C. D.9.函数的单调增加区间是( )A. B. C. D.参考答案:A10.函数的单调增加区间为 ( ) .A. B. C. D.参考答案:C11.函数的单调减区间为( ) A. B. C. D.参考答案:B12.函数的单调增加区间为( )A. B. C. D.参考答案:D13.函数的极值等于( )A.1 B.0 C. D.参考答案:C14.函数的极值为( )A. B. C.0 D.1参考答案:A15.函数的极值为( )A.1 B.0 C. D.参考答案:A16.函数的极大值为( )A.-16 B.0 C.16 D.-7参考答案:B问题解析:17.函数的极大值为( )A.3 B.1 C.-1 D.0参考答案:A18.有一张长方形不锈钢薄板,长为,宽为长的.现在它的四个角上各裁去一个大小相同的小正方形块,再把四边折起来焊成一个无盖的长方盒.问裁去小正方形的边长为( )时,才能使盒子的容积最大.A. B. C. D.参考答案:B19.设有一根长为的铁丝,分别构成圆形和正方形.为使圆形和正方形面积之和最小,则其中一段铁丝的长为( )A. B. C. D.参考答案:A20.欲围一个面积为150m2的矩形场地,围墙高3米.四面围墙所用材料的选价不同,正面6元/ m2,其余三面3元/ m2.试问矩形场地的长为( )时,才能使材料费最省.A.15 B.10 C.5 D.8参考答案:A21.设两个正数之和为8,则其中一个数为( )时,这两个正数的立方和最小.A.4 B.2 C.3 D.5参考答案:A22.要造一个体积为的圆柱形油罐,问底半径为( )时才能使表面积最小.A. B. C. D.参考答案:C23.某车间靠墙壁要盖一间方长形小屋,现有存砖只够砌20m长的墙壁.问围成的长方形的长为( )时,才能使这间小屋的面积最大.A.8 B.4 C.5 D.10参考答案:D24.曲线的下凹区间为( )A. B. C. D.参考答案:A25.曲线的拐点坐标为( )A. B. C. D.不存在参考答案:B第一章函数与极限·第六节极限存在准则:两个重要极限1. ( )是的一个原函数.A. B. C. D.参考答案:C2.下列函数中,()是的原函数A. B. C. D.参考答案:C3.下列函数中,( )是的原函数A. B. C. D.参考答案:D4. ( )是函数的原函数.A. B. C. D.参考答案:D5.下列等式中,( )是正确的A. B.C. D.参考答案:D6.若,则( )A. B. C. D.参考答案:B7.若满足,则().A. B. C. D.参考答案:B8.( )A. B.C. D.参考答案:D问题解析:9.( )A. B. C. D.参考答案:B10.( )A. B. C. D.参考答案:A11.( )A. B.C. D.参考答案:B12.( )A. B. C. D.参考答案:B13.( ) A. B.C. D.参考答案:A14.( ) A. B.C. D.参考答案:C15.( ) A. B.C. D.参考答案:A16.( ) A. B.C. D.参考答案:A问题解析:17.( ) A. B.C. D.参考答案:A18.( )A. B.C. D.参考答案:D19.( )A. B.C. D.参考答案:A20.( )A. B.C. D.参考答案:B21.( )A. B.C. D.参考答案:C22.( )A. B.C. D.参考答案:A第二章导数与微分·第一节导数概念1.( )A. B.C. D.参考答案:B2.曲线,直线,及轴所围成的图形的面积是( ) A. B. C. D.参考答案:A3.定积分等于( )A.2 B.1 C.0 D.-1参考答案:C4.( )A.2 B.1 C.0 D.-1参考答案:C5.( )A.2 B.0 C.1 D.-1参考答案:B6.设函数在上连续,,则( ) A. B. C. D.参考答案:C7.设,则等于( )A. B. C. D.参考答案:D8.( )A. B. C. D.参考答案:C9.A.0 B. C.1 D.参考答案:B10.A.1 B.0 C. D.-1参考答案:D11.A. B. C. D.1 参考答案:C12.( )A.4 B.9 C.6 D.5参考答案:A13.( )A.1 B.2 C. D.参考答案:B14.( )A.2 B.C. D.参考答案:D15.( )A. B. C.1 D.参考答案:A16. ( )A. B. C.1 D.参考答案:B17.( )A. B.1 C. D.参考答案:D18.( )A. B.0 C.1 D.参考答案:A19.( )A.0 B. C.1 D.参考答案:B20.( )A.1 B. C. D.参考答案:B21.( )A. B. C. D.1参考答案:A22.( )A. B.1 C. D.2 参考答案:C23.( )A. B. C. D.1 参考答案:A24.( )参考答案:A25.( )A. B.C. D.参考答案:C26.( ) A. B.1 C. D.参考答案:A27.( ) A. B.1 C. D.参考答案:B问题解析:28. ( )A.1 B. C.0 D.参考答案:A29.( )A. B.C. D.参考答案:B30. ( )A. B.C.1 D.参考答案:A31.( )A. B. C. D.1 参考答案:C32.广义积分( )A. B.不存在 C.0 D.1参考答案:A33.广义积分( )A.1 B.不存在 C.0 D.参考答案:A34.广义积分( )A.1 B.不存在 C.0 D.参考答案:B35.由抛物线,直线,及所围成的平面图形的面积等于( )A.2 B.1 C. D.参考答案:A36.由直线,,及曲线所围成的平面图形的面积等于( ) A. B.1 C. D.参考答案:A37.由抛物线与直线及所围成的封闭图形的面积等于( ) A. B. C.2 D.1参考答案:A38.由曲线与直线及所围成的平面图形的面积等于( )A. B.2 C.1 D.参考答案:A39.由曲线与所围图形的面积等于( )A.1 B. C.3 D.参考答案:B40.由,,所围成的封闭图形的面积等于( )A. B.1 C.3 D.2参考答案:A41.由及在点(1,0)处的切线和y轴所围成的图形的面积等于( ) A.1 B. C.2 D.3参考答案:B问题解析:42.由曲线与所围图形的面积等于( )A. B.1 C. D.参考答案:A问题解析:43.设由抛物线;,及所围成的平面图形为D,则D 绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.参考答案:D44.设由直线,,及曲线所围成的平面图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.参考答案:A45.设由曲线与直线及所围成的平面图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.参考答案:B46.设由抛物线与直线及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )参考答案:D47.设由曲线与直线,及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.参考答案:C48.设由曲线与直线及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B.C. D.参考答案:A。
高数b2教材大一知识点归纳
高数b2教材大一知识点归纳高等数学(高数)是大学中必修的一门基础课程,也是理工科学生的必备技能之一。
在高数课程中,B2教材是大一上学期所学的内容,它包含了许多重要的知识点。
本文将对B2教材中的一些关键知识点进行归纳整理,帮助大家更好地理解和掌握这些内容。
1. 一元函数的极限与连续:一元函数的极限是高等数学中最基本的概念之一。
通过对极限的学习,我们可以更好地理解函数的性质和行为。
在B2教材中,我们学习了极限的定义、性质以及一些常见函数的极限计算方法。
另外,连续函数也是高数中非常重要的内容之一。
我们需要掌握连续函数的定义、性质以及常见函数的连续性分析方法。
2. 导数与微分:导数是函数的变化率的量化描述,也是微积分的重要内容之一。
在B2教材中,我们学习了导数的定义、性质以及一些基本的求导法则。
同时,我们还学习了一些特殊函数的导数计算方法,如幂函数、指数函数、对数函数等。
除了导数,微分也是高数中需要重点掌握的内容。
我们需要了解微分的定义、性质,以及利用微分进行近似计算的方法。
3. 函数的应用:函数的应用是高数教材中非常重要的一部分。
在B2教材中,我们学习了函数在几何、物理、经济等领域中的应用。
例如,我们可以用函数来描述曲线的运动规律、计算物体的速度、解决最优化问题等。
这些应用不仅在理论中具有重要意义,而且在实际生活中也有广泛的应用。
4. 定积分与不定积分:定积分和不定积分是微积分中的另外两个重要概念。
在B2教材中,我们学习了定积分的定义、性质以及一些基本的定积分计算方法,如换元法、分部积分法等。
同时,我们还学习了不定积分的定义、性质以及一些基本的不定积分计算法则。
定积分主要用于计算曲线下的面积、曲线长度等问题,而不定积分则广泛应用于求函数的原函数以及解微分方程等方面。
5. 微分方程:微分方程是高数中的另一个重要内容。
在B2教材中,我们学习了一阶常微分方程的基本概念和解法。
通过学习微分方程,我们可以研究函数的变化规律,解决实际问题,如人口增长模型、药物动力学问题等。
高等数学b复习题
高等数学b复习题高等数学B复习题在大学学习的过程中,高等数学B是一门重要的课程,它涉及到微积分、线性代数、概率统计等多个方面的知识。
为了更好地掌握这门课程,复习题是不可或缺的。
本文将围绕高等数学B的复习题展开讨论,帮助读者更好地复习这门课程。
一、微积分微积分是高等数学B中最重要的部分之一。
在复习微积分时,我们可以从以下几个方面入手:1. 导数与微分导数与微分是微积分的基础概念。
我们可以通过计算导数、求解极值、应用微分等方式来复习这一部分知识。
例如,可以选择一些典型的函数进行求导,如多项式函数、三角函数等,通过计算导数的过程来熟悉导数的定义和性质。
2. 积分与定积分积分与定积分是微积分的另一个重要概念。
在复习这一部分时,可以选择一些典型的函数进行积分计算,如多项式函数、三角函数等。
同时,还可以通过解决一些应用题,如求曲线下面积、求曲线长度等,来加深对积分的理解。
3. 微分方程微分方程是微积分的一个重要应用领域。
在复习微分方程时,可以选择一些常见的微分方程进行求解,如一阶线性微分方程、二阶常系数齐次线性微分方程等。
同时,还可以通过解决一些实际问题的微分方程模型,如弹簧振动问题、人口增长问题等,来加深对微分方程的理解。
二、线性代数线性代数是高等数学B中的另一个重要部分。
在复习线性代数时,我们可以从以下几个方面入手:1. 矩阵与行列式矩阵与行列式是线性代数的基础概念。
在复习这一部分时,可以选择一些典型的矩阵与行列式进行计算,如矩阵的加减乘除、行列式的计算等。
同时,还可以通过解决一些线性方程组的问题,如高斯消元法、矩阵求逆等,来加深对矩阵与行列式的理解。
2. 向量空间与线性变换向量空间与线性变换是线性代数的另一个重要概念。
在复习这一部分时,可以选择一些典型的向量空间与线性变换进行计算,如向量的线性组合、向量的内积、线性变换的矩阵表示等。
同时,还可以通过解决一些线性变换的问题,如矩阵的相似对角化、线性变换的特征值与特征向量等,来加深对向量空间与线性变换的理解。
广工环境B类高数上册总复习
0 , i 不是特征根 , k 1 , i 是特征方程的单根 .
Qm ( x ) 是与 Pm ( x )同次的多项式,系数待定.
(3)定积分的换元法和分部积分法
例1:设 f (x) 有一个原函数 sin x ,求
2
2
x
x f '( x) d x
解: f ( x ) ( sin x ) ' x cos x sin x 2
x
x
x f '( x ) d x
2
x d f ( x ) x f ( x )
2.定积分的几何应用:平面图形的面积和 旋转体的体积
四、微分方程:一阶线性微分方程,可降阶微分 方程,二阶常系数齐次线性微分方程,二阶常系 数非齐次线性微分方程的特解形式.
1. 求积分:原函数与不定积分的概念,换元法 和分部积分法,倒代换,对称性,广义积分.
重点: (1)对称区间上奇函数和偶函数积分性质
1
3 2
1 |xx |
2
dx
1
1 2
1 xx
2
dx
1
3 2
1 x2 x
dx
2
1
1 2
1 1 1 2 (x ) 4 2
1 d (x ) 2
1
3 2
1 1 d (x ) 2 1 2 1 (x ) 2 4
1
3 2
1 |xx |
2
1 1 2 (x ) 2 4 2 3 2 1 1 d (x ) 1 2 1 2 1 (x ) 2 4 3 1 1 1 1 2 1 2 arcsin 2 ( x ) ln ( x ( x ) ) 2 1 2 2 4 1 2 3 ) lim arcsin ( 2 x 1 ) ln ( 1 2 x1 1 1 2 1 1 1 2 3 ) 2x lim ln ( x ( x ) )ln | ln ( 2 d x x x a | c d x arcsin 2 x 2 2 2 x 1 2 a a 2 42
大学高等教育学年学期高等数学B1期末复习题
《高等数学B1》期末复习题一、选择题1.若函数()f x 在某点0x 极限存在,则( ).A .()f x 在0x 的函数值必存在且等于极限值B .()f x 在0x 的函数值必存在,但不一定等于极限值C .()f x 在0x 的函数值可以不存在D .如果0()f x 存在则必等于极限值 2.若)(x f 在0x x =点处可导,则有( ).A .)()()2(lim0'000x f h x f h x f h =-+→ B. )()()(lim 0'000x f h x f h x f h =--→C .)()()(lim0'000x f h h x f x f h =--→ D. )()()(lim 0'000x f hh x f h x f h =--+→3.命题(I ):)()(x g x f >是命题(II ):)(')('x g x f >的( ).A .必要但非充分条件 B.充分但非必要条件C .充要条件 D.既非充分也非必要条件 4.若)(x f 是)(x g 的原函数,则( ).A.⎰+=C x g dx x f )()( B.⎰+=C x f dx x g )()( C.⎰+='C x g dx x g )()( D.⎰+='C x g dx x f )()(5.定积分定义∑⎰=→∆=ni i i bax f dx x f 1)(lim )(ξλ说明( ).A.],[b a 必须n 等分,i ξ是],[1i i x x -端点B.],[b a 可任意分法,i ξ必须是],[1i i x x -端点C.],[b a 可任意分法,0}m ax {→∆=i x λ,i ξ可在],[1i i x x -内任取D.],[b a 必须等分,0}m ax {→∆=i x λ,i ξ可在],[1i i x x -内任取6. 设 nn x 333.0= ,则=∞→n n x lim ( ) A. 1/3 B. C. D. 不存在 7. 当0→x 时,xx 1sin是( ) A.x 的高阶无穷小量 B. x 的低阶无穷小量C.x 的同阶无穷小量D. 无穷小量,但阶数不确定8. 设函数x x x x f sin )23()(2+-=,则0)(='x f 在),0(π内根的个数为( ) A .0个 B. 至多1个 C. 2个 D. 至少3个 9. )(0x f '存在是函数)(x f 在点0x 取得极值的( )A .充分条件B .必要条件C .充要条件D .既非充分也非必要条件 10.=⎪⎭⎫ ⎝⎛⎰dx x dxd ba 2sin ( ) A.2sin x B. 2cos x C. 2cos 2x x D. 0 11.当0→x 时,与x tan 是等价无穷小的是 ( )A .x x -2B .x cos 1-C .x x sin 2+ D .11-+x12.设函数)(x f 可导且下列各极限均存在,则下列各式不成立的是( )A.)0()0()(limf x f x f x '=-→ B.)()()2(lim 0a f ha f h a f h '=-+→C.)()()(lim0000x f x x x f x f x '=∆∆--→∆ D.)(2)()(lim 0000x f xx x f x x f x '=∆∆--∆+→∆13.下列函数在给定区间上满足罗尔定理的有( )A.xxey -= [0,1] B.32)1(1-x [0,2]C.652+-=x x y [2,3] D.⎩⎨⎧≥<+=5,15,1x x x y [0,5]14.如果⎰⎰=)()(x dg x df ,则下列各式不正确的是( )A.)()(x g x f =B.)()(x g x f '='C.)()(x dg x df =D.⎰⎰'='dx x g d dx x f d )()( 15.设⎰=ax tdt x F arcsin )( , 则)1('F = ( )A.a C.2π D.2π-二、填空题1. 已知222lim 22x x ax bx x →++=--,则a =________,b =________.2.曲线x x f cos )(=上点)21,3(π处的切线方程__________. 3. 函数x ex f x2)(2-=在区间 上单调递增.4.若)(x f 连续,则⎰'))((dx x f = .5.已知)(x f 在),(∞+-∞上连续,且2)0(=f ,且设⎰=2sin )()(x xdt t f x F ,则(0)F '= .6.=+∞→xx x sin lim=∞→nn n 2sinlim π=-→11sinln lim 1x x x 7.00,sin ,)(2>≤⎪⎩⎪⎨⎧+=x x xbx bx a x f 在0=x 连续,则常数a 与b 应满足怎样的关系8. =⎰→xx dt t t xx sin cos lim209. 设⎩⎨⎧==-tt e y e x 23,求三阶微商=33dx yd 10.=+∞→nn n n 2)1(lim __________。
高数B试题及答案
高等数学B (上)试题1答案一、判断题(每题2分,共16分)(在括号里填写“√”或“×”分别表示“对”或“错”) ( × )1. 两个无穷大量之和必定是无穷大量. ( × )2. 闭区间上的间断函数必无界.( √ )3. 若)(x f 在某点处连续,则)(x f 在该点处必有极限. ( × )4. 单调函数的导函数也是单调函数.( √ )5. 无穷小量与有界变量之积为无穷小量.( × )6. ()y f x =在点0x 连续,则()y f x =在点0x 必定可导. ( × )7. 若0x 点为()y f x =的极值点,则必有0()0f x '=. ( × )8. 若()()f x g x ''≡,则()()f x g x ≡.二、填空题(每题3分,共24分) 1. 设2)1(x x f =-,则(3)f =16. 2.1lim sinx x x→∞=1。
3.112lim sin sin xx x x x x x x →∞⎡⎤+⎛⎫++=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦21e +.4. 曲线326y y x -=在(2,2)-点切线的斜率为23.5.设0()f x A '=,则000(2)(3)limh f x h f x h h→+--=5A.6. 设1()sin cos,(0)f x x x x=≠,当(0)f =0时,)(x f 在0=x 点连续.7. 函数33y x x =-在x =1-处有极大值.8. 设)(x f 为可导函数,(1)1f '=,21()()F x f f x x ⎛⎫=+ ⎪⎝⎭,则=')1(F 1.三、计算题(每题6分,共42分)1.求极限 3(2)(3)(4)lim5n n n n n→+∞+++ . 解: 3(2)(3)(4)lim 5n n n n n →+∞+++234lim 111n n n n →+∞⎛⎫⎛⎫⎛⎫=+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭(3分)1= (3分)2. 求极限 0cos lim sin x x x xx x →--.解:0cos lim sin x x x xx x→--01cos sin lim1cos x x x xx →-+=- (2分) 02sin cos limsin x x x xx→+= (2分) 3= (2分)3. 求23(1)(2)(3)y x x x =+++在(0,)+∞内的导数.解:ln ln(1)2ln(2)3ln(3)y x x x =+++++, (2分)123123y y x x x '=+++++, (2分) 故23123(1)(2)(3)123y x x x x x x ⎛⎫'=+++++ ⎪+++⎝⎭(2分) 4. 求不定积分221d 1x x x ++⎰.解:221d 1x x x ++⎰22211d(1)d 11x x x x=++++⎰⎰ (3分) 2ln(1)arctan x x C =+++ (3分)5. 求不定积分2sin d x x x ⎰.解:2sin d x x x ⎰()221sin d 2x x =⎰ (3分) 21cos 2x C =-+ (3分)6.求不定积分sin 2d x x x ⎰. 解: sin 2d x x x ⎰11sin 2d(2)dcos222x x x x x ==-⎰⎰ (2分) ()1cos 2cos2d 2x x x x =--⎰ (2分)11cos 2sin 224x x x C =-++ (2分)7. 求函数()cos sin xy x =的导数.解:ln cos ln sin y x x = (3分)()()cos 12sin cotlnsin x y x x x +'=- (3分)四、解答题(共9分)某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成的长方形的长,宽各为多少才能使这间小屋面积最大.解:设垂直于墙壁的边为x ,所以平行于墙壁的边为202x -,所以,面积为2(202)220S x x x x =-=-+, (3分)由4200S x '=-+=,知 (3分) 当宽5x =时,长20210y x =-=, (3分) 面积最大51050S =⨯=(平方米)。
大一高等数学b知识点
大一高等数学b知识点一、导数与微分在大一高等数学B课程中,导数与微分是非常重要的知识点。
导数是描述函数变化率的工具,它表示函数在某一点的瞬时变化速率。
微分是导数的一种运算形式,它可以用来近似计算函数在某一点的函数值。
1. 导数的定义导数的定义是函数在某一点的极限值,表示函数在该点的瞬时变化率。
导数可以通过求极限的方式来计算。
对于函数f(x),它在点x处的导数可以表示为:f'(x) = lim┬(h→0)〖(f(x+h)-f(x))/h〗导数的计算可以应用各种求导法则,如常数法则、幂法则、指数函数与对数函数的导数、三角函数的导数等。
2. 微分的定义微分是导数的一种运算形式,表示函数在某一点的线性逼近。
对于函数f(x),它在点x处的微分可以表示为:df(x) = f'(x)dx微分的计算常常用于近似计算函数值,通过微分可以得到函数的线性近似公式。
二、常微分方程常微分方程是大一高等数学B课程中的另一个重要知识点。
它描述了未知函数及其导数之间的关系,并且通常包含一个或多个初始条件。
1. 一阶常微分方程一阶常微分方程表示函数的导数只涉及一阶导数的方程。
一阶常微分方程可以分为可分离变量方程、一阶线性方程、齐次方程、一阶 Bernoulli 方程等几种类型。
2. 高阶常微分方程高阶常微分方程表示函数的导数涉及多阶导数的方程。
高阶常微分方程通常可以通过特征根法、常数变易法、幂级数法等方式求解。
三、多元函数与偏导数多元函数与偏导数是大一高等数学B课程的重点内容之一。
多元函数是指依赖于多个变量的函数,而偏导数是多元函数关于其中一个变量的导数。
1. 多元函数的定义与性质多元函数是指依赖于多个变量的函数,例如f(x,y)。
多元函数的定义与一元函数类似,可以进行加减乘除、求导等运算。
2. 偏导数的定义与计算偏导数是多元函数对其中一个变量的导数,其他变量视为常数。
对于多元函数f(x,y),它的偏导数可以表示为:∂f/∂x, ∂f/∂y偏导数的计算可以应用各种求导法则,与一元函数的导数计算类似。
高等数学B(1)练习题
第一章 函数、极限与连续作 业 题一、计算下列函数极限1.220()lim h x h x h →+-2. 231lim (2sin )x x x x x→∞-++3. 322232lim 6x x x x x x →-++-- 4. 1x →5 3tan sin lim x x xx →- 6 0x →7 21lim 1x x →+∞⎛- ⎪⎝⎭8. 01lim 1cos x x →-9.()2sin 0lim 13xx x →+10.22x →11.()120lim e x xx x -→+ 12.()1lim 123nn nn →∞++13.21sinlim x x →+∞e 1lim e 1nn n →∞-+二、确定下列极限中含有的参数1.2212lim22x ax x bx x →-+=-+-2.(lim 1x x →-∞=三、解答题1.探讨函数,0()(0,0,1,1)0,0x xa b x f x a b a b x x ⎧-≠⎪=>>≠≠⎨⎪=⎩在0x =处的连续性,若不连续,指出该间断点的类型.练 习 题一、单项选择题1.以下结论正确的是 .A. lim 0n n y A ε→∞=⇔∀>,在(,)A A εε-+之外只有{}n y 的有限项B. 设n a y b <<,且lim nn y A →∞=,则有a A b <<C. 收敛数列必有界D. 发散数列必无界 2.若函数()f x 在某点0x 极限存在, 则 . A. ()f x 在点0x 的函数值必存在且等于该点极限值B. ()f x 在点0x 的函数值必存在,但不肯定等于该点极限值C. ()f x 在点0x 的函数值可以不存在D. 若()f x 在点0x 的函数值存在,必等于该点极限值 3.极限0limx xx→= . A. 1 B. 1- C. 0 D. 不存在 4.下列命题正确的是 .A. 无穷小量的倒数是无穷大量B. 无穷小量是肯定值很小很小的数C. 无穷小量是以零为极限的变量D. 无界变量肯定是无穷大量 5.下列变量在给定的改变过程中为无穷小量的是 .A. 1sin(0)x x→ B. 1e(0)xx →C. 2ln(1)(0)x x +→D. 21(1)1x x x -→-6.变量11sin xx.A. 是0x →时的无穷小B. 是0x →时的无穷大C. 有界但不是0x →时的无穷小D. 无界但不是0x →时的无穷大 7.0x =是1()sin f x x x=的 .A. 可去间断点B. 跳动间断点C. 无穷间断点D. 振荡间断点8.函数21,0(),012,12x x f x x x x x ⎧-<⎪=≤≤⎨⎪-<≤⎩.A. 在0,1x x ==处都间断B. 在0,1x x ==处都连续C. 在0x =处连续,1x =处间断D. 在0x =处间断,1x =处连续9.设函数2,0(),0x f x xk x ≠⎪=⎨⎪=⎩在0x =处连续,则k = . A. 4 B. 14 C. 2 D. 1210.方程sin 2x x +=有实根的区间为 .A. ,32π⎛⎫ ⎪⎝⎭B. 0,6π⎛⎫ ⎪⎝⎭C. ,64ππ⎛⎫ ⎪⎝⎭D. ,42ππ⎛⎫⎪⎝⎭二 、填空题1.0sin lim x x x →= ;sin lim x x x→∞= .2.0sin limsin x x x x x →-=+ ;sin lim sin x x xx x→∞-=+ . 3.21lim 1xx x x →∞-⎛⎫=⎪+⎝⎭; 10lim 12xx x →⎛⎫-= ⎪⎝⎭ . 4.当0x →时,sin3x 是2x 的 无穷小;2sin x x +是x 的 无穷小;1cos sin x x -+是2x 的 无穷小;23e1x x --是2arcsin x 的 无穷小;1(1)1nx +-是xn的 无穷小;32x x -是22x x -的 无穷小. 5.已知0x →时,()12311ax +-与cos 1x -为等价无穷小,则常数a = .6.设2,0()sin ,0a bx x f x bxx x⎧+≤⎪=⎨>⎪⎩ 在0x =处连续,则常数,a b 应满意的关系为 . 7.()sin xf x x=的可去间断点为 ;221()32x f x x x -=-+的无穷间断点为 .8.函数21()23f x x x =--的连续区间是 .三、计算题1.220e 1lim x x x →-2.0ln(12)lim sin x x x→-3.0x +→4.x →.5.lim x →+∞6. n7.0x → 8.220tan lim e 1x x x x x -→+-9.20sin cos 1lim sin 3x x x x x→+-- 10.()21ln(1)0lim cos x x x +→11.探讨函数11e ,0()ln(1),10x x f x x x -⎧⎪>=⎨⎪+-<≤⎩ 在0x =处的连续性.12.证明方程e 2x x -=在区间(0,2)内至少有一实根.其次章 导数与微分作 业 题1.利用导数定义计算()ln()f x a x =+的导数(1)f '.2.探讨函数1arctan ,0()x x f x x⎧≠⎪=⎨在0x =处的连续性和可导性.求下列函数的导数(3-7小题) 3.21arctan 2ln ln 2y x x x =-+-,求'y4.2sin(21)e x y x -=⋅ ,求'y5.sin 3cos xy x=-,求'y6.1,0xy x x ⎛⎫=> ⎪⎝⎭,求'y7设()f x 可导,计算函数(e )x y f x =+的导数d d y x.求下列函数的二阶导数(8-10小题)8. (ln y x =,求''y9 2e cos x y x =⋅,求''y10.设2(sin )y f x =,其中()f x 二阶可导,求22d d yx.11.已知arctan y x =d d yx12.求曲线35230y y x x ++-=在0x =处的切线方程.13 求由参数方程2ln(1)arctan x t y t t⎧=+⎨=-⎩,所确定的隐函数的二阶导数利用对数求导法求下列函数的导数d d yx.(14-15小题)14.sin x y x =,求'y 15.y ='y求下列函数的微分(16-19小题)16.2ln sin y x x x =+,求dy 17.21cot exy =,求dy18.42ln x y y =+,求dy 19.y x x y =,求dy练 习 题一、单项选择题 1.已知(3)2f '=,则0(3)(3)lim2h f h f h→--= .A .2 B.2- C.1- D.1 2.()|2|f x x =-在点2x =处的导数是 .A.1B.0C.1-D.不存在 3.设()(1)(2)...()f x x x x x n =+++,则(0)f '= .A.(1)!n -B.nC.!nD.04.()f x 在0x x =处左导数0()f x -'和右导数0()f x +'存在且相等是()f x 在0x x =处可导的 条件.A .必要非充分 B.充分非必要 C .充分必要 D. 既非充分又非必要 5.设函数()y y x =由方程3330x y axy +-=所确定,则d d yx= . A.22ay x y - B.22x y ay ax+- C.22ay x y ax -- D.22x ax y - 6.设22()f x y y +=,其中22()f x y +是可导函数,则d d yx= . A.22()f x y '+ B.22222()12()xf x y yf x y '+'-+C.222()()x y f x y '++ D.2222()12()f x y yf x y '+'-+ 7.由参数方程所确定的函数cos sin x a t y b t =⎧⎨=⎩的函数()y y x =的二阶导数22d d yx = .A.2csc bt a - B.32csc b t a -C.2csc b t a D.32csc b t a8.设()y y x =由参数方程2e 321sin 02x t t t y y π⎧=++⎪⎨-+=⎪⎩所确定,则0d d t yx == . A.0 B.12 C.1e sin 2x y D.23二、填空题1.设sin ,0(),0x x f x x x <⎧=⎨≥⎩,则(0)f '= .2.设(0)0f =,(0)f '存在,则0()limx f x x→= . 3.设2,0(),0x x f x x x ⎧≥=⎨-<⎩,则(0)f +'= ,(0)f -'= ,(0)f ' .4.设2111f x x x⎛⎫=++ ⎪⎝⎭,则()f x '= . 5.设2()y f x =,且()f x 可导,则d d yx= . 6.设()sin cos 22xf x x =+,则(100)()f π= .7.设(ln )y f x =,其中()f x ''存在,则22d d yx= .8.设g 是f 的反函数,且2(4)5,(4)3f f '==,则(5)g '= . 9.d =x,d =1d x x .10.由方程e 0x y xy ++=所确定的函数()y y x =的微分d y = .三、计算题1.求曲线sin y x =在3x π=处的切线方程和法线方程.2.(ln e x y =+,求'y3.)11y⎫=-⎪⎭,求'y4.a a xa x a y x a a =++,求'y5.cos (sin )x y x =,求'y6.设2()1n f x x x x =++++,计算()(0)n f .7. y =dyarctaney x=,求dy9. .求参数方程e sin cos tx t y t t⎧=⎨=+⎩所确定的函数()y y x =的微分d y .10. .证明:当||x 1x n≈+.第三章 微分中值定理与导数的应用作 业 题一、证明题1. 证明:若()f x 在区间I 内可导,且()0f x '=,则()f x 在区间I 内是一个常数.2.证明方程510x x +-=只有一个正实根.3.证明恒等式arctan arccot 2x x π+=.4.证明:当02x π<<时,sin tan 2x x x +>.二、求下列函数的极限.1.30sin lim ;x x x x →-2.1lim 1ln x x x x x x →--+3.21lim(cos)x x x → 4.1lim (1);xx x →+∞+5.arctan 2lim ;1x x xπ→+∞- 6.2cos lim;2x xx ππ→-三、解答题1. 判定函数)2x (0 cos )(π≤≤+=x x x f 的单调性.2. 证明:当1>x 时,xx 132->.3. 求32 )52(x x y -=的极值点与极值.4. 求函数593)(23+--=x x x x f 在]4,2[-上的最大值与最小值.5. 求曲线31x y =的拐点和凹凸区间.6. 求下列曲线的渐近线(1) 12+-=x x y ; (2) xx y )1ln(+=7. 作函数23)1(22--=x x y 的图形.练 习 题一、证明题1. 已知函数()f x 在[0,1]上连续,(0,1)内可导,且(1)0f =,证明在(0,1)内至少存在一点ξ使得()()tan f f ξξξ'=-.2.证明:当0a b <<时,ln b a b b ab a a--<<.3. 证明:若)(x f 在],[b a 上连续,在),(b a 内可导,且0)(>'x f ,则)(x f 在],[b a 上严格单增.4. 设01 (21)0=++++n a a a n ,证明多项式n n x a x a a x f +++=...)(10在)1,0(内至少有一个零点.二、求下列函数的极限.1.0e 1lim sin x x x x →-- 2.30sin cos lim sin x x x x x→-3.2ln 2lim tan x x x ππ+→⎛⎫- ⎪⎝⎭ 4.2201lim cot x x x →⎛⎫- ⎪⎝⎭5.sin 0lim(cot )xx x → 6.210arcsin lim xx x x →⎛⎫ ⎪⎝⎭三、解答题1.确定下列函数的单调区间.(1)82y x x=+ (2)23(1)y x x =-2.列表求曲线2ln(1)y x =+的拐点和凹凸区间.4.求函数()(1)e x f x x -=+的极值.5.求函数32()21f x x x x =-+-在[0,2]上的极值,最大值与最小值.6. 设324x y x+=,求:⑴ 函数的增减区间与其极值; ⑵ 函数图象的凹凸区间与其拐点; ⑶ 渐近线; ⑷ 做出其图形.第四章 不定积分 作 业 题一、求下列不定积分: (1) ⎰-dx xx )1(2; (2) ⎰++dx x x 1124;(3) dx xx e e x xx⎰--) 2(3; (4) dx xx ⎰sin cos 122;二、用第一换元法求下列不定积分(1) ⎰xdx x 54cos sin ; (2) )0( 22>-⎰a xa dx ;(3) dx x x x )1(arctan ⎰+; (4) )0( 22≠+⎰a xa dx;三、用其次换元法求下列不定积分 (1) dx x x x ln ln 1⎰+; (2) dx xx x x ln 12⎰++;(3) ⎰-24xx dx . (4) )0( 22>+⎰a xa dx .四、用分部积分计算下列不定积分(1) ⎰xdx x ln ; (2) ⎰dx e x x 2;(3) ⎰≠=)0( sin ab bxdx e I ax (4) ⎰dx xe x .五、求下列不定积分(三角函数、有理式、无理式)(1) ⎰+--+dx x x x x x 223246)1(24; (2) ⎰+)1(24x x dx ;(3)dx xx ⎰ cos sin 32. (4)dx x x xx cos 3sin 2cos 2sin 3⎰++.(5) ⎰-+342)1()1(x x dx; (6) dx xx 14⎰+;练 习 题一、填空题1.设2()ln(1)d f x x x C =++⎰,则()f x = . 2.()d d f x ⎰= .3.设()F x 是()f x 的一个原函数,则()e e d x x f x --⎰= .二、单项选择题1.下列等式正确的是 .A .()()d d f x x f x =⎰B .()()d f x x f xC '=+⎰C .()()d f x f x =⎰D .()()dd d f x x f x C x =+⎰ 2. 曲线()y f x =在点(,())x f x 处的切线斜率为1x ,且过点2(,3)e ,则该曲线方程为 .A .ln y x =B .ln 1y x =+C .211y x=-+ D .ln 3y x =+3. 设()f x 的一个原函数是2e x -,则()d xf x x '=⎰ . A .222e x x C --+ B .222e xx --C .22(21)e x x C ---+ D .()()d xf x f x x +⎰三、求下列不定积分1. x2. ⎰xdx x 35sec tan3. dx x x x ⎰++)1(212224. x ⎰5. 23sin cos d x x x ⎰6. 3tan d x x ⎰7.x 8.9.2(1)d xx x -⎰10.d x ⎰11.x ⎰12. 2sin e d xx x ⎰13.x ⎰ 14.21(1)d x x x +⎰第五章 定积分 作业题一、求下列定积分1. 22sec (1tan )40d x x x π+⎰ 2.13-21(115)d x x +⎰3. 122(1)0d x x +⎰ 4.41x ⎰5.221x ⎰ 6.401cos 2d x x x π+⎰7.220sin d x x x π⎰ 8.1cos(ln )ed x x ⎰9.1ex ⎰ 10.2x ⎰二、解答题 1.把极限)221limn n n →∞++表示成定积分.2. 03(sin )lim(1)d e xxx t t tx →--⎰3. 设21,1()1,12x x f x x x +≤⎧⎪=⎨>⎪⎩,求20()d f x x ⎰与0()()d x x f x x ϕ=⎰.4.设()f x 在(,)-∞+∞上连续,且()(2)()0d xF x x t f t t =-⎰,证明:若()f x 单调不增,则()F x 单调不减.三、定积分的几何应用1.求抛物线243y x x =-+-与其在点()0,3-和()3,0处的切线所围成的图形的面积.2. 设有曲线y =过原点作其切线,求由此曲线、切线与x 轴围成的平面图形绕x 轴旋转一周所得到的旋转体的体积.3. 计算底面是半径R 的圆,而垂直于底面上一条固定直径的全部截面都是等边三角形的立体体积.练 习 题一、填空题1.依据定积分的几何意义,20d x x =⎰ ,1x -=⎰ , sin d x x ππ-=⎰ .2. 设0sin d t x u u =⎰,0cos d t y u u =⎰,则d d y x = . 3.31d d d x x ⎰= .4.设e x x -为()f x 的一个原函数,则10()d xf x x '=⎰ .5. 设()f x 是连续函数,且2-1()0d x f t t x =⎰,则(7)f = .二、单项选择题1. 定积分()d b a f x x ⎰ .A .与()f x 无关B .与区间[],a b 无关C .与()d b a f t t ⎰相等D .是变量x 的函数2.设()f x 在[],a b 上连续,()()d x a x f t t φ=⎰,则 . A .()x φ是()f x 在[],a b 上的一个原函数B .()f x 是()x φ在[],a b 上的一个原函数C .()x φ是()f x 在[],a b 上唯一的一个原函数D .()f x 是()x φ在[],a b 上唯一的一个原函数 3.arctan b d d d a x x x=⎰______. A .arctan x B .211x + C .arctan arctan b a - D .0 4.下列反常积分收敛的是 .A .+0e d x x ∞⎰B .1ln e d x x x +∞⎰C .1sin 1-1d x x⎰ D .32+1d x x -∞⎰ 5.211-1d x x=⎰ .A .0B .2C .-2D .发散三、计算题1.ln 0x ⎰ 2.)211d x x -⎰3.x ⎰ 4.20sin cos sin cos d x x x x xπ-++⎰5.已知sin ,01(),12x x f x x x ≤≤⎧=⎨<≤⎩,求0()()d x F x f t t =⎰.四、求下列定积分与反常积分1.求1ln e e d x x x ⎰ 2.220cos x x x π⎰d3.1sin(ln )x x ⎰e d 4.244cos e d x x x ππ-⎰5.1x ⎰06.0d e ex x x +∞-+⎰7.322arctan (1)+0d x x x ∞+⎰ 8.+1x ∞⎰五、证明题1.设()f x 是连续函数,证明()()d d b ba a f x x f ab x x =+-⎰⎰六、计算题1.直线y x =将椭圆2236x y y +=分为两部分.设小块面积为A ,大块面积为B ,求A B的值.2.求由曲线1sin y x =+与直线0,0,y x x π===围成的曲边梯形绕x 轴旋转所成的旋转体的体积.。
高数b版教材大一知识点归纳
高数b版教材大一知识点归纳高等数学(b版)是大一学生的必修课程,它是数学学科的重要基础课之一。
在大一的学习生涯中,高等数学的知识点涉及面很广,而且有很多抽象的概念。
因此,对于大一学生来说,理解和掌握高数b版教材中的知识点是十分重要的。
本文将对高数b 版教材大一的知识点进行归纳和总结,以帮助学生更好地理解和掌握这门课程。
微分与导数是高等数学中的重要概念之一。
在微分中,我们学习了函数的极限、连续性和可导性等概念。
导数是函数变化率的一种度量,它可以用来描述函数在某一点的斜率。
在高数b版教材中,我们学习了函数的导数和常见函数的导数求法。
通过对导数的学习,我们可以研究函数的变化趋势,并在实际问题中应用导数来解决一些实际问题,例如求一条曲线的切线方程和求函数的最大值和最小值等。
积分是微分的逆运算,它是研究函数面积问题的数学工具。
在高数b版教材中,我们学习了不定积分和定积分的概念,以及常见函数的积分法。
通过对积分的学习,我们可以计算函数所围成图形的面积,求解定积分和不定积分,以及应用积分来解决实际问题,例如求解曲线的弧长和计算质量中心等。
微分方程是高等数学中的重要内容之一。
它是用来研究一些变化过程中的规律的数学工具。
在高数b版教材中,我们学习了常微分方程的基本概念、解法和应用。
通过对微分方程的学习,我们可以求解一些实际问题中的数学模型,例如弹簧振子、生物种群的增长和电路中的RLC振荡等。
级数是高等数学中的一个重要分支,它是研究无穷数列和无穷级数的数学工具。
在高数b版教材中,我们学习了数列的极限、级数的概念和判别法等。
通过对级数的学习,我们可以判断级数的敛散性,求解级数的和,以及应用级数来研究一些实际问题,例如数列的收敛性和泰勒级数展开等。
多元函数是高等数学中的另一个重要内容。
在高数b版教材中,我们学习了多元函数的极限、连续性和偏导数等概念。
通过对多元函数的学习,我们可以研究多元函数的性质和变化规律,并应用多元函数来解决一些实际问题,例如求解多元函数的最大值和最小值等。
高数B(上)试题及答案
高等数学B (上)试题1答案一、判断题(每题2分,共16分)(在括号里填写“√”或“×”分别表示“对”或“错”) ( × )1. 两个无穷大量之和必定是无穷大量. ( × )2. 闭区间上的间断函数必无界.( √ )3. 若)(x f 在某点处连续,则)(x f 在该点处必有极限. ( × )4. 单调函数的导函数也是单调函数.( √ )5. 无穷小量与有界变量之积为无穷小量.( × )6. ()y f x =在点0x 连续,则()y f x =在点0x 必定可导. ( × )7. 若0x 点为()y f x =的极值点,则必有0()0f x '=. ( × )8. 若()()f x g x ''≡,则()()f x g x ≡.二、填空题(每题3分,共24分) 1. 设2)1(x x f =-,则(3)f =16. 2.1lim sinx x x→∞=1。
3.112lim sin sin xx x x x x x x →∞⎡⎤+⎛⎫++=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦21e +.4. 曲线326y y x -=在(2,2)-点切线的斜率为23.5.设0()f x A '=,则000(2)(3)limh f x h f x h h→+--=5A.6. 设1()sin cos,(0)f x x x x=≠,当(0)f =0时,)(x f 在0=x 点连续.7. 函数33y x x =-在x =1-处有极大值.8. 设)(x f 为可导函数,(1)1f '=,21()()F x f f x x ⎛⎫=+ ⎪⎝⎭,则=')1(F 1.三、计算题(每题6分,共42分)1.求极限 3(2)(3)(4)lim5n n n n n→+∞+++ . 解: 3(2)(3)(4)lim 5n n n n n →+∞+++234lim 111n n n n →+∞⎛⎫⎛⎫⎛⎫=+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭(3分)1= (3分)2. 求极限 0cos lim sin x x x xx x →--.解:0cos lim sin x x x xx x→--01cos sin lim1cos x x x xx →-+=- (2分) 02sin cos limsin x x x xx→+= (2分) 3= (2分)3. 求23(1)(2)(3)y x x x =+++在(0,)+∞内的导数.解:ln ln(1)2ln(2)3ln(3)y x x x =+++++, (2分)123123y y x x x '=+++++, (2分) 故23123(1)(2)(3)123y x x x x x x ⎛⎫'=+++++ ⎪+++⎝⎭(2分) 4. 求不定积分221d 1x x x ++⎰.解:221d 1x x x ++⎰22211d(1)d 11x x x x=++++⎰⎰ (3分) 2ln(1)arctan x x C =+++ (3分)5. 求不定积分2sin d x x x ⎰.解:2sin d x x x ⎰()221sin d 2x x =⎰ (3分) 21cos 2x C =-+ (3分)6.求不定积分sin 2d x x x ⎰. 解:sin 2d x x x ⎰11sin 2d(2)dcos222x x x x x ==-⎰⎰ (2分) ()1cos 2cos2d 2x x x x =--⎰ (2分)11cos 2sin 224x x x C =-++ (2分)7. 求函数()cos sin xy x =的导数.解:ln cos ln sin y x x = (3分)()()cos 12sin cotlnsin x y x x x +'=- (3分)四、解答题(共9分)某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成的长方形的长,宽各为多少才能使这间小屋面积最大.解:设垂直于墙壁的边为x ,所以平行于墙壁的边为202x -,所以,面积为2(202)220S x x x x =-=-+, (3分)由4200S x '=-+=,知 (3分) 当宽5x =时,长20210y x =-=, (3分) 面积最大51050S =⨯=(平方米)。
高数B1复习知识点
高数B1复习知识点本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March高等数学上册知识点一、 函数与极限(一) 函数1、函数定义及性质,常用的经济函数; 2、反函数、复合函数、函数的运算; 3、初等函数(5类):图像特征,性质 4、函数的连续性与间断点;(重点) 间断点:第一类,第二类;5、 闭区间上连续函数的性质. (二) 极限1、 定义2、 无穷小(大)量无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 3、 求极限的方法1)极限运算准则及函数连续性; 2) 两类重要极限:(重点)a)1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 10 3)等价无穷小代换:(重点)二、 导数与微分(一) 导数1、定义,左(右)导数定义 2、几何意义; 3、可导与连续的关系; 4、 求导的方法1)导数定义;(重点) 2)基本公式; 3)四则运算; 4)复合函数求导(链式法则);(重点) 5)隐函数求导数;(重点) 6)参数方程求导;(重点) 7)对数求导法. (重点) 8)抽象函数求导(重点) 5、高阶导数:定义,计算 6、 导数在经济中的应用:边际函数、弹性函数(二) 微分 1)定义; 2) 可微与可导的关系:可微⇔可导,且()dy f x dx '=(重点)三、 微分中值定理与导数的应用(一) 中值定理1、 Rolle 定理:(重点),Lagrange 中值定理(重点);(二) 洛必达法则(重点)(三) 单调性及极值1、 单调性判别法:(重点)2、 极值及其判定定理:a) 第一充分条件:(重点)b) 第二充分条件:(重点)3、 凹凸性及其判断,拐点1)判定定理(重点):3)拐点:坐标))(,(00x f x .4、最值及其判断,经济应用. (重点)(四) 不等式证明1、 利用微分中值定理;2、 利用函数单调性;(重点)3、 利用极值(最值).(五) 渐近线铅直渐近线,水平渐近线.四、 不定积分(一) 概念和性质1、 原函数: 定义(重点)2、 不定积分:定义,性质.3、 基本积分表(13个公式);(重点)(二) 换元积分法(重点)1、第一类换元法(凑微分): 2、 第二类换元法(三角代换、倒代换、根式代换等):(三) 分部积分法:⎰⎰-=vdu uv udv (重点)(四) 有理函数积分1、“拆”;五、 定积分(一) 概念与性质:1、 定义:2、 性质:(7条)(二) 微积分基本公式(牛顿-莱布尼茨公式)(重点)1、 变上限积分:定义,求导公式2、 (牛顿-莱布尼茨公式)。
高数B第一册总复习43页PPT
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华南理工大学网络教育学院 《高等数学(上)》辅导一、 求函数值 例题:1、若2()f x x =,()x x e ϕ=,则(())f x ϕ= . 解:()22(())()xx x f x f e ee ϕ===2、若(1)21f x x -=+,则()f x = . 解:令1x t -=,则1x t =+ 所以()2(1)123f t t t =++=+即 ()23f x x =+二、 常见的等价无穷小及等价无穷小替换原理 常见的等价无穷小:0~sin ~tan ~arcsin ~arctan x x x x x x →时,~ln(1)~x x x e +-1211cos ~,2x x -11~2x -无穷小替换原理:在求极限过程中,无穷小的因子可以用相应的等价无穷小替换例题: 1、320sin 3lim x xx→= 解:当0sin3~3x x x →,, 原式=3200(3)lim lim270x x x x x→→==2、0sin3lim x xx →=解:原式=03lim3x xx→=3、201-cos limx xx→= 解:当210cos ~2x x x →,1-原式=220112lim 2x xx →=4、0ln(13)limx x x→+=解:当03)~3x x x →,ln(1+原式=.03lim3x xx→=.5、201lim x x e x→-=解:当201~2x x e x →-,原式=.02lim 2x x x →=.三、 多项式之比的极限2lim 03x xx x →∞=+,2211lim 33x x x x →∞-=+,23lim x x x x→∞+=∞四、 导数的几何意义(填空题)0()f x ':表示曲线()y f x =在点00(,())M x f x 处的切线斜率曲线..()y f x =..在点00(,())M x f x 处的切线方程为:000()()()y f x f x x x '-=-曲线()y f x =在点00(,())M x f x 处的法线方程为:0001()()()y f x x x f x -=--' 例题: 1、曲线44xy x+=-在点(2,3)M 的切线的斜率. 解:222(4)'(4)(4)(4)(4)x x x x x x y x =='+--+-'=- 2282(4)x x ===-2、曲线cos x xy e =在点(0,1)M 处的切线方程.解:2(cos )'cos ()()x x x x x x e x e y e =='-'= 2sin cos 1()x xx x xe xe e =--==-所以曲线cos x xy e=在点(0,1)M 处的切线方程为: 1(0)y x -=--,即10x y +-=3、曲线y =在点(1,1)M 处的切线方程. 解:53112233x x y x =='=-=-所以曲线y =在点(1,1)M 处的切线方程为:21(1)3y x -=--,即2350x y +-=五、 导数的四则运算、复合函数的导数、微分 复合函数求导的链式法则:d d d (),()[()]:d d d y y u y f u u g x y f g x x u x==⇒==⋅()()().y x f u g x '''=⋅或微分:()dy f x dx '= 例题:1、设y =,则'y =解:()()1'2221112y x x -'=+⋅+=2、设2sin y x =,则'y = 解:()''222cos 2cos y x xx x =⋅=3、设sin 2x y =,则dy = 解:()''sin sin 2ln 2sin 2cos ln 2xx y x x =⋅=则dy =sin 2cos ln 2x x dx4、设sin x y e =,则dy = 解:()''cos cos xx xx y e eee =⋅=所以cos x x dy e e dx = 5、设2x y e -=,则dy =(答案:22x xedx --)六、 运用导数判定单调性、求极值 例题:1、求ln y x x =的单调区间和极值. 解:定义域(0,)x ∈+∞令ln 10y x '=+=,求出驻点1x e -=函数的单调递减区间为1(0,]e -,单调递增区间为1(,)e -+∞极小值为11()y e e=-.2、求x y xe -=的单调区间和极值. 解:定义域(,)x ∈-∞+∞令(1)0x x x y e xe x e --'=-=-=,求出驻点1x =函数的单调递减区间为[1,)+∞,单调递增区间为(,1)-∞,极大值为1(1)y e -=.3、求函数.2()x f x e-=.的单调区间和极值.解:定义域(,)x ∈-∞+∞ 令2()2x f x xe -'=-,得0x =单调递增区间:(,0)-∞,单调递减区间:(0,)+∞, 极大值为(0)1f =.4、求函数31()3f x x x =-的极值.答案:极小值为2(1)3y =-,极大值为2(1)3y -=七、 隐函数求导 例题:1、求由方程2sin 0x e y xy +-=所确定的隐函数()y y x =的导数dydx. 解:方程两边关于x 求导,得:2cos (2)0x e y y y xy y ''+⋅-+=即 2cos 2xy e y y xy-'=-2、求由方程cos()y x y =+所确定的隐函数()y y x =的导数dy dx.解:方程两边同时关于x 求导,得:sin()(1)y x y y ''=-++即sin()1sin()x y y x y -+'=++3、求由方程sin()y x y =+所确定的隐函数()y y x =的导数dydx. 答案: cos()1cos()dy x y dx x y +=-+4、求由方程ln ln 0xy x y ++=所确定的隐函数()y y x =的导数dydx. 答案: dy y dx x =-八、 洛必达法则求极限,注意结合等价无穷小替换原理 例题:1、求极限011lim 1sin x x e x →⎛⎫- ⎪-⎝⎭ 解:原式0sin (1)lim (1)sin x x x x e e x→--=-20sin (1)lim x x x e x→--=.()0sin ~,1~xx x x e x →- 当时,.0cos lim 2xx x e x→-=0sin lim2xx x e →--= 12=-2、求极限3sin limtan x x x x →-00⎛⎫⎪⎝⎭解:原式=30sin lim x x xx→-()0tan ~x x x → 当时, 201cos lim 3x xx→-= =22012lim 3x xx → 2101cos ~2x x x ⎛⎫→- ⎪⎝⎭ 当时, 16=3、求201lim x x e x x →--00⎛⎫ ⎪⎝⎭(答案:12)九、 原函数、不定积分的概念及其性质 知识点:设()()F x f x '=,则称()F x 是()f x 的一个原函数,()F x C +是()f x 的全体原函数,且有:()()f x dx F x C =+⎰例题:1、( )是函数33x x +的原函数. A .233x +B .421342x x + C .42x x +D .421142x x +解:因为42313342x x x x '⎛⎫+=+ ⎪⎝⎭所以421342x x +是33x x +的原函数.2、( )是函数2cos x x 的原函数. A .22sin x -B .22sin xC .21sin 2x -D .21sin 2x解:因为22211sin (cos )2cos 22x x x x x '⎛⎫=⋅= ⎪⎝⎭所以21sin 2x 是2cos x x 的原函数.3是( )的原函数A .12xBC .ln xD解:因为'=的原函数.4、( )是函数1x的原函数.A .21xB .21x -C .ln x -D .ln ||x解:因为()1ln ||x x'=所以ln ||x 是1x的原函数.十、 凑微分法求不定积分(或定积分)简单凑微分问题:2x e dx ⎰,sin 4xdx ⎰,cos5xdx ⎰,ln ln xd x ⎰ 一般的凑微分问题:⎰,⎰,sin 1cos x dx x +⎰,ln xdx x ⎰例题: 1、⎰解:注意到2(1)2x x '-=- 原式=()2112x --⎰C ⎛⎫=+ ⎪⎝⎭参考公式 ()1221x C =--+2、⎰解:注意到2(23)6x x '-=-原式21=(23)6x --3223x C ⎛⎫=+ ⎪⎝⎭⎰参考公式=319C -+3、sin 1cos x dx x+⎰解:注意到(1cos )sin x x '+=-原式1=(1cos )1cos d x x -++⎰1ln ||dx x C x ⎛⎫=+ ⎪⎝⎭⎰参考公式=ln |1cos x |C -++4、5x e dx +⎰解:原式=5(5)x e d x ++⎰()x x e dx e C =+⎰参考公式=5x e C ++5、cos5xdx ⎰ 解:原式1cos5(5)5xd x =⎰()cos sin xdx x C =+⎰参考公式 1sin55x C =+6、sin 3xdx ⎰解:原式1sin3(3)3xd x =⎰()sin cos xdx x C =-+⎰参考公式1cos33x C =-+十一、 不定积分的第二类换元法——去根号(或定积分)等 例题:1、求不定积分t =,则221ln(1)x e t x t =-⇒=- 221tdx dt t =- 原式=22121211t dt dt t t t ⋅=--⎰⎰1111dt dt t t =--+⎰⎰ ln |1|ln |1|t t C =--++ln |1|ln |1|C =--++2、4⎰.t =,则22x t dx tdt =⇒= 当0042x t x t ====时,;当时,原式=2200111221+t 1+tt tdt dt +-⋅=⎰⎰220012()1+tdt dt =-⎰⎰202(2ln |1|)t =-+ 2(2ln 3)=-3、10⎰t =,则21x t =-,2dx tdt =当0x =时,1t =;当1x =时,t =原积分211)2t t tdt =-⋅4212)t t dt =-5311253t t ⎡=-⎢⎣41)15=+十二、 不定积分的分部积分法(或定积分)诸如sin x xdx ⎰,cos x xdx ⎰,x xe dx ⎰,x xe dx -⎰,ln x xdx ⎰,可采用分部积分法分部积分公式:()()()()()()u x dv x u x v x v x du x =-⎰⎰例题:1、求不定积分sin x xdx ⎰. 解 sin (cos )x xdx xd x =-⎰⎰cos (cos )x x x dx =---⎰cos cos x x xdx =-+⎰cos sin x x x C =-++2、求不定积分x xe dx -⎰ 解 x x xe dx xde --=-⎰⎰ x x xe e dx --=-+⎰x x xe e C --=--+3、求不定积分ln x xdx ⎰解 21ln ln ()2x xdx xd x =⎰⎰2211ln ln 22x x x d x =-⎰211ln 22x x xdx =-⎰ 2211ln 24x x x C =-+十三、 定积分的概念及其性质知识点:定积分的几何意义,奇偶对称性等例题:1、定积分23ax a x e dx -⎰等于 .解: 因为23x x e 是x 的奇函数,所以原式=0 2、定积分23sin aa x xdx -⎰等于 .解: 因为23sin x x 是x 的奇函数,所以原式=03、定积分22sin 1x xdx x π-π+⎰等于 .解: 因为22sin 1x xx+是x 的奇函数,所以原式=0十四、 变上限积分函数求导43'()(),()x aF x f t dt F x ==⎰则______解33''()()()F x f x x =233()x f x =()C 变上限积分函数的导数公式()[]'()'()()()x af t dt f x x Φ=ΦΦ⎰例题:1、 设函数()f x 在[,]a b 上连续,3()()x aF x f t dt =⎰,则()F x '=( C ).A .()f xB .3()f xC .233()x f xD .23()x f x2、设21()arctan x f x tdt =⎰,则()f x '=22arctan x x .3、设30()sin xf x t dt =⎰,则()f x '=3sin x .十五、 凑微分法求定积分(或不定积分) 思想与不定积分类似 例题:1、10x ⎰解:注意到32(1)3x x '+=原式301(1)3x =+⎰3223x C ⎛⎫=+ ⎪⎝⎭⎰参考公式=1302921)9=-十六、 定积分的第二类换元法——去根号(或不定积分, 思想与不定积分类似例题: 1、4⎰.t =,则22x t dx tdt =⇒= 当0042x t x t ====时,;当时,原式=2200111221+t 1+tt tdt dt +-⋅=⎰⎰22012()1+tdt dt =-⎰⎰202(2ln |1|)t =-+ 2(2ln 3)=-2、10⎰t =,则21x t =-,2dx tdt =当0x =时,1t =;当1x =时,t =原积分211)2t t tdt =-⋅4212)t t dt =-5311253t t ⎡=-⎢⎣41)15=+ 十七、 定积分的分部积分法(或不定积分) 思想与不定积分类似例题:1、求定积分20sin x xdx π⎰.解 2200sin (cos )x xdx xd x ππ=-⎰⎰2200cos (cos )x x x dx ππ=---⎰ 20cos xdx π=⎰20sin 1x π==2、求定积分10x xe dx -⎰ 解 1100x x xe dx xde --=-⎰⎰ 1100x x xee dx --=-+⎰ 110(0)x e e--=---121e -=-+十八、 求平面图形面积知识点:X 型积分区域的面积求法Y 型积分区域的面积求法通过作辅助线将已知区域化为若干个X 型或Y 型积分区域的面积求法例题:1、求由ln y x =、0x =,ln 2y =及ln 7y =所围成的封闭图形的面积.解:由ln y x =得y x e =面积为ln 7ln 2(0)y S e dy =-⎰ 7ln 2lm y e ⎡⎤=⎣⎦5=2、计算由曲线y =1y =及0x =所围成的图形的面积.解:由1y y ⎧=⎪⎨=⎪⎩A 为(1,1)面积为1(1S dx =-⎰132023x x ⎡⎤=-⎢⎥⎣⎦13=3、求由曲线1y x=与直线y x =及2x =所围成的平面图形的面积.解:由2y x x =⎧⎨=⎩得交点A 为(2,2) 由1y x y x =⎧⎪⎨=⎪⎩得交点B 为(1,1) 面积为211()S x dx x =-⎰ 2211ln ||2x x ⎡⎤=-⎢⎥⎣⎦ 3ln 22=-。