北师大版必修一数学以
北师大版高中数学必修一
北师大版高中数学必修一
北师大版高中数学必修一全称为《北师大版高中数学必修第一册》,其目录包括四章内容,如下:
1.第一章:集合与函数概念。
主要学习集合的含义与表示,常用数集及其记法,
集合与元素间的关系,以及集合的表示法。
2.第二章:函数。
学习函数的概念、函数的表示方法、函数的单调性和奇偶性
等性质,以及函数的实际应用。
3.第三章:指数函数和对数函数。
学习指数函数、对数函数的概念和性质,以
及它们的实际应用。
4.第四章:函数应用。
主要学习如何利用函数模型解决实际问题,包括建立函
数模型、求解模型参数等。
1/ 1。
高中数学北师大版必修一《对数函数1》课件
• 单击此处编辑母版文本样式
北师•大二版级高中数学
• 三级
对数函数的 • 四级 • 五级
图形和性质
2024/11/14
1
单击此⒈指处数编函数辑与对母数版函数标是题什么样关式系?
• 单击此处⒉编能辑否母用版指文数本函样数式的性质来推导对数函数的性质? • 二级⒊推导的根据是什么?
x≠0
• 五级∴函数y=logax2的定义域是{x│x≠0 }
(2) 4-x>0
x<4
∴函数y=loga(4-x)的定义域是{x│ x<4 }
2024/11/14
4
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式
• 二级
你• 三认•级四级为例1的解题思路是什么? • 五级
2024/11/14
5
2024/11/14
12
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式
• 二1级、熟记对数函数的图象和性质 • 三级 • 四级 2、P• 9五7级.习题3-5.3 5
2024/11/14
13
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式
北师•大二版级高中数学
• 三级
谢谢大家 • 四级 • 五级
解:⑵因为当x=2时y=0,所以函数 y=logax-1恒过﹙2,0﹚
2024/11/14
8
单击此处编辑母版标题样式
• 单击你此处是编怎辑母样版文理本样解式例2题的解题思路? • 二级 • 三级 • 四级 • 五级
2024/11/14
9
单击此处编辑母版标题样式
• 单击此处编对辑母数版函文数本恒样式过﹙1,0﹚
北师大版高中数学必修一第一章第一节集合的含义课件 (共15张PPT)
§1 集合的含义与表示
第1课时 集合的含义
高中数学必修1
学习目标
1.通过实例理解集合的有关概念. 2.初步理解集合中元素的三个特性. 3.体会元素与集合的属于关系. 4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.
预习清单 集合与元素的概念
1.集合与元素的定义 一般地,我们把研究对象统称为 元素 ,把一些元素组成的总
提示:①“本班全体同学”构成一个集合,每一个同学都是集合中的 元素;
②“直线AB上所有点”构成一个集合,集合中的元素是:直线AB 上每一个点.
合作探究 探究点2 集合中元素的特征
【问题2】任意一组对象是否都能组成一个集合?集合中的元素有什 么特征?请思考下列问题:
1. 某单位所有的“帅哥”能否构成一个集合? 不能
A. ②③④⑥⑦⑧ C. ②③⑥⑦
B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
课堂练习
2.判断正误: (1){(1,2)}={(2,1)}
(2){(1,2),(2,1)}={(2,1),(1,2)}
课堂练习
解析:由元素的互异性可知:
归纳小结
1. 集合的概念
确定性
2. 集合中元素的性质 互异性
知识点
无序性
3. 元素与集合的关系 a∈A aA
4. 常用的数集(N,Z,Q,R)
思想方法: 分类讨论思想
体叫做 集合 (简称集).
2.集合与元素的字母表示
通常用 大写拉丁字母A,B,C,…
表示集合,
用 小写拉丁字母a,b,c,…
表示集合中的元
素.
预习清单 集合与元素的概念
3.元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于集合A,记
高中数学北师大版必修一《函数的单调性》课件
• 单击此处编辑母版文本样式
– 二级
• 三级
– 四级 » 五级
9
判断单题 击你认此为处下列编说辑法是母否正版确标,请题说样明理式由(举
• 单击此例处或编者画辑图母)版. 文本样式
– 二级(1) 设函数 y f (x) 的定义域为 [a, ),若对任意x a ,都 • 三有级 [a, ) ,则 f (x) f (a)在区间 y f (x) 上递增.
– 四级 » 五级
(2)函数 f (x) x 1 在区间 (0, +)上有何单调性?
x
5
问题单3 (击1)此如何处用编数学辑符母号描版述标函数题图象样的式“上升”
• 单击此特征处,编即辑“母y随版x文的本增大样而式增大” ?
– 二级例如 函数 f (x) x2 在区间 [0, )上递增的.
• 三级
– 二级
• 三级
– 四级 » 五级
11
单击此处编辑母版标题样式
例题 判断并证明函数 f (x) 0.001x 1 的单调性.
•
单击此处编辑母版文本样式
– 二级练习 证明函数 f (x) x
1 x
(
x
0)
的单调性:
• 三, ) 上递增.
» 五级
单击此处编辑母版标题样式
• 单北击师大此版处高编中数辑学母版文本样式
– 二级
谢谢大家 • 三级 – 四级 » 五级
15
13
课堂单作击业 此处编辑母版标题样式
(1)第38页 习题2-3 A组:3,5
• 单击此(处2)编判辑断母并版证文明本函数样式f (x) x 1 在 (, 0)
– 二级上的单调性.
x
必修一数学北师大版
必修一数学北师大版
以下是北师大版必修一数学的主要内容:
1. 集合:集合的表示方法、集合之间的关系、集合的运算(交集、并集、补集)。
2. 函数概念与性质:函数的定义域和值域、函数的单调性、函数的奇偶性。
3. 一次函数与反比例函数:一次函数的图像和性质、反比例函数的图像和性质。
4. 指数函数与对数函数:指数函数的图像和性质、对数函数的图像和性质。
5. 幂函数:幂函数的图像和性质。
6. 任意角的三角函数:任意角的三角函数的概念、三角函数的诱导公式、三角函数的图像和性质。
7. 三角恒等变换:三角函数的和差化积、三角函数的倍角公式。
8. 三角函数的实际应用:三角函数在解决实际问题中的应用。
以上内容仅供参考,具体的教学内容可能因教材版本、地区差异等因素有所不同。
北师大高一数学必修一答案
北师大高一数学必修一答案(请勿抄袭)《集合》答案§1练习1.∈,∉,∉,∈,∈,∈,∈,∉,∉,∉,∈,∉,∉,∉,∈.2.(1){3,5,7,11,13,17,19},(2){-2,2},(3){x∈R│3<x<9},(4){x│x=2n+1,n∈Z},3.B4.略.习题1-1A组1.(1){(x,y)│y=x},无限集;(2){春,夏,秋,冬},有限集;(3)φ,空集;(4){2,3,5,7},有限集.2.B3.(1){-1,1};(2){0,3,4,5};(3){x│(x-2)(x-4)(x-6)(x-8)}或{大于1小于9的偶数}等;(4){x│x=1/n,n≤4且n∈N+}4.(1){2,5,6};(2){(0,6),(1,5),(2,2)}.5.(1){(x,y)│y<0且x>0};(2){(x,y)│y=x2-2x+2}.B组1 当a=1时,A={-1},当a=0时,A={-1/2}.2 当a≠0时,x=-b/a,A为有限集;当a=0,b=0时,A=R,为无限集;当a=0,b≠0时,A=φ.§2练习1.略2.C3.A C.4.(1){等腰三角形}{等边三角形};(2)φ{0};(3)=(4)5 1,2,8.习题1-2A组1.略2.(1)D,(2)C,(3)C.(4)B.3.A为小说,B为文学作品,C为叙事散文,D为散文.4.(1)错,(2)对,(3)对,(4)错,(5)对,(6)对,(7)错,(8)错.B组1.略2.A={0,2,4},3个元素.§33.1练习1.φ;{-4,-√15,√15}.2.(1){1,3,6,7,8,9};{6,8,9};{8,9};{8,9};{1,2,3,6,7,8,9}.(2){6,8,9},{6,8,9},图略3.{x│-1<x<2=,{x│-1≤x<3=.4.B∩C,A∪C.3.2练习1.略2.5∈U,5∉A.3.{1,3,4,6}4.{x│x∈R,且x∉A}.5.{1,2,3,4}6.C R A⊆C R B习题1-31.D2.(1)⊆,⊆,⊇,⊇,⊆(2)φ(3)A(4){(1,1)},{(1,1)},φ.(5){x│-5<x<5=(6){(x,y)│xy≤0}3.(1){a,b};(2){a,b,c,d,e,f,g,h};(3){a,b,g,h};(4){a,b,c,d,g};(5){b,g},(6){a,b}.4.{x│x是钝角三角形或直角三角形},{x│x是不等边三角形}.5.{x│x≤1,或x≥3},{x│-4≤x≤-2}.6.普遍成立.图证略.B组1.M={2,4,10}.2.9人.复习题一A组1.D,D,C,D,D;2.(1){x│x=9n+2,n∈Z};(2){x│x<1或x≥3};(3)R;(4)4;(5)C R A⊆C R B;3.{x│x≥2};{x│x≥-1 };4.{2,8};5.A={(x,y)│0≤x≤5/2,且0≤y≤3/2};(√2,√2)∈A,(√3,√3)∉A;6.略7.A∪(B∩C),(A∩B)∪C S(A∪B).B组1.有12个,分别是φ,{1},{2},{3},{4},{1,2},{1,4},{2,3},{2,4},{3,4},{1,2,4},{2,3,4}.2.a=13.(1){m│m≥3},(2)φ.4.{y│2≤y≤19,且y N},{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}.5.Ⅰ=A∩B∩C,Ⅱ=(A∩B)∩(C U C),Ⅲ=(A∩C)∩(C U B),Ⅳ=(B ∩C)∩(C U A),Ⅴ=A∩C U(B∪C),Ⅵ=C∩C U(A∪B),Ⅶ=B∩C U(A∪C),Ⅷ=C U(A∪B∪C).6.有172人听了讲座.C组1.D,B2.略《函数》习题解答P27练习1.如果不计税收等消耗,设售出台数为x台,收入为y元,则y=(2 100-2 000)x..显然,收入和台数间存在函数关系.2.坐电梯时,电梯距地面的高度与时间之间存在函数关系.因为,对于任给时间,电梯都有一个距离地面的高度.3.在一定量的水中加入蔗糖,糖水的质量浓度与所加蔗糖的质量之间存在函数关系.其中,可以是蔗糖是自变量,糖水质量浓度是因变量;也可以反之,糖水质量浓度是自变量,蔗糖是因变量.4.日期与星期之间,每一个日子都有一个星期和它对应,所以,它们之间存在函数关系.这里,日期是自变量,星期是因变量.但是,值得注意的是,星期不能做自变量,因为,对于每一个星期,可以有很多日期,不具有单值性.习题2-1A组1.(1)地球绕太阳公转,二者的距离与时间存在函数关系.其中时间是自变量,距离是因变量;反之,不成.(2)在空中作斜抛运动的铅球,铅球距地面的高度与时间的关系存在函数关系.其中,时间是自变量,高度是因变量;反之不行.(3)水文观测点记录的水位与时间的关系存在函数关系.其中,时间是自变量,水位是因变量;反之,不行;(4)某十字路口,通过汽车的数量与时间的存在函数关系.其中,时间是自变量,通过汽车的数量是因变量;反之,不行.2.(这是一个答案不惟一的开放题.从所学过的物理和化学中,找出若干有关的函数例子,并指明其中的自变量和因变量即可.这里从略.)B组1.(从生活中至少找5个存在函数关系的实例,并与同伴交流,即可.)2.(利用函数是‘对于任意一个自变量都有唯一的函数值与之对应,也就是说对于任意自变量不能有两个或两个以上的值与之对应’的特点.在生活中任意找一个实例,存在依赖关系,但不是函数关系,即可.)P30练习1.(1)f(4)=17;(2)g(2)=29;(3)F(3)+M(2)=26.2.(1) A=(h+2)?h;(2)定义域是[0,1.8],值域是[0,6.84];(3)图像为P34练习1.(1)定义域和值域都是一切实数;(2)定义域为[a1, a2]∪[a3,a4];值域为[b4,b3];(3) 定义域为{1,2,3,4,5,6,7,8},值域为{1,8,27,64,125,216,343,512}.2.图2可以是函数图像,而图1和3都不可能是函数图像.因为,图2中对于每一个自变量都有唯一的值和它对应,而图2和3中一个x的值可能对应两个或多个值.3.(可以任意收集一些用列表法给出的函数.从略.)4.因为,在?S ABC中,∠A=90°,AB=AC=1,EF∥BC,EF=l,设EF到A的距离为h,则l =2h,0,≤h≤√2(是根号2!注意.).其图像为(见另纸第一页)5.(1) 设税金为y元,营业额为x元,则⎧y={300,x≤1000,⎩ (x-1000)×4+300, x >1000.(2) y=(25000-1000)×4+300=1260(元).答:4月份这个饭店应缴纳税金1260元.P36练习1.(1)f是从A到B的映射.因为,对于A中的每一个元素B中都有唯一一个元素与它对应;(2)f是从A到B的映射.因为,对于A中的每一个元素B中都有唯一一个元素与它对应;(3)f是从A到B的映射.因为,对于A中的每一个元素B中都有唯一一个元素与它对应;(4)f不是从A到B的映射.因为,对于A中的元素0,B中就没有相应的元素与它对应,即并非对于A中的每一个元素,B中都有唯一一个元素与它对应.2.(1)f:A→B.它并非一一映射,也不是函数;(2)f:M→N.是一一映射,也是函数;(3)f:X→Y.并非一一映射,但是是函数.习题2---2A组1.(1)x≠3的一切实数或(-∞,3)∪(3,∞)或{ x≠3,x∈R};(2)x≥2且x≠3或〔2,3〕∪(3,∞);2.(1)定义域为[0,25/4],值域为[0,7];(2)定义域为{7,8,9},值域为{4,25,35}.3.(1)我国内地邮政编码的编码方式可以建立集合A到集合B的映射f:A→B.只需每一个省、直辖市、自治区对应一个固定的邮政编码即可.(2)不能建立三角形周长组成集合A到所有三角形组成集合B的映射.B组1.因为f(x)= 3√(z^3x-2),g(x)=1/√(2x-3),所以,f(x)g(x)= 3√(z^3x-2)(1/√(2x-3)).它的定义域为[3/2,+∞].2.(1)设车费为y(元),里程为x (km),则10, 0<x≤4,y={ 1.2×(x-4)+10, 4<x≤18,1.8×(x-18)+ 1.2×14+10, 18<x<+∞.即10, 0<x≤4,y={ 1.2x+5.2, 4<x≤18,1.8x-5.6, 18<x<+∞.(2)某人乘车行使20 km,则y=1.8(20-18)+1.2×14+10=1.8×20-5.6=30.4(元)答:此人要付30.4元的车费.P41练习1.(略)2.(1)y=--5x在[2,7]上单调递减;(2)f(x)=3x2-6x+1=3(x-1)2-2在(3,4)上单调递增;(3)T在{1,2,3,4,5,6,7,8}上单调递减;(5)h=-x2+2x+5/4=-(x-1)2+9/4在[0,1]上单调递增,在[1,5/2]上单调递减.习题2―3A组1.正比例函数y=kx (k≠0),当k>0时单调递增,当k<0时单调递减;反比例函数y=k/x (k≠0),当k>0时,在x>0和x<0的情况下分别单调递减,当k<0时,在x>0和x<0的情况下分别单调递增;一次函数y=kx+ b (k≠0), 当k>0时单调递增,当k<0时单调递减;二次函数y=ax2+ bx +c(a≠0),当a>0时,若x<-b/2a单调递减,若x>-b/2 a 单调递增,当a<0时,若x<-b/2a单调递增,若x>-b/2a单调递减2.(1)y在{0,1,2,3,4}上单调递增;(2)y=2/x在N+上单调递减;(3)y=2x-3在(-∞,0)上单调递增;※(4)y= ―4 x2+ 2x-5的开口向下,对称轴为x=1/4, 所以,在[0,1/4]上单调递增,在[1/4,+∞]上单调递减.3.如果在给定集合或区间上函数单调减少,那么,(1)y=kx,x∈R中的k<0;(2)y=k/x,x∈(-∞,0)中的k<0;(3)y=-kx+2,x∈R中的k>0;(4) y=k x2-2 x /3 +1,x∈[0,+∞]中的k<0.(请注意区间的右括号应该是).其余同此.}4.函数f(x)=-3x+4的图像是(请见另纸第一页)证明它在R上是减函数:证设任取x1,x2∈R且x1<x2,那么,x1-x2<0.所以,f(x1)-f(x2)=(-3x1+4)-(-3x2+4)=-3(x1-x2)>0.即f(x1) >f(x2),由函数单调性的定义可以知道,函数f(x)=-3x+4在R上是减函数.5.设任取x1,x2∈[0,+∞]且x1<x2,那么,f(x1)-f(x2)=2 x14-2 x24=2(x14-x24)=2(x1-x2)(x1+x2)(x12+x22)因为,0≤x1<x2.,所以x1-x2<0,x1+x2>0,x12+x22>0.所以,f(x1) <f(x2).由函数单调性定义可知,函数f(x)=-2x4在[0,+∞]上单调增加.B组1.当以相同的速度向四个容器注水时,可以大致刻画容器中水的高度与时间的关系的,对于图1是第三个图,对于图2是第一个图,对于图3是第三个图,对于图4是第三个图.2.函数y=8 x2+ ax+5的开口向上,对称轴为x =-a/16.因为,要使函数在[1,+∞]上单调递增,那么,必须有-a/16≤1.于是,a的范围是a≥-16.P48练习1.f(x)=x2/3和g(x)= x2/2在同一直角坐标系中的图像,前者开口大.2.在同一直角坐标系中,函数f(x)=(x+8)2 和g(x)= x2的图像相比,前者比后者左移了8个单位.3.(1)f(x)=-5x2和g(x)= 2x2的顶点都是(0,0),定义域都是R,都关于y轴对称;不同在于:前者图像开口向下、x≤0时函数单调递增、x≥0时函数单调递减,x=0时y值最大,后者图像开口向上、x≤0时函数单调递减、x≥0时函数单调递增,x=0时y值最小, 前者值域是y≤0,后者值域是y≥0;(2)f(x)=3(x-1/2)2+1和g(x)= 3x2的顶点分别是(1/2,1)和(0,0).相同点是,定义域都是R,开口都向上,;不同点是,前者关于x=1/2对称,后者关于x=0对称,前者当x≤1/2时函数单调递减、当x≥1/2时函数单调递增,后者当x≤0时函数单调递减、当x ≥0时函数单调递增,前者值域是y≥1,后者值域是y≥0,前者x=1/2时y最小,后者x=0时y最小.P51练习1.(1)f(x)=x2-2 x +3= (x2-2 x +1)+2=(x-1)2+2;(2)f(x)=3x2+6 x-1=3(x2+2 x+1)-3-1=3(x+1)2-4;(3)f(x)=-2x2+3 x-2=-2(x2+3 x /2+9/16)+9/8-2=-2(x-3/4)2-7/8.2.因为从1990年到1997年每年该地吃掉的蔬菜总量为v(t)=7.02t2+1098.6t+40920, 1995年是t=6情况,所以1995年该地消耗的蔬菜总量是v(6)= 7.02×36+1 098.6×6+40 920=252.72+6 591.6+40 920=47 764.32答:1995年该地消耗的蔬菜总量是47 764.32km.3. (1)y=2x2+1图像的开口向上、顶点坐标为(0,1)、对称轴为x=0、当x≤0时函数单调递减、当x≥0时函数单调递增;(2) y=2(x+1)2图像的开口向上、顶点坐标为(-1,0)、对称轴为x=-1、当x≤-1时函数单调递减、当x≥-1时函数单调递增;(3) y=6x2-5x-2图像的开口向上、顶点坐标为(5/12,-73/24)、对称轴为x=5/12、当x≤5/12时函数单调递减、当x≥5/12时函数单调递增;(4) y=-(x+1)(x-2)图像的开口向下、顶点坐标为(1/2,9/4)、对称轴为x=1/2、当x≤1/2时函数单调递增、当x≥1/2时函数单调递减.4.因为f(x)=-0.01x2+1.2 x-5.8,所以f(50)=-0.01×502+1.2 ×50 -5.8=29.2,其意义是速度为50km/h时,单位容积燃料行驶29.2 km.由于f(x)=-0.01x2+1.2 x-5.8中,当x=-b/2a=-1.2/2×(-0.01)=60(km ),即速度为60km 时,汽车最省油.习题2―4A组1.(1)f(x)= 3+5 x-2 x2=-2(x2-5 x /2+25/16)+25/8+3=-2(x-5/4)2+49/8;(2)f(x)= 3/4x2-2 x=3/4(x2-8/3 x +16/9)-4/3=3/4(x-4/3)2-4/3.2.(1)把函数f(x)=3x2的图像左移5个单位,下移2个单位可以得到函数f(x)=3(x+5)2-2的图像;(2) 因为,f(x)=-3x2+2 x-1=-3(x-1/3)2-2/3,所以,把函数f(x)=3x2的图像关于x 轴对称向下翻转,再右移1/3个单位,下移2/3个单位,可以得到函数f(x)=-3x2+2 x-1的图像.3.(1)将二次函数y=-2x2的图像平移,顶点移到(4,0)时对应的解析式是y=-2(x-4)2,其图像为……(2) 将二次函数y=-2x2的图像平移,顶点移到(0,-2)时对应的解析式是y=-2x2-2,其图像为……(3)将二次函数y=-2x2的图像平移,顶点移到(-3, 2)时对应的解析式是y=-2(x+3)2+2,其图像为……(4) 将二次函数y=-2x2的图像平移,顶点移到(3,-1)时对应的解析式是y=-2(x -3)2-1,其图像为……(图,请见另纸第一页)4.(1)因为y==x2-3 x=(x-3/2)2-9/4,所以,函数y==x2-3 x的图像的开口向上、对称轴为x=3/2、顶点为(3/2, -9/4),在x≤3/2时函数单调递减、在x≥3/2时函数单调递增;(2)因为y=-2x2+x+3=-2(x-1/4)2+25/8,所以,函数y==-2x2+x+3的图像的开口向下、对称轴为x=1/4、顶点为(1/4, 25/8),在x≤1/4时函数单调递增、在x≥1/4时函数单调递减.在同一直角坐标系中函数y=-2x2+x+3的图像开口较小.5.(1)函数y=(x-1)2在(-1,5)上,当x=1时,最小值为0,但是没有最大值;(2)因为y=-2x2-x+1= -2(x+1/4)2+9/8,所以函数y=-2x2-x+1在[-3,1]上,当x= -3时,最小值为-20,当x= -1/4时,最大值为9/8.6.(1)二次函数y=-2x2+6x在{x∈Z?O0≤x≤3}上的值域是{0,4};(2)二次函数y=-2x2+6x在[-2,1]上的值域是[-20,4].7.将40cm的铁丝截成两段,每段折成一个小正方形.设两个小正方形的边长分别为x,y,要使两个小正方形的面积和最小,即求x+y=10时,x2+y2的最小值.因为x+y=10,所以x=10-y.于是x2+y2=(10-y)2+y2=2 y2-20y+100=2(y-5)2+50.答:当两个小正方形的边长均为5cm时,它们的面积和最小.8.设‘日’字形窗户的长为xm时,宽则为(4-2x)/3m.其面积为x(4-2x)/3 =-2/3x2+4/3x=-2/3(x-1)2+2/3.答:当窗户的长为1m,宽为2/3m时,窗户的面积最大为2/3m2,即透过的光线最多.9.(1)因为二次函数图像的顶点为(2,-1),可以设其解析式为y= a(x-2)2-1.又图像过点(3,1),所以1= a(3-2)2-1.解得a=2.所以,所求二次函数的解析式为y= 2(x-2)2-1,即y=2x2-8x+7.(2)因为二次函数图像过(0,1),(1,1),(4,-9),所以可以设其解析式为y= ax2+bx+c (a≠0).由于图像过(0,1),(1,1),(4,-9),所以1= c,1= a+b+c,-9= a×16+b×4+c.解得c=1,b =5/6,a=-5/6.所以,所求二次函数的解析式为y= -5/6x2+5/6x+1.或者,由于图像过点(0,1)和(1,1),可以知道对称轴为x=1/2.设二次函数的解析式为y=a(x-1/2)2+k,又因为过点(0,1)和(4,-9),则a(0-1/2) 2+k=1, a(4-1/2)2+k=-9.解得a=-5/6,k=29/24.于是y=-5/6 (x-1/2)2+29/24,即y= -5/6x2+5/6x+1.B组1.因为抛物线开口向下,所以a<0;因为对称轴在y轴的右边,所以-b/2a>0,又已知a <0,可得b>0;因为,当x=0时,y=c, 而图中抛物线又与y轴交于原点的上方,所以c>0.因为x1<0,x2>0, 所以,x1×x2<0,由于对称轴在y轴右侧,所以,??x1?颍鸡?x2??. 于是,有x1+x2>0.2.设二次函数为y= ax2+bx+c (a≠0).因为二次函数的图像与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),所以,b2-4ac=0,-b/2a=3, ,c=3.从这三个方程解得a=1/或0,b=-2或0,c=3.由于a≠0,所以,a=0,b=0,c=3舍去. 因而,a=1/3,b=-2,c=3,这时,其解析式为y= 1/3x2-2x+3 .3.因为二次函数y= ax2+ax+2 (a≠0)在R上的最大值为(8-a)/4,所以f(a)=(8-a)/4. f(a)在[1,5]上单调递减.其图像为.(图,请见另纸第一页)4.设经过th A,B间的距离最短为xkm,那么x2=(145-40t)2+(16t)2=1856t2-11600t+21025.所以,经过t=11600/(2×1856)=725/232≈3.1(h),A,B距离最短为(4×1856×21025-116002)/(4×1856)的平方根,即√2900≈53.9(km).5.当a>0,4ac-b2>0时,二次函数y= ax2+bx+c (a≠0)的函数值恒大于零;当a<0,4ac-b2<0时,二次函数y= ax2+bx+c (a≠0)的函数值恒小于零.1.初速度为20m/s,和水平线x轴成45°角,所以,水平和竖直方向上的分速度都为10√2 m/s.(1)设飞行时间为ts,则水平方向的运动方程为x=10√2t,竖直方向的运动方程为y=10√2t-5t2.由x=10√2t得t=√2x/20.消去t,则得y=x-1/40×x2.所以,其轨道的形状为抛物线;(2)由于y=x-1/40×x2=-1/40(x-20)2+10,所以,最大高度为10m;(3)设抛物线与x轴交于原点和x0, 令y=0,解得x0=40,即飞行距离为40m.P55练习画出函数的图像,判断奇偶性:(1)奇函数;(2)非奇非偶函数;(3)偶函数;(6)非奇非偶函数.(图,均见另纸第二页)习题2―5A组1.(1)f(x)=2x+1是增函数.证明:设任取x1,x2∈R,且x1<x2,则f(x1) -f(x2)=(2 x1+1)-(2 x2+1)=2(x1-x2)<0.即f(x1) <f(x2).所以,f(x)=2x+1是增函数.图像:(请见另纸第一页)(2)f(x)=-2/x.,在(-∞,0)上单调增加.证明:设任取x1,x2∈(-∞,0),且x1<x2,则f(x1) -f(x2)=(-2/ x1)-(-2/ x2)=-2(x2-x1)/x1x2<0.即f(x1) <f(x2).所以,f(x)= -2/x,在(-∞,0)上单调增加.图像:(请见另纸第一页)(3)f(x)=6x+x2, 在[-3,+∞]上单调增加.证明:设x1,x2∈[-3,+∞],且x1<x2,则3+x1>0,3+x2>0,因此,f(x1) -f(x2)=(6x1+ x12)-(6 x2+ x22)=(x1-x2)(6+ x1+x2)<0.即f(x1) <f(x2).所以,f(x)=6x+x2, x∈[-3,+∞]单调增加.图像:(请见另纸第一页)(+∞区间右侧符号本人无法改变.请帮助改一下.)2.证明:对于f(x)=x2+1,其定义域显然为R.又因为f(-x)=(-x)2+1= x2+1,所以,f(-x)= f(x).因此,函数f(x)=x2+1是偶函数.设任取x1,x2∈[0,+∞],且x1<x2,则f(x1) -f(x2)=(x12+1)-(x22+1)=(x1-x2)(x1+x2)<0.即f(x1) <f(x2).所以,函数f(x)=6x+x2在[0,+∞]上单调增加.3.(1)函数y=x2-3的图像开口向上,对称轴为x=0,顶点为(0,-3),最小值为-3,是偶函数,在x≤0时函数单调减少、x≥0时函数单调增加.其图像为:.(图,见另纸第一页)(2)函数y=-x2+4x-2,即y=-(x-2)2+2的图像开口向下,对称轴为x=2,顶点为(2,2),最大值为2,是非奇非偶的函数,在x≤2时函数单调增加、x≥2时函数单调减少.其图像为:.(图见另纸第一页)(3)函数y=5x2+2的图像开口向上,对称轴为x=0,顶点为(0,2),最小值为2,是偶函数,在x≤0时函数单调减少、x≥0时函数单调增加.其图像为:.(图,见另纸第一页)(4)函数y=-2x2-6x,即y=-2(x+3/2)2+9/2的图像开口向下,对称轴为x=-3/2,顶点为(-3/2,9/2),最大值为9/2,是非奇非偶的函数,在x≤-3/2时函数单调增加、x≥-3/2时函数单调减少.其图像为:.(图,见另纸第一页)(图,均见另纸第一页).当a>0时,一次函数y=ax+b是增函数,当a<0时, 一次函数y=ax+b是减函数;当b=0时, 一次函数y=ax+b是奇函数,当b≠0时,一次函数y=ax+b 是非奇非偶的函数. 其图像分别为.(图,见另纸第二页)B组1.(1)函数y=2x-3在x≤3/2时单调递减,x≥3/2时单调递增. 因为函数y=2x-3=2x -3/2,所以函数y=2x-3的图像可以由函数y=x的图像左移3/2个单位,再把每个点向上扩大为原来的2倍得到;(2)函数y=2x-1在x≤0时单调递减,x≥0时单调递增. 函数y=2x-1的图像可以由函数y=x的图像的每个点向上扩大为原来的2倍,再下移1个单位得到.(图像,见另纸第三页)2.当a>0时,对于x≤-b/2a,二次函数y=ax2+bx+c(a≠0)单调减少,x>-b/2a,二次函数y=ax2+bx+c(a≠0)单调增加;当a<0时,对于x≤-b/2a,二次函数y=ax2+bx+c(a≠0)单调增加,x>-b/2a,二次函数y=ax2+bx+c(a≠0)单调减少.C影响顶点,也就是影响单调增减的起点或终点.当b=0时,二次函数y=ax2+bx+c(a≠0)为偶函数;当b≠0时,二次函数y=ax2+bx+c(a≠0)为非奇非偶的函数.P61复习题二A组1.(1)设A={1,2,3,4,},B={3,5,7,9},对应关系是f(x)=2x+1,x∈A,是映射,也是函数,因为A,B都是非空数集,而且对于A中的任意元素,B中都有唯一的元素与它对应;(2)设A={1,4,9},B={-1,1,-2,2,-3,3},对应关系是“A中的元素开平方”,不是映射,更不是函数;(3)设A=R,B=R,对应关系是f(x)=x3,x∈A,是映射,也是函数,因为A,B都是非空数集,而且对于A中的任意元素,B中都有唯一的元素与它对应;(4)设A=R,B=R,对应关系是f(x)=2x2+1,x∈A,是映射,也是函数,因为A,B都是非空数集,而且对于A中的任意元素,B中都有唯一的元素与它对应.2.设A={a,b,c},B={0,1},对应关系可以是f(x)={x0,x∈A且当A中的元素不为零时,o, x∈A且A中的元素为零时,(上边括号管两行)于是有f:A→B;对应关系也可以是f(x)={1, x∈{a,b},0,x=c.(括号也都是管两行.请把两个函数式都写成分段函数),于是有f:A→B.3.(1)定义域是R;(2)定义域为-1/2≤x≤3/4;(3)x≠-1且x≠-3.4.设运输里程为xkm, 运费为F(x),则F(x)={0.5x, 0≤x≤100,0.4×(x-100) +0.5×100,x>100.5. x≠-1任意举出几个分段函数的例子,并说明其定义域和值域即可(略).6.设学校购买电脑x台,则甲公司用费为f(x)= {6000 ×x, x≤10,6000×10+6000x×70%, 10<x≤40.乙公司用费为F(x)=6000x×85%, 0 ≤x≤40.若6000×10+6000x×70%≤6000x×85%.解得x≥200/3≈66.当x≤10时,显然乙公司合算;当10<x≤66台时,乙公司也比甲公司合算.所以,在购买40台的电脑时乙公司合算.其图像为(请补上).7. 函数f(x)在[-π,-π/2]∪[π/2,π]上单调增加,在(-π/2,π/2)上单调减少.8.f(x)={x2 +4x+3, -3≤x<0,-3x+3, 0≤x<1,-x2+6x-5, 1≤x≤6.(1)因为f(x)={x2 +4x+3=(x+2)2-1, -3≤x<0,-3x+3, 0≤x<1,-x2+6x-5=-(x-3)2+4, 1≤x≤6.所以,其图像为.(图,请见另纸第三页)(2)单调区间:在[-3,-2]上单调递减,在(-2,0)上单调递增,在[0,1]上单调递减,在[1,3]上单调递增,在(3,6)上单调递减;(3)最大值为4,最小值为-5.9.(1)函数y=1/x3是奇函数;(2)函数f(x)=2x2-5是偶函数.(证明从略)10.(1)因为,每月以相等的数额存入,所以,函数是一次函数;由于原有60元,两个月后有90元,所以,函数图像过点(0,60),(2,90).设一次函数的解析式为y=kx+b(k ≠0),于是,有60=k×0+b,90=k×2+b.解得k=15,b=60.所以,所求盒内钱数(元)与存钱月份的函数解析式为y=15x+60(x∈N+).其图像为.(图,请见另纸第三页)(2)解200=15×x+60得x=93.所以,10个月后,这位学生可以第一次汇款.11.从中可以看出随着水深的增加,存水量在增加.1.1练习1.观察f i(x)的图象,在(?C∞, 0)内f1(x)、f2(x)都与x轴有交点,所以f1(x)=0、f2(x)=0有解,而在(?C∞, 0)内f3(x)、f4(x)都与x轴没有交点,所以f3(x)=0、f4(x)=0无解。
北师大版高中数学课本目录(含重难点及课时分布)
高中数学课本内容及其重难点北师大版高中数学必修一·第一章集合(考点的难度不是很大,是高考的必考点)· 1、集合的基本关系· 2、集合的含义与表示· 3、集合的基本运算(重点)(2课时)·第二章函数· 1、生活中的变量关系· 2、对函数的进一步认识· 3、函数的单调性(重点)· 4、二次函数性质的再研究(重点)· 5、简单的幂函数(5课时)·第三章指数函数和对数函数· 1、正整数指数函数· 2、指数概念的扩充· 3、指数函数(重点)· 4、对数· 5、对数函数(重点)· 6、指数函数、幂函数、对数函数增减性(重点)(3课时)·第四章函数应用· 1、函数与方程· 2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步· 1、简单几何体· 2、三视图(重点)· 3、直观图(1课时)· 4、空间图形的基本关系与公理(重点)· 5、平行关系(重点)· 6、垂直关系(重点)· 7、简单几何体的面积和体积(重点)· 8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步· 1、直线与直线的方程· 2、圆与圆的方程· 3、空间直角坐标系(4课时)北师大版高中数学必修三·第一章统计· 1、统计活动:随机选取数字· 2、从普查到抽样· 3、抽样方法· 4、统计图表· 5、数据的数字特征(重点)· 6、用样本估计总体· 7、统计活动:结婚年龄的变化· 8、相关性· 9、最小二乘法(3课时)·第二章算法初步· 1、算法的基本思想· 2、算法的基本结构及设计(重点)· 3、排序问题(重点)· 4、几种基本语句(2课时)·第三章概率· 1、随机事件的概率(重点)· 2、古典概型(重点)· 3、模拟方法――概率的应用(重点、难点)(4课时)北师大版高中数学必修四·第一章三角函数· 1、周期现象与周期函数· 2、角的概念的推广· 3、弧度制· 4、正弦函数(重点)· 5、余弦函数(重点)· 6、正切函数(重点)· 7、函数的图像(重点)· 8、同角三角函数的基本关系(重点、难点)(5课时)·第二章平面向量· 1、从位移、速度、力到向量· 2、从位移的合成到向量的加法(重点)· 3、从速度的倍数到数乘向量(重点)· 4、平面向量的坐标(重点)· 5、从力做的功到向量的数量积(重点)· 6、平面向量数量积的坐标表示(重点)· 7、向量应用举例(难点)(5课时)·第三章三角恒等变形(重点)· 1、两角和与差的三角函数· 2、二倍角的正弦、余弦和正切· 3、半角的三角函数· 4、三角函数的和差化积与积化和差· 5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列· 1、数列的概念· 2、数列的函数特性· 3、等差数列(重点)· 4、等差数列的前n项和(重点)· 5、等比数列(重点)· 6、等比数列的前n项和(重点)· 7、数列在日常经济生活中的应用(6课时)·第二章解三角形(重点)· 1、正弦定理与余弦定理正弦定理· 2、正弦定理· 3、余弦定理· 4、三角形中的几何计算(难点)· 5、解三角形的实际应用举例(6课时)·第三章不等式· 1、不等关系· 1。
北师大版高一数学必修一电子课本
北师大版高一数学必修一电子课本北师大版高一数学必修一电子课本
一、数量关系与函数
数字与代数、函数的初步概念、一次函数、一次函数的图象、函数的概念与性质、函数的表示
二、平面向量的初步应用
向量的概念与运算、向量共线与平行、向量的数量积、向量的夹角、平面向量的应用
三、圆的基本性质
圆的相关概念、弧与圆心角、圆周角、相交弧的性质、圆的切线与割线、圆的应用
四、三角函数
角度的度量、角速度、三角函数及其图像、同角三角函数、求任意角的三角函数值、三角函数的应用
五、解直角三角形
直角三角形的概念、勾股定理、正弦定理、余弦定理、解直角三角形的应用
六、平面几何知识
二、三元一次方程和简单不等式
七、二、三元一次方程
二元一次方程、三元一次方程、二元一次方程组、三元一次方程组
八、简单不等式
一元一次不等式、一元一次不等式组、二元一次不等式、绝对值不等式、简单不等式的应用
九、函数的基本性质
函数的奇偶性、周期性、单调性、反函数与复合函数、函数的极值、函数的应用。
北师大版必修一数学以2为底的对数函数
安边中学 高一 年级 1学期 数学 学科导学稿 执笔人: 邹英 总第 29 课时 备课组长签字: 包级领导签字: 学生: 上课时间: 第9周集体备课 个人空间一、课题:对数函数x y 2log =的图像和性质二、学习目标1、函数x y 2log =的图象和性质;2、图象的变换,提高学生对数形结合思想认识。
三、教学过程【温故知新】问题1、对数函数(概念及定义式):问题2、常用对数函数、自然对数函数(概念及定义式):问题3、指数函数与对数函数的关系。
问题4、写出它们的反函数。
(1)13xy ⎛⎫= ⎪⎝⎭;(2)x y 2=;(3)x y lg =;(4)x y 4log =。
【导学释疑】阅读教材P 91-P 92页。
问题1、完成下表。
图象的特征函数的性质 (1)图象都在y 轴的右边 (1)定义域是(2)函数图象都经过 点 (2)1的对数是(3)从左往右看,图象逐渐 , (3)x y 2log =是 函数,(4)图象在(1,0)点右边的纵坐标都 0,在(1,0)点左边的纵坐标都 0. (4)即当10<<x 时,y 0; 即当1>x 时,y 0。
问题2、画出函数x y 21log =的图像,并与函数x y 2log =的图像比较,它们有什么异同。
【巩固提升】例1、求函数2log 2-=x y 的定义域。
例2、比较下列两组数的大小。
(1)6log 2与7.5log 2 ; (2)8.0log 21=y 与84.0log 21=y【检测反馈】1、P93页练习2、3、4。
反思栏。
北师大版高一必修一数学课本
北师大版高一必修一数学课本
北师大版高一必修一数学课本是一本专为高中学生编写的数学教材,由多位知名数学教育专家精心编写而成,其中包含了高中数学中的基础知识和技能,涵盖了各种数学问题的解决方法。
该书以全新的精神和视角,分为六个单元,主要涉及到数论、代数、几何、概率论和统计学等几个领域,每个单元都按照全面、系统的教学思路编写,为学生提供了全面、系统的研究任务。
北师大版高一必修一数学课本在每一单元中,都结合实际,给出了大量的实例,让学生可以通过实践和讨论,研究数学理论,培养学生的数学思维能力。
除此之外,该教材还提供了大量的习题,帮助学生掌握和深入研究各种数学思想,提高学生的数学水平。
此外,北师大版高一必修一数学课本还提供了大量的拓展性知识,如微积分,帮助学生深入理解数学思想,为今后更深入的研究打下良好的基础。
总之,北师大版高一必修一数学课本是一本贴近实际、全面、系统的数学教材,可以帮助学生深入理解数学思想,为今后更深入的研究打下良好的基础。
北师大版高中数学必修一目录
必修(第一册)(共计72 课时)第一章集合与常用逻辑用语(10课时)1.1 集合的概念1.2 集合间的基本关系1.3 集合的基本运算阅读与思考集合中元素的个数1.4 充分条件与必要条件阅读与思考几何命题与充分条件、必要条件1.5 全称量词与存在量词第二章一元二次函数、方程和不等式(8课时)2.1 等式性质与不等式性质2.2 基本不等式2.3 二次函数与一元二次方程,不等式第三章函数的概念与性质(12课时)3.1 函数的概念及其表示阅读与思考函数概念的发展历程3.2 函数的基本性质信息技术应用用计算机绘制函数图象3.3 幂函数探究与发现探究函数的图象与性质3.4 函数的应用(一)文献阅读与数学写作* 函数的形成与发展第四章指数函数与对数函数(16课时)4.1 指数4.2 指数函数阅读与思考放射性物质的衰减信息技术应用探究指数函数的性质4.3 对数阅读与思考对数的发明4.4 对数函数探究与发现互为反函数的两个函数图象间的关系4.5 函数的应用(二)阅读与思考中外历史上的方程求解文献阅读与数学写作* 对数概念的形成与发展数学建模(3课时)建立函数模型解决实际问题第五章三角函数(23课时)5.1 任意角和弧度制5.2 三角函数的概念阅读与思考三角学与天文学5.3 诱导公式5.4 三角函数的图象与性质探究与发现函数及函数的周期探究与发现利用单位圆的性质研究正弦函数、余弦函数的性质5.5 三角恒等变换信息技术应用利用信息技术制作三角函数表5.6 函数5.7 三角函数的应用阅读与思考振幅、周期、频率、相位必修(第二册)(共计69 课时)第六章平面向量及其应用(18课时)6.1 平面向量的概念6.2 平面向量的运算阅读与思考向量及向量符号的由来6.3 平面向量基本定理及坐标表示6.4 平面向量的应用阅读与思考海伦和秦九韶数学探究(2课时)用向量法研究三角形的性质第七章复数(8课时)7.1 复数的概念7.2 复数的四则运算阅读与思考代数基本定理7.3*复数的三角表示探究与发现的次方根第八章立体几何初步(19课时)8.1 基本立体图形8.2 立体图形的直观图阅读与思考画法几何与蒙日8.3 简单几何体的表面积与体积探究与发现祖暅原理与柱体、锥体的体积8.4 空间点、直线、平面之间的位置关系8.5 空间直线、平面的平行8.6 空间直线、平面的垂直阅读与思考欧几里得《原本》与公理化方法文献阅读与数学写作*几何学的发展第九章统计(13课时)9.1 随机抽样阅读与思考如何得到敏感性问题的诚实反应信息技术应用统计软件的应用9.2 用样本估计总体阅读与思考统计学在军事中的应用——二战时德国坦克总量的估计问题阅读与思考大数据9.3 案例统计公司员工的肥胖情况调查分析第十章概率(9课时)10.1 随机事件与概率10.2 事件的相互独立性10.3 频率与概率阅读与思考孟德尔遗传规律选择性必修(第一册)(共计43 课时)第一章空间向量与立体几何(15课时)1.1 空间向量及其运算1.2 空间向量基本定理1.3 空间向量及其运算的坐标表示阅读与思考向量概念的推广与应用1.4 空间向量的应用第二章直线和圆的方程(16课时)2.1 直线的倾斜角与斜率2.2 直线的方程探究与发现方向向量与直线的参数方程2.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何2.4 圆的方程阅读与思考坐标法与数学机械化2.5 直线与圆、圆与圆的位置关系第三章圆锥曲线的方程(12课时)3.1 椭圆信息技术应用用信息技术探究点的轨迹:椭圆3.2 双曲线探究与发现为什么是双曲线的渐近线3.3 抛物线探究与发现为什么二次函数的图象是抛物线阅读与思考圆锥曲线的关学性质及其应用文献阅读与数学写作* 解析几何的形成与发展选择性必修(第二册)(共计30 课时)第四章数列(14课时)4.1 数列的概念阅读与思考斐波那契数列4.2 等差数列4.3 等比数列阅读与思考中国古代数学家求数列和的方法4.4*数学归纳法第五章一元函数的导数及其应用(16课时)5.1 导数的概念及其意义5.2 导数的运算探究与发现牛顿法——用导数方法求方程的近似解5.3 导数在研究函数中的应用信息技术应用图形技术与函数性质文献阅读与数学写作* 微积分的创立与发展选择性必修(第三册)(共计35 课时)第六章计数原理(11课时)6.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少6.2 排列与组合探究与发现组合数的两个性质6.3 二项式定理数学探究(2课时)杨辉三角的性质与应用第七章随机变量及其分布(10课时)7.1 条件概率与全概率公式阅读与思考贝叶斯公式与人工智能7.2 离散型随机变量及其分布列7.3 离散型随机变量的数字特征7.4 二项分布与超几何分布探究与发现二项分布的性质7.5 正态分布信息技术应用概率分布图及概率计算第八章成对数据的统计分析(9课时)8.1 成对数据的统计相关性8.2 一元线性回归模型及其应用阅读与思考回归与相关8.3 列联表与独立性检验数学建模(3课时)建立统计模型进行预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、教学过程
【温故知新】
问题 1 画出 y=2x,y=10x, y= 1 x ,y= 1 x 的图像; 2 10
问题 2 说出指数函数的性质
【导学释疑】
阅读教材 P93-P95 页。
问题 1、在同一坐标系中画出下列函数的图像 (1) y=log2x y=lgx (底数大于1)
(2) y=log0.5x y=log0.1x(底数大于 0 小于 1)
别指望看第一遍书就能记住和掌握什么----请看第二遍、第三遍。
安边中学 高一 年级 1 学期 数学 学科导学稿 执笔人:王广青 总第 30 课时
Байду номын сангаас
备课组长签字:
包级领导签字:
学生:
上课时间: 第 10 周
集体备课
个人空间
一、课题:5.3 对数函数图像和性质
二、学习目标 1.画出具体对数函数的图像,探索对数函数的单调性与特殊点; 2.通过比较、对照的方法,探索研究对数函数的性质; 3.培养数形结合的思想。
(8) lg0.005____0
例 2、已知下列不等式的大小,比较 m、n 的大小
(1) log5m>log5n
(2)log0.3m<log0.3n
(3) logm0.6>logn0.6
(4) logm3>logn3
【检测反馈】 (1)比较大小 log67_____log76 lg0.9____ln2.3 log23_____log23.5 log0.21.3_____log0.21.8
问题 2、
(1)对数函数 y=logax(a>0,且 a≠1)的图像和性质:
a>1
0<a<1
图像
性质
定义域 值域 过定点 单调性
-1-
别指望看第一遍书就能记住和掌握什么----请看第二遍、第三遍。
(2)图像的分布规律如何?(单调性) 若 a>1,当 x>1 时, y __________; 当 0<x<1 时,y _________ 若 0<a<1,当 x>1 时,y___________;当 0<x<1 时,y__________
反 思 栏
-2-
(2)比较正数 m、n 的大小 lgm>lgn
log3m<log3m logam>logan(a>1)
log31.5____log20.8 ln2.6_____1 log0.34______log0.20.7
log23_____log32
log0.2n>log0.2m log0.3m<log0.3n
【巩固提升】
例1.比较下列对数值的大小
(1) log30.5____log30.8
(2)log0.50.2_____log0.56
(3) log0.23___log23
(4)log53_____log23
(5) log35_____log53
(6) log20.5_____lg0.1
(7) log0.30.7_____1