新版人教版九年级数学全册知识点【最新整理】
九年级人教版数学全册知识点
![九年级人教版数学全册知识点](https://img.taocdn.com/s3/m/7d6fd074777f5acfa1c7aa00b52acfc789eb9fe5.png)
九年级人教版数学全册知识点一、代数1. 代数式的定义和基本性质2. 一元一次方程及其应用3. 一元一次不等式及其应用4. 线性函数及其应用5. 平方根与二次方程6. 平方根与二次函数7. 分式与分式方程8. 速度与比例二、几何1. 线段比例及其性质2. 相似三角形及其性质3. 直角三角形中的三角函数4. 平面直角坐标系5. 二次函数的图像与性质6. 平面向量三、数据统计与概率1. 统计与统计图2. 等可能事件与概率3. 条件概率与事件独立性4. 排列与组合5. 正态分布与抽样调查四、实数1. 整式的加减运算2. 整式的乘法和因式分解3. 分式的加减运算4. 分式的乘法和除法5. 二次根式的性质和计算五、函数与方程1. 一元二次方程2. 一元二次函数3. 二次函数与二次方程4. 一元二次不等式5. 一元一次不等式六、立体几何与图形1. 空间几何图形2. 直线与点的位置关系3. 平面与空间直线的位置关系4. 空间图形的投影5. 立体图形的计算七、三角函数1. 任意角与弧度制2. 三角函数及其图像性质3. 三角函数的诱导公式4. 三角函数的图像变换5. 三角恒等变换八、二次函数1. 二次函数的定义与性质2. 二次函数的函数图像3. 二次函数的最值与判别式4. 直线与二次函数的交点5. 二次函数的应用九、统计1. 统计调查与参数估计2. 统计图的应用与分析3. 数据的分类与分组4. 数据的比较与分析5. 综合统计应用题以上就是九年级人教版数学全册的知识点概述。
在这些知识点中,我们将学习代数、几何、数据统计与概率、实数、函数与方程、立体几何与图形、三角函数二次函数和统计等内容。
通过系统的学习和练习,我们将能够掌握九年级数学的核心知识,提高数学解题和分析问题的能力。
希望同学们能够认真学习,并在实践中不断提高自己的数学水平!。
九年级数学知识点总结人教版
![九年级数学知识点总结人教版](https://img.taocdn.com/s3/m/39fedf87d0f34693daef5ef7ba0d4a7302766c6c.png)
九年级数学知识点总结人教版学习从来无捷径,循序渐进登高峰。
如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。
学习需要勤奋,做任何事情都需要勤奋。
下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。
1、概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等(3)两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180° ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.5、中心对称图形:把一个图形绕着某一个点旋转180° ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称两个点关于原点对称时,它们的坐标符号相反,即点 P(x,y)关于原点 O 的对称点P′(-x,-y).(一)平行四边形的定义、性质及判定.1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4 ·对称性:平行四边形是中心对称图形.(二)矩形的定义、性质及判定.1-定义:有一个角是直角的平行四边形叫做矩形.2 ·性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形.4 ·对称性:矩形是轴对称图形也是中心对称图形.(三)菱形的定义、性质及判定.1 ·定义:有一组邻边相等的平行四边形叫做菱形.(1)菱形的四条边都相等;。
最新人教版九年级数学上册知识点总结全套
![最新人教版九年级数学上册知识点总结全套](https://img.taocdn.com/s3/m/d6c67d0030126edb6f1aff00bed5b9f3f80f7251.png)
最新人教版九年级数学上册知识点总结全套数学上册知识点总结21.1 一元二次方程知识点一:一元二次方程的定义一元二次方程是指等号两边都是只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程。
注意以下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二:一元二次方程的一般形式一元二次方程的一般形式为ax2+ bx + c = 0(a≠0)。
其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三:一元二次方程的根一元二次方程的根是指使方程左右两边相等的未知数的值。
方程的解的定义是解方程过程中验根的依据。
21.2 降次——解一元二次方程21.2.1 配方法知识点一:直接开平方法解一元二次方程1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a。
2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二:配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:①把常数项移到等号的右边;②方程两边都除以二次项系数;③方程两边都加上一次项系数一半的平方,把左边配成完全平方式;④若等号右边为非负数,直接开平方求出方程的解。
21.2.2 公式法知识点一:公式法解一元二次方程一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为x=b±b2-4ac2a,这个公式叫做一元二次方程的求根公式。
人教版九年级数学知识点
![人教版九年级数学知识点](https://img.taocdn.com/s3/m/cd3bbfd2162ded630b1c59eef8c75fbfc67d9464.png)
人教版九年级数学知识点九年级数学知识点九年级数学学科是学生中学阶段数学学科的最后一个阶段,内容相对较为复杂和抽象,需要学生具备扎实的基础知识和一定的逻辑思维能力。
本文将介绍人教版九年级数学的主要知识点,帮助学生和家长更好地了解课程的内容和重点。
一、代数与函数1. 代数基础知识1.1 整式的定义与基本运算1.2 因式分解1.3 分式的定义与运算1.4 方程与不等式的基本性质2. 一元一次方程与一元一次不等式2.1 一元一次方程与一元一次不等式的解集2.2 一元一次方程与一元一次不等式的应用题3. 二元一次方程组3.1 二元一次方程组的解法与应用4. 平方根与实数4.1 正数的平方根4.2 无理方程的解与实数的比较大小5. 二次根式与二次方程5.1 二次根式的定义与性质5.2 二次方程的解与应用6. 函数的概念与表示6.1 函数的定义6.2 函数的图象与性质6.3 函数的四种基本变换7. 一次函数7.1 一次函数的定义与性质7.2 一次函数的图象与应用8. 二次函数8.1 二次函数的定义与性质8.2 二次函数的图象、顶点与应用二、几何1. 图形的相似与全等1.1 相似形的概念与性质1.2 全等形的概念与性质2. 平面直角坐标系2.1 平面直角坐标系的概念与性质2.2 平面直角坐标系中点与线段的坐标计算3. 运动、位置与方位3.1 二维运动与方位3.2 存在与唯一性4. 三角形4.1 三角形的定义与性质4.2 三角形的内角和与外角性质4.3 三角形的分类与判定5. 三角形的相似5.1 三角形相似的性质与判定5.2 三角形相似的性质在解决实际问题中的应用6. 平行四边形与梯形6.1 平行四边形的性质与判定6.2 梯形的性质与判定7. 圆7.1 圆的定义与性质7.2 弧长与扇形面积7.3 切线与切点三、数据统计与概率1. 统计与统计图1.1 统计的基本概念1.2 统计图的绘制与分析2. 概率与概率实验2.1 概率的基本概念与性质2.2 概率实验与事件的概率计算3. 事件的概率计算3.1 事件的互斥与对立3.2 事件的加法法则与乘法法则4. 排列与组合4.1 排列的概念与计算4.2 组合的概念与计算通过对以上知识点的系统学习和掌握,学生可以提高数学应用的能力,为中学数学学科的学习打下坚实的基础。
人教版初三数学知识点归纳整理
![人教版初三数学知识点归纳整理](https://img.taocdn.com/s3/m/d909103eabea998fcc22bcd126fff705cc175ca0.png)
人教版初三数学知识点归纳整理学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。
任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。
下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
九年级上册数学复习资料考点1:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点3:等可能试验中事件的概率问题及概率计算考核要求(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点4:数据整理与统计图表考核要求:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
新人教版九年级数学上册知识点归纳
![新人教版九年级数学上册知识点归纳](https://img.taocdn.com/s3/m/a7741e4d773231126edb6f1aff00bed5b9f373ae.png)
新人教版九年级数学上册知识点归纳
一. 整式的加减法和乘法
- 整式的加减法
- 同类项的加减法原则
- 不同类项的加减法原则
- 整式的乘法
- 单项式乘法
- 多项式乘法
二. 因式分解与整式的乘法
- 因式分解
- 公因式提取法
- 平方差公式
- 立方差公式
- 和差化积公式
- 整式的乘法
- 定积分法
- 化简法
三. 一次函数与二次函数
- 一次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
- 二次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
四. 几何图形的认识
- 点、线和面的基本概念
- 几何图形的分类
- 几何图形的性质和判定方法
五. 平面坐标系
- 平面直角坐标系
- 平面直角坐标系中的点及其坐标- 平面直角坐标系中的线段及其长度- 平面直角坐标系中的图形
六. 相交与平行线
- 直线的概念和表示方法
- 直线的性质和判定方法
- 直线间的位置关系
- 平行线判定的方法
七. 形状与变换
- 图形的相似关系和判定方法
- 图形的全等关系和判定方法
- 图形的对称关系和判定方法
- 图形的平移、旋转和翻转
八. 数据的收集和处理
- 数据的收集和整理方法
- 数据的图表表示
- 数据的统计分析
以上是新人教版九年级数学上册的知识点归纳,包括整式的加减法和乘法、因式分解与整式的乘法、一次函数与二次函数、几何
图形的认识、平面坐标系、相交与平行线、形状与变换,以及数据的收集和处理。
九年级数学课本知识点人教版
![九年级数学课本知识点人教版](https://img.taocdn.com/s3/m/f1b5f6e5a0c7aa00b52acfc789eb172ded6399a4.png)
九年级数学课本知识点人教版初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
人教版九年级数学上册知识点整理完整版
![人教版九年级数学上册知识点整理完整版](https://img.taocdn.com/s3/m/e6e84428a55177232f60ddccda38376bae1fe054.png)
人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。
②变量:数量可能改变的量。
③代数式:由数、字母、加减乘除号、括号等符号组成的式子。
④同类项:指含有相同字母并且指数相同的项。
⑤合并同类项:指将同类项合并成一个项。
⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。
⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。
2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。
②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。
⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。
3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。
②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。
④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。
⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。
4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。
②函数的零点:函数 f(x) = 0 的解叫做函数的零点。
即 f(x) = 0 时 x 的解。
③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。
二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。
②射线:在一个端点处向一个方向上延伸的线段,叫做射线。
③直线:没有端点,在一个方向上延伸的线段,称为直线。
④平行线:永远不会相交的两条直线叫做平行线。
⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。
人教版九年级上册数学知识点汇总
![人教版九年级上册数学知识点汇总](https://img.taocdn.com/s3/m/f83e2d8e77a20029bd64783e0912a21615797f4a.png)
作为资深教师,整理人教版九年级上册数学知识点汇总如下:一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式为:ax² + bx + c = 0(a ≠ 0)。
2. 解法•配方法:通过配成完全平方形式来解一元二次方程。
步骤包括:移项、除二次项系数、配方、开平方。
•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。
•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。
3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。
二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。
•设:设出未知数。
•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。
•解:解方程,求出未知数的值。
•验:检验方程的解是否保证实际问题有意义,符合题意。
•答:写出答案。
2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。
•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。
•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。
•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。
人教版九年级数学上册知识点整理(完整版)
![人教版九年级数学上册知识点整理(完整版)](https://img.taocdn.com/s3/m/a2972c0311a6f524ccbff121dd36a32d7375c7c8.png)
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
数学九年级人教全书知识点
![数学九年级人教全书知识点](https://img.taocdn.com/s3/m/10e04bf7f021dd36a32d7375a417866fb94ac05c.png)
数学九年级人教全书知识点一、代数与函数1.万能线性方程式1.1 一元一次方程1.2 一元一次方程组1.3 二元一次方程组1.4 一元二次方程1.5 二元二次方程组2.函数与方程2.1 函数的概念2.2 函数的表示与性质2.3 函数的运算2.4 函数的应用2.5 方程与不等式的解集3.图像与函数关系3.1 二次函数与抛物线3.2 幂函数与指数函数3.3 对数函数与指数函数互逆关系 3.4 三角函数与周期性3.5 函数图像的变换与性质二、几何与证明1.三角形与相似1.1 三角形的性质1.2 三角形的分类与判定1.3 相似三角形的判定与性质1.4 黄金分割与相似1.5 三角形与数学建模2.圆与圆的位置关系2.1 圆的概念与性质2.2 弦与弧2.3 切线与切点2.4 圆的位置关系2.5 圆与几何思想3.解析几何3.1 坐标系与平面直角坐标系 3.2 直线的方程与性质3.3 圆的方程与性质3.4 直线与圆的位置关系3.5 综合运用三、概率与统计1.统计调查与数据分析1.1 统计调查的基本步骤1.2 数据的收集与整理1.3 数据的表示与分析1.4 数据的解读与运用1.5 研究生活中的问题2.概率与事件2.1 概率的基本概念2.2 事件与样本空间2.3 事件的运算与性质2.4 概率的计算方法2.5 概率与数学游戏3.统计图与统计量3.1 统计图的绘制与解读 3.2 中心与离散程度的度量 3.3 统计参数的估计3.4 统计推断与假设检验3.5 利用数据分析实际问题四、空间与立体几何1.空间与平面立体图形1.1 空间几何的基本概念1.2 空间图形的展开与投影 1.3 空间图形的相交与相切 1.4 空间图形与视觉艺术1.5 空间几何与生活实际2.尺规作图与解析几何2.1 平行线作图2.2 三等分角作图2.3 特殊角作图2.4 图形的平移、旋转和对称 2.5 解析几何与数学建模3.立体几何与立体图形3.1 空间直线与平面的关系3.2 空间四面体与多面体的性质3.3 空间几何问题的解决方法3.4 空间几何与工程应用3.5 立体几何的拓展与应用以上是数学九年级人教全书的主要知识点,希望对你的学习有所帮助。
人教版九年级数学全册各单元知识点总结
![人教版九年级数学全册各单元知识点总结](https://img.taocdn.com/s3/m/786a3d4117fc700abb68a98271fe910ef12daec5.png)
人教版九年级数学全册各单元知识点总结第一单元:有理数与小数- 数的分类:自然数、整数、有理数、小数、实数- 有理数的表示和比较大小- 有理数的加减法和乘除法- 小数的加减法和乘除法- 小数与分数的转化和比较大小第二单元:代数式与方程式- 代数式的基本概念和运算法则- 代数式化简与展开- 方程式的基本概念和解法- 一元一次方程式的解法和应用- 一元一次方程组的解法和应用第三单元:图形的初步研究- 平面图形的基本概念和性质- 直线、射线、线段、角的基本概念和性质- 同位角、对顶角、内错角、同旁内角的性质和关系- 平行线和平行四边形的性质- 三角形的内角和外角的性质第四单元:一次函数与一元一次不等式- 函数的基本概念和表示方法- 一次函数的性质和图像- 一元一次不等式的解法和应用第五单元:数列的基本概念- 数列的基本概念和表示方法- 等差数列和等差数列的求和公式- 等比数列和等比数列的求和公式- 数列的应用第六单元:几何变换- 平移、旋转和翻转的基本概念和性质- 平移、旋转和翻转的变换规律- 对称和中心对称的性质和判断- 三角形的位似判断和证明第七单元:数据的收集和统计- 调查和数据收集的方法和技巧- 数据的整理、处理和分析- 平均数、中位数和众数的计算和应用- 直方图、折线图和饼图的表示和解读第八单元:概率与统计- 事件和概率的基本概念和性质- 概率计算的方法和技巧- 列举和计数的方法和应用- 两个事件的关系和概率以上是人教版九年级数学全册各单元的知识点总结。
希望对你的学习有所帮助!。
初三数学知识点归纳人教版
![初三数学知识点归纳人教版](https://img.taocdn.com/s3/m/88c014835122aaea998fcc22bcd126fff7055d9e.png)
初三数学知识点归纳人教版一、一元二次方程。
1. 定义。
- 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
例如(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法:将一元二次方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后再用直接开平方法求解。
例如x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。
例如x^2-3x+2 = 0,分解因式得(x - 1)(x -2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
4. 一元二次方程根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),若方程的两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。
二、二次函数。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a≠0)的函数叫做二次函数,其中a、b、c是常数,x是自变量。
九年级数学上下册知识点汇集—人教版
![九年级数学上下册知识点汇集—人教版](https://img.taocdn.com/s3/m/25e21401b9d528ea80c7792a.png)
九年级数学知识点九年级数学(上册)知识点第二十一章 一元二次方程一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式02=++c bx ax (a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成02=++c bx ax (a ≠0)后,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如p a mx =+2)((n ≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. 介绍配方法时,首先通过实际问题引出形如的方程。
这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。
对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(3)一元二次方程02=++c bx ax (a ≠0)的根由方程的系数a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式02=++c bx ax ,当ac b 42-≥0时,•将a 、b 、c 代入式子a ac b b x 242-±-=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
新人教版九年级数学知识点归纳
![新人教版九年级数学知识点归纳](https://img.taocdn.com/s3/m/b7a0e6e177a20029bd64783e0912a21614797f04.png)
新人教版九年级数学知识点归纳第二十一章一元二次方程21.1 一元二次方程一元二次方程是指一个等式中只含有一个未知数,且未知数的最高次数是2次的整式方程。
它有四个特点:(1)只含有一个未知数;(2)未知数次数最高次数是2;(3)是整式方程;(4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。
21.2 降次——解一元二次方程解一元二次方程的基本思想是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1.直接开平方法:用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=± m。
直接开平方法就是平方的逆运算,通常用根号表示其运算结果。
2.配方法:通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
具体步骤如下:1) 转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式);2) 系数化1:将二次项系数化为1;3) 移项:将常数项移到等号右侧;4) 配方:等号左右两边同时加上一次项系数一半的平方;5) 变形:将等号左边的代数式写成完全平方形式;6) 开方:左右同时开平方;7) 求解:整理即可得到原方程的根。
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2-4ac的值,当b^2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b±√(b^2-4ac))/2a,就可得到方程的根。
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
21.3 实际问题与一元二次方程列一元二次方程解应用题是列一元一次方程解应用题的继续和发展。
From the perspective of solving ns。
人教版九年级数学知识点归纳
![人教版九年级数学知识点归纳](https://img.taocdn.com/s3/m/94ac8806fe00bed5b9f3f90f76c66137ee064fc5.png)
人教版九年级数学知识点归纳情况是在不断的变化,要使自己的思想适应新的情况,就得学习。
下面给大家带来一些关于人教版九年级数学知识点归纳,希望对大家有所帮助。
人教版九年级数学知识点1二次函数一、二次函数1、一般地,如果是常数,,那么叫做的二次函数。
是自变量。
其中,a是二次项系数;b一次项系数;c是常数项。
2、二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤。
3、二次函数的图象:是常数,,的图像是抛物线。
抛物线与它的对称轴的交点叫抛物线的顶点。
顶点是抛物线的最高点或最低点。
4、求抛物线顶点(最大或最小值)和对称轴的方法(1)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。
(2)公式:,∴顶点是,对称轴是直线。
5、二次函数的图象的特点:(1)抛物线的顶点是坐标原点,对称轴是轴;(2)抛物线的顶点是(h,k),对称轴是x=h;(3)抛物线的顶点是(),对称轴是;①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点。
|a|越大,开口越小。
|a|越小,开口越大。
(4)几种特殊的二次函数的图像特征二、二次函数与二元一次方程的关系人教版九年级数学知识点2相似一、图形的相似1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。
2.判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比:相似多边形的对应边的比叫相似比。
相似比为1时,相似的两个图形全等。
二、相似三角形1.性质:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
2.判定.①如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
②如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
③如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
人教版九年级数学上册知识点整理(完整版)
![人教版九年级数学上册知识点整理(完整版)](https://img.taocdn.com/s3/m/b908a461814d2b160b4e767f5acfa1c7aa00820e.png)
人教版九年级数学上册知识点整理(完整版)人教版九年级数学上册知识点整理一、有理数有理数是整数和分数的集合。
有理数的数轴上,0的左侧是负有理数,右侧是正有理数。
加、减、乘、除有理数的运算规则。
二、立方根如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。
三、代数式由数、变量及运算符号组成的式子叫做代数式。
其中数叫做常数项,变量叫做一次项。
四、图形的基本要素和运动绿色的箭头表示平移,红色的箭头表示旋转,蓝色的箭头表示对称。
五、全等三角形若两个三角形的三边和三角形的三个角分别相等,则称这两个三角形全等。
六、相似三角形若两个三角形的三个角分别相等,则称这两个三角形相似。
七、平移与旋转1、平移:用平移将一个点沿一个方向移动到另一个位置,移动的距离及方向相同,不改变点的属性。
2、旋转:以一个点为中心旋转某个图形的每个点,旋转的角度相同,不改变图形的形状和大小。
八、直线和角两条不共线的直线分别与一条直线相交所形成的两个相邻角互为补角。
九、相反数两个数互为相反数,当且仅当它们的和为0。
十、分数的意义和性质1、通分:将几个分数化成分母相同的分数。
2、分数的约分、化分;十一、用比例表示实际问题利用比例,确定两个量之间的等比关系,以解决实际问题。
十二、扇形和弧1、扇形是由两条半径及其所夹的圆周构成。
2、弧是圆上任意两点之间的弧。
3、圆心角,切线和弦的关系。
十三、比例和类比1、比例含义:比例是两个量之间的等比关系。
2、异比例的解决方法:设比例系数为k,则两个量之间的关系为y=kx或xy=k。
十四、平行四边形和直角梯形1、平行四边形的性质:对角线互相平分;一个角的补角等于它的邻角。
2、直角梯形:有两条平行的底和两个底的夹角为90°的四边形。
十五、直角三角形1、勾股定理:直角三角形斜边的平方等于两直角边的平方之和。
2、定比分点定理:在一条线段上,任意三点A、B、C,如果AC:CB=k:1,则称B为AC上的k:1分点。
初三数学知识点归纳人教版
![初三数学知识点归纳人教版](https://img.taocdn.com/s3/m/0e84ee05fe00bed5b9f3f90f76c66137ee064f2f.png)
初三数学知识点归纳人教版初三数学学问点总结一、直线、相交线、平行线1.线段、射线、直线三者的区分与联系从图形、表示法、界限、端点个数、基本性质等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用线段的基本性质论证三角形两边之和大于第三边)4.两点间的距离(三个距离:点点;点线;线线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示〔方法〕7.角的平分线及其表示8.垂线及基本性质(利用它证明直角三角形中斜边大于直角边)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区分与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中,3.三角形的主要线段商量:①定义②线的交点三角形的心③性质① 高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特别三角形:直角三角形、等腰三角形、等边三角形4.特别三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特别三角形全等的判定:①一般方法②专用方法6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要帮助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加帮助平行线8.证明方法⑴直接证法:综合法、分析法⑵间接证法反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、四边形分类表:1.一般性质(角)⑴内角和:360⑵顺次连结各边中点得平行四边形。
新人教版数学九年级知识点
![新人教版数学九年级知识点](https://img.taocdn.com/s3/m/4633c33de97101f69e3143323968011ca300f7e0.png)
新人教版数学九年级知识点一、代数与函数1. 方程与不等式1.1 一元一次方程及应用1.2 一次不等式及应用1.3 二元一次方程组及应用2. 平方根与立方根2.1 平方根的概念及性质2.2 立方根的概念及性质3. 整式与分式运算3.1 整式的加减乘除3.2 分式的加减乘除4. 函数的概念与性质4.1 函数的定义与表示4.2 函数的增减性与单调性二、几何与图形1. 三角形1.1 三角形的分类及性质1.2 三角形的面积计算2. 圆与圆的性质2.1 圆的定义与性质2.2 弧长与扇形面积计算3. 空间几何体3.1 空间几何体的分类及性质3.2 空间几何体的表面积与体积计算4. 直角三角形与勾股定理4.1 直角三角形的性质及应用4.2 勾股定理的概念及应用三、数据与统计1. 统计图与统计量1.1 条形图、折线图和饼图的绘制与分析 1.2 中心位置和离散程度的统计量计算2. 概率2.1 随机事件与样本空间2.2 概率的概念与计算3. 抽样调查与统计推断3.1 问卷设计与样本选择3.2 通过样本推断总体特征四、数学实际问题解决能力1. 建立数学模型1.1 通过实际问题建立数学模型1.2 利用数学模型解决实际问题2. 运用数学方法解决问题2.1 使用代数方法解决实际问题2.2 使用几何方法解决实际问题3. 数学证明与推理3.1 利用数学理论进行证明3.2 运用逻辑推理解决问题以上是新人教版数学九年级的知识点概览,通过学习这些知识,同学们能够夯实数学基础,提高自己的数学能力。
希望同学们能够认真学习,勤于练习,善于思考,养成良好的数学学习习惯,并能将数学知识运用到实际生活中解决问题。
祝同学们在数学学习中取得优秀的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0)21.2 降次——解一元二次方程1.一元二次方程的解法(1)直接开平方法:根据平方根的意义,用此法可解出形如a x 2=(a ≥0),b )a x (2=-(b ≥0)类的一元二次方程.a x 2=,则a x ±=;b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2=或b )a x (2=-的形式,也可以用此法解.(2)因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab =0的条件是a =0或b =0,使方程x(x -3)=0的条件是x =0或x -3=0.x 的两个值都可以使方程成立,所以方程x(x -3)=0有两个根,而不是一个根.(3)配方法:任何一个形如bx x 2+的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解的方程.如解07x 6x 2=++时,可把方程化为7x 6x 2-=+,22226726x 6x ⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛++,即2)3x (2=+,从而得解. 注意:(1)“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1. (2)解一元二次方程时,一般不用此法,掌握这种配方法是重点.(3)公式法:一元二次方程0c bx ax 2=++(a ≠0)的根是由方程的系数a 、b 、c 确定的.在0ac 4b 2≥-的前提下,a 2ac 4b b x 2-±-=.用公式法解一元二次方程的一般步骤:①先把方程化为一般形式,即0c bx ax 2=++(a ≠0)的形式;②正确地确定方程各项的系数a 、b 、c 的值(要注意它们的符号);③计算0ac 4b 2<-时,方程没有实数根,就不必解了(因负数开平方无意义);④将a 、b 、c 的值代入求根公式,求出方程的两个根.说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法.2.一元二次方程根的判别式一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.而根的情况,由ac 4b 2-的值来确定.因此ac 4b 2-=∆叫做一元二次方程0c bx ax 2=++的根的判别式.△>0⇔方程有两个不相等的实数根. △=0⇔方程有两个相等的实数根. △<0⇔方程没有实数根. 判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题. 3.韦达定理及其应用定理:如果方程0c bx ax 2=++(a ≠0)的两个根是21x x ,,那么a cx x a b x x 2121=⋅-=+,. 当a =1时,c x x b x x 2121=⋅-=+,. 应用:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程; (4)已知两数和与积求两数. 4.一元二次方程的应用 (1)面积问题; (2)数字问题; (3)平均增长率问题. 步骤:①分析题意,找到题中未知数和题给条件的相等关系(包括隐含的); ②设未知数,并用所设的未知数的代数式表示其余的未知数; ③找出相等关系,并用它列出方程;④解方程求出题中未知数的值;⑤检验所求的答数是否符合题意,并做答.这里关键性的步骤是②和③.注意:列一元二次方程应用题是一元一次方程解应用题的拓展,解题的方法是相同的,但因一元二次方程有两解,要检验方程的解是否符合题意及实际问题的意义.第二十二章二次函数22.1二次函数及其图像二次函数概念一般地,把形如y=ax²+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。
x为自变量,y为因变量。
等号右边自变量的最高次数是2。
二次函数图像是轴对称图形。
对称轴为直线,顶点坐标,交点式为(仅限于与x轴有交点和的抛物线),与x轴的交点坐标是和。
注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。
“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。
在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。
从函数的定义也可看出二者的差别,如同函数不等于函数的关系。
二次函数公式大全二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax²;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)²;+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b²;)/4a x1,x2=(-b±√b²;-4ac)/2aIII.二次函数的图象在平面直角坐标系中作出二次函数y=x??的图象,可以看出,二次函数的图象是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P [ -b/2a ,(4ac-b²;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b²-4ac>0时,抛物线与x轴有2个交点。
Δ= b²-4ac=0时,抛物线与x轴有1个交点。
Δ= b²-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax²;+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax²;+bx+c=0此时,函数图象与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
例1,二次函数配方为的形式,则()用函数观点看一元二次方程1. 如果抛物线y ax bx c =++2与x 轴有公共点,公共点的横坐标是x 0,那么当x x =0时,函数的值是0,因此x x =0就是方程ax bx c 20++=的一个根。
2. 二次函数的图象与x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。
这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
实际问题与二次函数在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。
第二十三章 旋转23.1 图形的旋转1. 图形的旋转(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(图形的旋转本节我们重点了解旋转、平移性质,除外还有一个重点是点的对称变换。
二、知识要点1、旋转:将一个图形绕着某点O 转动一个角度的变换叫做旋转。
其中,O 叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质① 旋转后的图形与原图形全等 ② 对应线段与O 形成的角叫做旋转角 ③ 各旋转角都相等3、平移:将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。
其中,该直线的方向叫做平移方向,该距离叫做平移距离。
4、平移性质① 平移后的图形与原图形全等② 两个图形的对应边连线的线段平行相等(等于平行距离)③各组对应线段平行且相等5、中心对称与中心对称图形①中心对称:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或中心对称。
其中,点O叫做对称中心、两个图形的对应点叫做关于中心的对称点。
②中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。
其中,这个点叫做该图形的对称中心。
6、轴对称与轴对称图形(1)、轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对称或它们成轴对称。
其中,这条轴叫做对称轴。
注:轴对称的性质:①两个图形全等;②对应点连线被对称轴垂直平分(2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称图形。
7、点的对称变换(1)、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)(2)、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P'(x,-y)(3)、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P'(-x,y)(4)、关于直线y=x对称两个点关于直线y=x对称时,横坐标与纵坐标与之前对换,即:P(x,y)关于直线y=x的对称点为P'(y,x)(5)、两个点关于直线y=-x对称时,横坐标与纵坐标与之前完全相反,即:P(x,y)关于直线y=x的对称点为P'(-y,-x)注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。