随机事件及其概率互斥事件
概率论知识点

第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间:概率论术语。
我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。
样本空间的元素,即E的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。
互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。
互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。
§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。
第五讲:概率

(Ⅰ)若n=3,求取到的4个球全是红球的概率;
(Ⅱ)若取到的4个球中至少有2个红球的概率为 ,求n。
7、已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.
(2)如果从中取出二件,求先后至少取一次次品的概率;
(3)如果从中取出一件然后放回,再任取一件然后放回,再任取一件,求连续三次取出的都是正品概率;
(4)如果从中一次任取三件,求取出的三件都是正品概率;
(5)如果从中连续取三次不放回,求第三次恰好取出的是正品概率;
(6)若对产品进行一一测试,直至区分出所有的次品为止,求恰好在第五次测试时次品全部发现概率。
(1)求笼内恰好剩下1只果蝇的概率;
(2)求笼内至少剩下5只果蝇的概率。
例3、袋中有5个白球,3个黑球,从中任意摸出4个,求
(1)摸出2个黑球或3个黑球的概率;
(2)至少摸出1个黑球的概率;
(3)至多摸出1个黑球的概率。
牛刀小试
1、从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( )
(2)恰有4个房间各有一人的概率为______________;
(3)指定的某个房间各有二人的概率为_____________;
(4)第一个房间有1人,第三个房间有3人的概率为______________。
例2、现有一批产品共有10件,其中8件为正品,2件为次品
(1)如果从中取出二件,求先取出的是正品,后取出的是次品的概率;
A B. C. D.
10-4随机事件的概率

(了解随机事件发生的不确定性和频率的稳定性,了解概率的意义, 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义, 了解频率与概率的区别/了解互斥事件、 了解频率与概率的区别 了解互斥事件、对立事件的意义及其概率 了解互斥事件 运算公式. 运算公式.)
1.必然事件:在条件S下,一定会发生的事件,叫相对于条件 的必然事件. .必然事件: 条件 下 一定会发生的事件,叫相对于条件S的必然事件 的必然事件. 2.不可能事件:在条件S下,一定不会发生的事件, .不可能事件: 条件 下 一定不会发生的事件, 叫相对于条件S的不可能事件. 叫相对于条件 的不可能事件. 的不可能事件 3.确定事件:必然事件和不可能事件统称为相对于条件 的确定事件; 随机事件: .确定事件: 然事件和不可能事件统称为相对于条件S的确定事件 的确定事件; 随机事件: 随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件. 随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件.
解析: 解析:易知①③④正确,②错误. ①③④正确, 错误. 正确 答案: 答案:C
2.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么 . 是互斥事件; 是对立事件,那么( A.甲是乙的充分条件但不是必要条件 . B.甲是乙的必要条件但不是充分条件 . C.甲是乙的充要条件 . D.甲既不是乙的充分条件,也不是乙的必要条件 .甲既不是乙的充分条件, 答案: 答案:B
0.900,0.920,0.970,0.940,0.954,0.951. , , (2)由(1)知,抽取的球数 不同,计算得到的频率值不同,但随着抽取球数的增多, 由 知 抽取的球数n不同 计算得到的频率值不同,但随着抽取球数的增多, 不同, 却都在常数0.950的附近摆动. 的附近摆动. 却都在常数 的附近摆动 所以质量检查为优等品的概率为0.950. 所以质量检查为优等品的概率为
概率与统计1

【解析】三人均达标为0.8×0.6×0.5=0.24, 解析】三人均达标为0.8×0.6× 0.8 三人中至少有一人达标为1 三人中至少有一人达标为1-0.04=0.96
5.(湖北卷14)明天上午李明要参加奥运志愿者活动, 5.(湖北卷14)明天上午李明要参加奥运志愿者活动, 14 为了准时起床,他用甲、乙两个闹钟叫醒自己, 为了准时起床,他用甲、乙两个闹钟叫醒自己,假设 甲闹钟准时响的概率是0.80, 甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是 0.80 0.90, 0.90,则两个闹钟至少有一准时响的概率是 。.
题型二 相互独立事件同时发生的概率问题 2009北京卷文)(本小题共13分 北京卷文)(本小题共13 例2 (2009北京卷文)(本小题共13分) 某学生在上学路上要经过4个路口, 某学生在上学路上要经过4个路口,假设在各路口 是否遇到红灯是相互独立的, 是否遇到红灯是相互独立的,遇到红灯的概率都
1 1 1 4 P ( A) = 1 − × 1 − × = 3 3 3 27
(Ⅱ)设这名学生在上学路上因遇到红灯停留的总时间至多 是4min为事件B,这名学生在上学路上遇到 4min为事件B 为事件 的事件
Bk ( k = 0,1, 2 )
2 16 P ( B0 ) = = 3 81
1 的概率都是 2 若某人获得两个“支持” 则给予10万元的创业资助; 10万元的创业资助 .若某人获得两个“支持”,则给予10万元的创业资助;若只获得
一个“支持”,则给予5万元的资助;若未获得“支持”,则不予 一个“支持” 则给予5万元的资助;若未获得“支持” 资助. 资助.求: 该公司的资助总额为零的概率; (1) 该公司的资助总额为零的概率; (2)该公司的资助总额超过15万元的概率. 该公司的资助总额超过15万元的概率. 15万元的概率
概率论第一章

下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。
随机事件的互斥性与全概率公式

随机事件的互斥性与全概率公式互斥事件和全概率公式在概率论中扮演着重要的角色。
理解这些概念对于解决随机事件的相关问题至关重要。
本文将详细介绍互斥事件和全概率公式,探讨它们在概率论中的应用。
首先,我们来理解互斥事件。
互斥事件是指两个或多个事件之间不存在共同结果的情况。
简而言之,如果一个事件发生了,那么其他事件就不会同时发生。
例如,抛掷一枚硬币,事件A表示出现正面,事件B表示出现反面。
这两个事件是互斥的,因为只能有一个事件发生。
互斥事件之间的概率计算很简单。
当两个事件是互斥的时候,它们的概率之和等于所有事件的概率之和。
以之前的例子来说,事件A的概率为0.5,事件B的概率也为0.5,因此事件A和事件B的概率之和为1。
互斥事件的互斥性使得概率计算更加直观和简化。
接下来,我们将介绍全概率公式。
全概率公式是一种用于计算一个事件在多个互斥事件中发生的概率的方法。
假设有事件A,且事件A可以被划分为一组互斥事件B1,B2,...,Bn,那么全概率公式可以表示为:P(A) = P(B1) * P(A|B1) + P(B2) * P(A|B2) + ... + P(Bn) * P(A|Bn)其中,P(B1),P(B2),...,P(Bn)表示事件B1,B2等互斥事件发生的概率,P(A|B1),P(A|B2),...,P(A|Bn)表示在事件B1,B2等发生的条件下事件A发生的概率。
全概率公式的应用非常广泛。
它可以用于解决诸如信号检测、投资决策、医学诊断等问题。
例如,在医学诊断中,一个患者可能有多种不同的疾病可能性,而每种疾病的发生概率和特定检查结果的条件概率都是已知的。
通过运用全概率公式,我们可以计算出患者患有某种特定疾病的概率。
除了互斥事件和全概率公式,我们还可以通过条件概率和贝叶斯公式来进一步扩展概率论的应用。
条件概率是指某个事件在已知其他相关事件的情况下发生的概率。
贝叶斯公式是利用条件概率来计算逆概率的工具。
综上所述,互斥事件是指两个或多个事件之间不存在共同结果的情况,而全概率公式是一种用于计算一个事件在多个互斥事件中发生的概率的方法。
随机事件的互斥事件和独立事件

随机事件的互斥事件和独立事件1. 互斥事件1.1 定义互斥事件(Mutually Exclusive Events)指的是两个事件不可能同时发生。
用数学符号表示为:A ∩ B = ∅,即事件A和事件B的交集为空集。
1.2 性质(1)完备性:对于任意事件A,有P(A) = P(A ∩ B’) + P(A ∩ B),其中B’为事件B的补集。
(2)互斥事件的概率公式:若A1, A2, …, An为互斥事件,则P(A1 ∪ A2 ∪ … ∪ An) = P(A1) + P(A2) + … + P(An)。
1.3 应用互斥事件在实际生活中有很多应用,如在抽奖活动中,中奖和不中奖这两个事件就是互斥的。
在统计分析中,也可以利用互斥事件来计算概率。
2. 独立事件2.1 定义独立事件(Independent Events)指的是两个事件的发生与否互不影响。
用数学符号表示为:P(A ∩ B) = P(A)P(B)。
2.2 性质(1)组合性:对于任意事件A和B,有P(A ∪ B) = P(A) + P(B) - P(A ∩ B)。
(2)独立事件的乘法公式:若A1, A2, …, An和B1, B2, …, Bm为独立事件,则P(A1 ∩ B1 ∩ … ∩ An ∩ Bm) = P(A1)P(B1) … P(An)P(Bm)。
2.3 应用独立事件在实际生活中也有很多应用,如在投掷两个骰子的情况下,第一个骰子出现1点,第二个骰子出现2点的概率就是独立事件。
在统计分析中,独立事件可以用来计算联合概率。
3. 互斥事件与独立事件的区别与联系3.1 区别(1)定义不同:互斥事件指的是两个事件不可能同时发生,而独立事件指的是两个事件的发生与否互不影响。
(2)概率公式不同:互斥事件的概率公式为P(A ∩ B’) + P(A ∩ B),独立事件的概率公式为P(A)P(B)。
3.2 联系(1)互补事件:互斥事件和独立事件都可以看作是互补事件。
概率论随机事件公式

概率论随机事件公式
概率论是研究随机事件的一门学科,它主要研究其中一事件发生的可能性。
在概率论中,我们使用一些公式来计算随机事件的概率。
接下来,我将详细介绍一些常见的概率公式。
1.事件的概率公式:对于一个随机事件A,它的概率(记为P(A))可以通过以下公式计算:
P(A)=N(A)/N(S)
其中,N(A)表示事件A发生的次数,N(S)表示样本空间中所有可能事件发生的次数。
2.互斥事件的概率公式:如果事件A和事件B是互斥的(即它们不能同时发生),那么它们的概率可以通过以下公式计算:
P(A或B)=P(A)+P(B)
这是因为互斥事件的概率是可以累加的。
3.非互斥事件的概率公式:如果事件A和事件B不是互斥的,那么它们的概率可以通过以下公式计算:
P(A或B)=P(A)+P(B)-P(A和B)
这个公式被称为加法法则,并且可以使用类似的方法扩展到更多的事件上。
4.条件概率公式:条件概率是指在事件B已经发生的条件下,事件A 发生的概率。
它可以通过以下公式计算:
P(A,B)=P(A和B)/P(B)
其中,P(A和B)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。
5.乘法法则:乘法法则是计算多个事件同时发生的概率的方法。
对于两个事件A和B,它们同时发生的概率可以通过以下公式计算:P(A和B)=P(A)*P(B,A)
其中,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下,事件B发生的概率。
以上是概率论中一些常见的随机事件公式。
通过使用这些公式,我们可以计算出事件发生的概率,从而更好地理解和应用概率论的知识。
2-1随机事件及其概率、互斥事件

随机事件及其概率、互斥事件导学目标: 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.自主梳理1.事件的分类(1)在一定的条件下,________________的事件,叫做必然事件. (2)在一定条件下,肯定不会发生的事件叫做________________.(3)在一定条件下,可能发生也可能不发生的事件,叫做____________.事件一般用大写字母A ,B ,C…表示. 2.频率与概率(1)在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A)=n An为事件A 出现的频率.(2)在相同条件下,随着实验次数的增加,事件A 发生的频率会在某个________附近摆动.并趋于稳定,这个常数称为随机事件A 的________.3.互斥事件、对立事件在同一次试验中,________________的两个事件称为互斥事件,若A 、B 为互斥事件,则A +B 表示事件A 、B 至少有一个发生.两个互斥事件________________,则称这两个事件为对立事件,事件A 的对立事件记为A .4.概率的几个基本性质(1)概率的取值范围:____________. (2)必然事件的概率:P(E)=____. (3)不可能事件的概率:P(F)=____. (4)概率的加法公式如果事件A 与事件B 互斥,则P(A∪B)=__________________. (5)对立事件的概率若事件A 与事件B 互为对立事件,则A∪B 为必然事件. P(A∪B)=____,P(A)=________. 自我检测 1.下列事件:①当x 是实数时,x -|x|=2;②某班一次数学测试,及格率低于75%;③从分别标有0,1,2,3,…,9这十个数字的纸团中任取一个,取出的纸团是偶数;④体育彩票某期的特等奖号码.其中是随机事件的是________(填序号).2.一人在打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是________(填序号). ①至多有一次中靶;②两次都中靶;③两次都不中靶;④只有一次中靶.3.从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是________(将正确说法的序号填在横线上).①3个都是正品;②至少有1个是次品; ③3个都是次品;④至少有1个是正品.4.袋中装有白球3个,黑球4个,从中任取3个, ①恰有1个白球和全是白球; ②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球; ④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为________(填序号).5.从一批羽毛球中任取一个,质量小于4.8克的概率是0.3,质量不小于4.85克的概率是0.32,那么质量在[4.8,4.85)克范围内的概率是________.探究点一 事件的判断例1 (1)一个口袋内装有5个白球和3个黑球,从中任意取出一只球.①“取出的球是红球”是什么事件,它的概率是多少?②“取出的球是黑球”是什么事件,它的概率是多少?③“取出的球是白球或是黑球”是什么事件,它的概率是多少?(2)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是________(填序号).①至少有1个白球,都是白球;②至少有1个白球,至少有1个红球;③恰有1个白球,恰有2个白球;④至少有1个白球,都是红球.变式迁移1 某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.探究点二随机事件的频率与概率例2 某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了“频数分布直方图”如图,请回答:(1)该中学参加本次高中数学竞赛的学生有多少人?(2)如果90分以上(含90分)获奖,那么获奖的概率大约是多少?(结果保留分数)变式迁移2(1)补全上表.(2)这位运动员投篮一次,进球的概率约是多少?探究点三 互斥事件与对立事件的概率例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求: (1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.变式迁移3 一个箱子内有9张票,其号数分别为1,2,…,9,从中任取2张,其号数至少有一个为奇数的概率是多少?1.随机事件在相同条件下进行大量试验时,呈现规律性,且频率mn总是接近于常数P(A),称P(A)为事件A 的概率.2.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A 的对立事件A 的概率,然后利用P(A)=1-P(A )可得解.课后练习(满分:90分)一、填空题(每小题6分,共48分) 1.下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn就是事件A 发生的概率;③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值; ④当试验次数很大时,可以将事件发生的频率作为概率的近似值. 其中正确的个数为________.2.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是________(填序号).①恰好有1件次品和恰好有两件次品; ②至少有1件次品和全是次品;③至少有1件正品和至少有1件次品; ④至少1件次品和全是正品.3.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是________(填序号). ①至多有1次中靶; ②2次都中靶; ③2次都不中靶; ④只有1次中靶.4.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是________(填序号).5.考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率为________.6.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.7.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.8.随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为________(默认每个月的天数相同,结果精确到0.001).二、解答题(共42分)9.(14分)(2010·南京一模)某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率; (2)该队员最多属于两支球队的概率.10.(14分)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?11.(14分)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.随机事件及其概率、互斥事件答案自主梳理1.(1)必然会发生 不可能事件 (3)随机事件2.(2)常数 概率 3.不能同时发生 必有一个发生 4.(1)0≤P(A)≤1 (2)1 (3)0 (4)P(A)+P(B) (5)1 1-P(B) 自我检测1.②③④ 2.③ 3.④ 4.② 5.0.38 课堂活动区例1 解题导引 解决(1)这类问题的方法主要是弄清每次试验的意义及每个基本事件的含义,正确把握各个事件的相互关系,判断一个事件是必然事件、不可能事件、随机事件,主要是依据在一定条件下,所要求的结果是否一定出现、不可能出现、可能出现也可能不出现,它们的概率(范围)分别为1,0,(0,1).要准确解答(2)这类问题,必须搞清对立事件与互斥事件的联系与区别,二者的联系与区别主要体现在以下三个方面:①两事件对立,必定互斥,但互斥未必对立;②互斥的概念适用于多个事件,但对立概念只适用于两个事件;③两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.解 (1)①由于口袋内只装有黑、白两种颜色的球,故“取出的球是红球”是不可能事件,其概率是0.②由已知,从口袋内取出一个球,可能是白球也可能是黑球,故“取出的球是黑球”是随机事件,它的概率是38. ③由于口袋内装的是黑、白两种颜色的球,故取出一个球不是黑球,就是白球,因此,“取出的球是白球或是黑球”是必然事件,它的概率是1.(2)①②中的两个事件不互斥,当然也不对立,③的两个事件互斥而不对立,④的两个事件不但互斥而且对立,所以本题正确答案应为③.变式迁移1 解 (1)由于事件C“至多订一种报纸”中有可能“只订甲报纸”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故B 与E 是互斥事件.由于事件B 发生可导致事件E 一定不发生,且事件E 发生也会导致事件B 一定不发生,故B 与E 还是对立事件.(3)事件B“至少订一种报纸”中有可能“只订乙报纸”,即有可能“不订甲报纸”,即事件B 发生,事件D 也可能发生,故B 与D 不是互斥事件.(4)事件B“至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C“至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件.(5)由(4)的分析,事件E“一种报纸也不订”是事件C 的一种可能,故事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.例2 解题导引 本题利用直方图求出获奖的频率,作为概率的近似值.通过大量的重复试验,用这个事件发生的频率近似地作为它的概率是求一个事件的概率的基本方法.注意频率是随机的、变化的,而概率是一个常数,频率在其附近摆动.解 (1)由频数分布直方图可知,参加本次数学竞赛的学生有4+6+8+7+5+2=32(人). (2)90分以上的人数为7+5+2=14(人),∴获奖的频率为1432=716,即本次竞赛获奖的概率大约是716.变式迁移2 解 (1)频率是在试验中事件发生的次数与试验总次数的比值,由此得,进球频率依次是68,810,1215,1720,2530,3240,3850,即0.75,0.8,0.8,0.85,0.83,0.8,0.76. (2)因为频率是概率的近似值,所以这位运动员投篮一次,进球的概率约是0.8.例3 解题导引 用互斥事件和对立事件的概率公式解题,关键是分清所求事件是由哪些事件组成的,然后结合互斥事件与对立事件的定义分析出是否是互斥事件与对立事件,再决定用哪一个公式.利用互斥事件求概率体现了分类讨论的思想,利用对立事件求概率体现了“正难则反”的策略.解 方法一 (利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P(A 1)=512,P(A 2)=412,P(A 3)=212,P(A 4)=112,根据题意知,事件A 1、A 2、A 3、A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球为红球或黑球的概率为 P(A 1∪A 2)=P(A 1)+P(A 2) =512+412=34. (2)取出1球为红球或黑球或白球的概率为 P(A 1∪A 2∪A 3)=P(A 1)+P(A 2)+P(A 3) =512+412+212=1112. 方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P(A 1∪A 2)=1-P(A 3∪A 4)=1-P(A 3)-P(A 4)=1-212-112=34.(2)因为A 1∪A 2∪A 3的对立事件为A 4,所以P(A 1∪A 2∪A 3)=1-P(A 4)=1-112=1112.变式迁移3 解 方法一 从9张任取2张共有36种,记为(1,2),(1,3),…,(8,9),记事件A 为任取2张,号数至少有一个为奇数,则A ={(1,2),…,(1,9),(2,3),(2,5),(2,7),(2,9),(3,4),…,(3,9),…,(8,9)}.共有8+4+6+3+4+2+2+1=30.∴P(A)=3036=56.方法二 事件A 的对立事件为任取2张,号数都为偶数,∴A ={(2,4),(2,6),(2,8),(4,6),(4,8),(6,8)}共6种.∴P(A)=1-P(A )=1-636=56.课后练习区 1.3解析 由概率的相关定义知①③④正确. 2.①④ 3.③解析 由互斥事件定义可知,如果两事件互斥,两个事件不能同时发生.“至少有一次中靶”包括“恰有一次中靶”或“两次都中靶”.故①、②、④都能同时发生.4.③ 5.1解析 由正方体的对称性知其六个面的中心构成同底的两个四棱锥,且四棱锥的各个侧面是全等的三角形,底面四个顶点构成一个正方形,从这6个点中任选3个点构成的三角形可分为以下两类:第一类是选中相对面中心两点及被这两个平面所夹的四个面中的任意一个面的中心,构成的是等腰直角三角形,此时剩下的三个点也连成一个与其全等的三角形.第二类是所选三个点均为多面体的侧面三角形的三个点(即所选3个点所在的平面彼此相邻)此时构成的是正三角形,同时剩下的三个点也构成与其全等的三角形,故所求概率为1.6.0.25 7.35解析 从5个球中任取2个球有C 25=10(种)取法,2个球颜色不同的取法有C 13C 12=6(种),故所求概率为610=35.8.0.985解析 9位同学出生月份的所有可能种数为129,9人出生月份不同的所有可能种数为A 912,故P =1-A 912129≈1-0.015 47≈0.985.9.解 (1)设“该队员只属于一支球队”为事件A ,则事件A 的概率P(A)=1220=35.(7分)(2)设“该队员最多属于两支球队”为事件B ,则事件B 的概率为P(B)=1-220=910.(14分)10.解 设事件A 、B 、C 、D 分别表示“任取一球,得到红球”,“任取一球,得到黑球”,“任取一球,得到黄球”,“任取一球,得到绿球”,则由已知得P(A)=13,P(B∪C)=P(B)+P(C)=512,P(C∪D)=P(C)+P(D)=512,P(B ∪C∪D)=1-P(A)=P(B)+P(C)+P(D)=1-13=23.(10分)解得P(B)=14,P(C)=16,P(D)=14.故得到黑球,得到黄球,得到绿球的概率分别为 14,16,14.(14分) 11.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}共18个基本事件组成.(4分)由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}, 事件M 由6个基本事件组成,因而P(M)=618=13.(7分)(2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成,(9分)所以P(N )=318=16,由对立事件的概率公式得:P(N)=1-P(N )=1-16=56.(14分)。
2025高考数学一轮复习课件 随机事件的概率

4. (2024·邢台市第二中学期末)如图所示,A,B,C 表示 3
个开关,若在某段时间内,它们正常工作的概率分别为 0.9,
0.8,0.8,则该系统的可靠性(3 个开关只要一个开关正常工作
即可靠)为( )
A.0.504
B.0.994
C.√0.996
D.0.964
解析 由题意知,所求概率为 1-(1-0.9)(1-0.8)(1-0.8)=1-0.004= 0.996.故选 C.
C√.“恰有 1 个白球”和“恰有 2 个白球”
D.“至多有 1 个白球”和“都是红球”
【解析】 对于 A,“至少有 1 个白球”和“都是红球”是对立事件,不 符合题意;对于 B,“至少有 2 个白球”表示取出的 2 个球都是白色的,而“至 多有 1 个红球”表示取出的球 1 个是红球,1 个是白球,或者 2 个都是白球, 二者不是互斥事件,不符合题意;对于 C,“恰有 1 个白球”表示取出的 2 个 球 1 个是红球,1 个是白球,与“恰有 2 个白球”是互斥而不对立的两个事件, 符合题意;对于 D,“至多有 1 个白球”表示取出的 2 个球 1 个是红球,1 个 是白球,或者 2 个都是红球,与“都是红球”不是互斥事件,不符合题意.故 选 C.
并事件 (和事件)
若某事件发生当且仅当事件 A 发生或事件 B 发
生,称此事件为事件 A 与事件 B 的 __并__事__件__(或__和__事__件__)___
符号表示
___B_⊇__A___
(或 A⊆B)
_A__=__B_
A∪B (或 A+B)
交事件 (积事件) 互斥事件
对立事件
若某事件发生当且仅当 _事__件__A_发__生__ 且___事__件__B_发__生_____,则称此事件为
概率2.3 互斥事件

2.3互斥事件[学习目标] 1.理解互斥事件、对立事件的定义,会判断所给事件的类型.2.掌握互斥事件的概率加法公式并会应用.3.正确理解互斥、对立事件的关系,并能正确区分判断.知识点一互斥事件与对立事件发生是指思考(1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出现的点数为奇数},事件A与事件B应有怎样的关系?(2)判断两个事件是对立事件的条件是什么?知识点二概率的几个基本性质1.概率的取值范围(1)由于事件的频数总是小于或等于试验的次数,所以频率在0~1之间,从而任何事件的概率在0~1之间,即.(2) 的概率为1.(3) 的概率为0.2.互斥事件的概率加法公式当事件A与事件B互斥时,A+B发生的频数等于A发生的频数与B发生的频数之和,从而A+B的频率f n(A+B)=f n(A)+f n(B),则概率的加法公式为P(A+B)=.3.对立事件的概率公式若事件A与事件B互为对立事件,则A+B为必然事件,P(A+B)=1.再由互斥事件的概率加法公式P(A+B)=P(A)+P(B),得P(A)=.题型一互斥事件、对立事件的概念例1从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各10张)中,任取一张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.判断上面给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.反思与感悟 1.要判断两个事件是不是互斥事件,只需要分别找出各个事件包含的所有结果,看它们之间能不能同时发生.在互斥的前提下,看两个事件的和事件是否为必然事件,从而可判断是否为对立事件.2.考虑事件的结果间是否有交事件.可考虑利用Venn图分析,对于较难判断的关系,也可考虑列出全部结果,再进行分析.跟踪训练1从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球题型二和事件的概念例2在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;(2)利用和事件的定义,判断上述哪些事件是和事件.反思与感悟事件间运算方法:(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.跟踪训练2盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有一个红球,两个白球},事件B={3个球中有两个红球,一个白球},事件C={3个球中至少有一个红球},事件D={3个球中既有红球又有白球}.则:(1)事件D与事件A、B是什么样的运算关系?(2)事件C与事件A的交事件是什么事件?题型三对立事件、互斥事件的概率例3同时抛掷两枚骰子,求至少有一个5点或6点的概率.反思与感悟 1.互斥事件的概率的加法公式P(A+B)=P(A)+P(B).2.对于一个较复杂的事件,一般将其分解成几个简单的事件,当这些事件彼此互斥时,原事件的概率就是这些简单事件的概率的和.3.当求解的问题中有“至多”、“至少”、“最少”等关键词语时,常常考虑其反面,通过求其反面,然后转化为所求问题.跟踪训练3某射手在一次射击中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手一次射击中射中的环数低于7环的概率.求复杂事件的概率例4 玻璃盒里装有红球、黑球、白球、绿球共12个,从中任取1球,设事件A 为“取出1个红球”,事件B 为“取出1个黑球”,事件C 为“取出1个白球”,事件D 为“取出1个绿球”.已知P (A )=512,P (B )=13,P (C )=16,P (D )=112.(1)求“取出1个球为红球或黑球”的概率; (2)求“取出1个球为红球或黑球或白球”的概率.解后反思 求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥事件的和;二是先求对立事件的概率,再求所求事件的概率,即P (A )=1-P (B )(B 是A 的对立事件).1.互斥事件和对立事件既有区别又有联系.互斥未必对立,对立一定互斥.2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式P (A +B )=P (A )+P (B ). 3.求复杂事件的概率通常有两种方法: (1)将所求事件转化成彼此互斥事件的和事件; (2)先求其对立事件的概率,再求所求事件的概率.1.给出以下结论:①互斥事件一定对立;②对立事件一定互斥;③互斥事件不一定对立;④事件A 与B 的和事件的概率一定大于事件A 的概率;⑤事件A 与B 互斥,则有P (A )=1-P (B ).其中正确命题的个数为( )A .0B .1C .2D .32.对同一事件来说,若事件A 是必然事件,事件B 是不可能事件,则事件A 与事件B 的关系是( ) A .互斥不对立 B .对立不互斥 C .互斥且对立D .不互斥、不对立3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A .“至少有1个白球”和“都是红球” B .“至少有1个白球”和“至多有1个红球” C .“恰有1个白球”和“恰有2个白球” D .“至多有1个白球”和“都是红球”4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},下列关系不正确的是( ) A .A ⊆D B .B ∩D =∅ C .A ∪C =DD .A ∪C =B ∪D5.从集合{a ,b ,c ,d ,e }的所有子集中任取一个,若这个子集不是集合{a ,b ,c }的子集的概率是34,则该子集恰是集合{a ,b ,c }的子集的概率是( )A.35B.25C.14D.186.从几个数中任取实数x ,若x ∈(-∞,-1]的概率是0.3,x 是负数的概率是0.5,则x ∈(-1,0)的概率是________.7.同时抛掷两枚骰子,既不出现5点也不出现6点的概率为49,则5点或6点至少出现一个的概率是________.8.袋中装有红球、黑球、黄球、绿球共12个.从中任取一球,取到红球的概率是13,取到黑球或黄球的概率是512,取到黄球或绿球的概率是512.试求取到黑球、黄球、绿球的概率各是多少.一、选择题1.已知P (A )=0.1,P (B )=0.2,则P (A +B )等于( ) A .0.3 B .0.2 C .0.1D .不确定2.若A 、B 是互斥事件,则( ) A .P (A +B )<1 B .P (A +B )=1 C .P (A +B )>1D .P (A +B )≤13.某产品分甲、乙、丙三级,其中丙级为次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对该产品抽查一件抽到正品的概率为( ) A .0.09 B .0.97 C .0.99D .0.964.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A .“至少有1个白球”和“都是红球” B .“至少有1个白球”和“至多有1个红球” C .“恰有1个白球”和“恰有2个白球” D .“至多有1个白球”和“都是红球”5.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.则在上述事件中,是对立事件的是( ) A .① B .②④ C .③D .①③6.下列四个命题:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P (A +B )=P (A )+P (B );③若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1;④事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件.其中错误命题的个数是( ) A .0 B .1 C .2D .37.掷一枚骰子的试验中,出现各点的概率为16.事件A 表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A +B (B 表示事件B 的对立事件)发生的概率为( )A.13B.12C.23D.56二、填空题8.若A ,B 为互斥事件,P (A )=0.4,P (A +B )=0.7,则P (B )=________.9.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选中男教师的概率为920,则参加联欢会的教师共有________人.10.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为________.三、解答题12.袋中装有红球、黑球、黄球、绿球共12个.从中任取一球,取到红球的概率是13,取到黑球或黄球的概率是512,取到黄球或绿球的概率是512.试求取到黑球、黄球、绿球的概率各是多少.解 从袋中任取一球,记事件“取到红球”“取到黑球”“取到黄球”和“取到绿球”分别为A ,B ,C ,D ,则事件A ,B ,C ,D 显然是两两互斥的.由题意,得⎩⎨⎧P (A )=13, P (B +C )=512, P (C +D )=512, P (A +B +C +D )=1,即⎩⎨⎧P (B )+P (C )=512, P (C )+P (D )=512, 13+P (B )+P (C )+P (D )=1,解得⎩⎨⎧P (B )=14, P (C )=16, P (D )=14,故取到黑球的概率是14,取到黄球的概率是16,取到绿球的概率是14.13.黄种人群中各种血型的人所占的比例如下表所示.互相输血.小明是B型血,若小明因病需要输血,则:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)对任一个人,其血型为A,B,AB,O的事件分别为A′,B′,C′,D′,它们是互斥的.由已知得P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.由于B,O型血可以输给B型血的人,因此“可以输血给B型血的人”为事件B′+D′,根据互斥事件的概率加法公式,得:P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,因此“不能输血给B型血的人”为事件A′+C′,所以P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.[学习目标] 1.初步体会模拟方法在概率方面的应用.2.理解几何概型的定义及其特点,会用公式计算简单的几何概型问题.3.了解古典概型与几何概型的区别与联系.知识点一 几何概型的含义1.几何概型的定义向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1 G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个. (2)每个基本事件出现的可能性相等. 思考 几何概型与古典概型有何区别? 答 几何概型与古典概型的异同点P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).思考 计算几何概型的概率时,首先考虑的应该是什么? 答 首先考虑取点的区域,即要计算的区域的几何度量.题型一 与长度有关的几何概型例1 取一根长为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率有多大?解 如图,记“剪得两段的长都不小于1 m ”为事件A .把绳子三等分,于是当剪断位置处在中间一段时,事件A 发生,因为中间一段的长度为1 m ,所以事件A 发生的概率为P (A )=13.反思与感悟 在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找区域d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率. 跟踪训练1 平面上画了一组彼此平行且相距2a 的平行线.把一枚半径r <a 的硬币任意投掷在平行线之间,求硬币不与任一条平行线相碰的概率.解 设“硬币不与任一条平行线相碰”为事件A .如图,在两条相邻平行线间画出与平行线间距为r 的两条平行虚线,则当硬币中心落在两条虚线间时,与平行线不相碰.故P (A )=虚线间距离平行线间距离=2a -2r 2a =a -ra .题型二 与面积有关的几何概型例2 如图,射箭比赛的箭靶中有五个涂有不同颜色的圆环,从外向内分别为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm ,运动员在一定距离外射箭,假设每箭都能中靶,且射中靶面内任意一点是等可能的,那么射中黄心的概率为多少?解 记“射中黄心”为事件B .因为中靶点随机地落在面积为⎝⎛⎭⎫14×π×1222cm 2的大圆内,而当中靶点落在面积为⎝⎛⎭⎫14×π×12.22cm 2的黄心内时,事件B 发生,所以事件B 发生的概率P (B )=14×π×12.2214×π×1222=0.01.反思与感悟 解此类几何概型问题的关键:(1)根据题意确定是不是与面积有关的几何概型问题.(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率.跟踪训练2 一只海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.解 如图所示,区域Ω是长30 m 、宽20 m 的长方形.图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2 m ”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375≈0.31.即海豚嘴尖离岸边不超过2 m 的概率约为0.31. 题型三 与体积有关的几何概型例3 已知正三棱锥S -ABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于h2的概率.解 如图,分别在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于平面ABC 和平面A 1B 1C 1之间时,点M 到底面的距离小于h2.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 1的面积为S4.由题意,知区域D (三棱锥S -ABC )的体积为13Sh ,区域d (三棱台ABC -A 1B 1C 1)的体积为13Sh -13·S 4·h 2=13Sh ·78.所以点M 到底面的距离小于h 2的概率P =78.反思与感悟 如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.跟踪训练3 一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率. 解 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为P =1333=127.题型四 与角度有关的几何概型例4 如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求射线OA 落在∠xOT 内的概率.解 以O 为起点作射线OA 是随机的,因而射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件. 于是,记事件B ={射线OA 落在∠xOT 内}. 因为∠xOT =60°,所以P (B )=60°360°=16.反思与感悟 当涉及射线的运动,扇形中有关落点区域问题时,常以角的大小作为区域度量来计算概率,切不可用线段代替,这是两种不同的度量手段.跟踪训练4 如图,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解 因为CM 是∠ACB 内部的任意一条射线,而总的基本事件是∠ACB 的大小,即为90°, 所以作AC ′=AC ,且∠ACC ′=180°-45°2=67.5°.如图,当CM 在∠ACC ′内部的任意一个位置时,皆有AM <AC ′=AC ,即P (AM <AC )=67.5°90°=34.转化与化归思想例5 把长度为a 的木棒任意折成三段,求它们可以构成一个三角形的概率.分析 将长度为a 的木棒任意折成三段,要能够构成三角形必须满足“两边之和大于第三边”这个条件,进而求解即可.解 设将长度为a 的木棒任意折成三段的长分别为x ,y ,a -x -y ,则(x ,y )满足的条件为⎩⎪⎨⎪⎧0≤x ≤a ,0≤y ≤a ,0≤x +y ≤a ,它所构成的区域为图中的△AOB .设事件M ={能构成一个三角形}, 则当(x ,y )满足下列条件时,事件M 发生.⎩⎪⎨⎪⎧x +y >a -x -y ,x +a -x -y >y ,y +a -x -y >x ,即⎩⎪⎨⎪⎧x +y >a 2,y <a2,x <a 2,它所构成的区域为图中的阴影部分, 故P (M )=S 阴影S △AOB =12×⎝⎛⎭⎫a 2212×a 2=14.故满足条件的概率为14.解后反思 解决本题的关键是将之转化为与面积有关的几何概型问题.一般地,有一个变量可以转化为与长度有关的几何概型,有两个变量可以转化为与面积有关的几何概型,有三个变量可以转化为与体积有关的几何概型.1.在区间[0,3]上任取一个数,则此数不大于2的概率是( ) A.13 B.12 C.23 D.79答案 C解析 此数不大于2的概率P =区间[0,2]的长度区间[0,3]的长度=23.2.在半径为2的球O 内任取一点P ,则|OP |>1的概率为( ) A.78 B.56 C.34 D.12 答案 A解析 问题相当于在以O 为球心,1为半径的球外,且在以O 为球心,2为半径的球内任取一点,所以P =43π×23-43π×1343π×23=78.3.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影区域的面积是( )A.13B.23C.43 D .无法计算答案 C解析 在正方形中随机撒一粒豆子,其结果有无限个,属于几何概型.设“落在阴影区域内”为事件A ,则事件A 构成的区域是阴影部分.设阴影区域的面积为S ,全部结果构成的区域面积是正方形的面积,则有P (A )=S 22=S 4=13,解得S =43.4.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.112 B.38 C.116 D.56 答案 C解析 由题意可知,在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限次等可能出现的,符合几何概型的条件.事件“看到黄灯”的时间长度为5秒,而整个灯的变换时间长度为80秒,据几何概型概率计算公式,得看到黄灯的概率为P =580=116.5.在1 000 mL 水中有一个草履虫,现从中随机取出3 mL 水样放到显微镜下观察,则发现草履虫的概率是________. 答案31 000解析 由几何概型知,P =31 000.1.几何概型适用于试验结果是无穷多且事件是等可能发生的概率模型. 2.几何概型主要用于解决与长度、面积、体积有关的题目.3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).。
112随机事件的概率与互斥事件

年级:高三科目:数学授课人:
课题
随机事件的概率与互斥事件
第112课时
教学
目标
1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.了解两个互斥事件的概率加法公式.
重点
理解必然事件、不可能事件、随机事件及概率定义,需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.
2.随机事件的概率:在相同的条件下,大量重复进行同一试验,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性,把这个常数叫作随机事件A的概率,记作P(A).且P(A)∈[0,1].
主要方法:
弄清每次试验的意义及每个基本事件的含义,正确把握各个事件的相互关系.判断一个事件是必然事件、不可能事件、随机事件,主要是依据在一定的条件下,所要求的结果是否一定出现、不可能出现,或可能出现、可能不出现,它们的概率(范围)分别为1,0,(0,1).
(1)射中10环或7环的概率;
(2)不够7环的概率.
例3:一个箱子内有9张票,其号数分别为1,2,…,9.从中任取2张,其号数至少有一个为奇数的概率是多少?
巩固练习:教师用书【367】即时巩固:1,2,3
课后作业:对应课后提升:选择题
教后
反思
备课组长签字:年月日
中心发言人
难点
正确区别互斥事件与对立事件的关系
教法
讨论与讲授法相结合
学法
课前预习、课堂合作探究
个人主页
教具
教材、练习册
课型
常规课
课时安排
1课时
教
学
过
程
主要知识:
11-4随机事件的概率、互斥事件的概率

(2)P(“发电量低于 490 万千瓦时或超过 530 万千瓦时”) =P(Y<490 或 Y>530) =P(X<130 或 X>210) =P(X=70)+P(X=110)+P(X=220) 1 3 2 3 =20+20+20=10. 故今年六月份该水力发电站的发电量低于 490(万千瓦时) 3 或越过 530(万千瓦时)的概率为10.
[答案] C
)
Байду номын сангаас
B.2 次都中靶 D.只有 1 次中靶
[解析]
“至少有 1 次中靶”的意义是“只有 1 次中靶”
或“2 次都中靶”,与其不可能同时发生的事件是其互斥事 件.只有 C 符合要求.
(理)把红、黑、蓝、白 4 张纸牌随机地分发给甲、乙、丙、 丁四个人, 每人分得 1 张, 事件“甲分得红牌”与事件“乙分 得红牌”是( )
A.对立事件 B.不可能事件 C.互斥事件但不是对立事件 D.以上答案都不对
[答案] C
[解析]
由互斥事件和对立事件的概念可判断,应选 C.
4.某商场举行抽奖活动,从装有编号 0,1,2,3 的四个小球 的抽奖箱中同时抽出两个小球, 两个小球号码之和等于 5 时中 一等奖,等于 4 时中二等奖,等于 3 时中三等奖,则在一次抽 奖中,中奖的概率为( 2 A.3 3 C. 4 1 B.3 1 D. 4 )
2.频数、频率、概率 (1)在相同的条件 S 下重复 n 次试验,观察某一事件 A 是否出 现,称 n 次试验中事件 A 出现的次数 nA 为事件 A 出现的频
nA fn(A)= n 数,称事件 A 出现的比例 为事件 A 出现的频率.
(2)在相同的条件下,大量重复进行同一试验时,随机事件 A 发生的频率会在某个 常数 附近摆动,即随机事件 A 发生的频率 具有 稳定性 ,这个常数叫事件 A 的概率.
57随机事件的概率互斥事件

【2012C 22C 26=415. 答案:4154.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一个产品是正品(甲级)的概率为________.解析:记抽验的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而抽验产品是正品(甲级)的概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92. 答案:0.92 5.向三个相邻的军火库各投一枚炸弹.向三个相邻的军火库各投一枚炸弹.击中第一个军火库的概率是击中第一个军火库的概率是0.025,击中另两个军火库的概率各为0.1,并且只要击中一个,另两个也爆炸,则军火库爆炸的概率为________.解析:设A 、B 、C 分别表示击中第一、二、三个军火库,易知事件A 、B 、C 彼此互斥,且P (A )=0.025,P (B )=P (C )=0.1.设D 表示军火库爆炸,则P (D )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225.所以军火库爆炸的概率为0.225. 答案:0.225 6.(2011年镇江调研)已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是17,从中取出2粒都是白子的概率是1235,现从中任意取出2粒恰好是同一色的概率是________.解析:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与取2粒黑子的概率的和,即为17+1235=173535. . 答案:17357.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是________.解析:(甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种.高考数学理科苏教版课时精品练】作业57第10章第一节章第一节随机事件随机事件的概率.互斥事件1.某射手在一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________.解析:由题意知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 答案:0.5 2.(2011年常州调研)甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为_______.解析:由对立事件的性质知在同一时刻至少有一颗卫星预报准确的概率为1-(1-0.8)(1-0.75)=0.95. 答案:0.95 3.一个袋中有3个红球,2个黄球和1个蓝球,从中随机地取出2个球,则两种颜色相同的概率是________.解析:两球颜色相同包括:①取到两红球,②取到两黄球,故所求概率为P =C 23+答案:13. 答案:3和4 9.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:医生人数 0 1 2 3 45人及以上人及以上 概率 0.1 0.16 x y 0.2 z(1)若派出医生不超过2人的概率为0.56,求x 的值;的值;(2)若派出医生最多4人的概率为0.96,最少3人的概率为0.44,求y 、z 的值.的值. 解:(1)由派出医生不超过2人的概率为0.56,得0.1+0.16+x =0.56,∴x =0.3. (2)由派出医生最多4人的概率为0.96,得0.96+z =1,∴z =0.04. 由派出医生最少3人的概率为0.44,得y +0.2+z =0.44,∴y =0.44-0.2-0.04=0.2. 10.某种油菜籽在相同条件下的发芽试验结果如表:.某种油菜籽在相同条件下的发芽试验结果如表:每批粒数n 2 5 10 70 130 310 7001500 2000 3000 发芽的粒数m 2 4 9 60 116 282 6391339 1806 2715 发芽的频率m n(1)计算表中每批油菜籽发芽的频率(结果保留到小数点后三位);(2)任取一粒油菜籽,在相同条件下发芽的概率是多少?任取一粒油菜籽,在相同条件下发芽的概率是多少?解:(1)由公式可计算出表中每批油菜籽发芽的频率依次为.1.0,000,000.800,,00.900,0.,.857,090.89292,0.91.10,0.90913,0..893,0.903,90.90505.. (2)由(1)知,每批油菜籽在相同条件下发芽的频率虽不相同,但却都在常数0.9左右摆动,所以任取一粒油菜籽,在相同条件下发芽的概率约为0.9. 11.(探究选做)一个袋中装有大小相同的黑球、白球和红球.已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是25;从中任意摸出2个球,至少得到1个白球的概率是79.求:求:(1)从中任意摸出2个球,得到的都是黑球的概率;个球,得到的都是黑球的概率;(2)袋中白球的个数.袋中白球的个数.解:(1)由题意知,袋中黑球的个数为10×25=4. 记“从袋中任意摸出2个球,得到的都是黑球”为事件A ,则P (A )=C 24C 210=215. 28.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为________.解析:事件C n 的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1);当n =3时,落在直线x +y =3上的点为(1,2),(2,1);当n =4时,落在直线x +y =4上的点为(1,3),(2,2);当n =5时,落在直线x +y =5上的点为(2,3);显然当n =3,4时,事件C n 的概率最大为1(2)记“从袋中任意摸出2个球,至少得到1个白球”为事件B ,设袋中白球的个数为x ,则P (B )=1-P (B )=1-C 210-x C 210=79,解得x =5. 即袋中白球的个数为5. 。
随机事件及其概率

2020/5/9
C
2 5
10
(a1,a2),(a2,a1),(a1,b1),(b1,a1),(a1,b2), ((ba22,,ab12)),,((ab12,,ba32)),,((ba32,,ab13),)(,(ab23,,ba1)2,)(,b(1b,1a,b22),),
(b2,b1),(b2,b3),(b3,b2),(b1,b3),(b3,b1)
2020/5/9
(二)古典概型与概率
一个随机试验的样本空间为 {1,2,L,n},
满足以下性质:
(1)样本点总数有限,即n 有限;
(2)每个样本点出现的概率相等,即
P ({ 1 } )P ({ 2} ) LP ({ n} )1 n
称满足以上2个性质的模型为古典概型。
2020/5/9
古典概型中的概率:
设事件A中所含样本点个数为N(A) ,以 N()记样本空间中样本点总数,则有
P( A) N ( A) N ()
P(A)具有如下性质:
(1) 0 P(A) 1;
(2) P()=1; P( )=0
(3) AB=,则
2020/5/9
P( A B )= P(A) +P(B)
例12:有三个都是独生子女的家庭,设每个孩子是男 是女的概率相等,则三个家庭中至少有一个男孩的 概率是多少?
• 例16(抽样检验)如果某批产品中有a件次 品和b件正品,我们采用有放回抽样和无放 回抽样n次,问刚好有k件次品的概率为多 少?
2020/5/9
(三)几何概率
• 基本思想:
(1)如果一个随机现象的样本空间充满某个区域,其度量 (长度、面积、体积等)大小可以用S表示;
(2)任意点落入度量相同的子区域内是等可能的.譬如在样本 空间中有一单位正方形A和直角三角形B,而点落入区域 A和区域B是等可能的,因为这两个区域面积相等;
高中数学完整讲义——概率_随机事件的概率2.随机事件的概率计算

高中数学讲义版块一:事件及样本空间1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件; 在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件.通常用大写英文字母A B C ,,,来表示随机事件,简称为事件. 3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.版块二:随机事件的概率计算1.如果事件A B ,同时发生,我们记作A B ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的.3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率mn,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A . 从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤. 当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =. 4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =.若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合.5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生. 6.互为对立事件知识内容板块二.随机事件的概率计算高中数学讲义 不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A .有()1()P A P A =-. <教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.主要方法:解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率; ⑵ 互斥事件有一个发生的概率; ⑶ 相互独立事件同时发生的概率; ⑷ n 次独立重复试验中恰好发生k 次的概率; ⑸ n 次独立重复试验中在第k 次才首次发生的概率; ⑹ 对立事件的概率. 另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.题型一 概率与频率【例1】下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;典例分析高中数学讲义②做n次随机试验,事件A发生的频率mn就是事件的概率;③百分率是频率,但不是概率;④频率是不能脱离具体的n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是()A.①④⑤B.②④⑤C.①③④D.①③⑤【例2】对某工厂所生产的产品质量进行调查,数据如下:950件合格品,大约需要抽查多少件产品?【例3】某篮球运动员在最近几场大赛中罚球投篮的结果如下:((2)这位运动员投篮一次,进球的概率为多少?【例4】下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做n次随机试验,事件A发生m次,则事件A发生的概率为mn;③频率是不能脱离n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确命题的序号为.【例5】盒中装有4只相同的白球与6只相同的黄球.从中任取一只球.试指出下列事件分别属于什么事件?它们的概率是多少?⑴A=“取出的球是白球”;⑵B=“取出的球是蓝球”;⑶C=“取出的球是黄球”;⑷D=“取出的球是白球或黄球”.高中数学讲义题型二 独立与互斥【例6】(2010辽宁高考)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .16【例7】掷两枚均匀的骰子,记A =“点数不同”,B =“至少有一个是6点”,判断A 与B 是否为独立事件.【例8】设M 和N 是两个随机事件,表示事件M 和事件N 都不发生的是( )A .M N +B .M N ⋅C . M N M N ⋅+⋅D .M N ⋅【例9】判断下列各对事件是否是相互独立事件⑴ 甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加 演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”. ⑵ 容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.【例10】⑴某县城有两种报纸甲、乙供居民订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报”,事件C 为“至多订一种报”,事件D 为“不订甲报”,事件E 为“一种报也不订”.判断下列每对事件是不是互斥事件,再判断它们是不是对立事件.①A 与C ;②B 与E ;③B 与D ;④B 与C ;⑤C 与E .高中数学讲义【例11】抛掷一枚骰子,记事件A为“落地时向上的数是奇数”,事件B为“落地时向上的数是偶数”,事件C为“落地时向上的数是3的倍数”,事件D为“落地时向上的数是6或4”,则下列每对事件是互斥事件但不是对立事件的是()A.A与B B.B与C C.A与D D.C与D【例12】每道选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是14,我每题都选择第一个选择支,则一定有3题选择结果正确”.对该人的话进行判断,其结论是()A.正确的B.错误的C.模棱两可的D.有歧义的题型三随机事件的概率计算【例13】(2010丰台二模)一个正三角形的外接圆的半径为1,向该圆内随机投一点P,点P恰好落在正三角形外的概率是_________.【例14】(2010崇文一模)从52张扑克牌(没有大小王)中随机的抽一张牌,这张牌是J或Q或K的概率为_______.【例15】(2010朝阳一模)一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃高中数学讲义 容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( )A .18B .116C .127D .38【例16】(2010东城二模)在直角坐标系xOy 中,设集合{}(,)01,01x y x y Ω=≤≤≤≤,在区域Ω内任取一点(,)P x y ,则满足1x y +≤的概率等于 .【例17】(2010朝阳一模)在区间[π,π]-内随机取两个数分别记为,a b ,则使得函数22()2πf x x ax b =+-+有零点的概率为( )A .78B .34C .12D .14【例18】(2010东城一模)某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( )A .113B .19 C .14 D .12【例19】(2010西城一模)在边长为1的正方形ABCD 内任取一点P ,则点P 到点A 的距离小于1的概率为 .【例20】(2010丰台二模)已知(){},|6,0,0x y x y x y Ω=+≤≥≥,{}(,)4,0,20A x y x y x y =-≤≥≥.若向区域Ω上随机投一点P ,则点P 落入区域A 的概率是_________.高中数学讲义【例21】(2010朝阳一模)袋子中装有编号为,a b的2个黑球和编号为,,c d e的3个红球,从中任意摸出2个球.⑴写出所有不同的结果;⑵求恰好摸出1个黑球和1个红球的概率;⑶求至少摸出1个黑球的概率.【例22】(2010崇文二模)在平面直角坐标系xOy中,平面区域W中的点的坐标(,)x y满足225x y+≤,从区域W中随机取点(,)M x y.⑴若x∈Z,y∈Z,求点M位于第四象限的概率;⑵已知直线:(0)l y x b b=-+>与圆22:5O x y+=y x b-+≥的概率.【例23】(2010西城一模)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4.现从盒子中随机抽取卡片.⑴若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;⑵若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.高中数学讲义【例24】(2010海淀一模)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O为圆心,且标有20元、10元、0元的三部分区域面积相等.假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.⑴若顾客甲消费了128元,求他获得优惠券面额大于0元的概率?⑵若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率?【例25】(2010石景山一模)为援助汶川灾后重建,对某项工程进行竞标,共有6家企业参与竞标.其中A企业来自辽宁省,B、C两家企业来自福建省,D、E、F三家企业来自河南省.此项工程需要两家企业联合施工,假设每家企业中标的概率相同.⑴企业E中标的概率是多少?高中数学讲义⑵在中标的企业中,至少有一家来自河南省的概率是多少?【例26】(2010湖北高考)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰于向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是A.512B.12C.712D.34【例27】盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.【例28】(2010江西高考)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在100箱中各任意检查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别为12,p p,则()A.12p p=B.12p p<C.12p p>D.以上三种情况都有可能【例29】(2010陕西卷高考)铁矿石A和B的含铁率a,冶炼每万吨铁矿石的2CO的排放量b及每万吨铁矿石的价格c如下表:高中数学讲义2最少费用为______(百万元).【例30】甲、乙两人进行击剑比赛,甲获胜的概率是0.41,两人战平的概率是0.27,那甲不输的概率为________甲不获胜的概率为_______.【例31】已知A B ,是相互独立事件,且()0.3P A =,()0.6P B =,则()P A B ⋅=______.【例32】某人射击5枪,命中3枪,3枪中恰有2枪连中的概率为( )A .120B .110C .25D .35【例33】袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.⑴ 摸出2个或3个白球; ⑵ 至少摸出一个黑球.【例34】一批产品共100件,其中5件是废品,任抽10件进行检查,求下列事件的概率.⑴ 10件产品中至多有一件废品;⑵ 10件产品中至少有一件废品.【例35】(2009湖南卷文)为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.求:⑴他们选择的项目所属类别互不相同的概率;⑵至少有1人选择的项目属于民生工程的概率.【例36】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?【例37】(2009全国卷Ⅰ文)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例38】纺织厂某车间内有三台机器,这三台机器在一天内不需工人维护的概率:第一台为0.9,第二台为0.8,第三台为0.85,问一天内:⑴3台机器都要维护的概率是多少?⑵其中恰有一台要维护的概率是多少?⑶至少一台需要维护的概率是多少?【例39】从甲口袋摸出一个红球的概率是13,从乙口袋中摸出一个红球的概率是12,则23是()A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有一个红球的概率D.2个球中恰好有1个红球的概率【例40】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:⑴两个人都译出密码的概率;⑵两个人都译不出密码的概率;⑶恰有1个人译出密码的概率;⑷至多1个人译出密码的概率;⑸至少1个人译出密码的概率.【例41】现时盛行的足球彩票,其规则如下:全部13场足球比赛,每场比赛有3种结果:胜、平、负,13场比赛全部猜中的为特等奖,仅猜中12场为一等奖,其它不设奖,则某人获得特等奖的概率为.【例42】从10位同学(其中6女,4男)中,随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35,试求:⑴选出的3位同学中至少有一位男同学的概率;⑵10位同学中的女同学甲和乙及男同学丙同时被抽到,且三人中恰有二人通过测验的概率.【例43】(08天津)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.⑴求乙投球的命中率p;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例44】甲盒中有红、黑、白三种颜色的球各个,乙盒子中有黄、黑、白三种颜色的球各个,32从两个盒子中各取个球,求取出的两个球是不同颜色的概率.【例45】某商场有奖销售中,购满100元商品得1张奖券,多购多得.第1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为,,A B C ,求: ⑴()()(),,P A P B P C ; ⑵1张奖券的中奖概率;⑶1张奖券不中特等奖且不中一等奖的概率.【例46】把10张卡片分别写上0129,,,,后,任意叠放在一起,从中任取一张,设“抽到大于3的奇数”为事件A ,“抽到小于7的奇数”为事件B ,求()P A ,()P B 和()P A B .【例47】甲、乙两人下棋,乙不输的概率是0.7,下成和棋的概率为0.5,分别求出甲、乙获胜的概率.1【例48】黄种人群中各种血型的人所占的比如下表所示:AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:⑴任找一个人,其血可以输给小明的概率是多少?⑵任找一个人,其血不能输给小明的概率是多少?【例49】在袋中装20个小球,其中彩球有n个红色、5个蓝色、10个黄色的,其余为白球.求:⑴如果从袋中取出3个都是相同颜色彩球(无白色)的概率是13114,且2≥n,那么,袋中的红球共有几个?⑵根据⑴的结论,计算从袋中任取3个小球至少有一个是红球的概率.【例50】某射手射击一次射中10环、9环、8环、7环的概率分别为0.120.320.270.11,,,,计算这名射手射击一次:⑴射中9环或8环的概率;⑵至少射中7环的概率;⑶至多射中8环的概率.【例51】射击运动员李强射击一次击中目标的概率是0.8,他射击3次,恰好2次击中目标的概率是多少?【例52】在12345,,路车的到来.假如汽车,,,,条线路汽车经过的车站上,有位乘客等候着134经过该站的次数平均来说2345,,,路车是相等的,而1路车是其他各路车次数的总和.试求首先到站的汽车是这位乘客所需要线路的汽车的概率.【例53】(2007年全国I卷文)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例54】(2007年全国II卷文)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A .⑴求从该批产品中任取1件是二等品的概率p;⑵若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等P B.品”的概率()【例55】(2009全国卷Ⅰ文)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例56】为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.【例57】某售货员负责在甲、乙、丙三个柜面上售货.如果在某一小时内各柜面不需要售货员照顾的概率分别为0.90.80.7,,.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内:⑴只有丙柜面需要售货员照顾的概率;⑵三个柜面恰好有一个需要售货员照顾的概率;⑶三个柜面至少有一个需要售货员照顾的概率.【例58】(2006年北京卷)某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.,,,且三门课程考试是否及格相互假设某应聘者对三门指定课程考试及格的概率分别是a b c之间没有影响.⑴分别求该应聘者用方案一和方案二时考试通过的概率;⑵试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)【例59】假设飞机的每一台发动机在飞行中的故障率都是1P,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?【例60】(2009陕西卷文)椐统计,某食品企业一个月内被消费者投诉的次数为012,,的概率分别为0.4,0.5,0.1⑴求该企业在一个月内被消费者投诉不超过1次的概率;⑵假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.【例61】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、25、15,且各轮问题能否正确回答互不影响.⑴求该选手进入第四轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率.题型四 条件概率【例62】设某批产品有4%是废品,而合格品中的75%是一等品,任取一件产品是一等品的概率是_____.【例63】某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是110,设A =“刮风”,B =“下雨”,求()()P B A P A B ,.【例64】(09上海春)把一枚硬币抛掷两次,事件A =“第一次出现正面”,事件B =“第二次出现反面”,则()_____P B A =.【例65】(2010宣武二模)抛掷一枚质地均匀的骰子,所得点数的样本空间为{}1,2,3,4,5,6S =.令事件{}2,3,5A =,高中数学讲义21 思维的发掘 能力的飞跃 事件{}1,2,4,5,6B =,则()P A B 的值为( )A . 35B . 12C . 25D .15【例66】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率.【例67】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为 .【例68】掷两枚均匀的骰子,记A =“点数不同”,B =“至少有一个是6点”,求(|)P A B 与(|)P B A .。
概率

概率(1)随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率mn 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .0()1P A ≤≤(2)等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()mP A n =(3)互斥事件的概念:不可能同时发生的个事件叫做互斥事件 A 、B 互斥,即事件A 、B 不可能同时发生, P(A+B)=P (A )+ P(B)一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥对立事件的概念:事件A和事件B 必有一个发生的互斥事件 A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生这时P(A •B)=0,P(A+B)=P (A )+ P(B)=1一般地,()()A P A p -=1(4)相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立互斥事件与相互独立事件的区别:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅。
事件12,,,n A A A 相互独立,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅(5)独立重复试验的定义:在同样条件下进行的各次之间相互独立的一种试验独立重复试验的概率公式:如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事恰好发生K 次的概率kn k k n n P P C k P --=)1()(表示事件A在n 次独立重复试验中恰好发生了k 次的概率一、等可能事件的概率例1甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率.例2一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率; (Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率. ;例3一个袋中装有大小相同的黑球、白球和红球。
概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n
则
Ai Ai
Ai Ai
i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-187- 11.3随机事件及其概率、互斥事件
要点集结 1.事件的分类
(1)在一定的条件下,________________的事件,叫做必然事件.
(2)在一定条件下,肯定不会发生的事件叫做________________.
(3)在一定条件下,可能发生也可能不发生的事件,叫做_________.事件一般用大写字母A ,B ,C…表示.
2.互斥事件、对立事件
在同一次试验中,________________的两个事件称为互斥事件,若A 、B 为互斥事件,则A +B 表示事件A 、B 至少有一个发生.
两个互斥事件________________,则称这两个事件为对立事件,事件A 的对立事件记为A .
3.概率的几个基本性质
(1)概率的取值范围:_____.(2)必然事件的概率:P (E )=____.(3)不可能事件的概率:P (F )=____.
(4)概率的加法公式:如果事件A 与事件B 互斥,则P (A ∪B )=____________.
(5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件.
P (A ∪B )=____,P (A )=________.
基础自测:
1.下列事件:①当x 是实数时,x -|x|=2;②某班一次数学测试,及格率低于75%;③从分别标有0,1,2,3,…,9这十个数字的纸团中任取一个,取出的纸团是偶数;④体育彩票某期的特等奖号码.其中是随机事件的是________(填序号).
2.一人在打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是________(填序号). ①至多有一次中靶;②两次都中靶;③两次都不中靶;④只有一次中靶.
3.从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是________(将正确说法的序号填在横线上).
①3个都是正品;②至少有1个是次品;③3个都是次品;④至少有1个是正品.
4.袋中装有白球3个,黑球4个,从中任取3个,
①恰有1个白球和全是白球;②至少有1个白球和全是黑球;
③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为________(填序号).
5.从一批羽毛球中任取一个,质量小于4.8克的概率是0.3,质量不小于4.85克的概率是0.32,那么质量在[4.8,4.85)克范围内的概率是________.
6.从1,2,…,9中任取两数,其中:
①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.
在上述事件中,是对立事件的是________(填序号).
7.考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率为________.
8.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.
9.随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为________(默认每个月的天数相同,结果精确到0.001).
10.某中学部分学生参加全国高中数学竞赛取得了优异成绩,
指导老师统计了所有参赛同学的成绩(成绩都为整数,试题
满分120分),并且绘制了“频数分布直方图”如图,请回答:
(1)该中学参加本次高中数学竞赛的学生有多少人?
(2)如果90分以上(含90分)获奖,那么获奖的概率大约是多少?
(结果保留分数)。