华中师大一附中必修第一册第五单元《三角函数》测试卷(含答案解析)
高中数学必修一第五章三角函数必须掌握的典型题(带答案)
高中数学必修一第五章三角函数必须掌握的典型题单选题1、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B2、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203) 答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π, 由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.3、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12=cos π6=√32. 故选:D.4、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( ) A .√53B .23 C .13D .√59 答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos 2α−8cosα−8=0,即3cos 2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去),又∵α∈(0,π),∴sinα=√1−cos 2α=√53. 故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.5、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56]答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ), 由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解, 则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23].6、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个 答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键.7、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4), 因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D8、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( ) A .π12B .π6C .π3D .5π12 答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值. f(x)=sin2x +√3cos2x =2sin (2x +π3),所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3),由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z), 解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12.故选:A. 多选题9、若函数f (x )=√2sinxcosx +√2cos 2x −√22,则下列说法正确的是( ) A .函数y =f (x )的图象可由函数y =sin2x 的图象向右平移π4个单位长度得到 B .函数y =f (x )的图象关于直线x =−3π8对称 C .函数y =f (x )的图象关于点(−3π8,0)对称D .函数y =x +f (x )在(0,π8)上为增函数 答案:BD分析:由三角函数的恒等变换化简f (x )=sin (2x +π4),再由三角函数的平移变换可判断A ;求出f (−3π8)=−1可判断B 、C ;先判断y =f (x )在(0,π8)上为增函数,即可判断y =x +f (x )在(0,π8)的单调性.由题意,f (x )=√2sinxcosx +√2cos 2x −√22=√22sin2x +√22cos2x =sin (2x +π4).函数y =sin2x 的图象向右平移π4个单位长度可得到f (x )=sin2(x −π4)=sin (2x −π2)=−cos2x ,故A 错误;f (−3π8)=sin [2×(−3π8)+π4]=−1,所以函数y =f (x )的图象关于直线x =−3π8对称,故B 正确,C 错误; 函数y =x 在(0,π8)上为增函数,x ∈(0,π8)时,2x +π4∈(π4,π2),故函数f (x )在(0,π8)上单调递增,所以函数y =x +f (x )在(0,π8)上为增函数,故D 正确. 故选:BD .10、已知函数f (x )=sinxcosx −cos 2x ,则( ) A .函数f (x )在区间(0,π8)上为增函数B .直线x =3π8是函数f (x )图像的一条对称轴C .函数f (x )的图像可由函数y =√22sin2x 的图像向右平移π8个单位得到 D .对任意x ∈R ,恒有f (π4+x)+f (−x )=−1 答案:ABD解析:首先利用二倍角的正弦与余弦公式可得f (x )=√22sin (2x −π4)−12,根据正弦函数的单调递增区间可判断A ;根据正弦函数的对称轴可判断B ;根据三角函数图像的平移变换的原则可判断C ;代入利用诱导公式可判断D. f (x )=12sin2x −1+cos2x2=√22sin (2x −π4)−12.当x ∈(0,π8)时,2x −π4∈(−π4,0),函数f (x )为增函数,故A 中说法正确;令2x −π4=π2+kπ,k ∈Z ,得x =3π8+kπ2,k ∈Z ,显然直线x =3π8是函数f (x )图像的一条对称轴,故B 中说法正确;函数y =√22⋅sin2x 的图像向右平移π8个单位得到函数y =√22⋅sin [2(x −π8)]=√22sin (2x −π4)的图像,故C 中说法错误; f (π4+x)+f(−x)=√22sin (2x +π4)−12+√22sin (−2x −π4) −12=√22sin (2x +π4)−√22sin (2x +π4)−1=−1,故D 中说法正确. 故选:ABD.小提示:本题是一道三角函数的综合题,考查了二倍角公式以及三角函数的性质、图像变换,熟记公式是关键,属于基础题.11、若角α的终边在直线y =−2x 上,则sinα的可能取值为( ) A .√55B .−√55C .2√55D .−2√55答案:CD分析:利用三角函数的定义,分情况讨论sinα的可能取值. 设角α的终边y =−2x 上一点(a,−2a ), 当a >0时,则r =√5a ,此时sinα=y r=−2√55, 当a <0时,则r =−√5a ,此时sinα=y r=2√55, 故选:CD 填空题12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解.∵cos2θ=14,∴sin2θ+2cos2θ=1−cos2θ2+1+cos2θ=32+12cos2θ=32+12×14=138.所以答案是:138.13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)解答题15、设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π2)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在[0,π2]上的最大值.答案:(1)π;(2)1+√22.分析:(1)由题意结合三角恒等变换可得y=1−sin2x,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得y=sin(2x−π4)+√22,再由三角函数的图象与性质即可得解.(1)由辅助角公式得f(x)=sinx+cosx=√2sin(x+π4),则y=[f(x+π2)]2=[√2sin(x+3π4)]2=2sin2(x+3π4)=1−cos(2x+3π2)=1−sin2x,所以该函数的最小正周期T=2π2=π;(2)由题意,y=f(x)f(x−π4)=√2sin(x+π4)⋅√2sinx=2sin(x+π4)sinx=2sinx⋅(√22sinx+√22cosx)=√2sin2x+√2sinxcosx=√2⋅1−cos2x2+√22sin2x=√22sin2x−√22cos2x+√22=sin(2x−π4)+√22,由x∈[0,π2]可得2x−π4∈[−π4,3π4],所以当2x−π4=π2即x=3π8时,函数取最大值1+√22.。
湖北省武汉市华中师范大学第一附属中学2023-2024学年高三上学期期中 数学试题(含解析)
华中师大一附中2023-2024学年度上学期高三期中检测数学试题试卷满分:150分考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i 2z z +=,则i z +的模为()A.1 B.2C.5D.【答案】D 【解析】【分析】先化简求出z ,再根据共轭复数定义求出i z +,最后根据模长公式求解即可.【详解】()()()()()221i 21i 2i 21+i 2,1i 1+i 1i 1i 1iz z z z --+=∴=∴====--+- ,,=1i i=1+i+i=1+2i z z +∴+ ,,i =12i z ++.故选:D.2.已知集合{}{}224,Z log 3xA xB x x =>=∈<∣∣,则()R A B ⋂=ð()A.()0,2 B.(]0,2 C.{}1,2 D.(]1,2【答案】C 【解析】【分析】利用指数函数单调性求解集合A ,从而求解R A ð,利用对数函数单调性结合整数概念求解集合B ,最后利用交集运算即可求解.【详解】因为集合{}{}242xA x x x =>=>,所以{}R 2A x x =≤ð,又{}{}{}32Z log 3Z 021,2,3,4,5,6,7B x x x x =∈<=∈<<=,所以()R A B ⋂=ð{}1,2.故选:C3.在ABC 中,“π6A >”是“1sin 2A >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】结合正弦函数的性质由1sin 2A >,可得π5π66A <<,再根据充分条件和必要条件的定义判断即可.【详解】在ABC 中,()0,πA ∈,由1sin 2A >,可得π5π66A <<,所以“π6A >”是“1sin 2A >”的必要不充分条件.故选:B .4.已知函数()sin (0)f x x ωω=>的图象的一部分如图1,则图2中的函数图像对应的函数是()A.122y f x ⎛⎫=-⎪⎝⎭B.122x y f ⎛⎫=-⎪⎝⎭C.12x y f ⎛⎫=- ⎪⎝⎭D.()21y f x =-【答案】D 【解析】【分析】根据三角函数的平移伸缩可以得出函数关系.【详解】()sin (0)f x x ωω=>过点1,12⎛⎫⎪⎝⎭得1sin =π2ωω=∴,()sinπf x x ∴=,由图1和图2可知:函数的周期减半,就是()()2f x f x →,图1→图2说明图象向右平移12单位,得到()21y f x =-的图象.故选:D.5.在边长为2的正六边形ABCDEF 中,AC BF ⋅=()A.6B.-6C.3D.-3【答案】B 【解析】【分析】根据题意建立平面直角坐标系,利用坐标表示向量,设出,,,A C B F 的坐标,求出AC BF ⋅即可得出答案.【详解】正六边形ABCDEF 中,每个内角都是120 ,30FEA FAE ∠=∠= ,有EA AB ⊥,以A 为原点,AB 为x 轴,AE 为y 轴,,建立平面直角坐标系,如图所示:因为2==AB AF ,1cos1202=-,3sin1202= ,则有(F -,所以(0,0)A ,(2,0)B ,(C ,AC =,(BF =- ,由平面向量数量积的运算可得()33936AC BF ⋅=⨯-+-+=-.故选:B .6.在声学中,音量被定义为:020lgp pL p =,其中p L 是音量(单位为dB ),0P 是基准声压为5210Pa -⨯,P 是实际声音压强.人耳能听到的最小音量称为听觉下限阈值.经过研究表明,人耳对于不同频率的声音有不同的听觉下限阈值,如下图所示,其中240Hz 对应的听觉下限阈值为20dB ,1000Hz 对应的听觉下限阈值为0dB ,则下列结论正确的是()A.音量同为20dB 的声音,30~100Hz 的低频比1000~10000Hz 的高频更容易被人们听到.B.听觉下限阈值随声音频率的增大而减小.C.240Hz 的听觉下限阈值的实际声压为0.002Pa .D.240Hz 的听觉下限阈值的实际声压为1000Hz 的听觉下限阈值实际声压的10倍.【答案】D 【解析】【分析】对于选项A 、B ,可以直接观察图像得出听觉下限阈值与声音频率的关系进行判断;对于C 、D ,通过所给函数关系020lgp pL p =代入听觉下限阈值计算即可判断.【详解】对于A ,30~100Hz 的低频对应图像的听觉下限阈值高于20dB ,1000~10000Hz 的高频对应的听觉下限阈值低于20dB ,所以对比高频更容易被听到,故A 错误;对于B ,从图像上看,听觉下限阈值随声音频率的增大有减小也有增大,故B 错误;对于C ,240Hz 对应的听觉下限阈值为20dB ,50210Pa P -=⨯,令020lg20p pL p ==,此时0100.0002p p ===Pa ,故C 错误;对于D ,1000Hz 的听觉下限阈值为0dB ,令020lg0p pL p ==,此时0p p =,所以240Hz 的听觉下限阈值的实际声压为1000Hz 的听觉下限阈值实际声压的10倍,故D 正确.故选:D .7.若实数,,a b c 满足ln sin1a e a b b c c +=+==,则,,a b c 的大小关系为()A.a c b <<B.a b c <<C.c a b<< D.b a c<<【答案】A 【解析】【分析】由切线放缩可求a ,根据对数函数性质和正弦值域可判断b ,由不等式的关系可判断b c >.【详解】因为0sin1<1<,当0x >时,设()e 1xf x x =--,则()e 1xf x '=-,易知当0x =时,()00e 10f =-=',当0x >时,()f x 单调递增,所以e 1x x ≥+;()0x >所以sin1=e 10a a a a a +≥++⇒<;由已知可得0b >,因为0sin1<1<,所以01b <<;ln 0b <,所以sin1ln b b =-;00c ≥⇒≥,所以sin1c b =-<;故a c b <<;故选:A8.已知函数()sin (0)f x x x ωωω=+>在区间ππ,62⎡⎤⎢⎥⎣⎦上恰有两个极值点,且ππ062f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则ω的值可以是()A.6 B.7C.8D.9【答案】C 【解析】【分析】先根据辅助角公式计算化简函数,再结合选项得出矛盾判断A,B,D 选项,再计算说明C 选项正确即可.【详解】()πsin =2sin 3f x x x x ωωω⎛⎫=+⎪⎝⎭,当=6ω时,()π2sin 63f x x ⎛⎫=+ ⎪⎝⎭(ππππ=2sin π+2sin 3π06233f f ⎛⎫⎛⎫⎛⎫⎛⎫+++=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A选项错误;当=7ω时,()π2sin 73f x x ⎛⎫=+ ⎪⎝⎭()ππ7ππ7ππ=2sin +2sin 210626323f f ⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,B 选项错误;当=9ω时,()π2sin 93f x x ⎛⎫=+ ⎪⎝⎭ππ9ππ9ππ=2sin +2sin 110626323f f ⎛⎫⎛⎫⎛⎫⎛⎫+++=-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,πππ11π29π,,9,62366x x ⎡⎤⎡⎤∈+∈⎢⎥⎢⎥⎣⎦⎣⎦,()π2sin 93f x x ⎛⎫=+ ⎪⎝⎭恰有三个极值点,D 选项错误;当=8ω时,()π2sin 83f x x ⎛⎫=+ ⎪⎝⎭ππ8ππ8ππ=2sin +2sin 0626323f f ⎛⎫⎛⎫⎛⎫⎛⎫+++== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,πππ5π13π,,8,62333x x ⎡⎤⎡⎤∈+∈⎢⎥⎢⎥⎣⎦⎣⎦,()π2sin 83f x x ⎛⎫=+ ⎪⎝⎭恰有两个极值点,C 选项正确;故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()f x 及其导函数()f x '的部分图象如图所示,设函数()()xf xg x =e,则()g x ()A.在区间(),a b 上是减函数B.在区间(),a b 上是增函数C.在x a =时取极小值D.在x b =时取极小值【答案】BC 【解析】【详解】根据图象得到()()f x f x -'的符号,即可得到()g x '的符号,进而得到()g x 的单调性和极值.【分析】结合图像可知,当x a <时()()0f x f x '->,当a x b <<时,()()0f x f x '-<,当x b >时,()()0f x f x '->,()()()exf x f xg x '-'=,因e 0x>,故当x a <时,()()()0xf x f xg x e'-'=<,()g x 在区间(),a -∞上单调递减,当a x b <<时,()()()0exf x f xg x '-'=>,()g x 在区间(),a b 上单调递增,当x b >时,()()()0xf x f xg x e'-'=<,()g x 在区间(),b ∞+上单调递减,故()g x 在x a =处取得极小值,在x b =处取得极大值,故选:BC10.已知0,0,a b a b >>≠,且2a b +=,则()A.112a b +> B.22112a b +>C.222a b +> D.22log log 2a b +>【答案】ABC 【解析】【分析】根据基本不等式即可结合选项逐一求解.【详解】()1111111222222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当b a a b =,即a b =时取等号,由于a b ¹,所以112a b+>,A 正确,由于212a b ab +⎛⎫≤= ⎪⎝⎭,221122a b ab+≥=≥,当且仅当2211a b =且a b =时,即a b =时取等号,由于a b ¹,所以22112a b +>,B 正确,由2a b +=以及0,0,a b a b >>≠可得224a b +≥=,当且仅当22a b =,即a b =时取等号,由于a b ¹,所以2242a b +>>,故C 正确,2222log log log log 10a b ab +=≤=,当且仅当b a a b=,即a b =时取等号,由于a b ¹,22log log 0a b +<所以D 错误,故选:ABC11.若函数()()sin cos tan f x x a x =+在区间()0,πn 有2024个零点,则整数n 可以是()A.2022B.2023C.2024D.2025【答案】BCD 【解析】【分析】令()()sin cos tan 0=+=f x x a x ,则()sin cos tan =-x a x ,将函数零点转化为两个函数()y g x =与tan =-y a x 的交点,结合函数性质以及函数图象分析判断.【详解】令()()sin cos tan 0=+=f x x a x ,则()sin cos tan =-x a x ,对于函数()()sin cos g x x =,由[]cos 1,1x ∈-,可知()()[]sin cos sin1,sin1=∈-g x x ,因为()()()()2πsin cos 2πsin cos ⎡⎤+=+==⎣⎦g x x x g x ,且()()()()2πsin cos 2πsin cos ⎡⎤-=-==⎣⎦g x x x g x ,()g x 的周期为2π,且关于直线πx =对称,又因为()()cos cos sin '=-⋅g x x x ,当[]0,πx ∈,则[][]cos 1,1,sin 0,1∈-∈x x ,且()cos cos 0>x ,可知()()cos cos sin 0'=-⋅≤g x x x ,则()g x 在[]0,π上单调递减,可知()g x 在[]π,2π上单调递增,若0a =时,因为tan y x =的定义域为π|π,2x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z ,则cos 0x ≠,可知()()sin cos 0=≠f x x ,无零点,不合题意,若0a <时,0a ->,结合图象可知:()y g x =与tan =-y a x 在ππ0,,,π22轹骣麋ê麋麋êë内各有一个交点,在3π3ππ,,,2π22⎛⎫⎛⎤ ⎪ ⎥⎝⎭⎝⎦内没有交点,所以()()sin cos tan f x x a x =+在()0,π内有2个零点,在()π,2π内没有零点(区间端点均不是零点),因为()y g x =与tan =-y a x 的周期均为2π,则()f x 周期为2π,结合周期可知:若数()()sin cos tan f x x a x =+在区间()0,πn 有2024个零点,则整数n 可以是2023或2024,若0a >时,0a -<,结合图象可知:()y g x =与tan =-y a x 在ππ0,,,π22轹骣麋ê麋麋êë内没有交点,在3π3ππ,,,2π22⎛⎫⎛⎤⎪ ⎥⎝⎭⎝⎦内各有一个交点,所以()()sin cos tan f x x a x =+在()0,π内没有零点,在()π,2π内有2个零点(区间端点均不是零点),结合周期可知:若数()()sin cos tan f x x a x =+在区间()0,πn 有2024个零点,则整数n 可以是2024或2025;综上所述:整数n 可以是2023或2024或2025.故选:BCD.【点睛】关键点睛:将函数()f x 转为两个函数:()y g x =与tan =-y a x 的零点,结合函数性质分析判断,并注意讨论a 的符号.12.已知定义在R 上的函数()y f x =图象上任意一点(),x y 均满足20132013sin sin e e e e y x x x y x----=-,且对任意()0,x ∈+∞,都有()()21e ln 0xf x a f x x --+<恒成立,则下列说法正确的是()A.()2023sin f x x x =- B.()f x 是奇函数C.()f x 是增函数 D.1e>a 【答案】BCD 【解析】【分析】利用函数()=e e xxg x --的单调性可求()2013sin f x x x=+判断A ,根据奇函数的定义判断B ,根据导数符号判断函数的单调性判断C ,根据奇函数和单调性把不等式化为21ln ex x x xa -+>在()0,∞+上恒成立,构造函数求解最值即可判断D.【详解】20132013sin sin e e eey x xx yx ----=-,有()20132013sin sin e e =e ey x y x xx ------,记()=e e xxg x --,则()=e e0xxg x -+>',所以()=e e x x g x --在R 上单调递增,所以2013sin y x x -=,所以()2013sin f x x x =+,故选项A 错误;因为()()()()()20132013sin sin f x x x x x f x -=-+-=-+=-且定义域R 关于原点对称,所以()f x 是奇函数,故选项B 正确;记()()2012cos 2013h x f x x x=+'=,[)0,x ∈+∞,则()2011sin 20132012h x x x=-+⨯',[)0,x ∈+∞,对[)0,x ∈+∞,因为sin y x x =-,则cos 10y x '=-≤,即函数sin y x x =-在[)0,∞+单调递减,又0x =时,0y =,则sin 0x x -<,即sin x x <,根据幂函数性质知201120132012x x ⨯>,所以()2011sin 20132012sin 0h x x xx x =-+⨯>-≥',所以函数()()2012cos 2013h x f x x x=+'=在[)0,∞+上单调递增,所以()()010f x f '='≥>,所以函数()2013sin f x x x=+在[)0,∞+上单调递增,又()f x 是奇函数,由奇函数性质知()f x 是增函数,故选项C 正确;因为对任意()0,x ∈+∞,都有()()21e ln 0xf x a f x x --+<恒成立,所以()()()21eln ln x f x a f x x f x x --<-=-在()0,∞+上恒成立,所以21e ln x x a x x --<-即21ln ex x x xa -+>在()0,∞+上恒成立,记()1ln m x x x =--,()0,x ∈+∞,则1()1m x x=-',当()0m x '=时,1x =,当()0m x '>时,1x >,当()0m x '<时,01x <<,所以()1ln m x x x =--在()1,+∞上单调递增,在()0,1上单调递减,所以()1ln (1)0m x x x m =--≥=,所以1ln x x ≥+,所以22121ln e e x x x x x x --+≤,()0,x ∈+∞,记()221e x x n x -=,()0,x ∈+∞,则()()2121ex x x n x --'=,当()0n x '=时,1x =,当()0n x '>时,01x <<,当()0n x '<时,1x >,所以()221ex x n x -=在()1,+∞上单调递减,在()0,1上单调递增,所以()()22111e ex x n x n -=≤=,所以21ln 1e x x x x -+≤,当且仅当1x =时等号成立,所以1e>a ,故选项D 正确.故选:BCD【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.三、填空题:本题共4小题,每小题5分,满分20分13.若直线y x a =+与曲线1e 1x y b -=-+相切,则a b +=__________.【答案】1【解析】【分析】求导,结合导数的几何意义分析求解.【详解】因为1e 1x y b -=-+,则1e x y -'=,设切点坐标为()00,x y ,则00110e 1e 1x x b x a--⎧=⎪⎨-+=+⎪⎩,解得011x a b =⎧⎨+=⎩.故答案为:1.14.杭州第19届亚洲运动会,于2023年9月23日至10月8日在中国浙江省杭州市举行,本届亚运会的会徽名为“潮涌”,主体图形由扇面、钱塘江、钱江潮头、赛道、互联网符号及象征亚奥理事会的太阳图形六个元素组成(如图),其中扇面造型突出反映了江南的人文意蕴.已知该扇面呈扇环的形状,内环和外环均为圆周的一部分,若内环弧长是所在圆周长的13,内环所在圆的半径为1,径长(内环和外环所在圆的半径之差)为1,则该扇面的面积为__________.【答案】π【解析】【分析】根据题意求出内环圆弧所对的圆心角,并求出外环圆弧所在圆的半径,利用扇形的面积公式可求得该扇面的面积.【详解】设内环圆弧所对的圆心角为α,因为内环弧长是所在圆周长的13,且内环所在圆的半径为1,所以,112π13α⨯=⨯⨯,可得2π3α=,因为径长(内环和外环所在圆的半径之差)为1,所以,外环圆弧所在圆的半径为112+=,因此,该扇面的面积为()2212π21π23⨯⨯-=.故答案为:π.15.一只钟表的时针OA 与分针OB 长度分别为3和4,设0点为0时刻,则OAB 的面积S 关于时间t (单位:时)的函数解析式为__________,一昼夜内(即[]0,24t ∈时),S 取得最大值的次数为__________.【答案】①.11π6|sin|6S t =(0t ≥,且6,N 11nt n ≠∈)②.44【解析】【分析】根据给定条件,求出AOB ∠,再利用三角形面积公式列式即得;探求面积函数的周期即可计算得解.【详解】OA 旋转的角速度为πrad/h 6-,OB 旋转的角速度为2πrad/h -,11π2π6AOB t k ∠=-或112ππ2π6AOB t k ∠=-+,Z k ∈,111π34|sin |6|sin |26S AOB t =⨯⨯∠=,而当6,N 11n t n =∈时,不能构成三角形,所以11π6|sin |6S t =(0t ≥,且6,N 11nt n ≠∈);显然函数11π6|sin|6S t =的周期为611且每个周期仅出现一次最大值,而6244411=⨯,所以S 取得最大值的次数为44.故答案为:11π6|sin|6S t =(0t ≥,且6,N 11nt n ≠∈);4416.如图,在四边形ABCD 中,,4,2120AD CD BD ADC ABC ∠∠==== ,则ABC 面积的最大值为__________.【答案】【解析】【分析】通过证明ABC 是等边三角形并得出边长,即可求出三角形面积的最大值.【详解】由题意,在四边形ABCD 中,4,2120BD ADC ABC ∠∠=== ,∴60,180ABC ABC ADC ∠=︒∠+∠=︒,∴四边形ABCD 四点共圆,在ACD 中,AD CD =,120ADC ∠= ,∴ACD 是等腰三角形,30ACD CAD ∠=∠=︒,在ABC 中,2120ABC ∠= ∴60ABC ∠=︒,()22133sin 248S AB BC ABC AB BC AB BC =⋅∠=⋅≤+,当且仅当AB BC =时,等号成立,∵当AB BC =时,BD 垂直平分AC ,∴AC BD ⊥,ABC 是等边三角形,2AC AE =,∴1302ABD CBD ABC ∠=∠=∠=︒,1602ADE CDE ADC ∠=∠=∠=︒∴180306090BAD BCD ∠=∠=︒-︒-︒=︒,∴3,33AE DE BE DE ===,∵44BD BE DE DE =+==,∴1,3,223DE AE AC AE ====∴ABC 面积的最大值为(22max 33233344S AC ==⨯=,故答案为:33四、解答题:本题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知()π2sin sin 3f x x x ⎛⎫=+⎪⎝⎭(1)求()f x 的单调递增区间与对称中心;(2)当[]0,x a ∈时,()f x 的取值范围为30,2⎡⎤⎢⎥⎣⎦,求实数a 的取值范围.【答案】(1)()πππ,π+Z 63k k k ⎡⎤-∈⎢⎥⎣⎦,()ππ1,Z 2122k k ⎛⎫+∈ ⎪⎝⎭(2)π2π,33⎡⎤⎢⎣⎦【解析】【分析】(1)先利用三角恒等变换将函数表达式化简,然后根据正弦的单调递增区间与对称中心的定义计算即可得解.(2)画出函数图象分析可知当且仅当12x a x ≤≤时,其中()13min 0|2x x f x ⎧⎫=>=⎨⎬⎩⎭,(){}2min 0|0x x f x =>=,满足题意,从而计算即可得解.【小问1详解】由题意()π12sin sin 2sin sin cos 322f x x x x x x ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭2311π1sin cos 22sin 222262x x x x x x ⎛⎫=+=-+=-+ ⎪⎝⎭,令()πππ2π22π+Z 262k x k k -≤-≤∈,解得()ππππ+Z 63k x k k -≤≤∈,令()ππZ 62k k x -=∈,解得()ππZ 212k x k =+∈,所以()f x 的单调递增区间与对称中心分别为()πππ,π+Z 63k k k ⎡⎤-∈⎢⎥⎣⎦,()ππ1,Z 2122k k ⎛⎫+∈ ⎪⎝⎭.【小问2详解】()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭的函数图象如图所示,由题意当[]0,x a ∈时,()f x 的取值范围为30,2⎡⎤⎢⎥⎣⎦,故当且仅当12x a x ≤≤,其中()13min 0|2x x f x ⎧⎫=>=⎨⎬⎩⎭,(){}2min 0|0x x f x =>=,令()π13sin 2622f x x ⎛⎫=-+= ⎪⎝⎭,得πsin 216x ⎛⎫-= ⎪⎝⎭,即()ππ22πZ 62x k k -=+∈,解得()ππZ 3x k k =+∈,所以()13min 0|min 3|πππZ 2,30x x f x x k x k ⎧⎫⎧⎫==>==>=⎨⎬⎨⎩∈⎬⎩⎭⎭+,令()π1sin 2062f x x ⎛⎫=-+= ⎪⎝⎭,得π1sin 262x ⎛⎫-=- ⎪⎝⎭,即()ππ22πZ 66x k k -=-+∈或()π7π22πZ 66x k k -=+∈,解得()πZ x k k =∈或()2ππZ 3x k k =+∈,所以()132π2πmin 0|min 0|ππ,Z 233x x f x x x k x k k ⎧⎫⎧⎫=>==>==+∈=⎨⎬⎨⎬⎩⎭⎩⎭或,综上所述:满足题意的实数a 的取值范围为π2π,33⎡⎤⎢⎥⎣⎦.18.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知π2sin 6⎛⎫+=+ ⎪⎝⎭b c a C .(1)求A 的值;(2)若BAC ∠的平分线与BC 交于点,D AD =ABC 面积的最小值.【答案】(1)π3A =(2)【解析】【分析】(1)根据题意,利用正弦定理和三角恒等变换化简得π1sin 62A ⎛⎫-= ⎪⎝⎭,再结合正弦函数的性质分析求解;(2)根据题意得BAD CAD ∠=∠,结合ABC ABD ACD S S S =+ ,得到()2bc b c =+,结合基本不等式,即可求解.【小问1详解】因为π2sin 6⎛⎫+=+ ⎪⎝⎭b c a C ,由正弦定理可得πsin sin 2sin sin 6⎛⎫+=+ ⎪⎝⎭B C A C ,则()sin sin sin sin sin cos cos sin sin +=++=++B C A C C A C A C C ,π312sin sin 2sin sin sin sin cos622⎛⎫⎛⎫+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭A C A C C A C A C ,即sin cos cos sin sin sin sin cos A C A C C A C A C ++=+,sin cos sin sin A C A C C -=,因为()0,πC ∈,则sin 0C ≠cos 1A A -=,整理得π1sin 62A ⎛⎫-= ⎪⎝⎭,又因为()0,πA ∈,则ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,可得ππ66A -=,所以π3A =.【小问2详解】因为AD 平分BAC ∠且AD =π6BAD CAD ∠=∠=,由ABC ABD ACD S S S =+ ,可得131111222222⨯=⨯+⨯bc c ,整理得()2bc b c =+≥,则16bc ≥,当且仅当b c =时,等号成立,故ABC 面积的最小值为11622⨯⨯=.19.已知函数()3log (0a f x x x a =->且1)a ≠,(1)求函数()f x 的单调区间;(2)若函数()f x 有最大值122log 333a -,求实数a 的值.【答案】(1)答案见解析(2【解析】【分析】(1)首先对()f x 求导,然后分01a <<和1a >讨论导函数的符号,从而即可得解.(2)结合(1)中分析可知,当且仅当1111,log 33ln 122log 3333ln a a a a a ⎛⎫>-=⎪⎝-⎭,通过构造函数()1log 3a g x x x =-,说明()max23g x g ⎛⎫=⎡⎤ ⎪⎣⎦⎝⎭即可得解.【小问1详解】由题意()()2l ,013n f x x x ax =->',分以下两种情形来讨论函数()f x 的单调区间,情形一:当01a <<时,()()201ln 0,3l 0,n a f x x x ax '<<->=,所以()f x 的单调递减区间为()0,∞+,没有单调递增区间.情形二:当1a >时,令()3201l 1n 0,n 3ln ln 3l a f x x x a x ax a -'>=-==,解得0x =>,当x ⎛∈ ⎝时,()313ln 0ln f x x a x a '-=>,当x ⎫∈+∞⎪⎪⎭时,()313ln 0ln f x x a x a '-=<,所以()f x的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭.综上所述:当01a <<时,()f x 的单调递减区间为()0,∞+,没有单调递增区间;当1a >时,()f x的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭.【小问2详解】由题意若函数()f x 有最大值122log 333a -,则由(1)可知当且仅当1a >时,()f x 有最大值()maxf x f =⎡⎤⎣⎦,因此3111log 122log l 33ln 33l og 33n a a a f a a ⎛⎫==---=⎭ ⎪⎝,不妨令()1log 3a g x x x =-,求导得()()113ln 1,0,13ln 3ln x ag x x a x a x a -'=-=>>,令()13ln 03ln x a g x x a -'==,解得103ln x a=>,当10,3ln x a ⎛⎫∈ ⎪⎝⎭时,()13ln 03ln x a g x x a -'=>,当1,3ln x a ⎛⎫∈+∞ ⎪⎝⎭时,()13ln 03ln x a g x x a -'=<,所以()1log 3a g x x x =-在10,3ln a ⎛⎫ ⎪⎝⎭上单调递增,在1,3ln a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()max 111log 333l 122l l o n 3g 33n a a g x a a ⎛⎫=-=⎡⎤ ⎪⎣⎦-⎝⎭,故只能13ln 23a =,解得1ln ,12a a ==>符合题意;综上所述,满足题意的实数a.20.某城市平面示意图为四边形ABCD (如图所示),其中ACD 内的区域为居民区,ABC 内的区域为工业区,为了生产和生活的方便,现需要在线段AB 和线段AD 上分别选一处位置,分别记为点E 和点F ,修建一条贯穿两块区域的直线道路EF ,线段EF 与线段AC 交于点G ,EG 段和GF 段修建道路每公里的费用分别为10万元和20万元,已知线段AG 长2公里,线段AB 和线段AD 长均为6公里,π,6∠⊥=AB AC CAD ,设AEG θ∠=.(1)求修建道路的总费用y (单位:万元)与θ的关系式(不用求θ的范围);(2)求修建道路的总费用y 的最小值.【答案】(1)2020πsin sin 3θθ=+⎛⎫- ⎪⎝⎭y (2)80万元【解析】【分析】(1)根据题意结合正弦定理可得2sin θ=EG ,1πsin 3θ=⎛⎫- ⎪⎝⎭GF ,进而可得解析式;(2)利用三角恒等变换整理可得2π80sin 3π4sin 33θθ⎛⎫+ ⎪⎝⎭=⎛⎫+- ⎪⎝⎭y ,换元令π3sin 32θ⎛⎤⎛⎫=+∈ ⎥ ⎪ ⎝⎭⎝⎦t ,结合函数单调性求最值.【小问1详解】在Rt AEG △中,因为sin ∠=AG AEG EG ,可得2sin sin θ==∠AG EG AEG ,在AFG 中,可知π3θ∠=-AFG ,由正弦定理sin sin =∠∠GF AGGAF AFG,可得sin 1πsin sin 3θ⋅∠==∠⎛⎫- ⎪⎝⎭AG GAFGF AFG,所以20201020πsin sin 3θθ=+=+⎛⎫- ⎪⎝⎭y EG GF .【小问2详解】由(1)可知:22020203cos πsin sin 3cos sin 3sin cos sin sin 3θθθθθθθθ=+=+⎛⎫--- ⎪⎝⎭y2ππ80sin 80sin 332ππ2cos 214sin 333θθθθ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭,因为π03θ<<,则ππ2π,333θ⎛⎫+∈ ⎪⎝⎭,令π3sin 32θ⎛⎤⎛⎫=+∈ ⎥ ⎪ ⎝⎭⎝⎦t ,则280803434==--t y t t t,且34,==-y t y t 在3,12⎛⎤ ⎥ ⎝⎦上单调递增,可知34y t t =-在3,12⎛⎤ ⎥ ⎝⎦上单调递增,所以280803434==--t y t t t 在3,12⎛⎤ ⎥ ⎝⎦上单调递减,当1t =,即π6θ=时,修建道路的总费用y 取到最小值80万元.21.已知函数()[]e sin sin ,π,0xf x x x x x =+-∈-(1)求()f x 的零点个数;(2)若()40k f x -≤恒成立,求整数k 的最大值.【答案】(1)2个(2)1-【解析】【分析】(1)令()e sin sin 0xf x x x x =+-=可得e sin 1x x x =-,利用导数判断出函数()e 1xg x x =-在[]π,0x ∈-上的单调性,利用函数与方程的思想画出函数()e 1x g x x =-与sin y x =在[]π,0-内的图象,根据交点个数即可求得()f x 的零点个数;(2)易知()e 1x x ≥+,sin x x ≥在[]π,0x ∈-上恒成立,则可得()()()e 1sin 11xf x x x x x x =+-≥++-,求出221y x x =-++在[]π,0x ∈-上的最小值即可得2π2π14k -++≤,便可知整数k 的最大值为1-.【小问1详解】根据由题意可知,令()e sin sin 0xf x x x x =+-=,又[]π,0x ∈-,整理可得e sin 1xx x =-;令()[]e ,π,01x g x x x ∈=--,则()()()()()22e e 112e 1x x x x x x g x x =-----'=,显然当[]π,0x ∈-时,()()()2e 012x x g x x -=-'<恒成立,所以可得()e 1x g x x =-在[]π,0-上单调递减,且()e 01xx g x =-<在[]π,0x ∈-上恒成立,易知函数sin y x =在ππ,2⎡⎤--⎢⎥⎣⎦上单调递减,在π,02⎡⎤-⎢⎥⎣⎦上单调递增;且()()πe sin π0ππ1g ---=-=+>,()πsin 1,sin 00120g ⎛⎫-=-=- ⎪⎝=⎭>画出函数()[]e ,π,01xg x x x ∈=--和函数[]sin ,π,0y x x =∈-在同一坐标系下的图象如下图所示:由图可知函数()e 1xg x x =-与sin y x =在区间[]π,0-上有两个交点,即可得函数()[]e sin sin ,π,0xf x x x x x =+-∈-有两个零点;【小问2详解】若()40k f x -≤恒成立,可得()4f x k ≤,令()[]π,0sin ,h x x x x -∈-=,则()1cos 0h x x '=-≥在[]π,0-上恒成立,即可得()sin h x x x =-在[]π,0-上单调递增,所以()()sin 00h x x x h =-≤=,所以sin 0x x -≤在[]π,0-上恒成立,即sin x x ≥;令()()[]0e 1,π,x x x x ϕ∈-=-+,则()e 10xx ϕ'=-≤在[]π,0-上恒成立,即()()e 1x x x ϕ=-+在[]π,0-上单调递减,即()()()e 100xx x ϕϕ=-+≥=,所以()e 1xx ≥+在[]π,0-上恒成立,可得()()()2e sin sin e 1sin 1121x xf x x x x x x x x x x x =+-=+-≥++-=-++;易知函数221y x x =-++在[]π,0x ∈-上单调递增,因此2min π2π1y =-++,即只需2min π2π14y k =-++≥即可得2π2π14k -++≤,易知()2π2π1 2.57961,044-++-≈∈-,所以1k ≤-;注意到,由(1)可知,由()f x 有两个零点可知,必存在[]0π,0x ∈-,使得()00f x <,所以当0k ≥时,()()0040k f x f x -≥->,故()40k f x -≤不恒成立;综上,整数k 的最大值为1-.22.已知函数()2e 2ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭有三个极值点123,,x x x ,且123x x x <<.(1)求实数k 的取值范围;(2)若2是()f x 的一个极大值点,证明:()()23131ef x f x k k x x -<--.【答案】(1)22e e e,,22⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭(2)证明见解析;【解析】【分析】(1)利用函数极值点个数可得()()32e x x f x k x x--⋅'=在()0,∞+上至少有三个实数根,即可知e x k x =在()0,∞+有两个不等于2的不相等的实数根;利用导数求出()()e ,0,x g x x x=∈+∞的单调性并在同一坐标系下画出函数()g x 与函数y k =的图象即可求得实数k 的取值范围;(2)根据(1)中的结论可得22x =,将要证明的不等式化为131ek x x <,利用分析法可得需证明311e x x -<,由()g x 的单调性可知()()()3113e x g x g g x -=<,化简可得313e 01ln x x ---<,构造函数()1e ,11ln x h x x x -=-->即可得出证明.【小问1详解】根据题意可知,函数()f x 的定义域为()0,∞+,则()()()224332e e e 222221e x x x x x f x k k x x x x x x kx x x x x -⎛⎫'⎭-⋅-⋅--=--+=-⋅=⎪⋅ ⎝,由函数()f x 有三个极值点123,,x x x 可知()()3e 02x x f x xk x -'-⋅==在()0,∞+上至少有三个实数根;显然()20f '=,则需方程3e 0x kx x-=,也即e 0x kx -=有两个不等于2的不相等的实数根;由e 0xkx -=可得e xk x =,()0,x ∈+∞,令()()e ,0,xg x x x =∈+∞,则()()()2e 1,0,x x g x x x-'=∈+∞,显然当()0,1x ∈时,()0g x '<,即()g x 在()0,1上单调递减;当()1,x ∈+∞时,()0g x '>,即()g x 在()1,+∞上单调递增;所以()()1e g x g ≥=,画出函数()()e ,0,xg x x x=∈+∞与函数y k =在同一坐标系下的图象如下图所示:由图可得e k >且2e 2k ≠时,e xk x=在()0,∞+上有两个不等于2的相异的实数根,经检验可知当22e e e,,22k ⎛⎫⎛⎫∈⋃+∞ ⎪ ⎪⎝⎭⎝⎭时,导函数()()32e x x f x k x x --⋅'=在123,,x x x 左右符号不同,即123,,x x x 均是()0f x '=的变号零点,满足题意;因此实数k 的取值范围时22e e e,,22⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【小问2详解】根据题意结合(1)中的图象,由123x x x <<可知12x ≠,若2是()f x 的一个极大值点,易知函数()f x 在()10,x 上单调递减,可知22x =;因此13,x x 是方程e x kx =的两个不相等的实数根,即3113,e e x x kx kx ==所以()33333233333e 22ln ln l 1n x k k f x k x k x k x x x x x x ⎛⎫⎛⎫=-+=--=-+ ⎪ ⎪⎝⎭⎝⎭,同理可得()111ln 1f x k x x ⎛⎫=-+ ⎪⎝⎭,所以()()333313333131313113111111ln l 11n ln ln 1l 1n x x x k x k x k x x k f x f x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫-+++-+---+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭-===----由3113,e e x x kx kx ==可知3331111331e e ln ln ln lne e ex x x x x x x k x x x k-====-,所以()()13131111331313331313131n 1l x x x x x k k x x f x f x x x x x x k x x x x x x x x --⎛⎫ ⎪⎛⎫⎛⎫-+-+- ⎪ ⎪-⎝⎭⎝⎭===⎝--⎭-又22e e e,,22k ⎛⎫⎛⎫∈⋃+∞ ⎪ ⎪⎝⎭⎝⎭,要证()()23131e f x f x k k x x -<--,即证21311ek k k x x -<⎛⎫⎪⎭-⎝,也即13111e k x x -<-,所以131e k x x <;只需证13e kx x <,即31e e x x <⋅可得311e x x -<;由(1)可得1301,1x x <<>,所以可得310e 1x -<<,且根据(1)中结论可知函数()e xg x x=在()0,1上单调递减;所以要证证311e x x -<,即证()()311ex g g x -<,又3131e e x x k x x ==,即()()13g x g x =,即证()()313e x g g x -<,即1333e13e e e x x x x --<,可得13e 3e e x x -<,即3131e ln x x --<,可得313e 01ln x x ---<,令()1e ,11ln xh x x x -=-->,则()11e 1e 1x x x h x x x --=-+-'=,令()1e 1,1x x x x u --=>,则()()1e 01x u x x -'=-<,所以()u x 在()1,+∞上单调递减,即()()10u x u <=,所以()0h x '<,即()h x 在()1,+∞上单调递减;因此()()10h x h <=,即可得证.【点睛】方法点睛:在处理函数极值点问题时,是将极值点转化成导函数的变号零点,利用函数与方程的思想转化为图像交点个数的问题;双变量问题一般是通过已有的等量关系或者构造函数转化为单变量问题,利用单调性求解即可.。
新人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)(3)
一、选择题1.下列三个关于函数()sin 2sin 23f x x x π⎛⎫=-+ ⎪⎝⎭的命题:①只需将函数()2g x x =的图象向右平移6π个单位即可得到()f x 的图象;②函数()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称; ③函数()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增. 其中,真命题的个数为( ) A .3B .2C .1D .02.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7253.如果函数()cos 3f x x θ⎛⎫=+ ⎪⎝⎭的图象关于直线2x π=对称,那么θ的最小值为( )A .6π B .4πC .3π D .2π 4.计算cos 20cos80sin160cos10+=( ).A .12B .2C .12-D .5.函数()(1)cos f x x x =的最小正周期为( ) A .πB .32π C .2πD .2π 6.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π 7.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭ C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭8.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=- ⎪⎝⎭ D .()2sin 212g x x π⎛⎫=+⎪⎝⎭9.若角α,β均为锐角,25sin α=,()4cos 5αβ+=-,则cos β=( )A .25B .25C .25或25 D .25-10.3tan 26tan 34tan 26tan 34++=( ) A .3 B .3- C .3 D .3-11.函数()()cos f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的图象如图所示.为了得到()cos g x A x ω=-的图象,只需把()y f x =的图象上所有的点( )A .向右平移12π个单位长度 B .向右平移512π个单位长度 C .向左平移12π个单位长度D .向左平移512π个单位长度 12.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫-⎪⎝⎭C .,012π⎛⎫⎪⎝⎭D .,03π⎛⎫⎪⎝⎭二、填空题13.已知22034sin παα=<<,,则sin cos αα-=_____________________. 14.若tan 4α=,则2cos 2sin 2αα+= ________.15.已知()sin()cos()1f x a x b x παπβ=++-+,其中α,β,a ,b 均为非零实数,若()20202f =,则()2021f =________. 16.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 17.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______.18.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π上有且仅有3个极大值点;②()f x 在(0,2)π上有且仅有2个极小值点:③()f x 在(0,2)π上单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中结论正确的是______.(填写所有正确结论的序号). 19.已知7sin cos 17αα+=,()0,απ∈,则tan α= ________. 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知向量()cos ,sin m x x =,()cos x n x =,设函数()12f x m n =⋅-,π0,3x ⎡⎤∈⎢⎥⎣⎦. (1)讨论()f x 的单调性; (2)若方程()23f x =有两个不相等的实数根1x ,2x ,求()12cos x x +,()12cos x x -的值.22.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.23.已知函数()sin 1f x x x =++. (Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.24.在①函数()()sin 20,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象向右平移6π个单位长度得到()g x 的图像,()g x 图像关于,012π⎛⎫⎪⎝⎭对称;②函数()()12cos sin 062f x x x πωωω⎛⎫=+-> ⎪⎝⎭这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,求a 的取值范围; (2)求函数()f x 在[]0,2π上的单调递增区间. 25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间;(2)若23f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值.26.已知函数())2cos cos 1f x xx x =-+(1)求函数()f x 的最小正周期及单调递增区间. (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】先对函数()f x 进行化简,得到()26f x x π⎛⎫- ⎪⎝⎭,对于①运用三角函数图像平移进行判断;对于②计算出函数()f x 的对称中心进行判断;对于③计算出函数()f x 的单调增区间进行判断. 【详解】因为1()sin 2sin 2sin 22sin 2322f x x x x x x π⎛⎫=-+=-+ ⎪⎝⎭3sin 222x x =26x π⎛⎫=- ⎪⎝⎭对于①,将函数()2g x x =的图像向右平移6π个单位可得函数23y x π⎛⎫=- ⎪⎝⎭的图像,得不到()26f x x π⎛⎫=- ⎪⎝⎭,故①错误; 对于②,令()26x k k Z ππ-=∈,解得()122k x k Z ππ=+∈,故无论k 取何整数,函数()f x 的图像不会关于点5,012π⎛⎫⎪⎝⎭对称,故②错误; 对于③,当()222262k x k k Z πππππ-+≤-≤+∈,即()63k x k k Z ππππ-+≤≤+∈时函数()f x 递增,当0k =时,()f x 的一个递增区间为,63ππ⎡⎤-⎢⎥⎣⎦,故③正确.只有1个命题正确. 故选:C 【点睛】思路点睛:解答此类题目需要熟练掌握正弦型函数的单调性、对称性,以及三角函数的图像平移,在计算单调区间和对称中心时要能够通过整体代入计算求出结果,如()222262k x k k Z πππππ-+≤-≤+∈等.2.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果.【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.3.A解析:A 【分析】利用余弦函数的对称轴以及整体思想可得:θ的表达式,进而得到θ的最小值. 【详解】由题意函数()cos 3f x x θ⎛⎫=+ ⎪⎝⎭的图象关于直线2x π=对称,则有 1,32k πθπ⋅+= 解得 θ=k π6π-,k ∈Z ,所以由此得|θmin 6π=.故选:A . 【点睛】方法点睛:求正余弦函数的对称轴及对称中心一般利用整体思想求解4.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .5.C解析:C 【分析】由切化弦,及两角和的正弦公式化简函数,然后由正弦函数的周期性得结论. 【详解】 由已知,()(1)cos f x x x =+cos x x =+12cos 2x x ⎛⎫=+⎪⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭, ∴最小正周期为221T ππ==, 故选:C .6.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.7.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.8.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, ∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 9.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++435555=-⨯+⨯=. 故选:B .10.C解析:C 【分析】利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 【详解】26tan34tan 26tan34︒︒+︒+︒26tan 34tan(2634)(1tan 26tan 34)=︒︒+︒+︒-︒︒26tan 34tan 26tan 34)=︒︒+-︒︒26tan3426tan34=︒︒︒︒=故选:C .11.B解析:B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【详解】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈,所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【点睛】关键点点睛:本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.12.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A二、填空题13.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:3-【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以sin cos αα-====,故答案为: -14.1【分析】把求值式转化为关于的二次齐次分式然后转化为代入求值【详解】∵∴故答案为:1【点睛】方法点睛:本题考查二倍角公式考查同角间的三角函数关系在已知求值时对关于的齐次式一般转化为关于的式子再代入值解析:1 【分析】把求值式转化为关于sin ,cos αα的二次齐次分式.然后转化为tan α,代入求值. 【详解】 ∵tan 4α=,∴222222cos 4sin cos 14tan 144cos 2sin 21sin cos tan 141ααααααααα+++⨯+====+++.故答案为:1. 【点睛】方法点睛:本题考查二倍角公式,考查同角间的三角函数关系.在已知tan α求值时,对关于sin ,cos αα的齐次式,一般转化为关于tan α的式子.再代入tan α值计算.如一次齐次式:sin cos sin cos a b c d αααα++,二次齐次式:2222sin sin cos cos sin sin cos cos a b c d e f αααααααα++++, 另外二次式22sin sin cos cos m n p αααα++也可化为二次齐次式.15.0【分析】由题设条件结合周期性及诱导公式运算即可得解【详解】由题意所以所以故答案为:0解析:0 【分析】由题设条件结合周期性及诱导公式运算即可得解. 【详解】由题意,()sin(2020)cos(2020)1sin cos()12020a b a b f παπβαβ++-++-=+=sin cos 12a b αβ=++=,所以sin cos 1αβ+=a b ,所以()sin(2021)cos(202)201211f a b παπβ++-+=sin()cos()1sin cos 1110a b a b παπβαβ==++-+-+=-+=-.故答案为:0.16.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 17.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 18.①④【分析】作出函数的图象根据在有且仅有5个零点再逐项判断【详解】如图所示:由图象可知在上有且仅有3个极大值点故①正确;在上可能有3个极小值点故②错误;因为函数在有且仅有5个零点所以解得故④正确;因解析:①④ 【分析】作出函数的图象,根据()f x 在[0,2]π有且仅有5个零点,再逐项判断. 【详解】 如图所示:由图象可知()f x 在(0,2)π上有且仅有3个极大值点,故①正确; ()f x 在(0,2)π上可能有3个极小值点,故②错误;因为函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点,所以2429255πππωω≤<,解得1229510ω≤<,故④正确;因为()0,2x π∈,所以,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭,若()f x 在(0,2)π上单调递增,则252πππω+<,解得320ω<,不符合1229510ω≤<,故③错误;故答案为:①④ 【点睛】关键点点睛:本题的关键是作出函数的图象,根据零点的个数确定ω的范围.19.【分析】根据已知条件求得的值由此求得的值【详解】依题意两边平方得而所以所以由解得所以故答案为:【点睛】知道其中一个可通过同角三角函数的基本关系式求得另外两个在求解过程中要注意角的范围 解析:158-【分析】根据已知条件求得sin ,cos αα的值,由此求得tan α的值. 【详解】依题意7sin cos 17αα+=,两边平方得 4924012sin cos ,2sin cos 0289289αααα+==-<, 而()0,απ∈,所以sin 0,cos 0αα><,所以23sin cos 17αα-====. 由7sin cos 1723sin cos 17αααα⎧+=⎪⎪⎨⎪-=⎪⎩解得158sin ,cos 1717αα==-, 所以sin 15tan cos 8ααα==-. 故答案为:158-【点睛】sin cos ,sin cos αααα±知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.20.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,cos 1a≤≤2cos 2a ≤≤,则1122cos 2a ≤≤,即122k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈ ⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==,由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)π0,6x ⎡⎤∈⎢⎥⎣⎦时,()f x 单调递增;ππ,63x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递减;(2)()121cos 2x x +=,()122cos 3x x -=. 【分析】(1)根据平面向量的数量积和三角恒等变换,求出函数()f x 的解析式,再根据x 的范围,即可得到()f x 的单调性; (2)由方程()23f x =有两个不相等的实数根1x 、2x ,根据对称性求出12x x +的值,再计算()12cos x x +和()12cos x x -的值即可. 【详解】(1)因为向量()cos ,sin m x x =,()cos x n x =,所以函数()12f x m n =⋅-21cos cos 2x x x =-1cos 212222x x +=+-πcos 23x ⎛⎫=- ⎪⎝⎭,π0,3x ⎡⎤∈⎢⎥⎣⎦,当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π203x -=,解得π6x =, 所以π0,6x ⎡⎤∈⎢⎥⎣⎦时,即ππ2,033x ⎡⎤-∈-⎢⎥⎣⎦时,()f x 单调递增, ππ,63x ⎛⎤∈ ⎥⎝⎦时,即ππ20,33x ⎛⎤-∈ ⎥⎝⎦时,()f x 单调递减;(2)当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦;所以π1cos 2,132x ⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即()1,12f x ⎡⎤∈⎢⎥⎣⎦; 又方程()23f x =在π0,3x ⎡⎤∈⎢⎥⎣⎦上有两个不相等的实数根1x 、2x , 所以12ππ2220033x x ⎛⎫⎛⎫-+-=⨯= ⎪ ⎪⎝⎭⎝⎭,解得12π3x x +=, 所以()12π1cos cos 32x x +==; 由12π3x x =-, 所以()122πcos cos 23x x x ⎛⎫-=- ⎪⎝⎭2πcos 23x ⎛⎫=- ⎪⎝⎭()223f x ==.【点睛】解题的关键是熟练掌握三角函数的图象与性质、数量积公式、三角恒等变换公式,并灵活应用,()23f x =需结合余弦函数的对称性与值域进行求解,综合性较强,属中档题. 22.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣, 解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 23.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤.【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出;(Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解. 【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++,由()=2sin()113f παα++=,得sin(+)03πα=,又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤,∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或5252633x πππ≤+≤, ∴24x ππ-≤≤-,或122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解. 24.(1),63ππ⎡⎤⎢⎥⎣⎦;(2)06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【分析】先选条件①或条件②,结合函数的性质及图像变换,求得函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭, (1)由[]0,x α∈,得到2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,根据由正弦函数图像,即可求解; (2)根据函数正弦函数的形式,求得36k x k ππππ-+≤≤+,k Z ∈,进而得出函数的单调递增区间. 【详解】 方案一:选条件①由函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,解得1ω=, 所以()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤,所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.方案二:选条件②: 由()12cos sin 62f x x x πωω⎛⎫=+- ⎪⎝⎭12cos sin cos cos sin 662x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 2cos 222x x x x x ωωωωω=+-=+sin 26x πω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,所以1ω=, 可得()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤,所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【点睛】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为()sin()f x A wx ϕ=+或()cos()f x A wx ϕ=+的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2). 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫- ⎪⎝⎭的值; 【详解】(1)1()cos2cos 2cos2cos2232f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos22223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由已知得23f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 39πα⎤⎛⎫=-+=- ⎪⎥⎝⎭⎦. 【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角.26.(1)T π=,,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)()()max min 2,1f x f x ==-. 【分析】(1)先利用二倍角公式和辅助角公式化简()f x ,然后根据周期计算公式求解出T ,再采用整体替换法求解出单调递增区间;(2)采用整体替换的方法先分析出26x π-的取值范围,然后再结合正弦函数的单调性,求解出()f x 的最值.【详解】(1)因为())22cos cos 1212cos 2cos 2f x x x x x x x x =-+=+-=-, 所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭,所以最小正周期22T ππ==, 令222,262k x k k Z πππππ-≤-≤+∈,所以,63k x k k Z ππππ-≤≤+∈, 所以单调递增区间为:,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦; (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 又因为sin y x =在,62ππ⎡⎫-⎪⎢⎣⎭上单调递增,在5,26ππ⎛⎤ ⎥⎝⎦上单调递减, 所以()max 2sin 22f x π==,此时3x π=,又()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,此时0x =, 综上可知:()()max min 2,1f x f x ==-.【点睛】思路点睛:求解形如()sin y A ωx φ=+在指定区间上的值域或最值的一般步骤如下: (1)先确定t x ωϕ=+这个整体的范围;(2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值.。
上海 华东师范大学第一附属初级中学必修第一册第五单元《三角函数》测试卷(含答案解析)
一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 的图像的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4πx =-C .524x π=-D .12x π=3.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-4.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( ) A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭5.已知函数 ()cos f x x a x =+,[0,]3x π∈的最小值为a ,则实数a 的取值范围是( ) A .[0,2] B .[2,2]-C .(],1-∞D .(],3-∞6.已知3πin 325s α⎛⎫+= ⎪⎝⎭,0απ<<,则tan α=( ) A .43-B .34-C .34D .437.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=- ⎪⎝⎭ D .()2sin 212g x x π⎛⎫=+⎪⎝⎭8.已知将向量13,2a ⎛= ⎝⎭绕起点逆时针旋转4π得到向量b ,则b =( ) A .626244⎛- ⎝⎭B .626244⎛ ⎝⎭C .266244⎛⎫⎪⎪⎝⎭ D .262644⎛⎝⎭9.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫⎪⎝⎭B .,06π⎛⎫- ⎪⎝⎭C .,012π⎛⎫ ⎪⎝⎭D .,03π⎛⎫ ⎪⎝⎭10.已知3cos()45x π-=-,177124x ππ<<,则2sin 22sin 1tan x xx-+的值为( ) A .2875B .21100-C .2875-D .2110011.函数cos 2y x =的单调减区间是( )A .ππ,π,Z 2k k k ⎡⎤+∈⎢⎥⎣⎦B .π3π2π,2π,Z22k k k ⎡⎤++∈⎢⎥⎣⎦ C .[]2π,π2π,Z k k k +∈ D .πππ,π,Z44k k k ⎡⎤-+∈⎢⎥⎣⎦12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.田忌赛马是中国古代对策论与运筹思想的著名范例,故事中齐将田忌与齐王赛马,孙膑献策以下马对齐王上马,以上马对齐王中马,以中马对齐王下马,结果田忌一负两胜从而获胜,该故事中以局部的牺牲换取全局的胜利成为军事上一条重要的用兵规律,在比大小游戏中(大者为胜),已知我方的三个数为cos a θ=,sin cos b θθ=+,cos sin c θθ=-,对方的三个数以及排序如表:当04θ<<时,则我方必胜的排序是______.14.已知函数7()4sin 2066f x x x ππ⎛⎫⎛⎫=+≤≤ ⎪⎪⎝⎭⎝⎭,若函数()()F x f x a =-恰有3个零点,分别为()123123,,x x x x x x <<,则1232x x x ++的值为________.15.已知函数sin cos y x x =-,其图象的对称轴中距离y 轴最近的一条对称轴方程为x =________.16.设ABC 的内角,,A B C 所对的边分别为,,,a b c 若2sin cos sin A B C =,则ABC 的形状为________.17.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______. 18.设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________. ①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点. 19.已知一扇形的圆心角为3π,弧长是cm π,则扇形的面积是__________2cm . 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数()22sin cos 2sin 1f x x x x =-+.(1)求4f π⎛⎫⎪⎝⎭的值; (2)求()f x 的最小正周期;(3)求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值.22.已知()()()()1122,,,A x f x B x f x 是函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,P ,当()()124f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的解析式; (2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,不等式()()2mf x m f x +≥恒成立,求实数m 的取值范围.23.已知向量1cos 2cos 2m x x x ⎛⎫=- ⎪ ⎪⎝⎭,311,sin cos 2n x x ⎛⎫=- ⎪ ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 取得最大值时x 取值的集合;(2)设A ,B ,C 为锐角三角形ABC 的三个内角,若3cos 5B =,()14f C =-,求cos A 的值.24.已知函数()211cos cos 24f x x x x =-,(x ∈R ) (1)当函数()f x 取得最大值时,求自变量x 的取值集合; (2)用五点法做出该函数在[]0,π上的图象; (3)写出函数()f x 单调递减区间. 25.已知函数()()1cos sin cos 2f x x x x =+-. (Ⅰ)若0,2πα<<且1sin 3α=.求()f α; (Ⅱ)求函数()f x 的最小正周期及单调递增区间. 26.已知22sin 2sin12αα=-.(1)求sin cos cos2ααα+的值;(2)已知()0,απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭,且2tan 6tan 1ββ-=,求2αβ+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=-⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C2.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+⎪⎝⎭, 再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A3.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .4.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .5.D解析:D 【分析】通过参变分离转化为2cos222sin tan22x x a x ≤==,即min tan 2a x ⎛⎫ ⎪≤ ⎪ ⎪⎝⎭. 【详解】()cos f x x a x =+的最小值是a ,并且观察当0x =时,()0f a =,所以当0,3x π⎡⎤∈⎢⎥⎣⎦cos x a x a +≥恒成立,即()1cos a x x -≤,当0x =时,a R ∈,当0,3x π⎛⎤∈ ⎥⎝⎦时,2cos221cos 2sin tan 22x xx a x x x ≤==-恒成立,即mintan 2a ≤ ⎪⎝⎭0,3x π⎛⎤∈ ⎥⎝⎦时,tan 2xtan 2的最小值是3,所以3a ≤.故选:D 【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.6.A解析:A 【分析】根据诱导公式,可得cos α的值,根据同角三角函数的关系,结合α的范围,可求得sin α的值,即可求得答案.【详解】因为3πin 325s α⎛⎫+=⎪⎝⎭,所以3cos 5α=-,所以4sin 5α===±, 又0πα<<,所以α为第二象限角,所以4sin 5α 所以sin tan s 43co ααα==-. 故选:A .7.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦,∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, ∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 8.C解析:C 【分析】先求出a 与x 轴正方向的夹角为3πθ=,即可得b 与x 轴正方向的夹角为73412πππα=+=, 再利用向量坐标的定义即可求解. 【详解】设a 的起点是坐标原点,a 与x 轴正方向的夹角为θ,1a =由13,22a ⎛= ⎝⎭可得2tan 12θ==3πθ=, 设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b =因为7sinsin sin cos cos sin 12434343y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭7coscos cos cos sin sin 12434343x πππππππ⎛⎫==+=⨯-⨯=⎪⎝⎭故2,44b ⎛⎫-= ⎪ ⎪⎝⎭, 故选:C.9.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A10.A解析:A 【分析】 根据177124x ππ<<以及3cos()45x π-=-求出4sin()45x π-=-,进而求出4tan()43x π-=,根据诱导公式和二倍角的余弦公式得7sin 225x =-,然后利用恒等变换公式将2sin 22sin 1tan x xx-+化简为sin 2tan()4x x π-⋅-后,代入计算可得结果.【详解】因为177124x ππ<<,所以73642x πππ<-<, 因为3cos()45x π-=-,所以4sin()45x π-===-, sin()4tan()4cos()4x x x πππ--==-4535--43=, sin 2cos(2)cos 2()24x x x ππ⎡⎤=-=-⎢⎥⎣⎦2972cos 12142525x π⎛⎫=--=⨯-=- ⎪⎝⎭,所以2sin 22sin 1tan x x x-+2sin (cos sin )sin 1cos x x x x x-=+2sin cos (cos sin )cos sin )x x x x x x -=+sin 2(1tan )1tan x x x -=+tantan 4sin 21tan tan 4xx x ππ-=⋅+sin 2tan()4x x π=-⋅-7428()25375=--⨯=.故选:A 【点睛】本题考查了同角公式,考查了诱导公式,考查了二倍角的正弦公式,考查了两角差的正切公式,属于中档题.11.A解析:A 【分析】根据余弦函数的性质,令222,k x k k Z πππ≤≤+∈求解. 【详解】令222,k x k k Z πππ≤≤+∈, 解得2,2k x k k Z πππ≤≤+∈,所以函数cos 2y x =的单调减区间是ππ,π,Z 2k k k ⎡⎤+∈⎢⎥⎣⎦, 故选:A12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】由三角函数值的大小比较得:当时结合田忌赛马的事例进行简单的推理即可得答案【详解】因为当时故答案为:【点睛】关键点点睛:本题的关键点是当时比较出以及的大小关系利用田忌赛马的事例进行推理即可 解析:c ,b ,a【分析】由三角函数值的大小比较得:当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,结合田忌赛马的事例进行简单的推理,即可得答案. 【详解】因为当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,tan sin cos θθθ<+,sin cos θθ<. 故答案为:c ,b ,a 【点睛】关键点点睛:本题的关键点是当04πθ<<时,比较出sin tan θθ<<,以及a 、b 、c 的大小关系,利用田忌赛马的事例进行推理即可.14.【分析】令则通过正弦函数的对称轴方程求出函数的对称轴方程分别为和结合图像可知从而求得进而求得的值【详解】令则函数恰有3零点等价于的图像与直线恰有3个交点即与直线恰有3个交点设为如图函数的图像取得最值 解析:53π 【分析】 令26x t π+=,则5,62t ππ⎡⎤∈⎢⎥⎣⎦,通过正弦函数的对称轴方程,求出函数的对称轴方程分别为2t π=和32t π=,结合图像可知12t t π+=,233t t π+=,从而求得123x x π+=,2343x x π+=,进而求得1232x x x ++的值. 【详解】令26x t π+=,则5,62t ππ⎡⎤∈⎢⎥⎣⎦函数()()F x f x a =-恰有3零点,等价于()y f x =的图像与直线y a =恰有3个交点,即4sin y t =与直线y a =恰有3个交点,设为123,,t t t ,如图函数4sin y t =,5,62t ππ⎡⎤∈⎢⎥⎣⎦的图像取得最值有2个t 值,分别为2t π=和32t π=,由正弦函数图像的对称性可得1212222662t t x x ππππ+=+++=⨯=,即123x x π+=232332223662t t x x ππππ+=+++=⨯=,即2343x x π+=,故1231223452333x x x x x x x πππ++=+++=+= , 故答案为:53π. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.15.【分析】函数令求解【详解】已知函数令解得所以其图象的对称轴中距离轴最近的一条对称轴方程为故答案为: 解析:4π-【分析】 函数24y x π⎛⎫=- ⎪⎝⎭,令42x k πππ-=+求解.【详解】已知函数sin cos 24y x x x π⎛⎫=-=- ⎪⎝⎭,令,42x k k Z πππ-=+∈,解得 3,4x k k Z ππ=+∈, 所以其图象的对称轴中距离y 轴最近的一条对称轴方程为x =4π-. 故答案为:4π-16.等腰三角形【分析】由整理可得角的关系即可【详解】由的内角知所以又所以为等腰三角形故答案为:等腰三角形【点睛】此题考查两角和与差的正弦公式的正向和逆向使用属于基础题解析:等腰三角形 【分析】由()sin sin sin cos cos sin C A B A B A B π=-+=+⎡⎤⎣⎦,整理可得角的关系即可. 【详解】由ABC 的内角,,A B C 知,()C A B π=-+,所以 ()sin sin sin cos cos sin 2sin cos C A B A B A B A B π=-+=+=⎡⎤⎣⎦,sin cos cos sin 0A B A B -=,()sin 0A B -=,又()()()0,π,0,π,π,πA B A B ∈∈-∈-所以A B =,ABC 为等腰三角形. 故答案为:等腰三角形. 【点睛】此题考查两角和与差的正弦公式的正向和逆向使用,属于基础题.17.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 18.①②③【分析】对①根据即可判断①正确对②根据函数和的最小正周期即可判断②正确对③首先得到再利用二次函数的性质即可判断③正确对④令解方程即可判断④错误【详解】对①因为函数的定义域为所以是偶函数故①正确解析:①②③ 【分析】对①,根据()()f x f x -=即可判断①正确,对②,根据函数cos 2y x =和sin y x=的最小正周期即可判断②正确,对③,首先得到()2192sin 48f x x ⎛⎫=--+ ⎪⎝⎭,再利用二次函数的性质即可判断③正确,对④,令()cos 2sin 0f x x x =+=,解方程即可判断④错误. 【详解】对①,因为函数()f x 的定义域为R ,()()()cos 2sin =cos 2sin f x x x x x f x -=-+-+=,所以()f x 是偶函数,故①正确;对②,因为cos 2cos2y x x ==,最小正周期为π,sin y x =的最小正周期为π,所以函数()cos 2sin f x x x =+的最小正周期为π,故②正确; 对③,()2cos 2sin cos2sin 12sin sin f x x x x x x x =+=+=-+2192sin 48x ⎛⎫=--+ ⎪⎝⎭.因为0sin 1x ≤≤,当sin 1x =时,()f x 取得最小值为0,故③正确. 对④,令()cos 2sin 0f x x x =+=,即212sin sin 0x x -+=,解得sin 1x =或1sin 2x =-(舍去). 当[]0,2x π∈时,sin 1x =,解得2x π=或32x π=, 所以()f x 在[]0,2π上有2个零点.故④错误. 故选:①②③19.【分析】先由弧长公式求出扇形所在圆的半径再根据扇形面积公式即可得出结果【详解】因为一扇形的圆心角为弧长是所以其所在圆的半径为因此该扇形的面积是故答案为:解析:32π【分析】先由弧长公式求出扇形所在圆的半径,再根据扇形面积公式,即可得出结果.【详解】因为一扇形的圆心角为3π,弧长是cm π, 所以其所在圆的半径为33r ππ==,因此该扇形的面积是1133222S lr ππ==⨯⨯=. 故答案为:32π. 20.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤122k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞;④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)1;(2)π;(3). 【分析】(1)由题意利用三角恒等变换化简函数的解析式,从而求得4f π⎛⎫⎪⎝⎭的值 (2)由(1)得,利用正弦函数的周期性,得出结论; (3)由(1)得,利用正弦函数的单调性,得出结论; 【详解】(1)()22sin cos 2sin 1sin 2cos2f x x x x x x =-+=+π24x ⎛⎫=+ ⎪⎝⎭∴πππ1424f ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭或直接求2ππππ2sin cos 2sin 114444f ⎛⎫=-+=⎪⎝⎭. (2)由(1)得,所以()f x 的最小正周期为2π2ππ2T ω=== (3)由(1)得,∵π02x -≤≤,∴3πππ2444x -≤+≤,∴πsin 24x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦当ππ242x +=-,即3π8x =-时,()f x 取得最小值为. 【点睛】关键点睛:解题的关键在于,利用三角恒等变换化简函数的解析式得到()π24f x x ⎛⎫=+ ⎪⎝⎭,进而利用正弦函数的性质求解,属于中档题22.(1)()2sin 33f x x π⎛⎫=- ⎪⎝⎭;(2)13m ≥. 【分析】(1)由ϕ的终边上的点可求出ϕ,再由题可得23T π=,即可求出ω,得出解析式;(2)根据0,6x π⎡⎤∈⎢⎥⎣⎦可得()1f x ≤≤,不等式化为()212m f x ≥-+,求出()212f x -+的最大值即可.【详解】(1)角ϕ的终边经过点(1,P ,∴tan ϕ= 又02πϕ-<<,∴3πϕ=-.∵当()()124f x f x -=时,12x x -的最小值为3π, ∴23T π=,即223ππω=,∴3ω=, ∴()2sin 33f x x π⎛⎫=- ⎪⎝⎭. (2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,3,336x πππ⎡⎤-∈-⎢⎥⎣⎦,∴()1f x ≤≤,于是()20f x +>,于是()()2mf x m f x +≥即为()()()2122f x m f x f x ≥=-++,由()1f x ≤≤,得()212f x -+的最大值为13.∴实数m 的取值范围是13m ≥.【点睛】本题考查正弦型函数的性质,解题的关键是由当()()124f x f x -=时,12x x -的最小值为3π得出23T π=,以便求出解析式,第二问得出()1f x ≤≤,将不等式化为()212m f x ≥-+.23.(1)|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(2)310【分析】(1)利用三角函数公式和平面向量数量积对函数简化,再根据三角函数的性质求得函数取得最大值时x 取值的集合;(2)根据已知条件求得的B ,C 大小,然后利用()cos cos A B C =-+展开即可求解. 【详解】(1)21()cos 2cos 2f x m n x x x ⎫=⋅=+-⎪⎪⎝⎭2231cos 2sin cos sin cos 442x x x x x =++-31cos 211cos 2cos 2242424x x x x -+=+⨯+⨯-311cos 2sin 22442223x x x π⎛⎫=-+=-- ⎪⎝⎭, 要使函数()f x 取得最大值,需要满足sin 23x π⎛⎫- ⎪⎝⎭取得最小值, 所以()2232x k k Z πππ-=-+∈,所以12x k ππ=-()k Z ∈,所以当()f x 取得最大值时x 取值的集合为|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭, (2)因为A ,B ,C 为锐角三角形ABC 的三个内角,3cos 5B =所以4sin 5B ==,由()11sin 22234f C C π⎛⎫=--=- ⎪⎝⎭,得sin 232C π⎛⎫-=⎪⎝⎭, 因为22333C πππ-<-<所以233C ππ-=,解得3C π=,所以()3143cos cos cos cos sin sin 525210A B C B C B C =-+=-+=-⨯+⨯=所以cos A = 【点睛】关键点点睛:本题的关键点是熟记两角和差的正弦余弦公式,辅助角公式,诱导公式,同角三角函数基本关系,向量的数量积的坐标表示,注意三角形是锐角三角形以确定角的范围.24.(1),6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)图象见解析;(3)()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【分析】利用二倍角和辅助角公式可化简得到()1sin 226f x x π⎛⎫=+ ⎪⎝⎭, (1)令()2262x k k Z πππ+=+∈,解方程可求得所求的取值集合;(2)利用五点法得到特殊点对应的函数值,由此可画出函数图象; (3)令()3222262k x k k Z πππππ+≤+≤+∈,解不等式求得x 的范围即可得到所求区间. 【详解】()11cos 22sin 2426f x x x x π⎛⎫==+ ⎪⎝⎭,(1)当()2262x k k Z πππ+=+∈时,()f x 取得最大值,此时()6x k k Z ππ=+∈,x 的取值集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)由题意可得表格如下:(3)令()3222262k x k k Z πππππ+≤+≤+∈,解得:()263k x k k Z ππππ+≤≤+∈, ()f x ∴的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【点睛】方法点睛:求解正弦型函数()sin y A ωx φ=+的单调区间、对称轴和对称中心、最值点问题时,通常采用整体对应的方法,即令x ωϕ+整体对应sin y x =的单调区间、对称轴和对称中心、最值点即可. 25.(Ⅰ427+;(Ⅱ)最小正周期为π.3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【分析】 (Ⅰ)根据1sin 3α=以及α的范围,得到cos α,代入到()f α中,得到答案; (Ⅱ)对()f x 进行整理化简,得到()2π24f x x ⎛⎫=+ ⎪⎝⎭,根据正弦型函数的图像和性质,求出其周期和单调减区间. 【详解】(Ⅰ)解:因为π02α<<.且1sin 3α=.所以22cos 1sin 3αα=-=. 故()()1427cos sin cos 2f αααα+=+-=(Ⅱ)解:因为 ()21sin cos cos 2f x x x x =+-11cos 21sin 2222x x +=+- 112πsin 2cos 22224x x x ⎛⎫=+=+ ⎪⎝⎭. 所以函数()f x 的最小正周期为π.设π24t x =+.由y t =的单调递增区间是ππ2π 2π22k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈. 令πππ2π22π242k x k -++≤≤.解得 3ππππ88k x k -+≤≤.k Z ∈. 故函数()f x 的单调递增区间为3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈. 【点睛】本题考查同角三角函数关系,利用二倍角公式、降幂公式、辅助角公式对三角函数进行化简,求正弦型函数的周期和单调区间,属于基础题.26.(1)15;(2)74π. 【分析】 (1)先求出1tan 2α=-,再化简22tan 1tan sin cos cos 2tan 1αααααα+-+=+即得解; (2)先求出1tan 23β=-,再求出tan(2)1αβ+=-,求出52,23παβπ⎛⎫+∈ ⎪⎝⎭,即得解.【详解】(1)由已知得2sin cos αα=-,所以1tan 2α=- 222222sin cos cos sin tan 1tan 1sin cos cos 2sin cos tan 15αααααααααααα+-+-+===++ (2)由2tan 6tan 1ββ-=,可得22tan 1tan 21tan 3βββ==--, 则11tan tan 223tan(2)1111tan tan 2123αβαβαβ--++===---⨯. 因为0,2πβ⎛⎫∈ ⎪⎝⎭,所以()20,βπ∈,又1tan 23β=->52,6πβπ⎛⎫∈ ⎪⎝⎭, 因为()0,απ∈,1tan 2α=->, 则5,6παπ⎛⎫∈ ⎪⎝⎭,则52,23παβπ⎛⎫+∈ ⎪⎝⎭, 所以724παβ+=. 【点睛】易错点睛:本题容易得出两个答案,724παβ+=或34π.之所以得出两个答案,是没有分析缩小,αβ的范围,从而得到52,23παβπ⎛⎫+∈ ⎪⎝⎭.对于求角的大小的问题,一般先求出角的某三角函数值,再求出角的范围,再得到角的大小.。
湖北华中师范大学第一附属中学2025届高三上学期十月月度检测数学试卷(解析版)
华中师大一附中2024-2025学年度十月月度检测数学试题一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一时限:120分钟满分:150分项是符合题目要求的.)1. 已知集合1{(,)|||},(,)|||A x y y x B x y y x====,则A B = ( ) A. {1,1}− B. {(1,1),(1,1)}−C. (0,)+∞D. (0,1)【答案】B 【解析】【分析】先解方程组,得出点的坐标即可得出交集.【详解】,1y x y x ==,解得1,1x y = = ,或1,1x y =− = , 所以{(1,1),(1,1)}A B=− , 故选:B .2. 已知函数()*(2),nf x x n =−∈N ,则“1n =”是“()f x 是增函数”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】由当21,n k k =+∈N 时,ff ′(xx )≥0,可得()(2)nf x x =−是增函数,即可得到答案.【详解】由()(2)nf x x =−,得()1(2)n f x n x −−′=,则当21,n k k =+∈N 时,ff ′(xx )≥0,()(2)nf x x =−是增函数, 当1n =时,可得()f x 是增函数; 当()f x 是增函数时,21,n k k =+∈N ,故“1n =”是“()f x 是增函数”的充分不必要条件.3. 函数()sin cos f x a x b x =+图像的一条对称轴为π3x =,则a b=( )A.B.C.D. 【答案】A 【解析】【分析】直接利用对称性,取特殊值,即可求出a b. 【详解】由()()sin cos 0f x a x b x ω=+>的图象关于π3x =对称,可知:2π(0)()3f f =,即sin0cos0=s 3o 2π3i 2πn c s a b a b ++,则a b=故选:A .4. 已知随机变量()2~2,N ξσ,且(1)()P P a ξξ≤=≥,则19(0)x a x a x +<<−的最小值为( ) A. 5 B.112C. 203D. 163【答案】D 【解析】a ,利用基本不等式求得正确答案.【详解】根据正态分布的知识得12243a a +=×=⇒=,则03,30x x <−,19119139(3)103333x x x x x a x x x x x −+=+−+=++ −−−1161033 ≥+= , 当且仅当393x xx x−=−,即34x =时取等.故选:D5. 已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象关于原点对称,则()f x 的图象的对称轴可以为( ).A. π12x = B. π6x =C. π3x =D. 5π12x =【解析】【分析】根据题意找到函数的对称点得()π03f x f x+−=,结合特殊值法计算得a =,利用辅助角公式化简得()π2sin 23f x x=−,最后整体替换计算得到结果; 【详解】由题意可得()f x 的图象关于点π,06对称,即对任意x ∈R ,有()π03f x f x+−=,取0x =,可得()π0032af f +=+=,即a =故()πsin22sin 23f x x x x =−=−, 令ππ2π32x k −=+,k ∈Z ,可得()f x 的图象的对称轴为5ππ122k x =+,k ∈Z . 故选:D . 6. 设37a =,ln 2b =,3sin 7c =,则( )A. b c a >>B. a c b >>C. a b c >>D. b a c >>【答案】D 【解析】【分析】构造函数()πsin (0)2f x x x x =−<<,利用导数探讨单调性并比较,a c ,再利用对数函数单调性比较大小即得. 【详解】当π02x <<时,令()sin f x x x =−,求导得()1cos 0f x x ′=−>, 则函数()f x 在π(0,)2上单调递增,有()(0)0f x f >=,即有sin x x >,因此33sin 77a c =>=,显然13ln 227b a =>=>=, 所以b ac >>. 故选:D7. 已知函数()222cos (sin cos )(0)f x x x x ωωωω=−−>的图象关于直线π12x =轴对称,且()f x 在π0,3上没有最小值,则ω的值为( ) A.12B. 1C.32D. 2【答案】C 【解析】【分析】先由三角恒等变换化简解析式,再由对称轴方程解得36,2k k ω=+∈Z ,再由()f x 在π0,3上没有最小值得ω范围,建立不等式求解可得.详解】()()2222cos sin 2sin cos cos f x x x x x xωωωωω=−−+22cos sin21cos2sin2x x x x ωωωω+−=+π24x ω+,因为()f x 的图象关于直线π12x =轴对称,所以πππ1264f ω+故ππππ,642k k ω+=+∈Z ,即36,2k k ω=+∈Z , 当ππ22π42x m ω+=−+,m ∈Z ,0ω>, 即当3ππ,8m x m ωω=−+∈Z 时,函数()f x 取得最小值, 当1m =时,5π8x ω=为y轴右侧第1条对称轴. 因为()f x 在π0,3上没有最小值,所以5ππ83ω≥,即158ω≤, 故由3150628k <+≤,解得11416k −<≤,k ∈Z 故0k =,得32ω=.故选:C.8. 定义在R 上的奇函数()f x ,且对任意实数x 都有()302f x f x−−+=,()12024e f =.若()()0f x f x ′+−>,则不等式()11e xf x +>的解集是( ) 【A. ()3,+∞B. (),3−∞C. ()1,+∞D. (),1−∞【答案】C 【解析】【分析】由()f x 是奇函数,可得()f x ′是偶函数,得到()()0f x f x +′>,令()()e xg x f x =,得到()0g x ′>,得出()g x 在R 上单调递增,再由()302f x f x−−+=,求得()f x 的周期为3的周期函数,根据()12024ef =,得到()2e g =,把不等式转化为()()12g x g +>,结合函数的单调性,即可求解. 【详解】因为()f x 是奇函数,可得()f x ′是偶函数, 又因为()()0f x f x ′+−>,所以()()0f x f x +′>,令()()e xg x f x =,可得()()()e 0xg x f x f x ′′=+> ,所以()g x 在R 上单调递增,因为()302f x f x−−+=且()f x 奇函数, 可得()()23f x f x f x +=−=−,则()()3333[()]()222f x f x f x f x +=++=−+=, 所以()f x 的周期为3的周期函数,因为()()()12024674322e f f f =×+==,所以()212e e eg =×=, 则不等式()11exf x +>,即为()1e 1e xf x ++>,即()()12g x g +>, 又因为()g x 在R 上单调递增,所以12x +>,解得1x >, 所以不等式()11ex f x +>的解集为()1,+∞. 故选:C .二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 下列等式成立的是( )是A. ()21sin15cos152°−°=B. 22sin 22.5cos 22.5°−°=C. 1cos28cos32cos62cos582°°−°°=−D. (3tan10cos502°°=− 【答案】AB 【解析】【分析】应用倍角正余弦、和差角正余弦公式及诱导公式化简求值,即可判断各项的正误. 【详解】A :()21sin15cos1512sin15cos151sin 302°−°=−°°=−°=,成立;B :22sin 22.5cos 22.5cos 45°−°=−°=C :cos 28cos32cos 62cos58cos 28cos32sin 28sin 32cos(2832)°°−°°=°°−°°=°+°1cos 602°=,不成立;D :(2sin 50cos50sin100tan10cos50cos50cos10cos10−°°−°°°°=°°cos101cos10°=−=−°,不成立.故选:AB10. 已知抛物线()2:20C y px p =>,过C 的焦点F 作直线:1l x ty =+,若C 与l 交于,A B 两点,2AF FB =,则下列结论正确的有( )A. 2p =B. 3AF =C. t =或−D. 线段AB 中点的横坐标为54【答案】ABD 【解析】【分析】由直线:1l xty =+,可知焦点FF (1,0),得p 的值和抛物线方程,可判断A 选项;直线方程代入抛物线方程,由韦达定理结合2AF FB =,求出,A B 两点坐标和t 的值,结合韦达定理和弦长公式判断选项BCD.【详解】抛物线()2:20C y px p =>的焦点F 在x 轴上, 过F 作直线:1l xty =+,可知FF (1,0),则12p=,得2p =,A 选项正确; 抛物线方程为24y x =,直线l 的方程代入抛物线方程,得2440y ty −−=.设AA (xx 1,yy 1),BB (xx 2,yy 2),由韦达定理有124y y t +=,124y y =−, 2AF FB =,得122y y =−,解得12y y −12y y ==, 124y y t =+,则t =t =,C 选项错误; 则1212,2x x ==,线段AB 中点的横坐标为121252242x x ++==,D 选项正确; 12192222AB x x p =++=++=,2293332AF AB ==×=,B 选项正确.故选:ABD.11. 已知()00,P x y 是曲线33:C x y y x +=−上的一点,则下列选项中正确的是( ) A. 曲线C 的图象关于原点对称B. 对任意0x ∈R ,直线0x x =与曲线C 有唯一交点PC. 对任意[]01,1y ∈−,恒有012x <D. 曲线C 在11y −≤≤的部分与y 轴围成图形的面积小于π4【答案】ACD 【解析】【分析】将x ,y 替换为x −,y −计算即可判断A ;取0x =,可判断有三个交点即可判断B ;利用函数3y x x =−的单调性来得出300y y −的取值范围,再结合()3f x x x =+的单调性进行求解即可判断C ;利用图象的对称性和半圆的面积进行比较即可判断D .【详解】A .对于33x y y x +=−,将x ,y 替换为x −,y −,所得等式与原来等价,故A 正确; B .取0x =,可以求得0y =,1y =,1y =−均可,故B 错误; C .由330000x x y y +=−,[]01,1y ∈−,函数3y x x =−,故213y x ′=−,令2130y x ′=−=,解得:1x =,在1,x ∈− , 时,0′<y ,函数单调递减,在x ∈ 时,0′>y ,函数单调递增,所以300y y −∈ ,又因为()3f x x x =+是增函数,1528f =>,所以有012x <,故C 正确; D .当[]00,1y ∈时,3300000x x y y +=−≥,又320002x x x +≥, 32000022y y y y −≤−,所以22000x y y ≤−.曲线22x y y =−与y 轴围成半圆,又曲线C 的图象关于原点对称,则曲线C 与y 轴围成图形的面积小于π4,故D 正确. 故选:ACD .三、填空题(本大题共3小题,每小题5分,共15分)12. 若π,02α∈− ,且πcos2cos 4αα =+,则α=__________. 【答案】π12− 【解析】【分析】化简三角函数式,求出1sin 42πα +=,根据π,02α∈− 即可求解.【详解】由πcos2cos 4αα =+,得)22cos sin cos sin αααα−=−.因为π,02α ∈− ,所以cos sin 0αα−≠,则cos sin αα+,则1sin 42πα += . 由π,02α ∈−,得πππ,444α +∈− ,则ππ46α+=,解得π12α=−. 故答案为:π12−.13. 海上某货轮在A 处看灯塔B ,在货轮北偏东75°,距离为在A 处看灯塔C ,在货轮的北偏西30°,距离为C 处,货轮由A 处向正北航行到D 处时看灯塔B 在东偏南30°,则灯塔C 与D 处之间的距离为______海里.【答案】【解析】【分析】由正弦定理和余弦定理求解即可.【详解】如图:由题意75DAB ∠=°,903060ADB ∠=−°=°, 所以180756045DBA ∠=°−°−°=°,在ABD △中,由正弦定理sin sin AD AB ABD ADB =∠∠,即sin 45AD =°60AD =, 在ADC △中,30DAC ∠=°,所以CD=.故答案为:.14. 若存在实数m ,使得对于任意的[],x a b ∈,不等式2πsin cos 2sin 4m x x x m+≤−⋅恒成立,则b a −取得最大值时,sin2a b+=__________.【解析】【分析】以m 为变量,结合一元二次不等式的存在性问题可得1sin 22x ≤,解不等式结合题意得[]()7ππ,π,π,1212a b k k k⊆−+∈Z ,由此可得答案. 【详解】因为2πsin cos 2sin 4m x x x m+≤−⋅恒成立, 即2π2sin sin cos 04m x m x x−−⋅+≤恒成立, 若存在实数m ,使得上式成立,则2πΔ4sin 4sin cos 04x x x=−−≥, 则πΔ22cos 22sin 222sin 22sin 224sin 202x x x x x=−−−=−−=−≥, 可得1sin 22x ≤,可得7ππ2π22π,66k x k k −≤≤+∈Z , 解得7ππππ,1212k x k k −≤≤+∈Z , 由[]()7ππ,π,π,1212a b k k k⊆−+∈Z , 则b a −取得最大值时()7πππ,π,1212a k b k k =−=+∈Z ,此时()7ππππ1212sin sin 22k k a b k −+++==∈Z .. 【点睛】关键点点睛:双变量问题的解题关键是一次只研究其中一个变量,本题先以m 为变量,转化为存在性问题分析求解.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15. 已知函数()π4sin cos 6f x x x=+x ∈R . ,(1)求函数()f x 的单调减区间;(2)求函数()f x 在π0,2上的最大值与最小值.【答案】(1)π2ππ,π,63k k k Z++∈(2)()min 2f x =−,()max 1f x = 【解析】【分析】(1)根据三角恒等变换化简函数()f x ,再根据正弦函数的单调性结合整体思想即可得解; (2)由x 的范围求得π26x +的范围,再根据正弦函数的性质即可得解. 【小问1详解】解:()2π14sin cos 4sin sin cos 2sin 62f x x x x x x x x x =+=−=−1πcos212cos212sin 2126x x x x x+−=+−=+−, 令ππ3π2π22π,262k x k k +≤+≤+∈Z ,解得π2πππ63k x k +≤≤+, 所以函数()f x 的单调减区间为π2ππ,π,63k k k Z++∈; 【小问2详解】 解:因为π02x ≤≤,所以ππ7π2666x +≤≤,所以1πsin 2126x−≤+≤, 于是π12sin 226x−≤+≤,所以()21f x −≤≤, 当且仅当π2x =时,()f x 取最小值()min π22f x f ==−, 当且仅当ππ262x +=,即π6x =时,()f x 取最大值()max π16f x f==.16. 已知0b >,函数2()((ln )1)f x x x x bx −−−在点()(1,)1f 处的切线过点()0,1−. (1)求实数b 的值;(2)证明:()f x 在()0,∞+上单调递增;(3)若对())1,1(x f x a x ∀≥≥−恒成立,求实数a 的取值范围. 【答案】(1)1b =(2)证明见解析 (3)(,1]−∞ 【解析】【分析】(1)先求导函数再写出切线方程代入点得出参数值; (2)求出导函数1()2ln 2f x x x x′=+−−,再根据导函数求出()(1)10f x f ′′≥=>即可证明单调性; (3)根据函数解析式分1x =和1x >两种情况化简转化为ln x x a −≥恒成立,再求()ln (1)h x x x x =−>的单调性得出最值即可求出参数范围. 【小问1详解】()f x 的定义域为1(0,),()2ln()2f x x bx x′+∞=+−−, 故(1)1ln f b ′=−,又(1)0f =,所以()f x 在点(1,(1))f 处的切线方程为(1ln )(1)y b x =−−, 将点(0,1)−代入得1ln 1b −=,解得1b =.小问2详解】由(1)知2()(1)ln f x x x x x −−−,则1()2ln 2f x x x x′=+−−, 令1()()2ln 2g x f x x x x′==+−−, 则22221121(1)(21)()2x x x x g x x x x x−−−+′=−−==, 当01x <<时,()0,()g x g x <′单调递减;当1x >时,()0,()g x g x >′单调递增,所以()(1)10f x f ′′≥=>, 所以()f x 在(0,)+∞上单调递增. 【小问3详解】【对())1,1(x f x a x ∀≥≥−恒成立,即对1,(1)(1)ln (1)x x x x x a x ∀≥−−−≥−恒成立, 当1x =时,上式显然恒成立;当1x >时,上式转化ln x x a −≥恒成立,设()ln (1)h x x x x =−>,则11()10x h x x x′−=−=>, 所以()h x 在(1,)+∞上单调递增;所以()(1)1h x h >=, 故1a ≤,所以实数a 的取值范围为(,1]−∞.17. 在ABC 中,设内角A ,B ,C 所对的边分别为,,a b c .(1)2b a =+,4c a =+,是否存在正整数a*N ,且ABC 为钝角三角形?若存在,求出a ;若不存在,说明理由.(2)若4,a b c D ===为BC 的中点,E ,F 分别在线段,AB AC 上,且90EDF °∠=,CDF θ∠=()90θ°°<<,求DEF 面积S 的最小值及此时对应的θ的值.【答案】(1)存在,4a = (2)12− 【解析】【分析】(1)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值; (2)由正弦定理可得出DF =,DE =与差的正弦公式化简即可求得结果. 【小问1详解】假设存在正整数a 满足题设.ABC 为钝角三角形,因为a b c <<,所以C 为钝角,根据题设,2b a =+,4c a =+,由余弦定理222cos 2a b c C ab+−=, 所以()222(2)(4)1cos 022a a a Ca a ++−+−<=<+,得24120a a −−<,解得26a −<<.因为**a ∈N N ,所以1a =或4a =,当1a =时,ABC 不存在,故存在4a =满足题设.为所以4a = 【小问2详解】如图,因为()90,090EDF CDF θθ∠=°∠=°<<°,所以90BDE θ∠=°−.在CDF 中,因为()2sin60sin 60DF θ=°+°,所以DF =在BDE 中,因为()2sin 60sin 150DE θ=°°−,所以DE = 所以()()132sin 60sin 150S θθ=×+°°−, 设()()()sin 60sin 150f θθθ=+°°−,()090θ°<<°,所以11()sin cos 22f θθθθθ =+ 2213cos sin 4θθθθ+++ 化简可得:()1sin 22f θθ=+所以1122S =≥− 当45θ=°时,S取得最小值12−18. 已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F,离心率e =,点,P Q 分别是椭圆的右顶点和上顶点,POQ 的边PQ(1)求椭圆的标准方程;(2)过点(2,0)H −的直线交椭圆C 于,A B 两点,若11AF BF ⊥,求直线AB 的方程; (3)直线12,l l 过右焦点2F ,且它们的斜率乘积为12−,设12,l l 分别与椭圆交于点,C D 和,E F .若,M N 分别是线段CD 和EF 的中点,求OMN 面积的最大值.【答案】(1)2212x y +=(2)220x y −+−或220x y ++=(3【解析】【分析】(1)根据POQ △的边PQ得PQ ==,再联立222ce a b c a ===+即可求解;(2)设直线AB 的方程为(2)(0)y k x k =+≠,1122()A x y B x y ,,(,),联立直线AB 与椭圆方程得1212,x x x x +,再由11AF BF ⊥,即110AF BF ⋅=,最后代入即可求解;(3)设直线1l 的方程为(1)y k x =+,则直线2l 的方程为1(1)2y x k =−+,分别与椭圆方程联立,通过韦达定理求出中点,M N 的坐标,观察坐标知,MN 的中点坐标1(,0)2T 在x 轴上,则1||||2OMN M N S OT y y =− 整理后利用基本不等式即可得到面积的最值. 【小问1详解】由题意,因为(,0),(0,)P a Q b ,POQ △为直角三角形,所以PQ ==.又222ce a b c a ===+,所以1,1a b c ==,所以椭圆的标准方程为2212x y +=. 【小问2详解】由(1)知,1(1,0)F −,显然直线AB 的斜率存在,设直线AB 的方程为(2)(0)y k x k =+≠,1122()A x y B x y ,,(,),联立2212(2)x y y k x +==+消去y 得,2222(12)8820k x k x k +++−=,所以22222(8)4(12)(82)8(12)0k k k k ∆=−+−=−>,即2102k <<. 且22121222882,1212k k x x x x k k −+=−=++, 因为11AF BF ⊥,所以110AF BF ⋅=,所以1122(1,)(1,)0x y x y −−−−−−=,即12121210x x x x y y ++++=, 所以1212121(2)(2)0x x x x k x k x +++++⋅+=, 整理得2221212(12)()(1)140k x x k x x k ++++++=, 即22222228(1)(82)(12)()1401212k k k k k k k+−+−+++=++, 化简得2410k −=,即12k =±满足条件,所以直线AB 的方程为1(2)2y x =+或1(2)2y x =−+, 即直线AB 的方程为220x y −+=或220x y ++=. 3详解】由题意,2(1,0)F ,设直线1l 的方程为(1)y k x =+,3344(,),(,)C x y D x y , 则直线2l 的方程为1(1)2y x k=−+,5566(,),(,)E x y F x y , 联立2212(1)x y y k x +==−消去y 得2222)202142(−=+−+x k x k k , 所以22343422422,1212k k x x x x k k−+==++ 所以23422,212M x x k x k+==+2(1)12M M k y k x k =−=−+所以2222(,)1212k kM k k −++, 同理联立22121(1)2x y y x k += =−−消去y 得222(12)2140k x x k +−+−=,所以2565622214,1212k x x x x k k−+==++ 所以5621,212N x x x k+==+21(1)212N N ky x k k =−−=+ 所以221(,)1212kN k k++, 即MN 的中点1(,0)2T .所以221121||11||||||1241221222||||OMN M N k k S OT y y k k k k =−==×=×≤+++ ,当且仅当12||||k k =,即k =时取等号, 所以OMN.【点睛】关键点点睛:本题考查待定系数法求椭圆的标准方程,直线与椭圆综合应用问题,利用基本不等式求最值,第三问的解题关键是分类联立直线12,l l 与椭圆方程,求出,M N 的坐标,观察坐标知,MN 的中点坐标1(,0)2T 在x 轴上,则1||||2OMN M N S OT y y =− 整理后利用基本不等式得到面积的最值. .19. 正整数集{}1,2,3,,3A m m m m n =++++ ,其中,m n +∈∈N N .将集合A 拆分成n 个三元子集,这n 个集合两两没有公共元素.若存在一种拆法,使得每个三元子集中都有一个数等于其他两数之和,则称集合A 是“三元可拆集”.(1)若1,3m n ==,判断集合A 是否为“三元可拆集”,若是,请给出一种拆法;若不是,请说明理由;(2)若0,6m n ==,证明:集合A 不是“三元可拆集”; (3)若16n =,是否存在m 使得集合A 是“三元可拆集”,若存在,请求出m 的最大值并给出一种拆法;若不存在,请说明理由.【答案】(1)是,拆法见解析 (2)证明见解析 (3)答案见解析 【解析】【分析】(1){}2,3,4,,10A = ,可拆成{}{}{}10,7,39,5,48,6,2、、或{}10,6,4、{}{}9,7,28,5,3、; (2)三元可拆集”中所有元素和为偶数,A 中所有元素和为19181712×=,与和为偶数矛盾; (3)可以拆成16个三元子集,将这16个三元子集中的最大的数依次记为12316,,,,a a a a ,利用等差数列求和得到1231616648a a a a m ++++≤+ ,结合1231624588a a a a m ++++=+ ,得到不等式,求出152m ≤,当7m =时写出相应的集合A 以及具体拆法,得到答案. 【小问1详解】是,{}2,3,4,,10A = ,可拆成{}{}{}10,7,39,5,48,6,2、、或{}10,6,4、{}{}9,7,28,5,3、; 【小问2详解】对于“三元可拆集”,其每个三元子集的元素之和为偶数, 则“三元可拆集”中所有元素和为偶数;而{}1,2,3,4,,18A = ,A 中所有元素和为19181712×=,与和为偶数矛盾, 所以集合A 不是“三元可拆集”; 【小问3详解】{}1,2,3,,48A m m m m =++++ 有48个元素,可以拆成16个三元子集,将这16个三元子集中的最大的数依次记为12316,,,,a a a a , 则()()()()1231648474633a a a a m m m m ++++≤++++++++ ()28116166482m m +×=+;另一方面,A 中所有元素和为()249484811762m m +×=+,所以212316481176245882m a a a a m +++++==+ ,所以2458816648m m +≤+,解得152m ≤,即7m ≤; 当7m =时,{}8,9,10,,55A = ,可拆为{}{}55,40,1554,38,16、、{}{}{}{}{}{}53,39,1452,35,1751,31,2050,37,1349,25,2448,26,22、、、、、、 {}{}{}{}{}{}47,29,1846,27,1945,34,1144,23,2143,33,1042,30,12、、、、、、{}{}41,32,9,36,28,8(拆法不唯一); 综上所述,m 的最大值是7.【点睛】关键点点睛:集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数的性质,数列知识等进行结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决.。
高中数学必修一第五章三角函数单元测试(1)(含答案解析)
⾼中数学必修⼀第五章三⾓函数单元测试(1)(含答案解析)⾼中数学必修⼀第五章三⾓函数单元测试 (1)⼀、选择题(本⼤题共9⼩题,共45.0分)1.以罗尔中值定理、拉格朗⽇中值定理、柯西中值定理为主体的“中值定理”反映了函数与导数之间的重要联系,是微积分学重要的理论基础,其中拉格朗⽇中值定理是“中值定理”的核⼼内容,其定理陈述如下:如果函数y=f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内⾄少存在⼀个点x0∈(a,b),使得f(b)?f(a)=f?(x0)(b?a),x=x0称为函数y= f(x)在闭区间[a,b]上的中值点,则函数f(x)=sinx+√3cosx在区间[0,π]上的“中值点”的个数为参考数据:√2≈1.41,√3≈1.73,π≈3.14.A. 1B. 2C. 3D. 42.若α∈(π2,π),cos?2α=?13,则tan?α=()A. ?√33B. ?√3 C. ?√2 D. ?√223.cos20o cos40°?sin20°sin40°=()A. 1B. 12C. ?12D. √324.为了得到函数f(x)=sin(2x+3π4)的图象,可以将函数g(x)=cos2x的图象()A. 向右平移π4个单位 B. 向左平移π4个单位5.在△ABC中,⾓A,B,C的对边分别为a,b,c,若2c?ba =cosBcosA,a=2√3,则△ABC⾯积的最⼤值为()A. √3B. 2√3C. 3√3D. 4√36.已知sinα?cosα=13,则cos2(π4α)=()A. 1718B. 19C. √29D. 1187.若将函数f(x)=sin(2x+φ)+√3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点(π2,0)对称,则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值()A. ?12B. ?√3228.若函数f(cos x)=cos2x+1,则f(cos30°)的值为()A. 12B. 32C. 72D. 49.3?sin110°8?4cos210°=()A. 2B. √22C. 12D. √32⼆、填空题(本⼤题共5⼩题,共25.0分)10.已知cos?(α+π4)=13,α∈(0,π4),则cos2α=________.11.已知△ABC的内⾓A,B,C所对的边分别为a,b,c,B=π4,tan(π4A)=12,且△ABC的⾯积为25,则a+b=_________.12.函数y=√3sin2x?cos2x的图象向右平移φ(0<φ<π)个长度单位后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为___________.13.在ΔABC中,cosB+√3sinB=2,且cosBb +cosCc=2√3sinA3sinC,则a+c的取值范围是________.14.已知函数f(x)=sinxcos(x+π3)+√34,x∈[?π3,π6],则函数的单调减区间为___________,函数的值域为____________.三、解答题(本⼤题共6⼩题,共72.0分)15.如图,在四边形ABCD中,已知∠DAB=π3,AD︰AB=2︰3,BD=√7,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最⼩值为?3,若f(x)图象相邻的最⾼点与最低点的横坐标之差为2π,且f(x)的图象经过点(0,32).(2)若⽅程f(x)?k=0在x∈[0,11π3]上有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.17.在△ABC中,⾓A,B,C的对边分别为a,b,c.已知向量m =(b,a?2c),n?=(cosA?2cosC,cosB),且n?⊥m .(1)求sinCsinA的值;(2)若a=2,|m |=3√5,求△ABC的⾯积S.18.化简,求值:(1)已知tanα=34,求tan(α+π4)的值;(2)sin20°sin40°?cos20°cos40°.19.在△ABC中,内⾓A,B,C对边的边长分别是a、b、c,△ABC的⾯积为S⑴若c=2,C=π3,S=√3,求a+b;)=a,求⾓A;⑴若√3(bsinC?ccosBtanC20.如图,某住宅⼩区的平⾯图呈圆⼼⾓为120°的扇形AOB,⼩区的两个出⼊⼝设置在点A及点C处,且⼩区⾥有⼀条平⾏于BO的⼩路CD.(1)已知某⼈从C沿CD⾛到D⽤了10分钟,从D沿DA⾛到A⽤了6分钟,若此⼈步⾏的速度为每分钟50⽶,求该扇形的半径OA的长(精确到1⽶);(2)若该扇形的半径为OA=a,已知某⽼⼈散步,从C沿CD⾛到D,再从D沿DO⾛到O,试确定C的位置,使⽼⼈散步路线最长.-------- 答案与解析 --------本题考查导数运算、余弦函数性质,属于中档题.求出f(x)的导数,利⽤f′(x0)=f(b)?f(a)b?a,可得结合余弦函数性质易知⽅程在区间(0,π)内有2解,【解答】解:由知由拉格朗⽇中值定理:令f′(x0)=f(b)?f(a)b?a,即,由?√3π∈(?1,?12),结合余弦函数性质易知⽅程在区间(0,π)内有2解,故在区间[0,π]上的“中值点”有2个,故选B.2.答案:C解析:【分析】本题考查三⾓函数的化简求值,考查同⾓三⾓函数基本关系式和⼆倍⾓公式,是基础题.由已知可得tanα<0,再由⼆倍⾓公式和同⾓三⾓函数基本关系可得tanα的⽅程,解之可得答案.【解答】解:∵α∈(π2,π),且cos2α=?13,∴tanα<0,且cos2α=cos2α?sin2α=cos2α?sin2αcos2α+sin2α=1?tan2α1+tan2α=?13,解得tanα=?√2.故选C.3.答案:B本题考查两⾓和与差的三⾓函数公式,属于基础题.由题直接计算求解即可得到答案.【解答】解:cos20o cos40°?sin20°sin40°=cos(20°+40°) =cos60°=12.故选B . 4.答案:D解析:【分析】本题考查三⾓函数的图象变换规律,是基础题.根据题意,进⾏求解即可.【解答】解:,,⼜,∴只需将函数g(x)=cos2x 的图象向左平移π8个单位即可得到函数f(x)=sin?(2x +3π4)的图象.故选D . 5.答案:C解析:【分析】本题考查正余弦定理、三⾓形⾯积公式,两⾓和的正弦公式和基本不等式,属于中档题.先由正弦定理和两⾓和的正弦公式得出cosA =12,再由余弦定理和基本不等式解得bc ≤12,最后由三⾓形⾯积公式求得△ABC ⾯积的最⼤值.【解答】解:由已知可得(2c ?b)cosA =acosB ,由正弦定理可得(2sinC ?sinB)cosA =sinAcosB ,所以2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC ,由sinC ≠0可得cosA =12,则,由余弦定理可得12=b 2+c 2?2bc ×12=b 2+c 2?bc ,由基本不等式可得12=b 2+c 2?bc ≥2bc ?bc =bc ,解得bc ≤12,当且仅当b =c =2√3时,取等号,故△ABC ⾯积S =12bcsinA =√34bc ≤√34×12=3√3.故选C .6.答案:A解析:【分析】本题主要考查⼆倍⾓公式、诱导公式以及同⾓三⾓函数基本关系的应⽤,属于基础题.由条件利⽤⼆倍⾓公式可得sin2α=81+cos(π22α)2=12+sin2α2,计算求得结果.【解答】解:∵sinα?cosα=13,∴1?2sinαcosα=1?sin2α=19,∴sin2α=89,则cos2(π4?α)=1+cos(π22α)2=12+sin2α2=1718,故选A.7.答案:D解析:【分析】本题主要考查函数y=Asin(ωx+φ)的图像变换规律、诱导公式和三⾓函数的性质.3]=2cos(2x+φ+π3),再根据图像关于点(π2,0)对称,得到φ=π6,得到g(x)=cos(x+π6),进⽽求出g(x)的最⼩值.【解答】解:∵f(x)=sin?(2x+φ)+√3cos?(2x+φ)=2sin?(2x+φ+π3),∴将函数f(x)的图像向左平移π4个单位长度后,得到图像的函数解析式为y=2sin?[2(x+π4)+φ+π3]=2cos?(2x+φ+π3).∵函数y=2cos(2x+φ+π3)的图像关于点(π2,0)对称,∴2cos(2×π2+φ+π3)=0,所以π+φ+π3=kπ+π2解得φ=kπ?5π6,k∈Z.∵0<φ<π,∴φ=π6,∴g(x)=cos(x+π6).∵x∈[?π2,π6],∴x+π6∈[?π3,π3],∴cos(x+π6)∈[12,1],则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值是12.故选D.8.答案:B解析:【分析】本题主要考查⼆倍⾓公式的应⽤,属于基础题.利⽤⼆倍⾓公式,然后求出函数值即可.【解答】解:∵f(cos x)=cos 2x +1=2cos 2x ,∴f(cos?30°)=2cos 230°32)2=32.故选B . 9.答案:C解析:【分析】本题考查三⾓函数的化简求值问题,属于基础题.根据诱导公式与⼆倍⾓的余弦公式即可求出结果.【解答】解:原式=3?sin110°8?4cos 210°=3?cos20°8?2(1+cos20°)=3?cos20°6?2cos20°=12.故选C .10.答案:4√29解析:解:因为cos(α+π4)=13,α∈(0,π4),所以sin(α+π4)=2√23,所以cos2α=cos[2(α+π4)?π2]=sin2(α+π4) =2sin(α+π4)cos(α+π4)=2×2√23×13=4√29.答案:4√29由诱导公式可知cos2α=cos[2(α+π4)?π2]=sin2(α+π4),然后结合⼆倍⾓的正弦公式展开可求.本题主要考查函数值的计算,利⽤三⾓函数的倍⾓公式是解决本题的关键. 11.答案:5+5√5解析:【分析】本题考查两⾓和与差的三⾓公式的应⽤,考查正弦定理及三⾓形⾯积公式的应⽤,属中档题.依题意,根据两⾓和与差的三⾓公式求得tanA =13,进⽽得sin?A ,cos?A .⼜B =π4,求得sinC ,再结合三⾓形⾯积及正弦定理求解即可.【解答】解:因为tan?(π4?A)=12,所以1?tan?A1+tan?A =12,则tan?A =13,因此sinA =√1010,cosA =3√1010.所以sinC =sin (A +B )=sinAcosB +cosAsinB =√1010×√22+3√1010×√22=2√55,根据△ABC 的⾯积为25,得12absinC =12ab ×2√55=25,得ab =25√5,⼜由正弦定理得a sinA =bsinB ,得b =√5a ,联⽴{ab =25√5b =√5ab =5√5,所以a +b =5+5√5.故答案为5+5√5.12.答案:π6解析:【分析】先将y =√3sin2x ?cos2x 化为y =2sin(2x ?π6),然后再利⽤图象平移知识,求出g(x),根据g(x)是偶函数,则g(0)取得最值,求出φ.本题考查三⾓函数图象变换的⽅法以及性质,将奇偶性、对称性与函数的最值联系起来,是此类问题的常规思路,属于中档题.【解答】解:由已知得y =√3sin2x ?cos2x =2(sin2x ?√32cos2x 12)=2sin(2x π6).所以g(x)=2sin[2(x ?φ)?π6],由g(x)是偶函数得g(0)=2sin(?2φ?π6)=±2,∴?2φ?π6=π2+kπ,k ∈Z ,∴φ=?π3kπ2,k ∈Z ,当k =?1时,φ=π6即为所求.故答案为:π6.13.答案:(√32,√3]解析:【分析】本题考查正、余弦定理,三⾓函数恒等变换的应⽤,正弦函数的性质,考查了计算能⼒和转化思想,属于中档题.由题意可得⾓B和边b,然后利⽤正弦定理,三⾓函数恒等变换的应⽤可求a+c=√3sin(A+π6),66<5π6,利⽤正弦函数的性质可求其取值范围.【解答】解:∵在ΔABC中,cosB+√3sinB=2,∴2(12cos?B+√32sin?B)=2,即2sin(B+π6)=2,所以B+π6=π2,B=π3,⼜cosBb +cosCc=2√3sinA3sinC=2√3a3c,所以ccosB+bcosC=2√33ab,故c?a2+c2?b22ac +b?a2+b2?c22ab=2√3即a=2√33ab,解得b=√32,∴由正弦定理可得bsinB =√32√32=1=asinA=csinC,故a=sinA,c=sinC,所以a+c=sinA+sinC=sinA+sin(2π3A)=sinA+√32cosA+12sinA=32sinA+√32cosA=√3sin(A+π63,π66<5π6,所以sin(A+π6)∈(12,1]∴a+c=√3sin(A+π6)∈(√32,√3].故答案为(√32,√3].14.答案:;[?√34,12]解析:【分析】本题主要考查了两⾓和与差的三⾓函数公式、⼆倍⾓公式、函数的单调区间以及函数的值域,属于基础题.由题意化简可得,且,,由此即可得到函数的单调减区间以及值域.【解答】解:=sinx (12cosx ?√32sinx)+√34=14sin2x ?√32sin 2x +√34 =14sin2x +√34cos2x ,令,解得,,令k =0,可得,即函数的单调减区间为,此时,,即函数的值域为[?√34,12],故答案为;[?√34,12].15.答案:解:(1)由题意可设AD =2k ,AB =3k(k >0).∵BD =√7,∠DAB =π3,∴由余弦定理,得(√7)2=(3k)2+(2k)2?2×3k ×2kcos π3,解得k =1,∴AD =2,AB =3..(2)∵AB ⊥BC ,,,,∴CD =√7×2√77√32=4√33.解析:本题主要考查了余弦定理,⽐例的性质,正弦定理,同⾓三⾓函数之间的关系以及特殊⾓的三⾓函数值在解三⾓形中的综合应⽤,考查了计算能⼒和转化思想,属于中档题.(1)在△ABC 中,由已知及余弦定理,⽐例的性质即可解得AD =2,AB =3,由正弦定理即可解得sin∠ABD 的值;(2)由(1)可求cos∠DBC ,利⽤同⾓三⾓函数关系式可求sin∠DBC 的值,利⽤正弦定理即可计算得解.16.答案:解:(1)由题意得:A =3,T2=2π,则T =4π,即ω=2πT=12,所以f(x)=3sin(12x +φ),⼜f(x)的图象经过点(0,32),则32=3sinφ,由|φ|<π2得φ=π6,所以f(x)=3sin(12x +π6); (2)由题意得,f(x)?k =0在x ∈[0,11π3]有且仅有两个解x 1,x 2,即函数y =f(x)与y =k 在x ∈[0,11π3]且仅有两个交点,由x ∈[0,11π3]得,12x +π6∈[π6,2π],则f(x)=3sin(12x +π6)∈[?3,3],设t =12x +π6,则函数为y =3sint ,且t ∈[π6,2π],画出函数y =3sint 在t ∈[π6,2π]上的图象,如图所⽰:由图可知,k 的取值范围为:k ∈(?3,0]∪[3 2,3),当k ∈(?3,0]时,由图可知t 1,t 2关于t =3π2对称,即x =83π对称,所以x 1+x 2=16π3当k ∈[32,3)时,由图可知t 1,t 2关于t =π2对称,即x =23π对称,所以x 1+x 2=4π3,综上可得,x 1+x 2的值是16π3或4π3.解析:(1)由题意求出A 和周期T ,由周期公式求出ω的值,将点(0,32)代⼊化简后,由φ的范围和特殊⾓的三⾓函数值求出φ的值,可得函数f(x)的解析式;(2)将⽅程的根转化为函数图象交点问题,由x 的范围求出12x +π6的范围,由正弦函数的性质求出f(x)的值域,设设t =12x +π6,函数画出y =3sint ,由正弦函数的图象画出y =3sint 的图象,由图象和条件求出k 的范围,由图和正弦函数的对称性分别求出x 1+x 2的值.本题考查了形如f(x)=Asin(ωx +φ)的解析式的确定,正弦函数的性质与图象,以及⽅程根转化为函数图象的交点问题,考查分类讨论思想,数形结合思想,以及化简、变形能⼒.17.答案:解:(1)由m⊥n ? ,可得b(cosA ?2cosC)+(a ?2c)cosB =0,根据正弦定理可得,sinBcosA ?2sinBcosC +sinAcosB ?2sinCcosB =0∴(sinBcosA +sinAcosB)?2(sinBcosC +sinCcosB)=0∴sin(A +B)?2sin(B +C)=0,∵A +B +C =π,∴sinC ?2sinA =0,所以(2)由(1)得:c =2a ,因为a =2,|m |=3√5,所以c =4,b =3,所以cosA =32+42?222×3×4=78,因为A ∈(0,π),所以sinA =√1?(78)2=√158,所以△ABC 的⾯积为=12bcsinA =12×3×4×√158=3√154解析:本题考查平⾯向量的数量积、垂直的应⽤、考查两⾓和与差的三⾓函数、正弦定理、余弦定理以及三⾓形⾯积公式的运⽤,考查计算能⼒和转化能⼒,属于中档题.(1)由⊥m n?,可得b(cosA?2cosC)+(a?2c)cosB=0,根据正弦定理可得,sinBcosA?2sinBcosC+sinAcosB?2sinCcosB=0,化简即可;(2)由(1)c=2a可求c,由|m |=3√5可求b,结合余弦定理可求cos A,利⽤同⾓平⽅关系可求sin A,代⼊三⾓形的⾯积公式S=12bcsinA可求.18.答案:解:(1)∵tan?α=34,∴tan?(α+π4)=tanα+tanπ41?tanα·tanπ4=34+11?34×1=7.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°)=?cos(?20°+?40°)=?cos60°=?12.解析:本题主要考查了两⾓和差公式,三⾓函数的化简与求值,属于较易题.(1)利⽤两⾓和的正切公式直接代值求解.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°),利⽤两⾓和的余弦公式求解.19.答案:解:,∴ab=4 ①,⼜c2=a2+b2?2abcosC,c=2,∴a2+b2?2ab=4 ②,由①②得a+b=4;(2)∵√3(bsinC?ccosBtanC)=a,∴∵√3(sinBsinC?sinCcosBcosCsinC)=sinA,∴?√3cos(B+C)=sinA,∴tanA=√3,⼜,.解析:本题考查解三⾓形和三⾓恒等变换,考查推理能⼒和计算能⼒,属于⼀般题.(1)利⽤三⾓形的⾯积公式和余弦定理即可求解;(2)由正弦定理和三⾓恒等变换公式得tanA=√3,结合范围即可求出A.20.答案:解:(1)设该扇形的半径为r⽶,连接CO.由题意,得CD=500(⽶),DA=300(⽶),∠CDO=60°,在△CDO中,CD2?+OD2?2CD?OD?cos60°=OC2,即,5002+(r?300)2??2×500×(r?300)×1 2=r?2,解得r=490011≈445(⽶).(2)连接OC,设∠DOC=θ,θ∈(0,2π3),在△DOC中,由正弦定理得:CDsinθ=DOsin(2π3θ)=OCsinπ3=√3,于是CD=3,DO=3sin(2π3θ),则DC+DO=√3+sin(2π3θ)]=2asin(θ+π6),θ∈(0,2π3),所以当θ=π3时,DC+DO最⼤为 2a,此时C在弧AB的中点处.解析:本题主要考查解三⾓形在实际问题中的运⽤,属于中档题.(1)连接OC,由CD//OB知∠CDO=60°,可由余弦定理得到OC的长度.(2)连接OC,设∠DOC=θ,θ∈(0,2π3),由正弦定理,三⾓恒等变换可求DC+DO=2asin(θ+π6),θ∈(0,2π3),利⽤正弦函数的性质可求最⼤值,即可得解.。
高一数学三角函数复习测试题(附含答案)
5
5
1
o 7 10 20
x
4.已知函数 y Asin(x ) 在同一周期内,当 x 时有最大值 2,当 x=0 时有 3
最小值-2,那么函数的解析式为(
)
A. y 2sin 3 x 2
B. y 2 sin(3x )
2
C. y 2sin(3x ) D. y 1 sin 3x
26
2
3
(3)①由 y sin x 的图象上各点向左平移 个长度单位,得 y sin(x ) 的图象;
6
6
② 由 y sin(x ) 的 图 象 上 各 点 的 横 坐 标 伸 长 为 原 来 的 2 倍 ( 纵 坐 标 不 变 ), 得 6
y sin( x ) 的图象; 26
三角函数复习测试
一、选择题:(5 分×5=25 分)
1.函数 y | tan x | 的周期和对称轴分别为( )
A. , x k (k Z )
2
B. , x k (k Z )
2
C. , x k (k Z )
D. , x k (k Z )
2
2
2.要得到函数 y sin 2x 的图象,可由函数 y cos( 2 x ) ( )
4
A. 向左平移 个长度单位
8
B. 向右平移 个长度单位
8
C. 向左平移 个长度单位
4
D. 向右平移 个长度单位
4
3.函数 y f (x) 的图象如图所示,则 y f (x) 的解析式为( )
y
A. y sin 2x 2
B. y 2 cos 3x 1
高中数学三角函数测试卷(答案解析版)
高中数学三角函数测试卷(答案解析版)高中数学三角函数测试卷(答案解析版)一、选择题1. 假设α是锐角,sinα=0.6,那么sin(90°-α)的值是多少?解析:根据三角函数的互余关系,sin(90°-α) = cosα = √(1 - sin²α) = √(1 - 0.6²) = 0.8。
答案:0.82. 已知tanα = 3/4,sinα的值为多少?解析:由tanα = sinα/cosα可得sinα = tanα × cosα = 3/4 × 4/5 = 3/5。
答案:3/53. 已知sinα = 1/2,cosβ = 3/5,α和β都是锐角,则sin(α+β)的值是多少?解析:根据两角和的公式,sin(α+β) = sinα × cosβ + cosα × sinβ = (1/2) × (3/5) + √(1 - (1/2)²) × √(1 - (3/5)²) = 3/10 + √(3/10 × 7/10) = 3/10 + √(21/100) = 3/10 + 3√21/10√10 = (3 + 3√21)/10。
答案:(3 + 3√21)/10二、填空题4. 在锐角三角形ABC中,已知∠A=30°,BC=6,AC=10,则AB 等于多少?解析:根据正弦定理,AB/AC = sin∠B/sin∠A,代入已知条件得到AB/10 = sin∠B/sin30°,即AB = 10×sin∠B/sin30°。
由∠B + ∠C = 90°可得∠B = 90° - ∠A - ∠C = 90° - 30° - 60° = 0°。
因此,AB =10×sin0°/sin30° = 0/0 = 0。
高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版
高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.点P 从(2,0)出发,逆时针方向旋转43π到达Q 点,则Q 点的坐标为( )A .1,2⎛- ⎝⎭B .(1)-C .(1,-D .21⎛⎫ ⎪ ⎪⎝⎭2.角α的终边过点()3,4P -,则sin 22πα⎛⎫+= ⎪⎝⎭( )A .2425- B .725- C .725D .24253.已知函数1log a y x =和()22y k x =-的图象如图所示,则不等式120y y ≥的解集是( )A .(]1,2B .[)1,2C .()1,2D .[]1,24.已知(0,2)απ∈,sin 0α<和cos 0α>,则角α的取值范围是( ) A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭5.已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角6.已知直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2,则19log x =( ) A .3B .12C .2D .12-7.已知()1cos 3αβ-=,3cos 4β=与0,2παβ⎛⎫-∈ ⎪⎝⎭和0,2πβ⎛⎫∈ ⎪⎝⎭,则( ).A .0,2πα⎛⎫∈ ⎪⎝⎭B .,2παπ⎛⎫∈ ⎪⎝⎭C .()0,απ∈D .0,2πα⎡⎫∈⎪⎢⎣⎭8.已知点()tan ,sin P αα在第四象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角二、解答题9.设α是第一象限角,作α的正弦线、余弦线和正切线,由图证明下列各等式. (1)22sin cos 1αα+=; (2)sin tan cos ααα=. 如果α是第二、三、四象限角,以上等式仍然成立吗? 10.已知()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α;(2)若α是第三象限角,且()1sin 5απ-=,求()f α的值.11.已知|cosθ|=-cosθ,且tanθ<0,试判断()()sin cos θcos sin θ的符号.12.不通过求值,比较下列各组数的大小: (1)37sin 6π⎛⎫- ⎪⎝⎭与49sin 3π⎛⎫ ⎪⎝⎭;(2)sin194︒与()cos 160︒.13.(1)已知角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,求()()()πsin tan π2sin πcos 3παααα⎛⎫-⋅- ⎪⎝⎭+⋅-的值; (2)已知0πx <<,1sin cos 5x x +=求tan x 的值. 14.已知角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭. (1)求tan θ的值;(2)求()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++的值.15.在平面直角坐标系xOy 中角θ的始边为x 轴的正半轴,终边在第二象限与单位圆交于点P ,点P 的横坐标为35. (1)求cos 3sin 3sin cos θθθθ+-的值;(2)若将射线OP 绕点O 逆时针旋转2π,得到角α,求22sin sin cos cos αααα--的值.三、多选题16.给出下列各三角函数值:①()sin 100-;②()cos 220-;③tan 2;④cos1.其中符号为负的是( ) A .①B .②C .③D .④四、双空题17.已知55sin ,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 参考答案与解析1.C【分析】结合已知点坐标,根据终边旋转的角度和方向,求Q 点坐标即可.【详解】由题意知,442cos ,2sin 33Q ππ⎛⎫ ⎪⎝⎭,即(1,Q -. 故选:C. 2.B【分析】化简得2sin 22cos 12παα⎛⎫+=- ⎪⎝⎭,再利用三角函数的坐标定义求出cos α即得解.【详解】解:2sin 2cos 22cos 12πααα⎛⎫+==- ⎪⎝⎭由题得3cos 5α==-,所以237sin 22()12525πα⎛⎫+=⨯--=- ⎪⎝⎭. 故选:B 3.B【分析】可将12,y y 图象合并至一个图,由12,y y 同号或10y =结合图象可直接求解.【详解】将12,y y 图象合并至一个图,如图:若满足120y y ≥,则等价于120y y ⋅>或10y =,当()1,2x ∈时,则120y y ⋅>,当1x =时,则10y =,故120y y ≥的解集是[)1,2故选:B 4.D【分析】根据三角函数值的符号确定角的终边的位置,从而可得α的取值范围.【详解】因为sin 0α<,cos 0α>故α为第四象限角,故3,22παπ⎛⎫∈⎪⎝⎭故选:D. 5.C∴2α是第三象限,第四象限角或终边在y 轴非正半轴,sin20α<,故C 正确,D 错误. 故选:C . 6.D【分析】由已知结合直线平行的斜率关系可求出x ,然后结合对数的运算性质可求.【详解】解:因为直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2 所以6221x +=+,解得3x =所以2113991log log 3log 32x -===-故选:D . 7.B【分析】由已知得()0,απ∈,再利用同角之间的关系及两角差的余弦公式计算cos 0α<,即可得解.()0,απ∴∈又cos cos()cos()cos sin()sin ααββαββαββ=-+=---13034=⨯=< ,2παπ⎛⎫∴∈ ⎪⎝⎭故选:B 8.C【分析】由点的位置可确定tan ,sin αα的符号,根据符号可确定角α终边的位置.【详解】()tan ,sin P αα在第四象限tan 0sin 0αα>⎧∴⎨<⎩,α位于第三象限.故选:C. 9.见解析【解析】作出α的正弦线、余弦线和正切线 (1)由勾股定理证明;(2)由三角形相似PMO TAO ∆∆∽证明.若α是第二、三、四象限角,以上等式仍成立.【点睛】本题考查三角函数线的应用,考查用几何方法证明同角间的三角函数关系.掌握三角函数线定义是解题基础.10.(1)()cos f αα=-.【分析】(1)根据诱导公式直接化简即可;(2)由()1sin 5απ-=,可以利用诱导公式计算出sin α,再根据角所在象限确定cos α,进而得出结论.【详解】(1)根据诱导公式()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin sin sin ααααα⋅⋅-=⋅cos α=-所以()cos f αα=-;(2)由诱导公式可知()sin sin απα-=-,即1sin 5α=-又α是第三象限角 所以cos α==所以()=cos f αα-=【点睛】本题主要考查诱导公式的运用,属于基础题.使用诱导公式时,常利用口诀“奇变偶不变,符号看象限”进行记忆. 11.符号为负.【分析】由|cosθ|=﹣cosθ,且tanθ<0,可得θ在第二象限,即可判断出.【详解】由|cosθ|=-cosθ可得cosθ≤0,所以角θ的终边在第二、三象限或y 轴上或x 轴的负半轴上;又tanθ<0,所以角θ的终边在第二、四象限,从而可知角θ的终边在第二象限.易知-1<cosθ<0,0<sinθ<1,视cosθ、sinθ为弧度数,显然cosθ是第四象限的角,sinθ为第一象限的角,所以cos(sinθ)>0,sin(cosθ)<0,故()()sin cos θcos sin θ<0故答案为符号为负.【点睛】本题考查了三角函数值与所在象限的符号问题,考查了推理能力,属于基础题. 12.(1)3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(2)sin194cos160︒>︒【分析】根据诱导公式及函数的单调性比较大小. (1)由37sin sin 6sin 666ππππ⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭49sin sin 16sin 333ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又函数sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增所以sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭即3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭;(2)由()sin194sin 18014sin14︒=︒+︒=-︒()cos160cos 9070sin70︒=︒+︒=-︒又0147090︒<︒<︒<︒所以sin14sin70︒<︒,即sin14sin70-︒>-︒ 所以sin194cos160︒>︒.13.(1)54;(2)4tan 3x =- .【分析】(1)由三角函数定义易得4cos 5α=,再利用诱导公式和基本关系式化简为()()()πsin tan π12sin πcos 3πcos ααααα⎛⎫- ⎪-⎝⎭⋅=+-求解; (2)将1sin cos 5x x +=两边平方得到242sin cos 025x x =-<,进而求得7sin cos 5x x -=,与1sin cos 5x x +=联立求解.【详解】解:(1)P 点到原点O的距离1r =由三角函数定义有4cos 5x r α== ()()()πsin tan πcos tan 152sin πcos 3πsin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⨯==+---; (2)∵0πx <<,将1sin cos 5x x +=两边平方得112sin cos 25x x +=∴242sin cos 025x x =-<,可得ππ2x << ∴sin 0x > cos 0x < ∴sin cos 0x x ->∵()()22sin cos sin cos 2x x x x -++= ∴7sin cos 5x x -=,联立1sin cos 5x x +=∴4sin 5x = 3cos 5x =-∴4tan 3x =-. 14.(1)(2)2.【分析】(1)根据三角函数的定义tan yxθ=,代值计算即可; (2)利用诱导公式化简原式为齐次式,再结合同角三角函数关系和(1)中所求,代值计算即可. (1)因为角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭故可得tan yxθ==(2)原式=()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++ sin cos sin cos θθθθ+=-tan 1tan 1θθ+=-由(1)可得:tan θ=tan 12tan 1θθ+==-. 15.(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得tan α的值,再利用同角三角函数的基本关系,计算求得所给式子的值.(2)由题意利用诱导公式求得3tan 4α=,再将22sin sin cos cos αααα--化为22tan tan 1tan 1ααα--+,即可求得答案. (1)P 在单位圆上,且点P 在第二象限,P 的横坐标为35,可求得纵坐标为45所以434sin ,cos ,tan 553θθθ==-=-,则cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--. (2)由题知2παθ=+,则3sin()cos 5sin 2παθθ=+==-,24cos cos()sin 5παθθ=+=-=-则sin 3tan cos 4ααα== 故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++ 2233()443()1241951--==-+.16.ABC【分析】首先判断角所在象限,然后根据三角函数在各个象限函数值的符号即可求解. 【详解】解:对①:因为100-为第三象限角,所以()sin 1000-<; 对②:因为220-为第二象限角,所以()cos 2200-<; 对③:因为2弧度角为第二象限角,所以tan20<; 对④:因为1弧度角为第一象限角,所以cos10>; 故选:ABC. 17.125π3【解析】根据三角函数的定义,求得cos α的值,进而确定角α的最小正值. 【详解】由于55sin ,cos 66P ππ⎛⎫ ⎪⎝⎭是角α的终边上一点,所以cos α=5πsin 5π1sin62==.由于5π15πsin0,cos 0626=>=<,所以P 在第四象限,也即α是第四象限角,所以π2π3k α=-,当1k =时,则α取得最小正值为5π3.故答案为:(1)12;(2)5π3【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,考查终边相同的角,属于基础题.。
华中师大第一附属中学2025届高三一诊考试数学试卷含解析
华中师大第一附属中学2025届高三一诊考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知23C π=,1c =.当,a b 变化时,若z b a λ=+存在最大值,则正数λ的取值范围为 A .(0,1) B .(0,2)C .1(,2)2D .(1,3)2.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .3.已知角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭,则cos2α等于( )A .19B .79-C .23-D .134.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A .8B .83C .82+D .842+5.已知函数13()sin 2f x x x =,将函数()f x 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .6π B .4π C .3π D .2π 6.设a ,b ,c 分别是ABC ∆中A ∠,B ,C ∠所对边的边长,则直线sin 0A x ay c ⋅--=与sin sin 0bx B y C +⋅+=的位置关系是( ) A .平行 B .重合C .垂直D .相交但不垂直7.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .1112B .6C .112D .2238.已知定义在R 上的可导函数()f x 满足()()()'10x f x x f x -⋅+⋅>,若3(2)y f x e=+-是奇函数,则不等式1()20x x f x e +⋅-<的解集是( ) A .(),2-∞ B .(),1-∞C .()2,+∞D .()1,+∞9.231+=-ii ( ) A .15i 22-+ B .1522i -- C .5522i + D .5122i - 10.已知点()25,310A 在双曲线()2221010x y b b-=>上,则该双曲线的离心率为( )A .103B .102C .10D .21011.若函数()y f x =的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数()y f x =的图像可能是( )A .B .C .D .12.如图所示的程序框图输出的S 是126,则①应为( )A .5?n ≤B .6?n ≤C .7?n ≤D .8?n ≤二、填空题:本题共4小题,每小题5分,共20分。
高一数学必修1三角函数练习题及答案详解
高一数学必修1三角函数练习题及答案详解考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高一数学必修1三角函数练习题,希望对大家有所帮助!高一数学必修1三角函数练习题及答案1.下列命题中正确的是( )A.终边在x轴负半轴上的角是零角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k•360°(k∈Z),则α与β终边相同解析易知A、B、C均错,D正确.答案 D2.若α为第一象限角,则k•180°+α(k∈Z)的终边所在的象限是( )A.第一象限B.第一、二象限C.第一、三象限D.第一、四象限解析取特殊值验证.当k=0时,知终边在第一象限;当k=1,α=30°时,知终边在第三象限.答案 C3.下列各角中,与角330°的终边相同的是( )A.150°B.-390°C.510°D.-150°解析330°=360°-30°,而-390°=-360°-30°,∴330°与-390°终边相同.答案 B4.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析方法一由270°+k•360°<α<360°+k•360°,k∈Z得:-90°-k•360°>180°-α>-180°-k•360°,终边在(-180°,-90°)之间,即180°-α角的终边在第三象限,故选C.方法二数形结合,先画出α角的终边,由对称得-α角的终边,再把-α角的终边关于原点对称得180°-α角的终边,如图知180°-α角的终边在第三象限,故选C.答案 C5.把-1125°化成k•360°+α(0°≤α<360°,k∈Z)的形式是( )A.-3×360°+45°B.-3×360°-315°C.-9×180°-45°D.-4×360°+315°解析-1125°=-4×360°+315°.答案 D6.设集合A={x|x=k•180°+(-1)k•90°,k∈Z},B={x|x=k•360°+90°,k∈Z},则集合A,B的关系是( )A.A?BB.A?BC.A=BD.A∩B=∅解析集合A表示终边在y轴非负半轴上的角,集合B也表示终边在y轴非负半轴上的角.∴A=B.答案 C7.如图,射线OA绕顶点O逆时针旋转45°到OB位置,并在此基础上顺时针旋转120°到达OC位置,则∠AOC的度数为________.解析解法一根据角的定义,只看终边相对于始边的位置,顺时针方向,大小为75°,故∠AOC=-75°.解法二由角的定义知,∠AOB=45°,∠BOC=-120°,所以∠AOC=∠AOB+∠BOC=45°-120°=-75°.答案-75°8.在(-720°,720°)内与100°终边相同的角的集合是________.解析与100°终边相同的角的集合为{α|α=k•360°+100°,k∈Z}令k=-2,-1,0,1,得α=-620°,-260°,100°,460°.答案{-620°,-260°,100°,460°}9.若时针走过2小时40分,则分针转过的角度是________.解析∵2小时40分=223小时,∴-360°×223=-960°.答案-960°10.若2α与20°角的终边相同,则所有这样的角α的集合是__________.解析2α=k•360°+20°,所以α=k•180°+10°,k∈Z.答案{α|k•180°+10°,k∈Z}11.角α满足180°<α<360°,角5α与α的始边相同,且又有相同的终边,求角α.解由题意得5α=k•360°+α(k∈Z),∴α=k•90°(k∈Z).∵180°<α<360°,∴180°<k•90°<360°.∴2<k<4,又k∈Z,∴k=3.∴α=3×90°=270°.12.如图所示,角α的终边在图中阴影部分,试指出角α的范围.解∵与30°角的终边所在直线相同的角的集合为:{β|β=30°+k•180°,k∈Z}.与180°-65°=115°角的终边所在直线相同的角的集合为:{β|β=115°+k•180°,k∈Z}.因此,图中阴影部分的角α的范围为:{α|30°+k•180°≤α<115°+k•180°,k∈Z}.13.在角的集合{α|α=k•90°+45°,k∈Z}中,(1)有几种终边不同的角?(2)写出区间(-180°,180°)内的角?(3)写出第二象限的角的一般表示法.解(1)在α=k•90°+45°中,令k=0,1,2,3知,α=45°,135°,225°,315°.∴在给定的角的集合中,终边不同的角共有4种.(2)由-180°<k•90°+45°<180°,得-52<k<32.又k∈Z,故k=-2,-1,0,1.∴在区间(-180°,180°)内的角有-135°,-45°,45°,135°.(3)其中第二象限的角可表示为k•360°+135°,k∈Z.高一数学必修1三角函数练习题及答案详解考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
人教版高一上学期数学必修一《第五章三角函数》章节检测卷-带答案
人教版高一上学期数学必修一《第五章三角函数》章节检测卷-带答案1.已知θ2sin )21(<1,则θ所在象限为第 象限.2.已知点P (tan α,cos α)在第三象限,则角α的终边在第 象限.3.已知sin θ=a a+-11,cos θ=aa +-113,若θ是第二象限角,则cot a = .4.sin 2(π+α)-cos(π+α)cos(-α)+1的值为 .5.如果cos α=51,且α是第四象限的角,那么cos ⎪⎭⎫⎝⎛+2πα= .6.已知cos(π+α)=-21,且α是第四象限角,计算: (1)sin(2π-α)= ; (2) [][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -•++-+++ (n ∈Z )= .7.化简:αααα6644sin cos 1sin cos 1----= .8.已知函数f (x )=2sin ωx (ω>0)在区间⎥⎦⎤⎢⎣⎡-4,3ππ上的最小值是-2,则ω的最小值等于 .9.函数y =A sin(ωx +ϕ)(ω>0,|ϕ|< 2π,x ∈R )的部分图象如图所示,则函数表达式为 .10. 某三角函数图象的一部分如下图所示,则该三角函数为 .11.若函数f (x )=2sin(ϕω+x )对任意x 都有f ⎪⎭⎫ ⎝⎛+x 6π=f ⎪⎭⎫ ⎝⎛-x 6π,则f ⎪⎭⎫⎝⎛6π= .12.函数y =2sin ⎪⎭⎫⎝⎛-x 4π的单调减区间为 .13.求f (x )=)2cos(21x --π的定义域和值域.14.已知函数y =2sin ⎪⎭⎫ ⎝⎛+32πx(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎪⎭⎫⎝⎛+32πx 的图象可由y =sin x 的图象经过怎样的变换而得到.15.已知函数f (x )=2A - 2A cos(2ωx +2ϕ) (A >0, ω>0,0<ϕ<2π),且y =f (x )的最大值为2,其图象相邻 两对称轴间的距离为2,并过点(1,2). (1)求ϕ;(2)计算f (1)+f (2)+…+f (2 008).参考答案1.已知θ2sin )21(<1,则θ所在象限为第 象限.答案 一或三2.已知点P (tan α,cos α)在第三象限,则角α的终边在第 象限. 答案 二3.已知sin θ=a a+-11,cos θ=aa +-113,若θ是第二象限角,则cot a = . 解 ∵θ是第二象限角,∴sin θ>0,cos θ<0∴⎪⎪⎩⎪⎪⎨⎧<+-=<-<+-=<0113cos 1111sin 0a a a a θθ,解得0<a <31.又∵sin 2θ+cos 2θ=1∴11131122=⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-a a a a解得a =91或a =1(舍去),故实数a 的值为91.4.sin 2(π+α)-cos(π+α)cos(-α)+1的值为 .答案 25.如果cos α=51,且α是第四象限的角,那么cos ⎪⎭⎫⎝⎛+2πα= .答案562 6.已知cos(π+α)=-21,且α是第四象限角,计算: (1)sin(2π-α)= ; (2)[][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -•++-+++ (n ∈Z )= .解 ∵cos(π+α)=-21,∴-cos α=-21,cos α=21又∵α是第四象限角,∴sin α=-23cos 12-=-α. (1)sin(2π-α)=sin [2π+(-α)] =sin(-α)=-sin α=23. (2)[][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -•++-+++=)2cos()2sin()2sin()2sin(απαπαππαππ+-•++--+++n n n n=αααπαπcos sin )sin()sin(•+-++=αααπαcos sin )sin(sin •---=αααcos sin sin 2•-=αcos 2-=-4.7.化简:αααα6644sin cos 1sin cos 1----= .解 方法一 原式=αααααααα6632244222sin cos )sin (cos sin cos )sin (cos --+--+=32)sin (cos sin cos 3sin cos 2222222=+•αααααα. 方法二 原式=ααααααα6422422sin )cos cos 1)(cos 1(sin )cos 1)(cos 1(-++--+-8.已知函数f (x )=2sin ωx (ω>0)在区间⎥⎦⎤⎢⎣⎡-4,3ππ上的最小值是-2,则ω的最小值等于 .答案 239.函数y =A sin(ωx +ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图所示,则函数表达式为 . 答案 y =-4sin ⎪⎭⎫ ⎝⎛+48ππx10.某三角函数图象的一部分如下图所示,则该三角函数为 .答案 y =cos ⎪⎭⎫⎝⎛-62πx11.若函数f (x )=2sin(ϕω+x )对任意x 都有f ⎪⎭⎫ ⎝⎛+x 6π=f ⎪⎭⎫ ⎝⎛-x 6π,则f ⎪⎭⎫⎝⎛6π= .答案 -2或212.求函数y =2sin ⎪⎭⎫⎝⎛-x 4π的单调减区间为 .解 方法一 y =2sin ⎪⎭⎫ ⎝⎛-x 4π化成y =-2sin ⎪⎭⎫ ⎝⎛-4πx .1分∵y =sin u (u ∈R )的递增、递减区间分别为⎥⎦⎤⎢⎣⎡+-22,22ππππk k (k ∈Z ) ⎥⎦⎤⎢⎣⎡++232,22ππππk k (k ∈Z ) ∴函数y =-2sin ⎪⎭⎫ ⎝⎛-4πx 的递增、递减区间分别由下面的不等式确定2k π+2π≤x -4π≤2k π+23π(k ∈Z ) 即2k π+43π≤x ≤2k π+47π(k ∈Z ) 2k π-2π≤x -4π≤2k π+2π(k ∈Z )即2k π-4π≤x ≤2k π+43π(k ∈Z ).∴函数y=2sin ⎪⎭⎫ ⎝⎛-x 4π的单调递减区间、单调递增区间分别为⎥⎦⎤⎢⎣⎡+-432,42ππππk k (k ∈Z ) ⎥⎦⎤⎢⎣⎡++472,432ππππk k (k ∈Z ).方法二 y =2sin ⎪⎭⎫⎝⎛-x 4π可看作是由y =2sin u 与u =x -4π复合而成的.又∵u =x -4π为减函数∴由2k π-2π≤u ≤2k π+2π(k ∈Z ) -2k π-4π≤x ≤-2k π+43π (k ∈Z ). 即⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z )为y =2sin ⎪⎭⎫⎝⎛-x 4π的递减区间. 由2k π+2π≤u ≤2k π+23π(k ∈Z ) 即2k π+2π≤4π-x ≤2k π+23π (k ∈Z )得 -2k π-45π≤x ≤-2k π-4π(k ∈Z ) 即⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z )为y =2sin ⎪⎭⎫⎝⎛-x 4π的递增区间.综上可知:y =2sin ⎪⎭⎫⎝⎛-x 4π的递增区间为⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z ); 递减区间为⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z ).13.求f (x )=)2cos(21x --π的定义域和值域.解 由函数1-2cos ⎪⎭⎫⎝⎛-x 2π≥0,得sin x ≤22,利用单位圆或三角函数的图象,易得所求函数的定义域是⎭⎬⎫⎩⎨⎧∈+≤≤-k k x k x ,42452|ππππ. 当sin x =cos ⎪⎭⎫⎝⎛-x 2π=22时,y min =0; 当sin x =cos ⎪⎭⎫⎝⎛-x 2π=-1时,y max =21+.所以函数的值域为[0,21+].Z14.已知函数y =2sin ⎪⎭⎫ ⎝⎛+32πx(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎪⎭⎫⎝⎛+32πx 的图象可由y =sin x 的图象经过怎样的变换而得到.解 (1)y =2sin ⎪⎭⎫⎝⎛+32πx 的振幅A =2,周期T =22π=π 初相ϕ=3π. (2)令X =2x +3π,则y =2sin ⎪⎭⎫ ⎝⎛+32πx =2sin X .列表,并描点画出图象:(3)方法一 把y =sin x 的图象上所有的点向左平移3π个单位,得到y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,再把y =sin⎪⎭⎫ ⎝⎛+3πx 的图象上的点的横坐标缩短到原来的21倍(纵坐标不变),得到y =sin ⎪⎭⎫ ⎝⎛+32πx 的图象,最后把y =sin ⎪⎭⎫ ⎝⎛+32πx 上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎪⎭⎫ ⎝⎛+32πx 的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的21倍,纵坐标不变,得到y =sin2x 的图象; 再将y =sin2x 的图象向左平移6π个单位; 得到y =sin2⎪⎭⎫ ⎝⎛+6πx =sin ⎪⎭⎫ ⎝⎛+32πx 的图象;再将y =sin ⎪⎭⎫⎝⎛+32πx 的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎪⎭⎫⎝⎛+32πx 的图象.15.已知函数f (x )=2A - 2A cos(2ωx +2ϕ) (A >0, ω>0,0<ϕ<2π),且y =f (x )的最大值为2,其图象相邻 两对称轴间的距离为2,并过点(1,2).(1)求ϕ;(2)计算f (1)+f (2)+…+f (2 008). 解 (1)∵y =2A - 2Acos(2ωx +2ϕ) 且y =f (x )的最大值为2,A >0 ∴2A +2A=2,A =2. 又∵其图象相邻两对称轴间的距离为2,ω>0 ∴21⎪⎭⎫ ⎝⎛ωπ22=2, ω=4π.∴f (x )= 22-22cos ⎪⎭⎫ ⎝⎛+ϕπ22x =1-cos ⎪⎭⎫⎝⎛+ϕπ22x .∵y =f (x )过(1,2)点,∴cos ⎪⎭⎫⎝⎛+ϕπ22=-1.ϕπ22+=2k π+π,k ∈Z .∴ϕ=k π+4π,k ∈Z . 又∵0<ϕ<2π,∴ϕ=4π.(2)∵ϕ=4π,∴f (x )=1-cos ⎪⎭⎫ ⎝⎛+22ππx =1+sin x 2π.∴f (1)+f (2)+f (3)+f (4)=2+1+0+1=4.又∵y =f (x )的周期为4,2 008=4×502∴f (1)+f (2)+…+f (2 008)=4×502=2 008.。
全国通用2023高中数学必修一第五章三角函数真题
全国通用2023高中数学必修一第五章三角函数真题单选题1、将函数f(x)=2cosx的图象先向右平移φ(0<φ<π)个单位长度,再把所得函数图象的横坐标变为原来的1ω(ω>0)倍,纵坐标不变,得到函数g(x)的图象,若对g(x)满足|g(x1)−g(x2)|=4,有|x1−x2|min=π4恒成立,且g(x)在区间(π6,π3)上单调递减,则φ的取值范围是()A.[π12,π3]B.[π3,π2]C.(π3,2π3]D.[π3,2π3]答案:D分析:可得g(x)=2cos(ωx−φ),根据题意可求出最小正周期,得出ω,求出g(x)的单调递减区间,根据包含关系可求出.由题可得g(x)=2cos(ωx−φ),若满足|g(x1)−g(x2)|=4,则x1和x2必然一个极大值点,一个极小值点,又|x1−x2|min=π4,则T2=π4,即T=π2,所以ω=2πT=4,令2kπ≤4x−φ≤2kπ+π,可得kπ2+φ4≤x≤kπ2+π4+φ4,即g(x)的单调递减区间为[kπ2+φ4,kπ2+π4+φ4],k∈Z,因为g(x)在区间(π6,π3)上单调递减,所以(π6,π3)⊆[kπ2+φ4,kπ2+π4+φ4],k∈Z,则{kπ2+φ4≤π6kπ2+φ4+π4≥π3,解得−2kπ+π3≤φ≤−2kπ+2π3,k∈Z,因为0<φ<π,所以可得π3≤φ≤2π3.故选:D.2、函数f(x)=2sin(ωx+φ)(ω>0)图像上一点P(s,t)(−2<t<2)向右平移2π个单位,得到的点Q也在f(x)图像上,线段PQ与函数f(x)的图像有5个交点,且满足f(π4−x)=f(x),f(−π2)>f(0),若y=f(x),x∈[0,π2]与y=a有两个交点,则a的取值范围为()A.(−2,−√2]B.[−2,−√2]C.[√2,2)D.[√2,2]答案:A分析:首先根据已知条件分析出|PQ|=2π=2T,可得ω=2,再由f(π4−x)=f(x)可得y=f(x)对称轴为x=π8,利用f(−π2)>f(0)可以求出符合题意的一个φ的值,进而得出f(x)的解析式,再由数形结合的方法求a的取值范围即可.如图假设P(0,0),线段PQ与函数f(x)的图像有5个交点,则|PQ|=2π,所以由分析可得|PQ|=2π=2T,所以T=π,可得ω=2πT =2ππ=2,因为f(π4−x)=f(x)所以f[π4−(π8+x)]=f(π8+x),即f(π8−x)=f(π8+x),所以x=π8是f(x)的对称轴,所以2×π8+φ=π2+kπ(k∈Z),即φ=π4+kπ(k∈Z),f(−π2)=2sin(−π+φ)=−2sinφ>f(0)=2sinφ,所以sinφ<0,可令k=−1得φ=−3π4,所以f(x)=2sin(2x−3π4),当x∈[0,π2]时,令2x−3π4=t∈[−3π4,π4],则f(t)=2sint,t∈[−3π4,π4]作f(t)图象如图所示:当t =−3π4即x =0时y =−√2,当t =−π2即x =π8时,y =−2,由图知若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为(−2,−√2], 故选:A小提示:关键点点睛:本题解题的关键是取特殊点P (0,0)便于分体问题,利用已知条件结合三角函数图象的特点,以及三角函数的性质求出f (x )的解析式,再利用数形结合的思想求解a 的取值范围.3、已知简谐振动f (x )=Asin (ωx +φ)(|φ|<π2)的振幅是32,图象上相邻最高点和最低点的距离是5,且过点(0,34),则该简谐振动的频率和初相是( ) A .16,π6B .18,π3C .18,π6D .16,π3答案:C分析:根据正弦型函数的图象与性质求出振幅、周期,再由过点(0,34)求出初相即可得解.由题意可知,A =32,32+(T2)2=52,则T =8,ω=2π8=π4, ∴ y =32sin (π4x +φ).由32sin φ=34,得sin φ=12.∵|φ|<π2, ∴φ=π6.因此频率是18,初相为π6.故选:C4、若sin(π−α)+cos(−α)=15,α∈(0,π),则tan (32π−α)的值为( )A .−43或−34B .−43C .−34D .34答案:C分析:根据同角三角函数的基本关系及诱导公式求解. 由sin(π−α)+cos(−α)=15可得:sinα+cosα=15,平方得:sin 2α+2sinαcosα+cos 2α=125所以tan 2α+2tanα+1tan 2α+1=125,解得tanα=−43或tanα=−34, 又sinα+cosα=15,所以|sinα|>|cosα|, 故tanα=−43,故选:C5、已知函数f (x )=sin (2x +π3),为了得到函数g (x )=cos (2x +π3)的图象只需将y =f (x )的图象( ) A .向左平移π4个单位B .向右平移π4个单位C .向左平移π2个单位D .向右平移π2个单位 答案:A分析:利用三角函数的平移结合诱导公式即可求解. 解:因为sin (2x +π3+π2)=cos (2x +π3) 所以sin(2x +π3)→sin(2x +π2+π3),只需将f (x )的图象向左平移π4个单位, 故选:A.6、已知α,β为锐角,sinα=45,cos(α+β)=−√22,则cosβ=( )A .3√210B .√210C .7√210D .9√210 答案:B分析:利用同角三角函数基本关系式,求出cosα,sin(α+β),再利用角变换β=α+β−α,利用两角差的余弦公式求得答案.由α是锐角,sinα=45,则cosα=√1−sin 2α=35, 又α,β是锐角,得α+β∈(0,π), 又cos (α+β)=−√22,则sin(α+β)=√22,则cosβ=cos[(α+β)−α]=cos(α+β)cosα+sin(α+β)sinα=−√22×35+√22×45=−3√2+4√210=√210.故选:B.7、函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π2)的部分图象如图所示,则下列叙述正确的是A.函数f(x)的图象可由y=Asinωx的图象向左平移π6个单位得到B.函数f(x)的图象关于直线x=π3对称C.函数f(x)在区间[−π3,π3]上是单调递增的D.函数f(x)图象的对称中心为(kπ2−π12,0)(k∈Z)答案:D解析:根据题意求出解析式,利用正弦函数的对称性及单调性依次判断选项. 由图象可知A=2,f(0)=1,∵f(0)=2sinφ=1,且0<φ<π2,∴φ=π6,∴f(x)=2sin(ωx+π6),∵f(5π12)=0且为单调递减时的零点,∴ω⋅5π12+π6=π+2kπ,k∈Z,∴ω=2+24k5,k∈Z,由图象知T =2πω>2×5π12,∴ω<125, 又∵ω>0, ∴ω=2,∴f (x )=2sin (2x +π6),∵函数f (x )的图象可由y =A sinωx 的图象向左平移π12个单位得, ∴A 错,令2x +π6=π2+kπ,k ∈Z ,对称轴为x =π6+kπ2,则B 错,令2x +π6∈[−π2+kπ,π2+kπ],则x ∈[−π3+kπ2,π6+kπ2],则C 错,令2x +π6=k π,k ∈Z ,则x =kπ2−π12,则D 对, 故选:D .小提示:本题考查三角函数图象及其性质,考查了正弦函数的对称性及单调性,属于中档题. 8、已知sin (π+α)=35,则sin(−α)cos(π−α)sin(π2−α)=( )A .−45B .45C .−35D .35 答案:C解析:由条件利用诱导公式进行化简所给的式子,可得结果. ∵sin(π+α)=35=−sinα,∴sinα=−35, 则sin(−α)cos(π−α)sin(π2−α)=−sinα⋅(−cosα)cosα=sinα=−35,故选:C9、已知tanθ=2,则sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ)=( )A .2B .-2C .0D .23 答案:B分析:根据tanθ=2,利用诱导公式和商数关系求解.因为tanθ=2, 所以sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ),=2cosθcosθ−sinθ, =21−tanθ=−2,故选:B10、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r 的等式,由此求解出r 的值.设扇形的半径为R ,圆心角为α,面积为S ,因为2R +αR =20, 所以S =12αR 2=(10−R )R ≤(10−R+R 2)2=25,取等号时10−R =R ,即R =5,所以面积取最大值时R =5,α=2, 如下图所示:设内切圆圆心为O ,扇形过点O 的半径为AP ,B 为圆与半径的切点, 因为AO +OP =R =5,所以r +r sin∠BPO=5,所以r +r sin1=5,所以r =5sin11+sin1, 故选:C. 填空题11、已知sin α=√55,sin(α-β)=-√1010,α,β均为锐角,则β=________. 答案:π4分析:通过α,β,α-β的范围求出他们的正弦,余弦值,再通过sin β=sin[α-(α-β)]可得sin β,进而可得β. 因为α,β均为锐角,所以-π2<α-β<π2. 又sin(α-β)=-√1010,所以cos(α-β)=3√1010. 又sin α=√55,所以cos α=2√55, 所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =√55×3√1010-2√55×(−√1010)=√22. 所以β=π4. 所以答案是:π412、若sin (α−π6)=−45,则cos (α+π3)=___________.答案:45分析:由已知函数值,根据诱导公式即可求cos (α+π3)的值.cos (α+π3)=cos [(α−π6)+π2]=−sin (α−π6),又sin (α−π6)=−45, ∴ cos (α+π3)=45, 所以答案是:45.13、已知tan(α+β2)=√62,tanαtanβ=137,则cos(α−β)的值为______.答案:23分析:应用三角函数的恒等变换公式对tanβ=sinαsinβcosαcosβ变形求得cos(α−β)=−103cos(α+β),再由tanα+β2求得cos(α+β),可得结论. tanαtanβ=sinαsinβcosαcosβ=12[cos(α−β)−cos(α+β)]12(cos(α−β)+cos(α+β)]=137,所以cos(α−β)=−103cos(α+β),cos(α+β)=1−tan 2α+β21+tan 2α+β2=1−(√62)21+(√62)=−15,所以cos(α−β)=−103×(−15)=23.所以答案是:23.解答题14、已知函数f (x )=4cosxsin (x −π3)+√3.(Ⅰ)求函数f (x )在区间[π4,π2]上的值域.(Ⅱ)在△ABC 中,角A ,B ,C ,所对的边分别是a ,b ,c ,若角C 为锐角,f (C )=√3,且c =2,求△ABC 面积的最大值.答案:(Ⅰ)[1,2];(Ⅱ)√3分析:(Ⅰ)利用差角的正弦公式、辅助角公式化简函数,结合正弦函数的性质,可得函数f(x)在区间[π4,π2]上的值域;(Ⅱ)先求出C ,再利用余弦定理,结合基本不等式,即可求得△ABC 面积的最大值. 解:(Ⅰ)f(x)=4cosxsin(x −π3)+√3=4cosx (sinxcos π3−cosxsin π3)+√3=4cosx (12sinx −√32cosx)+√3=2sinxcosx −2√3cos 2x +√3=sin2x −√3cos2x =2sin(2x −π3),由π4⩽x ⩽π2,有π6⩽2x −π3⩽2π3,所以12≤sin (2x −π3)≤1∴函数f(x)的值域为[1,2].(Ⅱ)由f (C )=√3,有sin(2C −π3)=√32, ∵C 为锐角,∴2C −π3=π3,∴C =π3. ∵c =2,∴由余弦定理得:a 2+b 2−ab =4, ∵a 2+b 2⩾2ab ,∴4=a 2+b 2−ab ⩾ab .∴S△ABC=12absinC=√34ab⩽√3,∴当a=b,即△ABC为正三角形时,△ABC的面积有最大值√3.15、已知函数f(x)=asin(x+π4)−√6cos(x+π3),其中a∈R.(1)当a为何值时,f(x)为偶函数?(2)当a为何值时,f(x)为奇函数? 答案:(1)a=−3(2)a=√3分析:(1)由题意求得f(π2),f(−π2),根据f(π2)=f(−π2),求得a=−3,结合偶函数的定义,即可求解;(2)由题意求得f(0)=√22a−√62,根据f(0)=0,求得a=√3,结合奇函数的定义,即可求解;(1)解:由函数f(x)=asin(x+π4)−√6cos(x+π3),可得f(π2)=√22a+32√2,f(−π2)=−√22a−32√2,若f(x)是偶函数,则f(π2)=f(−π2),即√22a+32√2=−√22a−32√2,可得a=−3,当a=−3时,函数f(x)=−3sin(x+π4)−√6cos(x+π3)=(−3√22−√62)cosx,此时函数满足f(−x)=f(x),函数f(x)为偶函数.(2)解:由f(x)=asin(x+π4)−√6cos(x+π3),可得f(0)=√22a−√62,若f(x)是奇函数,则f(0)=0,可得a=√3,当a=√3时,f(x)=−3sin(x+π4)−√6cos(x+π3)=(√62+32√2)sinx,此时函数满足f(−x)=−f(x),函数f(x)为奇函数.。
新教材高一数学必修第一册三角函数综合检测答案解析
新教材高一数学必修第一册三角函数综合检测答案解析一、单选题1.若()tan 2πα+=,则()()2sin 4sin cos 2παπαα⎛⎫----= ⎪⎝⎭( )A .95- B .75-C .75D .9575=-2.已知角α的终边在直线2y x =上,则sin cos αα=( ) A .25B .25-C .45D .45-3.函数22sin 2cos 3y x x =+-的最大值是( ) A .1- B .12C .12-D .5-【答案】C【分析】结合同角三角函数的基本关系式、二次函数的性质,求得函数的最大值. 【详解】()222sin 2cos 321cos 2cos 3y x x x x =+-=-+-1122-, 的最大值是12-的二次式求最值,属于基础题4()2x x π⎛⎫+- ⎪⎝⎭的结果为( )A .6x π⎛⎫+ ⎪⎝⎭B .3x π⎛⎫+ ⎪⎝⎭C .6x π⎛⎫+ ⎪⎝⎭D .3x π⎛⎫+ ⎪⎝⎭5.将函数()()sin 0,0g x A x A ωω=>>,的图象向左平移中()0ϕϕπω<<个单位后得到函数()y f x =的图象,若()y f x =的图象关于y 轴对称,且()()130f f -==,则ω的可能取值为( ) A .3 B .13C .32π D .π6.设z ∵C ,且|z |=1,当|(z ﹣1)(z ﹣i )|最大时,z =( )A .﹣1B .﹣iC D7.已知()sin (0)3f x x ωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:∵()()122f x f x -=时,12x x -的最小值为2π;∵3y f x π⎛⎫=- ⎪⎝⎭是奇函数;∵(0)6f f π⎛⎫< ⎪⎝⎭.若()f x 在[0,)t 上没有最小值,则实数t 的取值范围是 A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤ ⎥⎝⎦C .511,1212ππ⎛⎤ ⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦8.已知1x ,2x ,是函数()()()tan 0,0f x x ωϕωϕπ=-><<的两个零点,且12x x -的最小值为3π,若将函数()f x 的图象向左平移12π个单位长度后得到的图象关于原点对称,则ϕ的最大值为( ) A .34πB .4π C .78π D .8π二、多选题9.设扇形的圆心角为α,半径为r ,弧长为l ,面积为S ,周长为L ,则( ) A .若α,r 确定,则L ,S 唯一确定 B .若α,l 确定,则L ,S 唯一确定 C .若S ,L 确定,则α,r 唯一确定 D .若S ,l 确定,则α,r 唯一确定10.已知函数()sin f x x x =,则下列说法中正确的有( ) A .函数()f x 的值域为[1,2] B .直线是6x π=函数()f x 图象的一条对称轴C .函数()f x 的最小正周期为πD .函数()f x 在910109ππ⎡⎤⎢⎥⎣⎦,上是增函数11.已知函数()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为π2B .函数()y f x =的图象关于直线19π12x =对称 C .函数()y f x =在区间2ππ,36⎡⎤--⎢⎥⎣⎦上单调递增D .函数()1y f x =-在区间[]0,2π上有4个零点2112.若函数()()2ln 1=-+f x x ax 在区间[)2,+∞上单调递增,则下列实数可以作为a 值的是( )A .4B .52C .2D .0三、填空题13.若1cos 35πα⎛⎫+= ⎪,0,2πα⎛⎫∈ ⎪,则sin α=__________________.14.已知02πα<<,1cos 63α⎛⎫+= ⎪⎝⎭,则sin 23α⎛⎫+= ⎪⎝⎭______.15.若函数()()sin 0f x x ωω=>在()0π,上单调递增,则ω的取值范围是________________.16.已知()sin()4f x x ωϕ=+-(0,02ωϕ><<)为奇函数,且()y f x =的图像与x 轴的两个相邻交点之间的距离为π,设矩形区域Ω是由直线2x π=±和1y =±所围成的平面图形,区域D 是由函数()2y f x π=+、2x π=±及1y =-所围成的平面图形,向区域Ω内随机地抛掷一粒豆子,则该豆子落在区域D 的概率是___________.2π四、解答题 17.已知tan α=2. (1)求sin 3cos sin cos αααα-+的值;(2)求2sin 2α-sin αcos α+cos 2α的值.18.已知,(0,)αβπ∈,且11tan(),tan 27αββ-==-,求2αβ-的值.【详解】tan tan[(α=)tan[(β-=11tan 1,0,tan ,3472ππααββ=<∴<<=-∴<故答案为:34π-. 19.已知函数2()cos 3sin cos (0,)ωωωω=++>∈R f x x x x m m .再从条件∵、条件∵、条件∵这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件∵:函数()f x 的最小正周期为π;条件∵:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件∵:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.112cos222ωω+++x x m π1sin(2)62ω=+++x m .选择∵∵: 因为2ππ2T ω==,所以1ω=. 又因为1(0)12f m =+=,所以12m =-.所以π()sin(2)6f x x =+.当ππ22π62x k +=-,Z k ∈,即ππ3x k =-,Z k ∈时,()1f x =-. 所以函数()f x 的最小值为1-. 选择∵∵: 因为2ππ2T ω==,所以1ω=. 又因为函数()f x 的最大值为3322m +=, 所以0m =.所以π1()sin(2)62f x x =++.当ππ22π62x k +=-,Z k ∈,即ππ3x k =-,Z k ∈时, πsin(2)16x +=-,所以函数()f x 的最小值为11122. 选择∵∵:因为1(0)12f m =+=,所以12m =-,因为函数()f x 的最大值为3322m +=,所以0m =m 的取值不可能有两个,∴无法求出解析式,舍去.(2) 选择∵∵: 令πsin(2)06x +=, 则π2π6x k +=,Z k ∈, 所以ππ212k x =-,Z k ∈. 当1,2k =时,函数()f x 的零点为5π11π,1212, 由于函数()f x 在区间[0,]t 上有且仅有1个零点, 所以5π11π1212t ≤<. 所以t 的取值范围是5π11π,1212⎡⎫⎪⎢⎣⎭. 选择∵∵:令π1sin(2)062++=x ,则π722π+π66+=x k ,Z k ∈,或π1122π+π66+=x k ,Z k ∈, 所以ππ+2=x k ,Z k ∈,或5π+π6=x k ,Z k ∈. 当0k =时,函数()f x 的零点分别为π5π,26, 由于函数()f x 在区间[0,]t 上有且仅有1个零点, 所以π5π26t ≤<. 所以t 的取值范围是π5π,26⎡⎫⎪⎢⎣⎭.20.已知函数()ππ2cos 233f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,(∵)求π6f ⎛⎫⎪⎝⎭的值;(∵)求函数()f x 的最小正周期和单调递增区间.21.已知函数()f x 是R 上的奇函数,且()f x 的图象关于直线=1x 对称,当[0,1]x ∈时,()21x f x =-.(1)求()f x 的最小正周期,并用函数的周期性的定义证明;(2)当[1,2]∈x 时,求()f x 的解析式; (3)计算(0)(1)(2)(2018)f f f f ++++的值.【答案】(1)见解析 (2)2()21x f x -=- (3)1【分析】(1)结合已知条件,利用函数的对称关系即可求解; (2)利用函数的对称关系即可求解;(3)利用周期性和()f x 在[0,2]上的解析式即可求解. (1)因为函数()f x 是R 上的奇函数,且()f x 的图象关于直线=1x 对称, 所以()(2)()f x f x f x =-=--,不妨令t x =-,则(2)()f t f t +=-,即()(2)f t f t =-+, 从而(2)(22)(4)f t f t f t +=-++=-+,即()(4)f t f t =+, 即()f x 的一个周期为4,因为当[0,1]x ∈时,()21x f x =-,即()f x 在[0,1]上的单调递增, 所以由奇函数性质可知,()f x 在[]1,1-上单调递增, 又由对称性可知,()f x 在[1,3]单调递减, 从而()f x 的最小正周期为4. (2)当[1,2]∈x 时,则2[0,1]x -∈,因为当[0,1]x ∈时,()21x f x =-,且()f x 的图象关于直线=1x 对称, 所以当[1,2]∈x 时,2()(2)21x f x f x -=-=-. (3)由(1)(2)和()f x 的周期性可知,(0)=0f ,(1)1=f ,(2)0f =,(3)(1)(1)1f f f =-=-=-, 因为()f x 的最小正周期为4, 所以(0)(1)(2)(2018)505[(0)(1)(2)(3)](3)1f f f f f f f f f ++++=+++-=.22.如图,某自来水公司要在公路两侧安装排水管,公路为东西方向,在路北侧沿直线1l 排,在路南侧沿直线2l 排,现要在矩形区域ABCD 内沿直线将1l 与2l 接通.已知60AB m =,80BC m =,公路两侧排水管费用为每米1万元,穿过公路的EF 部分的排水管费用为每米2万元,设EF与AB所成的小于90︒的角为α.(∵)求矩形区域ABCD内的排水管费用W关于α的函数关系;(∵)求排水管的最小费用及相应的角α.cosαcos cos cosαααα-⎛⎫sin24f x,()f x为增函数;。
人教A新版必修1《第5章_三角函数》2019年单元测试卷(二)(有答案)
人教A新版必修1《第5章三角函数》2019年单元测试卷(二)复习巩固1. 写出与下列各角终边相同的角的集合S,并且把S中适合不等式−2π≤β<4π的元素β写出来:(1)π4;(2)−23π;(3)125π;(4)2. 一个扇形的弧长与面积的数值都是5,求这个扇形中心角的度数.3. (1)已知cosφ=14,求sinφ,tanφ. 3.(2)已知sin x=2cos x,求角x的三个三角函数值4. 已知tanα=−13,计算(1)sinα+2cosα5cosα−sinα;(2)12sinαcosα+cos2α;(3)sinαcosα;(4)(sinα+cosα)2.5. 计算(可用计算工具,第(2)(3)题精确到0.0001)(1)sin256π+cos253π+tan(−254π);(2)sin2+cos3+tan4;(3)cos(sin2).6. 设π<x<2π,填表:7. 求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x的集合.(1)y=√2+sin xπ,x∈R;(2)y=3−2cos x,x∈R.8. 画出下列函数在长度为一个周期的闭区间上的简图,并指出分别由函数y=sin x,x∈R的图象经过怎样的变换得到:(1)y=12sin(3x−π3);(2)y=−2sin(x+π4);(3)y=1−sin(2x−π5);(4)y=3sin(π6−x3)9. (1)用描点法画出函数y=sin x,x∈[0, π2]的图象. 9.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sin x,x∈[0, 2π]的图象? 9.(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y =sin (x +φ)+k ,x ∈[0, 2π]的图象?(其中φ.k 都是常数)10. 不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得到它们的图象(1)y =sin (5x +π6);(2)y =2sin 16x ;11. (1)已知α,β都是锐角,如sin α=45,cos (α+β)=513,求sin β的值; 11.(2)已知cos (π4−α)=35,sin (5π4+β)=−1213,α∈(π4, 3π4),β∈(0, π4),求sin (α+β)的值; 11.(3)已知α,β都是锐角,tan α=17,sin β=√1010,求tan (α+2β)的值.12. (1)证明:tan α+tan β=tan (α+β)−tan αtan βtan (α+β); 12. (2)求tan 20∘+tan 40∘+√3tan 20∘tan 40∘的值; 12.(3)若α+β=3π4,求(1−tan α)(1−tan β)的值;12. (4)求tan 20+tan 40+tan 120tan 20tan 40的值.13. 化简: (1)1sin 10−√3cos 10(2)sin 40∘(tan 10∘−√3)(3)tan 70∘cos 10∘(√3tan 20∘−1)(4)sin 50∘(1+√3tan 10∘)14. (1)已知cos θ=−35,π<θ<3π2,求(sin θ2−cos θ2)2的值; 14. (2)已知sin α2−cos α2=15,求sin α的值; 14.(3)已知sin 4θ+cos 4θ=59,求sin 2θ的值;14.(4)已知cos 2θ=35,求sin 4θ+cos 4θ的值.15. (1)(07年江苏卷.11)已知cos (α+β)=15,cos (α−β)=35,求tan α⋅tan β的值 15. (2)已知cos α+cos β=12,sin α+sin β=13,求cos (α−β)的值.16. 证明:(1)cos 4α+4cos 2α+3=8cos 4α;(2)1+sin 2α2cos 2α+sin 2α=12tan α+12; (3)sin (2α+β)sin α−2cos (α+β)=sin βsin α;(4)3−4cos 2A+cos 4A 3+4cos 2A+cos 4A =tan 4A .17. 已知sin α−cos α=15,0≤α≤π,求sin (2α−π4)的值.18. 已知cos (π4+x)=35,17π12<x <7π4,求sin 2x+2sin 2x 1−tan x的值.19. 已知sinθ+cosθ=2sinα,sinθcosθ=sin2β,求证4cos22α=cos22β.20. 已知函数f(x)=cos4x−2sin x cos x−sin4x.(1)求f(x)的最小正周期;(2)当x∈[0,π2]时,求f(x)的最小值以及取得最小值时x的集合.21. 已知函数f(x)=sin(x+π6)+sin(x−π6)+cos x+a的最大值为1.(1)求常数a的值;(2)求函数f(x)的单调递减区间;(3)求使f(x)≥0成立的x的取值集合.22. 若函数f(x)=√3sin2x+2cos2x+m在区间[0, π2]上的最大值为6,求常数m的值及此函数当x∈R时的最小值,并求相应的x的取值集合.23. 如图,正方形ABCD的边长为1,P、Q分别为边AB、DA上的点,当△APQ的周长为2时,求∠PCQ的大小.24. 已知sinβ+cosβ=15,β∈(0, π)(1)求tanβ的值;(2)求sin2β的值;(3)你能根据所给的条件,自己构造出一些求值问题吗?25. 如图,已知直线l1 // l2,A是l1,l2之间的一定点,并且点A到l1,l2的距离分别为ℎ1,ℎ2,B 是直线l 2上一动点,作AC ⊥AB ,且使AC 与直线l 1交于点C .设∠ABD =α.(1)写出△ABC 面积S 关于角α的函数解析式S(α);(2)画出上述函数的图象;(3)由(2)中的图象求S(α)的最小值26. 英国数学家泰勒发现了如下公式 sin x =x −x 33!+x 55!−x 77!+⋯⋯, cos x =1−x 22!+x 44!−x 66!+⋯⋯,其中n !=1×2×3×4×...×n这些公式被编入计算工具,计算工具计算足够多的项就可以确保显示值的精确性,比如,用前三项计算cos 0.3,就得到cos 0.3≈1−0.322!+0.344!=0.9553375.试用你的计算工具计算cos 0.3,并与上述结果比较.27. 在地球公转过程中,太阳直射点的纬度随时间周而复始不断变化.(1)如图,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射点的纬度,φ为当地的纬度值,那么这三个量满足θ=90∘−|φ−δ|.某科技小组以某年春分(太阳直射赤道且随后太阳直射点逐渐北移的时间)为初始时间,统计了连续400天太阳直射点的纬度平均值(太阳直射北半球时取正值,太阳直射南半球时取负值).下面是该科技小组的三处观测站成员在春分后第45天测得的当地太阳高度角数据:请根据数据完成上面的表格;(2)设第x天时太阳直射点的纬度平均值为y.该科技小组通过对数据的整理和分析,推断y与x近似满足函数y=A sinωx,其中A为北回归线的纬度值,约为23.4392911,试利用(1)中的数据,估计ω的值(精确到10−8);(3)定义从某年春分到次年春分所经历的时间为一个回归年,求一个回归年对应的天数(精确到0.0001);(4)利用(3)的结果,估计每400年中,应设定多少个闰年,可使这400年与400个回归年所含的天数最为接近(精确到1)参考答案与试题解析人教A新版必修1《第5章三角函数》2019年单元测试卷(二)复习巩固1.【答案】与角π4终边相同的角的集合S={α|α=π4+2kπ, k∈Z},S中适合不等式−2π≤β<4π的元素β是:−7π4、π4、9π4;与角−2π3终边相同的角的集合S={α|α=−2π3+2kπ, k∈Z},S中适合不等式−2π≤β<4π的元素β是:−2π3、4π3、10π3;与角12π5终边相同的角的集合S={α|α=12π5+2kπ, k∈Z},S中适合不等式−2π≤β<4π的元素β是:−8π5、2π5、12π5;与角0终边相同的角的集合S={α|α=2kπ, k∈Z},S中适合不等式−2π≤β<4π的元素β是:−2π、0、2π.【考点】终边相同的角【解析】根据终边相同的角的概念,写出与所求角的终边相同的角的集合S,再求出S中适合条件的元素β值.【解答】与角π4终边相同的角的集合S={α|α=π4+2kπ, k∈Z},S中适合不等式−2π≤β<4π的元素β是:−7π4、π4、9π4;与角−2π3终边相同的角的集合S={α|α=−2π3+2kπ, k∈Z},S中适合不等式−2π≤β<4π的元素β是:−2π3、4π3、10π3;与角12π5终边相同的角的集合S={α|α=12π5+2kπ, k∈Z},S中适合不等式−2π≤β<4π的元素β是:−8π5、2π5、12π5;与角0终边相同的角的集合S={α|α=2kπ, k∈Z},S中适合不等式−2π≤β<4π的元素β是:−2π、0、2π.2.【答案】设这个扇形中心角的弧度数为α,半径为r.∵一个扇形的弧长与面积的数值都是5,∴ 5=αr ,5=12αr 2,解得α=52.【考点】 扇形面积公式 【解析】设这个扇形中心角的弧度数为α,半径为r .利用弧长公式、扇形的面积计算公式即可得出. 【解答】设这个扇形中心角的弧度数为α,半径为r . ∵ 一个扇形的弧长与面积的数值都是5, ∴ 5=αr ,5=12αr 2, 解得α=52. 3. 【答案】cos φ=14>0,则φ在第一、四象限. 当φ在第一象限时,sin φ=√1−(14)2=√154, tan φ=√15414=√15;当φ在第四象限时,sin φ=−√154,tan φ=−√15.由于sin x =2cos x ,且sin 2x +cos 2x =1, 解得,sin x =2√55,cos x =√55 或sin x =−2√55,cos x =−√55. tan x =sin x cos x=2.则当x 在第一象限时,sin x =2√55,cos x =√55,tan x =2; 当x 在第三象限时,sin x =−2√55,cos x =−√55,tan x =2. 【考点】同角三角函数间的基本关系 【解析】(1)讨论φ在第一、四象限,运用同角三角函数的平方关系和商数关系,即可得到所求值.(2)运用同角的基本关系式:平方关系和商数关系,即可得到所求的三角函数值. 【解答】cos φ=14>0,则φ在第一、四象限.当φ在第一象限时,sin φ=√1−(14)2=√154, tan φ=√15414=√15;当φ在第四象限时,sin φ=−√154,tan φ=−√15.由于sin x =2cos x , 且sin 2x +cos 2x =1, 解得,sin x =2√55,cos x =√55 或sin x =−2√55,cos x =−√55. tan x =sin xcos x =2.则当x 在第一象限时,sin x =2√55,cos x =√55,tan x =2; 当x 在第三象限时,sin x =−2√55,cos x =−√55,tan x =2. 4. 【答案】sin α+2cos α5cos α−sin α=tan α+25−tan α=−13+25−(−13)=−516;12sin αcos α+cos 2α=sin 2α+cos 2α2sin αcos α+cos 2α=tan 2α+12tan α+1=(−13)2+12×(−13)+1=103;sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=−13(−13)2+1=−310;(sin α+cos α)2=sin 2α+cos 2α+2sin αcos αsin 2α+cos 2α=tan 2α+1+2tan αtan 2α+1=(−13)2+1+2×(−13)(−13)2+1=25.【考点】同角三角函数间的基本关系 【解析】(1)利用商数关系和“弦化切”即可得出;(2)把分子用sin 2α+cos 2α代换,利用“弦化切”即可得出.(3)把分母看作“1”,用sin 2α+cos 2α代换,利用“弦化切”即可得出. (4)把分母看作“1”,再用sin 2α+cos 2α代换,利用“弦化切”即可得出. 【解答】sin α+2cos α5cos α−sin α=tan α+25−tan α=−13+25−(−13)=−516;12sin αcos α+cos 2α=sin 2α+cos 2α2sin αcos α+cos 2α=tan 2α+12tan α+1=(−13)2+12×(−13)+1=103;sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=−13(−13)2+1=−310;(sin α+cos α)2=sin 2α+cos 2α+2sin αcos αsin 2α+cos 2α=tan 2α+1+2tan αtan 2α+1=(−13)2+1+2×(−13)(−13)2+1=25.5. 【答案】 sin256π+cos253π+tan (−254π)=sin π6+cos π3−tan π4=12+12−1=0;sin 2+cos 3+tan 4=0.90930−0.98999+1.15782=1.07713≈1.0771; cos (sin 2)=cos 0.90930=0.6143. 【考点】三角函数的恒等变换及化简求值 【解析】(1)先用诱导公式化简,再求值即可; (2)利用科学型计算器求值即可; (3)利用科学型计算器计算即可. 【解答】 sin256π+cos253π+tan (−254π)=sin π6+cos π3−tan π4=12+12−1=0;sin 2+cos 3+tan 4=0.90930−0.98999+1.15782=1.07713≈1.0771; cos (sin 2)=cos 0.90930=0.6143. 6. 【答案】 sin7π6=(2π−5π6)=−sin5π6=−12,cos 7π6=cos (2π−5π6)=cos (−5π6)=−√32,tan 7π6=sin7π6cos7π6=√32; π<x <2π,cos x =−√22,则x =5π4,sin 5π4=−√22,tan 5π4=1;tan x =√3,则x =4π3,sin 4π3=−√32,cos 4π3=√3;cos x =12,则x =5π3,sin 5π3=−√32,tan 5π3=−√3;sin7π4=−√22,cos 7π4=√22; cos x =7π4,则x =7π4,sin 7π4=−12,tan7π4=−√33【考点】三角函数的恒等变换及化简求值【解析】根据正弦函数余弦函数和正切函数的性质,进而求解. 【解答】 sin7π6=(2π−5π6)=−sin5π6=−12,cos 7π6=cos (2π−5π6)=cos (−5π6)=−√32,tan 7π6=sin7π6cos7π6=√32; π<x <2π,cos x =−√22,则x =5π4,sin5π4=−√22,tan 5π4=1;tan x =√3,则x =4π3,sin 4π3=−√32,cos 4π3=√3;cos x =12,则x =5π3,sin 5π3=−√32,tan 5π3=−√3;sin7π4=−√22,cos 7π4=√22; cos x =7π4,则x =7π4,sin 7π4=−12,tan7π4=−√33【答案】令sin x =1,此时,{x|x =2kπ+π2, k ∈Z},函数有最大值√2+1π, 令sin x =−1,此时,{x|x =2kπ−π2, k ∈Z},函数有最小值√2−1π, 令cos x =−1,此时,{x|x =2kπ+π, k ∈Z},函数有最大值3+2=5, 令cos x =1,此时,{x|x =2kπ, k ∈Z},函数有最小值3−2=1, 【考点】余弦函数的图象 正弦函数的图象【解析】(1)直接根据sin x =±1时,该函数取得最值; (2)根据cos x =±,该函数取得最值, 【解答】令sin x =1,此时,{x|x =2kπ+π2, k ∈Z},函数有最大值√2+1π, 令sin x =−1,此时,{x|x =2kπ−π2, k ∈Z},函数有最小值√2−1π, 令cos x =−1,此时,{x|x =2kπ+π, k ∈Z},函数有最大值3+2=5,令cos x=1,此时,{x|x=2kπ, k∈Z},函数有最小值3−2=1,8.【答案】y=sin x沿x轴向右平移π3个单位长度得到y=sin(x−π3),将y=sin(x−π3)图象横坐标缩短为原来的13,得到y=sin(3x−π3),将y=sin(3x−π3)的图象纵坐标缩短为原来的12倍,得到y=12sin(3x−π3)的图象.画出函数y在一个周期[−π9, 5π9]内的图象,如图1所示;y=sin x沿x轴向左平移π4个单位长度得到y=sin(x+π4),将y=sin(x+π4)的图象纵坐标伸长为原来的2倍,得到y=2sin(x+π4)的图象,作函数y=2sin(x+π4)的图象关于x轴的对称图象,得到函数y=−2sin(x+π4)的图象.画出函数y在一个周期[−π4, 7π4]内的图象,如图2所示;y=sin x沿x轴向右平移π5个单位长度得到y=sin(x−π5),将y=sin(x−π5)图象横坐标缩短为原来的12,得到y=sin(2x−π5),将做y=sin(2x−π5)的图象关于x轴的对称图象,得到y=−sin(2x−π5)的图象;将函数y=−sin(2x−π5)的图象向上平移1个单位,得到函数y=1−sin(2x−π5)的图象;画出函数y在一个周期[π10, 11π10]内的图象,如图3所示;作y=sin x关于x轴的对称图象,得到函数y=sin(−x),将y=sin(−x)的图象向右平移π6个单位得到y=sin(−x+π6),将y=sin(−x+π6)的图象纵坐标保持不变,横坐标伸长为原来的3倍,得到y=sin(π6−x3 ),将y=sin(π6−x3)的图象纵坐标伸长为原来的3倍,得到y=3sin(π6−x3)的图象;画出函数y在一个周期[π2, 13π2]内的图象,如图4所示;【考点】五点法作函数y=Asin (ωx+φ)的图象【解析】依题意,根据函数的解析式,根据函数图象变换规律,写出图象变换过程即可得解.【解答】y=sin x沿x轴向右平移π3个单位长度得到y=sin(x−π3),将y=sin(x−π3)图象横坐标缩短为原来的13,得到y=sin(3x−π3),将y=sin(3x−π3)的图象纵坐标缩短为原来的12倍,得到y=12sin(3x−π3)的图象.画出函数y在一个周期[−π9, 5π9]内的图象,如图1所示;y=sin x沿x轴向左平移π4个单位长度得到y=sin(x+π4),将y=sin(x+π4)的图象纵坐标伸长为原来的2倍,得到y=2sin(x+π4)的图象,作函数y=2sin(x+π4)的图象关于x轴的对称图象,得到函数y=−2sin(x+π4)的图象.画出函数y在一个周期[−π4, 7π4]内的图象,如图2所示;y=sin x沿x轴向右平移π5个单位长度得到y=sin(x−π5),将y=sin(x−π5)图象横坐标缩短为原来的12,得到y=sin(2x−π5),将做y=sin(2x−π5)的图象关于x轴的对称图象,得到y=−sin(2x−π5)的图象;将函数y=−sin(2x−π5)的图象向上平移1个单位,得到函数y=1−sin(2x−π5)的图象;画出函数y在一个周期[π10, 11π10]内的图象,如图3所示;作y=sin x关于x轴的对称图象,得到函数y=sin(−x),将y=sin(−x)的图象向右平移π6个单位得到y=sin(−x+π6),将y=sin(−x+π6)的图象纵坐标保持不变,横坐标伸长为原来的3倍,得到y=sin(π6−x3 ),将y=sin(π6−x3)的图象纵坐标伸长为原来的3倍,得到y=3sin(π6−x3)的图象;画出函数y在一个周期[π2, 13π2]内的图象,如图4所示;9. 【答案】取点列表如下:sin x00.170.340.500.640.770.870.940.981描点作图如下:对称,据此可由sin(π−x)=sin x,可知函数y=sin x,x∈[0, π]的图象关于直线x=π2, π]的图象;又由sin(2π−x)=−sin x,可知函数y=sin x,x∈得函数y=sin x,x∈[π2[0, 2π]的图象关于点(π, 0)对称,据此可得出函数y=sin x,x∈[π, 2π]的图象.先把y轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x轴向下(当k>0时)或向上(当k<0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0, 2π)之外的部分,便得出函数y=sin(x+φ)+k,x∈[0, 2π]的图象.【考点】函数y=Asin(ωx+φ)的图象变换五点法作函数y=Asin(ωx+φ)的图象【解析】(1)计算出几个特殊点的坐标,描点连线即可.(2)利用正弦函数的对称性即可作图.(3)利用函数y=A sin(ωx+φ)的图象变换规律即可得解.【解答】取点列表如下:描点作图如下:由sin (π−x)=sin x ,可知函数y =sin x ,x ∈[0, π]的图象关于直线x =π2对称,据此可得函数y =sin x ,x ∈[π2, π]的图象;又由sin (2π−x)=−sin x ,可知函数y =sin x ,x ∈[0, 2π]的图象关于点(π, 0)对称,据此可得出函数y =sin x ,x ∈[π, 2π]的图象. 先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0, 2π)之外的部分,便得出函数y =sin (x +φ)+k ,x ∈[0, 2π]的图象. 10. 【答案】函数y =sin (5x +π6)的振幅为A =1,周期为T =2π5,初相为φ=π6; 由y =sin x 的图象向左平移π6个单位得到y =sin (x +π6),然后纵坐标不变,横坐标缩短到原来的15倍,得到y =sin (5x +π6)的图象; 函数y =2sin 16x 的振幅为A =2,周期为T =2π16=12π,初相为φ=0;由y =sin x 的图象纵坐标不变,横坐标伸长到原来的6倍,得到y =sin 16x , 再横坐标不变,纵坐标伸长到原来的2倍,得到y =2sin 16x 的图象.【考点】三角函数模型的应用 【解析】根据三角函数中振幅A ,频率ω和初相φ的意义,利用图象平移法则,求解即可. 【解答】函数y =sin (5x +π6)的振幅为A =1,周期为T =2π5,初相为φ=π6; 由y =sin x 的图象向左平移π6个单位得到y =sin (x +π6),然后纵坐标不变,横坐标缩短到原来的15倍,得到y =sin (5x +π6)的图象; 函数y =2sin 16x 的振幅为A =2,周期为T =2π16=12π,初相为φ=0;由y =sin x 的图象纵坐标不变,横坐标伸长到原来的6倍,得到y =sin 16x ,再横坐标不变,纵坐标伸长到原来的2倍,得到y =2sin 16x 的图象. 11. 【答案】∵ 已知α,β都是锐角,sin α=45,∴ cos α=√1−sin 2α=35.∵ cos (α+β)=513,∴ sin (α+β)=√1−cos 2(α+β)=1213,∴ sin β=sin [(α+β)−α]=sin (α+β)cos α−cos (α+β)sin α=1213⋅35−513⋅45=1665. ∵ 已知cos (π4−α)=35,sin (5π4+β)=−1213,α∈(π4, 3π4),β∈(0, π4), ∴ π4−α∈(−π2, 0),5π4+β∈(5π4, 3π2),∴ sin (π4−α)=−√1−cos 2(π4−α)=−45,cos (5π4+β)=−√1−sin 2(5π4+β)=−513, ∴ sin (α+β)=−sin [(5π4+β)−(π4−α)]=−[sin (5π4+β)cos (π4−α)−cos (5π4+β)sin (π4−α)]=−[−1213⋅35−(−513)⋅(−45)]=5665. 已知α,β都是锐角,tan α=17,sin β=√1010,∴ cos β=√1−sin 2β=3√1010,tan β=sin βcos β=13,∴ tan 2β=2tan β1−tan 2β=34, ∴ tan (α+2β)=tan α+tan 2β1−tan α⋅tan 2β=1.【考点】两角和与差的三角函数 【解析】(1)由题意利用同角三角函数的基本关系,两角和差的三角公式,求得sin β的值. (2)由题意利用同角三角函数的基本关系,两角和差的三角公式,求得sin (α+β)的值.(3)由题意利用同角三角函数的基本关系,两角和差的三角公式、二倍角公式,求得要求式子的值. 【解答】∵ 已知α,β都是锐角,sin α=45,∴ cos α=√1−sin 2α=35. ∵ cos (α+β)=513,∴ sin (α+β)=√1−cos 2(α+β)=1213,∴ sin β=sin [(α+β)−α]=sin (α+β)cos α−cos (α+β)sin α=1213⋅35−513⋅45=1665. ∵ 已知cos (π4−α)=35,sin (5π4+β)=−1213,α∈(π4, 3π4),β∈(0, π4),∴ π4−α∈(−π2, 0),5π4+β∈(5π4, 3π2),∴ sin (π4−α)=−√1−cos 2(π4−α)=−45,cos (5π4+β)=−√1−sin 2(5π4+β)=−513, ∴ sin (α+β)=−sin [(5π4+β)−(π4−α)]=−[sin (5π4+β)cos (π4−α)−cos (5π4+β)sin (π4−α)]=−[−1213⋅35−(−513)⋅(−45)]=5665. 已知α,β都是锐角,tan α=17,sin β=√1010,∴ cos β=√1−sin 2β=3√1010,tan β=sin βcos β=13,∴ tan 2β=2tan β1−tan 2β=34, ∴ tan (α+2β)=tan α+tan 2β1−tan α⋅tan 2β=1.12. 【答案】证明:∵ tan (α+β)=tan α+tan β1−tan αtan β,∴ tan α+tan β=tan (α+β)(1−tan αtan β)=tan (α+β)−tan αtan βtan (α+β);问题得以证明,tan 20∘+tan 40∘+√3tan 20∘tan 40∘=tan (20∘+40∘)(1−tan 20∘tan 40∘)+√3tan 20∘tan 40∘=√3(1−tan 20∘tan 40∘)+√3tan 20∘tan 40∘=√3,(1−tan α)(1−tan β)=1−(tan α+tan β)+tan αtan β=1+tan αtan β−tan (α+β)(1−tan αtan β)=1+tan αtan β−tan3π4(1−tan αtan β)=1+tan αtan β+(1−tan αtan β)=2,∵ tan 120=−tan 60∘=−√3,tan 20∘+tan 40∘=tan (20∘+40∘)(1−tan 20∘tan 40∘)=tan 60∘(1−tan 20∘tan 40∘)=√3−√3tan 20∘tan 40∘ ∴tan 20+tan 40+tan 120tan 20tan 40=√3−√3tan 20tan 40−√3tan 20tan 40=−√3.【考点】两角和与差的三角函数 【解析】分别根据两角和的正切公式即求出或证明. 【解答】证明:∵ tan (α+β)=tan α+tan β1−tan αtan β,∴ tan α+tan β=tan (α+β)(1−tan αtan β)=tan (α+β)−tan αtan βtan (α+β); 问题得以证明,tan 20∘+tan 40∘+√3tan 20∘tan 40∘=tan (20∘+40∘)(1−tan 20∘tan 40∘)+√3tan 20∘tan 40∘=√3(1−tan 20∘tan 40∘)+√3tan 20∘tan 40∘=√3,(1−tan α)(1−tan β)=1−(tan α+tan β)+tan αtan β=1+tan αtan β−tan (α+β)(1−tanαtanβ)=1+tanαtanβ−tan3π4(1−tanαtanβ)=1+tanαtanβ+(1−tanαtanβ)=2,∵tan120=−tan60∘=−√3,tan20∘+tan40∘=tan(20∘+40∘)(1−tan20∘tan40∘)=tan60∘(1−tan20∘tan40∘)=√3−√3tan20∘tan40∘∴tan20+tan40+tan120tan20tan40=√3−√3tan20tan40−√3tan20tan40=−√3.13.【答案】1 sin10−√3cos10=2(sin30sin10−cos30cos10)=2×sin(30−10)12sin20=4;sin40∘(tan10∘−√3)=cos50∘tan(10∘−60∘)(1+√3tan10∘)=−sin50∘×(1+√3tan10∘)=−sin50∘×2sin40cos10=−sin80 cos10=−1;tan70∘cos10∘(√3tan20∘−1)=√3cos10∘−tan70∘cos10∘=cos10∘×(−sin10cos70cos60)=−1;sin50∘(1+√3tan10∘)=sin50∘×tan60−tan10tan(60−10)=sin50∘×√3−tan10tan50=cos50∘(√3−tan10∘)=−tan10∘cos50∘+√3cos50∘=cos50∘×sin50cos10cos60=sin100 cos10=1.【考点】三角函数中的恒等变换应用【解析】由诱导公式、同角三角函数的关系式逐一化简即可求值.【解答】1 sin10−√3cos10=2(sin30sin10−cos30cos10)=2×sin(30−10)12sin20=4;sin40∘(tan10∘−√3)=cos50∘tan(10∘−60∘)(1+√3tan10∘)=−sin50∘×(1+√3tan10∘)=−sin 50∘×2sin 40cos 10=−sin 80cos 10 =−1; tan 70∘cos 10∘(√3tan 20∘−1)=√3cos 10∘−tan 70∘cos 10∘=cos 10∘×(−sin 10cos 70cos 60)=−1; sin 50∘(1+√3tan 10∘) =sin 50∘×tan 60−tan 10tan (60−10)=sin 50∘×√3−tan 10tan 50=cos 50∘(√3−tan 10∘)=−tan 10∘cos 50∘+√3cos 50∘ =cos 50∘×sin 50cos 10cos 60=sin 100cos 10 =1. 14. 【答案】由cos θ=−35,π<θ<3π2,得sin θ=−√1−cos 2θ=−45,所以(sin θ2−cos θ2)2=sin 2θ2−2sin θ2cos θ2+cos 2θ2=1−sin θ=1+45=95;由sin α2−cos α2=15,所以(sin α2−cos α2)2=sin 2α2−2sin α2cos α2+cos 2α2=1−sin α=125, 解得sin α=2425;由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2=sin 4θ+cos 4θ+2sin 2θcos 2θ=59+12sin 22θ=1, 解得sin 22θ=89,则sin 2θ=±2√23;由cos 2θ=35,得:sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2−2sin 2θcos 2θ =1−12sin 22θ=1−12(1−cos 22θ)=1−12+12×(35)2 =1725.【考点】三角函数中的恒等变换应用 【解析】(1)由cos θ=−35,利用同角的三角函数关系求出sin θ,再计算(sin θ2−cos θ2)2的值; (2)由sin α2−cos α2=15,两边平方利用二倍角个数求出sin α的值;(3)由sin 4θ+cos 4θ=59,根据平方公式和二倍角公式求出sin 2θ的值;(4)由cos 2θ=35,利用平方关系结合题意求得sin 4θ+cos 4θ的值. 【解答】由cos θ=−35,π<θ<3π2,得sin θ=−√1−cos 2θ=−45,所以(sin θ2−cos θ2)2=sin 2θ2−2sin θ2cos θ2+cos 2θ2=1−sin θ=1+45=95; 由sin α2−cos α2=15,所以(sin α2−cos α2)2=sin 2α2−2sin α2cos α2+cos 2α2=1−sin α=125, 解得sin α=2425; 由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2=sin 4θ+cos 4θ+2sin 2θcos 2θ=59+12sin 22θ=1, 解得sin 22θ=89,则sin 2θ=±2√23;由cos 2θ=35,得:sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2−2sin 2θcos 2θ =1−12sin 22θ =1−12(1−cos 22θ) =1−12+12×(35)215.【答案】∵cos(α+β)=cosαcosβ−sinαsinβ=15①;cos(α−β)=cosαcosβ+sinαsinβ=35②.①+②得cosαcosβ=25,②-①得sinαsinβ=15,∴tanα⋅tanβ=sinα⋅sinβcosα⋅cosβ=12.cosα+cosβ=12⇒cos2α+2cosαcosβ+cos2β=14(1)sinα+sinβ=13⇒sin2α+2sinαsinβ+sin2β=19 (2)(1)+(2)2+2cos(α−β)=1336∴cos(α−β)=−5972【考点】同角三角函数间的基本关系两角和与差的三角函数【解析】(1)利用二倍角公式把题设的余弦函数展开,两式分别相加,相减后相除即可求得答案.(2)把题设等式分别平方后相加,整理求得cos(α−β)的值.【解答】∵cos(α+β)=cosαcosβ−sinαsinβ=15①;cos(α−β)=cosαcosβ+sinαsinβ=35②.①+②得cosαcosβ=25,②-①得sinαsinβ=15,∴tanα⋅tanβ=sinα⋅sinβcosα⋅cosβ=12.cosα+cosβ=12⇒cos2α+2cosαcosβ+cos2β=14(1)sinα+sinβ=13⇒sin2α+2sinαsinβ+sin2β=19 (2)(1)+(2)2+2cos(α−β)=1336∴cos(α−β)=−597216.【答案】222(cos2α+1)2=2(2cos2α−1+1)2=2(2cos2α)2=8cos4α=右边;左边=1+sin2α2cos2α+sin2α=(sinα+cosα)22cosα(cosα+sinα)=sinα+cosα2cosα=12tanα+12=右边;左边=sin(α+β)cosα+cos(α+β)sinαsinα−2cosαcosβ+2sinαsinβ=2cosβcosα+sinβ(cos2α−sin2α)sinα−2cosαcosβ+2sinαsinβ=sinβ(cos2α−sin2α+2sin2α)sinα=sinβsinα=右边;左边=3−4cos2A+cos4A3+4cos2A+cos4A =2−4cos2A+2cos22A2+4cos2A+2cos22A=(cos2A−1)2(cos2A+1)2=4sin4A4cos4A=tan4A=右边;【考点】三角函数恒等式的证明【解析】(1)根据余弦的倍角公式,依次进行化简即可得到结论;(2)根据二倍角的正弦公式展开后提取因式,再根据同角三角函数关系式即可化简;(3)根据二倍角的正弦公式展开后通分,再根据同角三角函数关系式即可化简;(4)先根据二倍角公式化简,再配方后用二倍角公式消去1,最后由同角三角函数的基本关系可得到答案.【解答】左边=cos4α+4cos2α+3=2cos22α−1+4cos2α+3=2(cos22α+2cos2α+1)=2(cos2α+1)2=2(2cos2α−1+1)2=2(2cos2α)2=8cos4α=右边;左边=1+sin2α2cos2α+sin2α=(sinα+cosα)22cosα(cosα+sinα)=sinα+cosα2cosα=12tanα+12=右边;左边=sin(α+β)cosα+cos(α+β)sinαsinα−2cosαcosβ+2sinαsinβ=2cosβcosα+sinβ(cos2α−sin2α)sinα−2cosαcosβ+2sinαsinβ=sinβ(cos2α−sin2α+2sin2α)sinα=sinβsinα=右边;左边=3−4cos2A+cos4A3+4cos2A+cos4A =2−4cos2A+2cos22A2+4cos2A+2cos22A=(cos2A−1)2(cos2A+1)2=4sin4A4cos4A=tan4A=右边;17.【答案】∵sinα−cosα=15,∴1−2sinαcosα=125,sinαcosα=1225,结合0≤α≤π,∴α为锐角,∴sinα=45,cosα=35,∴sin2α=2sinαcosα=2425,cos2α=2cos2α−1=−725,求sin(2α−π4)=sin2αcosπ4−cos2αsinπ4=2425×√22+725×√22=31√250.【考点】三角函数的恒等变换及化简求值【解析】利用同角三角函数的基本关系,二倍角公式,求得α得正弦和余弦,可得2α的正弦和余弦值,再利用两角差的正弦公式,求得sin(2α−π4)的值.【解答】∵sinα−cosα=15,∴1−2sinαcosα=125,sinαcosα=1225,结合0≤α≤π,∴α为锐角,∴sinα=45,cosα=35,∴sin2α=2sinαcosα=2425,cos2α=2cos2α−1=−725,求sin(2α−π4)=sin2αcosπ4−cos2αsinπ4=2425×√22+725×√22=31√250.18.【答案】解∵17π12<x<7π4∴5π3<x+π4<2π,又∵cos(π4+x)=35∴sin(x+π4)=−√1−cos2(x+π4)=−45,sin2x=−cos(π2+2x)=1−2cos2(π4+x)=725∴sin2x+2sin2x1−tan x =2sin x(cos x+sin x)cos x−sin xcos x=sin2x⋅√2⋅sin(π4+x)√2⋅cos(π4+x)=sin2x⋅sin(π4+x)cos(π4+x)=725×(−45)35=−2875【考点】二倍角的三角函数三角函数的恒等变换及化简求值【解析】根据x的范围求出π4+x的范围,由cos(π4+x)的值利用同角三角函数间的基本关系求出sin(π4+x)的值,并利用诱导公式及二倍角的余弦函数公式求出sin2x的值;把所求的式子的分子的第一项利用二倍角的正弦函数公式化简后与第二项提取2sin x,把分母利用同角三角函数间的基本关系化简,然后分子分母都提取√2,把分子分母都化为一个角的正弦或余弦函数,将各自的值代入即可求出原式的值.【解答】解∵17π12<x<7π4∴5π3<x+π4<2π,又∵cos(π4+x)=35∴sin(x+π4)=−√1−cos2(x+π4)=−45,sin2x=−cos(π2+2x)=1−2cos2(π4+x)=725∴sin2x+2sin2x1−tan x =2sin x(cos x+sin x)cos x−sin xcos x=sin2x⋅√2⋅sin(π4+x)√2⋅cos(π4+x)=sin2x⋅sin(π4+x)=725×(−45)=−2819.【答案】证明:∵sin2θ+cos2θ=1,∴(sinθ+cosθ)2=1+2sinθcosθ,把sinθ+cosθ=2sinα,sinθ⋅cosθ=sin2β代入得:4sin2α=1+2sin2β,即4(1−cos2α)=1+2(1−cos2β),整理得:4cos2α=1+2cos2β.4cos2α−2=−1+2cos2β.2cos2α=−cos2β,两边平方可得:4cos22α=cos22β.【考点】三角函数恒等式的证明【解析】由sin2θ+cos2θ=1,得到(sinθ+cosθ)2=1+2sinθcosθ,把已知两等式代入,整理即可得证.【解答】证明:∵sin2θ+cos2θ=1,∴(sinθ+cosθ)2=1+2sinθcosθ,把sinθ+cosθ=2sinα,sinθ⋅cosθ=sin2β代入得:4sin2α=1+2sin2β,即4(1−cos2α)=1+2(1−cos2β),整理得:4cos2α=1+2cos2β.4cos2α−2=−1+2cos2β.2cos2α=−cos2β,两边平方可得:4cos22α=cos22β.20.【答案】解:f(x)=cos2x−2sin x cos x−sin2x=cos2x−sin2x=√2cos(2x+π4 )(1)T=π(2)∵0≤x≤π2∴π4≤2x+π4≤54π当2x+π4=π⇒x=38π∴x∈{38π}时f(x)有最小值为−√2【考点】三角函数的最值三角函数中的恒等变换应用三角函数的周期性及其求法【解析】(1)先根据三角函数的二倍角公式化简为y=√2cos(2x+π4),再由T=2π2可得答案.(2)先根据x的范围确定2x+π4的范围,再由余弦函数的性质可求出最小值.解:f(x)=cos2x−2sin x cos x−sin2x=cos2x−sin2x=√2cos(2x+π4 )(1)T=π(2)∵0≤x≤π2∴π4≤2x+π4≤54π当2x+π4=π⇒x=38π∴x∈{38π}时f(x)有最小值为−√2 21.【答案】由题意:函数f(x)=sin(x+π6)+sin(x−π6)+cos x+a,化简得:f(x)=sin x cosπ6+cos x sinπ6+sin x cosπ6−cos x sinπ6+cos x+a=√3sin x+cos x+a=2sin(x+π6)+a,∵sin(x+π6)的最大值为1,∴f(x)=2×1+a=1,解得:a=−1.∵由(1)可知f(x)=2sin(x+π6)−1.根据三角函数的性质可得:x+π6∈[2kπ+π2, 2kπ+3π2](k∈Z).即2kπ+π2≤x+π6≤2kπ+3π2,(k∈Z)∴解得:2kπ+π3≤x≤2kπ+4π3,(k∈Z),∴f(x)的单调递减区间为[2kπ+π3, 2kπ+4π3](k∈Z);∵由题意:f(x)≥0,即2sin(x+π6)−1≥0,可得:sin(x+π6)≥12.∴2kπ+π6≤x+π6≤2kπ+5π6,(k∈Z).解得:2kπ≤x≤2kπ+2π3.∴f(x)≥0成立的x的取值范围是{x|2kπ≤x≤2kπ+2π3},(k∈Z).【考点】正弦定理三角函数的最值(1)利用两角和与差的公式化简成为y=A sin(ωx+φ)的形式,根据三角函数的性质可得a的值.(2)将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间;(3)根据三角函数的性质求解f(x)≥0成立的x的取值集合.【解答】由题意:函数f(x)=sin(x+π6)+sin(x−π6)+cos x+a,化简得:f(x)=sin x cosπ6+cos x sinπ6+sin x cosπ6−cos x sinπ6+cos x+a=√3sin x+cos x+a=2sin(x+π6)+a,∵sin(x+π6)的最大值为1,∴f(x)=2×1+a=1,解得:a=−1.∵由(1)可知f(x)=2sin(x+π6)−1.根据三角函数的性质可得:x+π6∈[2kπ+π2, 2kπ+3π2](k∈Z).即2kπ+π2≤x+π6≤2kπ+3π2,(k∈Z)∴解得:2kπ+π3≤x≤2kπ+4π3,(k∈Z),∴f(x)的单调递减区间为[2kπ+π3, 2kπ+4π3](k∈Z);∵由题意:f(x)≥0,即2sin(x+π6)−1≥0,可得:sin(x+π6)≥12.∴2kπ+π6≤x+π6≤2kπ+5π6,(k∈Z).解得:2kπ≤x≤2kπ+2π3.∴f(x)≥0成立的x的取值范围是{x|2kπ≤x≤2kπ+2π3},(k∈Z).22.【答案】解:f(x)=√3sin2x+2cos2x+m=√3sin2x+1+cos2x+m=2sin(2x+π6)+m+1,∵x∈[0,π2],∴2x+π6∈[π6, 7π6],−1≤sin(2x+π)≤1,所以函数f(x)的最大值为3+m,∴3+m=6,m=3,∴f(x)=2sin(2x+π6)+4,当x∈R时,函数f(x)的最小值为2,此时2x+π6=−π2+2kπ,即x=−π3+kπ(k∈Z)时取最小值.【考点】求二倍角的余弦三角函数的最值【解析】先利用两角和的正弦公式化成标准形式,根据x的范围求函数的最大值,然后让最大值等于6,求出m的值;当x∈R时,根据正弦函数求函数的最小值及取到最小值时的x的值.【解答】解:f(x)=√3sin2x+2cos2x+m=√3sin2x+1+cos2x+m=2sin(2x+π6)+m+1,∵x∈[0,π2],∴2x+π6∈[π6, 7π6],−12≤sin(2x+π6)≤1,所以函数f(x)的最大值为3+m,∴3+m=6,m=3,∴f(x)=2sin(2x+π6)+4,当x∈R时,函数f(x)的最小值为2,此时2x+π6=−π2+2kπ,即x=−π3+kπ(k∈Z)时取最小值.23.【答案】设AQ=x,AP=y,则DQ=1−x,PB=1−y,(0<x<1, 0<y<1),则tan∠DCQ=DQDC =1−x,tan∠BCP=1−y,tan(∠DCQ+∠BCP)=(1−x)+(1−y)1−(1−x)(1−y)=2−(x−y)x+y−xy①.在Rt△APQ中,PQ2=AQ2+AP2=x2+y2,又PQ=2−(x+y),∴(2−x−y)2=x2+y2,即xy=2(x+y)−2②.把②代入①可得tan(∠DCQ+∠BCP)=1,∴∠DCQ+∠BCP=45∘,∴∠PCQ=45∘.【考点】两角和与差的三角函数设AQ =x ,AP =y ,利用直角三角形中的边角关系求得tan ∠DCQ =DQ DC=1−x ,tan ∠BCP =1−y ,再两角和的正切公式求得tan (∠DCQ +∠BCP)=1,可得∠DCQ +∠BCP =45∘,从而求得∠PCQ =45∘. 【解答】设AQ =x ,AP =y ,则DQ =1−x ,PB =1−y ,(0<x <1, 0<y <1), 则tan ∠DCQ =DQDC =1−x ,tan ∠BCP =1−y ,tan (∠DCQ +∠BCP)=(1−x)+(1−y)1−(1−x)(1−y)=2−(x−y)x+y−xy①.在Rt △APQ 中,PQ 2=AQ 2+AP 2=x 2+y 2,又PQ =2−(x +y),∴ (2−x −y)2=x 2+y 2,即 xy =2(x +y)−2 ②.把②代入①可得tan (∠DCQ +∠BCP)=1,∴ ∠DCQ +∠BCP =45∘,∴ ∠PCQ =45∘. 24. 【答案】将已知等式sin β+cos β=15①,两边平方得:(sin β+cos β)2=1+2sin βcos β=125,即2sin βcos β=−2425<0,∴ (sin β−cos β)2=1−2sin βcos β=4925, ∵ β∈(0, π),∴ sin β>0,cos β<0,即sin β−cos β>0, ∴ sin β−cos β=75②,联立①②得:sin β=45,cos β=−35,则tan β=sin βcos β=−43; ∵ sin β=45,cos β=−35,∴ sin 2β=2sin βcos β=2×45×(−35)=−2425;∵ sin β=45,cos β=−35,∴ cos 2β=cos 2β−sin 2β=925−1625=−725.【考点】同角三角函数间的基本关系 【解析】(1)将已知等式两边平方,利用同角三角函数间基本关系化简,求出sin βcos β的值,进而求出sin β−cos β的值,联立求出sin β与cos β的值,即可确定出tan β的值; (2)原式利用二倍角的正弦函数公式化简,将各自的值代入计算即可求出值; (3)求出cos 2β的值. 【解答】将已知等式sin β+cos β=15①,两边平方得:(sin β+cos β)2=1+2sin βcos β=125,即。
高一数学(必修一)《第五章 三角函数》练习题及答案解析-人教版
高一数学(必修一)《第五章 三角函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.为了得到函数()()5sin 212f x x π=-的图象,可以将函数()sin 2g x x =图象上所有的点( ) A .向右平移512π个单位长度 B .向左平移512π个单位长度 C .向右平移524π个单位长度 D .向左平移524π个单位长度 2.下列图像中,符合函数sin 2()1cos xf x x=-的是( )A .B .C .D .3.已知函数()()πcos 2sin 06f x x x ωωω⎛⎫=++> ⎪⎝⎭的最小正周期为π,将函数()y f x =的图像向左平移π6个单位长度后得到函数()y g x =的图像,则( )A .()g x xB .()g x x =C .()π26g x x ⎛⎫=- ⎪⎝⎭D .()2g x x4.函数sin y x =-在[0,2]π上的图像是( )A .B .C .D .5.要想得到正弦曲线,只需将余弦曲线( ) A .向右平移2π个单位 B .向左平移2π个单位 C .向右平移π个单位 D .向左平移π个单位6.将函数sin y x =的图象上所有点的横坐标变为原来的(0)m m >倍,纵坐标不变,再将所得函数图象向左平移(0)ϕϕπ<<个单位长度,最后将所得函数图象上所有点的纵坐标变为原来的(0)n n >倍,横坐标不变,得到如图所示的函数()f x 的部分图象,则,,m n ϕ的值分别为( )A .22,2,3m n πϕ===B .12,2,23m n πϕ===C .2,2,3m n πϕ===D .1,2,23m n πϕ===7.已知函数f (x )=sin (ωx +φ)(ω>1,0≤φ≤π)是R 上的偶函数,其图象关于点M 3π,04⎛⎫⎪⎝⎭对称,且在区间π0,2⎡⎤⎢⎥⎣⎦上是单调函数,则ω和φ的值分别为( )A .23和π4 B .2和π3 C .2和π2 D .103和π28.已知函数()π()cos 002f x A x A ωϕωϕ=+>><(,,)的部分图象如图所示,若先将函数()f x 图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数()g x 的图象;再把()g x 图象上所有点向左平行移动2π3个单位长度,得到函数()h x 的图象,则当2π[π,]3x ∈-时,则函数()h x 的值域为( )A .[-2,0]B .[-1,0]C .[0,1]D .[0,2]9.已知函数()π4f x x ⎛⎫=- ⎪⎝⎭,则下列结论中正确的是( )A .()f x 的最小正周期为πB .()f x 的最大值为2C .()f x 在区间3π0,4⎛⎫ ⎪⎝⎭上单调递增 D .()f x 的图像关于直线π4x =对称10.将函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,]64ππ-上为增函数,则ω最大值为( )A .32B .2C .3D . 11.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3C A π=-,则ba的取值范围是( )A .2)B .C .D .4)12.已知函数()4sin sin ,(0)33f x x x ππωωω⎛⎫⎛⎫=+-> ⎪ ⎪⎝⎭⎝⎭的最小正周期为π,将其图象沿x 轴向左平移(0)m m >个单位,所得图象关于直线3x π=对称,则实数m 的最小值为( )A .6πB .3π C .34π D .4π 13.已知函数3()2sin 242f x x ππϕϕ⎛⎫⎛⎫=+-< ⎪⎪⎝⎭⎝⎭是奇函数,为了得到函数()y f x =的图象,可把函数52cos 26y x π⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度14.某种商品一年内每件出厂价在7千元的基础上,按月呈()()cos f x A x B ωϕ=++的模型波动(()f x 的单位:千元,x 为月份,112x ≤≤且*x ∈N ).已知3月出厂价最高,为9千元,7月出厂价最低,为5千元,则()f x 的解析式为( ) A .()ππ2sin 744f x x ⎛⎫=++ ⎪⎝⎭B .()9si 44πn πf x x ⎛⎫=- ⎪⎝⎭C .()πn 74f x x =+D .()π2sin 744πf x x ⎛⎫=-+ ⎪⎝⎭15.函数()sin cos f x x x =+的图象可以由函数()sin cos g x x x =-的图象( )A .向右平移π4单位得到B .向左平移π4单位得到C .向右平移π2单位得到D .向左平移π2单位得到16.将函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭的图象向右平移6π个单位长度,得到函数()g x 的图象,则下列关于()g x 的说法正确的是( ) A .图象关于直线3x π=-对称 B .图象关于6x π=对称 C .图象关于点5,012π⎛⎫- ⎪⎝⎭中心对称D .图象关于点,03π⎛⎫⎪⎝⎭中心对称17.将偶函数()()()2cos 2(0π)f x x x ϕϕϕ=+-+<<的图象向右平移π6个单位,得到()y g x =的图象,则()g x 的一个单调递减区间为( ) A .ππ,36⎛⎫- ⎪⎝⎭B .π7π,1212⎛⎫ ⎪⎝⎭C .π2π,63⎛⎫ ⎪⎝⎭D .π5π,36⎛⎫ ⎪⎝⎭二、解答题18.已知函数()()3sin 2f x x πϕϕ=+∈-,(,2π)函数关于4x π=对称.(1)求()f x ϕ的值及的解析式;(2)用五点法在下列直角坐标系中画出()f x 在744ππ⎡⎤-⎢⎥⎣⎦,上的图象;(3)写出()f x 的单调增区间及最小值,并写出取最小值时自变量x 的取值集合. 19.不画图,说明下列函数的图象可由正弦曲线经过怎样的变化得出: (1)1π8sin 48y x ⎛⎫=- ⎪⎝⎭;(2)1πsin 337y x ⎛⎫=+ ⎪⎝⎭.20.已知函数()cos()(0f x x ωϕω=+>,0)ϕπ<<为奇函数,且其图象上相邻的一个最高点与一个最低点之(1)求()f x 的解析式;(2)若已知三点坐标1,0A ,1,12B f πα⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭和()1,2C f πα⎛⎫- ⎪⎝⎭.若//AB AC ,且0,2πα⎛⎫∈ ⎪⎝⎭,求sin cos αα+的值.21.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为4,且满足1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的解析式; (2)求方程()102f x +=在区间[]22-,上所有解的和.22.已知函数1cos 2y x x =+,说明此函数是由sin y x =如何变换而来的. 23.已知函数()2sin f x x ω=,其中常数0>ω. (1)若函数()y f x =的最小正周期为2π,求ω的值;(2)若()y f x =是2,43ππ⎡⎤-⎢⎥⎣⎦上的严格增函数,求ω的取值范围;(3)当2ω=时,则将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[],(,?R,)a b a b a b ∈<且满足:()y g x =在[],a b 上至少含有30个零点,在所有满足上述条件的[],a b中,求b a -的最小值.三、填空题24.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移π4个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有______.(填序号)①方程()()3π0,2f x g x x ⎫⎛⎫+=∈ ⎪⎪⎝⎭⎭所有根的和为7π12;②不等式()()g x f x ≥ππ5ππ,3262k k ⎡⎫++⎪⎢⎣⎭ k ∈Z③函数()y f x =与函数()y g x =图象关于7π24x =对称. 25.将函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象向右平移π6个单位长度后,所得图象与函数()f x 的图象重合,则ω的最小值为______.26.将函数()cos 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于原点对称,则ϕ的一个取值为_________.27.已知数列{}n a 满足()1111n n a n N a *+=-∈+,11a =.若从四个条件:①A =;②2ωπ=;③3πϕ=;④12B =中,选择一个作为条件补充到题目中,将数列{}n a 的通项n a 表示为sin()0,||2A n B πωϕωϕ⎛⎫++>< ⎪⎝⎭的形式,则n a =___________.四、多选题28.已知函数()()cos 21f x A x ϕ=+-(0A >,0ϕπ<<),若函数()y f x =的部分图象如图所示,函数()()sin g x A Ax ϕ=-,则下列结论不正确的是( )A .函数()g x 的图象关于直线12x π=-对称B .函数()g x 的图象关于点,02π⎛⎫⎪⎝⎭对称C .将函数()1y f x =+的图象向左平移12π个单位长度可得到函数()g x 的图象 D .函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为06,π⎡⎤⎢⎥⎣⎦29.将函数()2sin(2)6f x x π=-的图像向左平移6π个单位后,得到函数()g x 的图像,则下列结论中正确的是( )A .()2sin 2g x x =B .()g x 的图象关于点(,0)12π-中心对称C .()g x 的图象关于3x π=-对称D .()g x 在区间[,]66ππ-上单调递增参考答案与解析1.C【分析】由条件根据函数 y =A sin(ωx +φ)的图象变换规律,可得结论. 【详解】因为()()()55sin 2sin 21224f x x x ππ⎡⎤=-=-⎢⎥⎣⎦所以应将函数()sin 2g x x =的图象上所有的点向右平移524π个单位长度. 故选:C. 2.A【分析】根据函数的奇偶性及函数值验证选项即可得出答案. 【详解】由()sin 21cos x f x x =-知 ()()sin 21cos xf x f x x--==-- ()f x ∴是奇函数,选项B 错误;()sin 2101cos1f =>-, ()()()sin 2ππ01cos πf --==--所以选项C 和选项D 错误,选项A 正确. 故选:A. 3.A【分析】先将()f x )6x πω+,根据最小正周期求出ω,再根据正弦函数的图像平移得到答案.【详解】因为()ππcos 2sin 66f x x x x ωωω⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭的最小正周期为π,所以2ω=.将()π26f x x ⎛⎫+ ⎪⎝⎭的图像向左平移π6个单位长度后得到函数()ππ2266y g x x x⎡⎤⎛⎫==++= ⎪⎢⎥⎝⎭⎣⎦的图像. 故选:A. 4.D【解析】利用五点法找到特殊点3(0,0),,1,(,0),1,(2,0)22ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,由此判断选项即可【详解】根据五点法找出五个特殊点,分别为3(0,0),,1,(,0),1,(2,0)22ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,然后描点并用光滑的曲线连接 故选:D【点睛】本题考查正弦型函数的图像,考查五点法作图的应用 5.A【分析】由诱导公式及函数图象平移规则即得.【详解】因为cos sin()2y x x π==+所以将余弦曲线向右移2π个单位可得sin()sin 22y x x ππ=-+=.故选:A . 6.D【分析】由图象求得()f x 的表达式,然后由图象变换得结论.【详解】设()()sin (0,0,)f x A x A ωαωαπ=+>><,由函数图象,知52,212122T A πππ⎛⎫==--= ⎪⎝⎭,所以2,2T Tππω===.所以()()2sin 2f x x α=+. 又函数图象过点5,212π⎛⎫- ⎪⎝⎭,所以52sin 2212πα⎛⎫⨯+=- ⎪⎝⎭.所以532,62k k ππαπ+=+∈Z ,解得22,3k k παπ=+∈Z . 因为απ<,所以23πα=.所以()22sin 22sin233f x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以1,2,23m n πϕ===.故选:D. 7.C【分析】由f (x )是偶函数及0≤φ≤π可得φπ2=.由图象关于点M 3π,04⎛⎫ ⎪⎝⎭对称,且在区间π0,2⎡⎤⎢⎥⎣⎦上是单调函数,结合ω>1及余弦函数的图象与性质可求ω. 【详解】解:由f (x )是偶函数 φ=k ππ2+ k ∈Z ∵0≤φ≤π,∴当k =0时,则φπ2=. ∴f (x )=sin (ωx π2+)=cos ωx ∵f (x )图象上的点关于3π,04M ⎛⎫⎪⎝⎭对称∴3π4f ⎛⎫= ⎪⎝⎭3πcos 04ω=,故3π4ω=k ππ2+ k ∈Z即()2213k ω=+ k ∈Z . ∵f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上是单调函数,可得π12ππ22ωω≤⋅=,即ω≤2. 又∵()2213k ω=+ k ∈Z ω>1∴当k =1时可得ω=2. 故选:C . 8.D【分析】由图可求出函数的周期πT =,从而可求出2ω=,由图可得2A =,然后将点13,212π⎛⎫⎪⎝⎭代入函数中可求出ϕ的值,进而可求得函数解析式,根据三角函数图象变换规律求出()h x ,再由2ππ,3x ⎡⎤∈-⎢⎥⎣⎦求出3262πππx -≤+≤,再由余弦函数的性质可求得()h x 的值域. 【详解】由题意得313341234T πππ=-=,∴πT = 2π2T ω== 当13π12x =时,则ππ132212x k ωϕϕ+=⨯+= ()Z k ∈ ∴()132ππZ 6k k ϕ=-∈π2ϕ<,,令1k =可得π6ϕ=-又易知2A =,故()π2cos 26f x x ⎛⎫=- ⎪⎝⎭由三角函数图象的变换可得1π1π()2cos(2)2cos()4626g x x x =⨯-=-所以()1212cos 2cos 23626πππh x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∵2ππ3x -≤≤,∴3262πππx -≤+≤ ∴1π10cos 26x ⎛⎫≤+≤ ⎪⎝⎭,故函数()g x 的值域为[]0,2.故选:D 9.C【分析】根据三角函数图象性质结合选项一一判断即可.【详解】由()π4f x x ⎛⎫=- ⎪⎝⎭对A 项()f x 的最小正周期为2π,故A 错;对B 项()f x ,故B 错;对C.项当3π0,4x ⎛⎫∈ ⎪⎝⎭时,则有πππ442x -<-<,因为sin y x =在ππ,42⎛⎫- ⎪⎝⎭上单调递增所以()f x 在区间3π0,4⎛⎫⎪⎝⎭上单调递增,故C 正确;对D.项,当π4x =时,则有πππ0444f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以π4x =不是()f x 的对称轴,故D 错.故选:C 10.B【分析】先求出()g x ,又因为()y g x =在ππ[,]64-上为增函数,则ππ62ω⎛⎫⋅-≥- ⎪⎝⎭,且ππ42ω⋅≤,即可求出ω最大值.【详解】函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象则()ππ2sin 2sin 33g x x x ωωω⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦又因为()y g x =在ππ[,]64-上为增函数 所以ππ62ω⎛⎫⋅-≥- ⎪⎝⎭,且ππ42ω⋅≤解得2ω≤,故ω的最大值为2.11.C【分析】根据题意可得2B A =,由锐角三角形可求出A 的范围,再由正弦定理及余弦函数的值域即可求解. 【详解】3C A =-π sin sin 22cos ,sin sin b B A A a A A∴=== 2(0,),2B A =∈π3(0,)2C A =-∈ππ(,)64A ∴∈ππcos A ∴∈ba∴∈. 故选:C 12.A【分析】由已知,先对函数()f x 进行化简,根据最小正周期为π,求解出ω,然后根据题意进行平移变换,得到平移后的解析式,再利用图象关于直线π3x =对称,建立等量关系即可求解出实数m 最小值.【详解】解:()ππ114sin sin 4sin sin 3322f x x x x x x x ωωωωωω⎛⎫⎛⎫⎛⎫⎛⎫=+-=+ ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭22111cos 231cos 24sin 42cos 2124242x x x x x ωωωωω⎡⎤⎫-+⎛⎫⎛⎫⎢⎥=-=⋅-⋅=--⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦即()2cos21f x x ω=--,由其最小正周期为π,即22ππω=,解得1ω= 所以()2cos21f x x =--将其图象沿x 轴向左平移m (0m >)个单位,所得图象对应函数为()()2cos212cos 221y x m x m =-+-=-+- 其图象关于3x π=对称,所以2π2π,Z 3m k k +=∈,所以 ππ,Z 32k m k =-+∈ 由0m >,实数m 的最小值为π6.故选:A. 13.D【分析】根据()f x 是奇函数可求得4πϕ=-,利用诱导公式得52cos 22sin 263y x x ππ⎛⎫⎛⎫=+=-+ ⎪ ⎪⎝⎭⎝⎭,即可得【详解】因为()f x 是奇函数,所以3,Z 4k k πϕπ-=∈,即3,Z 4k k πϕπ=+∈ 因为2πϕ<,所以4πϕ=-,所以()()2sin 22sin 2f x x x π=-=-因为52cos 22sin 263y x x ππ⎛⎫⎛⎫=+=-+ ⎪ ⎪⎝⎭⎝⎭所以可把函数52cos 26y x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度.故选:D. 14.D【分析】先根据最值,求出,A B ,求出最小正周期,进而求出2ππ4T ω==,代入特殊点坐标求出π4ϕ=-,求出正确答案.【详解】解:由题意得95A B A B +=⎧⎨-+=⎩,解得27A B =⎧⎨=⎩,又最小正周期为()2738⨯-=所以2ππ4T ω==,所以()π2sin 74f x x ϕ⎛⎫=++ ⎪⎝⎭将()3,9代入,解得3π2sin 794ϕ⎛⎫++= ⎪⎝⎭,则3ππ242πk ϕ+=+ Z k ∈π2π,Z 4k k ϕ=-+∈因为π2ϕ<,所以当0k =时,则π4ϕ=-符合题意 综上:()π2sin 744πf x x ⎛⎫=-+ ⎪⎝⎭故选:D 15.D【分析】根据辅助角公式,结合正弦型函数图像变换的性质进行求解即可.【详解】因为()sin cos )4g x x x x π=--,()sin cos ))442f x x x x x πππ=+=+=-+所以函数()sin cos g x x x=-向左平移2π单位得到函数()sin cos f x x x =+的图像 故选:D 16.C【分析】根据三角函数图象的平移变换可得()sin 26g x x π⎛⎫=- ⎪⎝⎭,结合三角函数对称轴、对称中心的定义与验证法依次判断选项即可.【详解】由题意得,()sin 2sin 2366g x x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭∴132g π⎛⎫-=- ⎪⎝⎭,162g π⎛⎫= ⎪⎝⎭和13g π⎛⎫= ⎪⎝⎭故A ,B ,D 错误,又5012g π⎛⎫-= ⎪⎝⎭∴()g x 图象关于点5,012π⎛⎫- ⎪⎝⎭中心对称.故选:C . 17.C【分析】根据辅助角公式,结合偶函数的性质求出ϕ值,再根据余弦函数图象的变换规律求出函数()g x 的解析式,最后根据余弦型函数的单调性进行求解即可.【详解】()()()π2cos 22sin 26f x x x x ϕϕϕ⎛⎫+-+=+- ⎪⎝⎭.因为函数()f x 是偶函数,所以()()ππ2ππ623k k k k ϕπϕ-=+∈⇒=+∈Z Z 因为0πϕ<<,所以2π3ϕ=,所以()2ππ2sin 22cos 236f x x x ⎛⎫=+-= ⎪⎝⎭ 因为函数()f x 的图象向右平移π6个单位,得到()y g x =的图象所以()ππ2cos 22cos 263y g x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭当()π2π22ππ3k x k k ≤-≤+∈Z 时,则函数()g x 单调递减 即当()π2πππ63k x k k +≤≤+∈Z 时,则函数()g x 单调递减 当0k =时,则函数()g x 在π2π63x ≤≤时单调递减. 故选:C 18.(1)4πϕ=()3sin 4f x x π⎛⎫=+ ⎪⎝⎭(2)详见解析(3)单调递增区间是,23244k k ππππ⎡⎤-+⎢⎥⎣⎦ k Z ∈最小值为3-,取得最小值的x 的集合52,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.【分析】(1)根据函数的对称轴,列式,42k k Z ππϕπ+=+∈,求ϕ;(2)利用“五点法”列表,画图;(3)根据三角函数的性质,即可求解. (1)因为函数关于直线4x π=对称,所以,42k k Z ππϕπ+=+∈,4k k Z πϕπ=+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以4πϕ=所以()3sin 4f x x π⎛⎫=+ ⎪⎝⎭(2)首先根据“五点法”,列表如下:(3) 令22242k x k πππππ-≤+≤+解得32244k x k ππππ-≤≤+ k Z ∈ 所以函数的单调递增区间是,23244k k ππππ⎡⎤-+⎢⎥⎣⎦ k Z ∈ 最小值为3-令3242x k πππ+=+,得524x k ππ=+ k Z ∈ 函数取得最小值的x 的集合52,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 19.(1)答案见解析;(2)答案见解析【分析】(1)根据先平移,再进行横坐标伸缩变换,最后进行纵坐标伸缩变换求解即可; (2)根据先平移,再进行横坐标伸缩变换,最后进行纵坐标伸缩变换求解即可; 【详解】解:(1)将正弦曲线sin y x =上的所有点向右平移8π个单位长度得到函数sin 8y x π⎛⎫=- ⎪⎝⎭的图象,再将它图象上所有点的横坐标伸长到原来的4倍,纵坐标不变,得到函数1πsin 48y x ⎛⎫=- ⎪⎝⎭的图象,再将它的图象上所有点的纵坐标伸长为原来的8倍,横坐标不变得到函数1π8sin 48y x ⎛⎫=- ⎪⎝⎭的图象.(2)将正弦曲线sin y x =上的所有点向左平移7π个单位长度得到函数sin 7y x π⎛⎫=+ ⎪⎝⎭的图象,再将它图象上所有点的横坐标缩短为原来的13倍,纵坐标不变,得到函数πsin 37y x ⎛⎫=+ ⎪⎝⎭的图象,再将它的图象上所有点的纵坐标缩小为原来的13倍,横坐标不变得到函数1πsin 337y x ⎛⎫=+ ⎪⎝⎭的图象.20.(1)()sin f x x =-【分析】(1)由题意设最高点为()1,1x ,相邻最低点为()2,1x -,则12||2Tx x -=,由三角函数的图象及已知可得222()22T+=,解得T ,利用周期公式可求ω,由(0)cos 0f ϕ==,结合范围0ϕπ<<,可求ϕ的值,即可得解()f x 的解析式.(2)由(1)利用诱导公式化简三点坐标,利用向量平行的坐标表示可得1cos sin 2αα=,进而利用三角函数恒等变换即可求解sin cos αα+的值. (1)解:设最高点为()1,1x ,相邻最低点为()2,1x -,则122T x x -=由三角函数的图象及已知,可得2242T ⎛⎫+= ⎪⎝⎭,即22444T π+=+,解得2T π=,由2T πω=,可得1ω=所以()cos()f x x ϕ=+因为函数()cos()(0f x x ωϕω=+>,0)ϕπ<<为奇函数 所以(0)cos 0f ϕ==,得2k πϕπ=+Z k ∈又0ϕπ<<,所以2ϕπ=于是()cos()sin 2f x x x π=+=-(2)21.(1)()cos 24f x x ππ⎛⎫=+ ⎪⎝⎭(2)1-【分析】(1)由()f x 的最小正周期为4求得ω,由1122f x fx ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭得()f x 的图象的对称中心,并结合02πϕ<<,求出ϕ的值及()f x 的解析式(2)由()102f x +=,得1cos 242x ππ⎛⎫+=- ⎪⎝⎭,解得546x k =+或1146x k =-和k ∈Z ,再由[]2,2x ∈-,可求出x 的值,从而可求得它们的和. (1)因为()f x 的最小正周期为4,所以242ππω==.因为()f x 满足1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称所以1cos 022πϕ⎛⎫⨯+= ⎪⎝⎭,所以()42k k ππϕπ+=+∈Z ,即()4k k πϕπ=+∈Z又02πϕ<<,所以4πϕ=.()f x 的解析式为()cos 24f x x ππ⎛⎫=+ ⎪⎝⎭.(2) 由()11cos 02242f x x ππ⎛⎫+=++= ⎪⎝⎭ 得1cos 242x ππ⎛⎫+=- ⎪⎝⎭,所以22243x k ππππ+=+或22243x k ππππ+=-k ∈Z 解得546x k =+或1146x k =- k ∈Z因为[]2,2x ∈-,所以方程的解集为115,66⎧⎫-⎨⎬⎩⎭所以所有解的和为511166-=-.22.sin y x =向左平移6π个单位【分析】利用辅助角公式化简函数解析式,然后根据左右平移变换即可求出结果.【详解】因为1cos sin 26y x x x π⎛⎫=+=+ ⎪⎝⎭ 根据三角函数的图象变换,将函数sin y x =向左平移6π个单位,即可得到sin()6y x π=+的图象.23.(1)1 (2)304ω<≤ (3)433π【分析】(1)y =A sin(ωx +φ)+B 的最小正周期为2πω;(2)依题意可得42232ππωππω⎧--⎪⎪⎨⎪⎪⎩,解之即可;(3)由条件根据函数sin()y A x ωϕ=+的图象变换规律,可得()g x 的解析式,令()0g x =,即可解出零点的坐标,可得相邻两个零点之间的距离.若b a -最小,则a 和b 都是零点,此时在区间[a ,*]()m a m N π+∈恰有21m +个零点,所以在区间[a ,14]a π+是恰有29个零点,从而在区间(14a π+,]b 至少有一个零点,即可得到a ,b 满足的条件.进一步即可得出b a -的最小值.(1) 解:22ππω=,∴1ω=(2)解:由0ω>,根据题意有42232ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,,解得304ω≤<(3)另一方面,在区间5[12π,514]312πππ++恰有30个零点因此b a -的最小值为431433πππ+=. 24.③【分析】根据图象分别确定,A T ,结合五点作图法可最终求得()f x 解析式,再根据三角函数平移变换求得()g x ;对于①,直接代入()f x ,()g x解析式,结合三角恒等变换化简方程为sin 212x π⎛⎫-= ⎪⎝⎭,再结合x 范围求得方程的根即可;对于②,()()ππ2sin 2sin 2π33tan 2ππ32sin 2cos 263x x g x x f x x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎝⎭⎝⎭===-≥ ⎪⎛⎫⎛⎫⎝⎭+- ⎪ ⎪⎝⎭⎝⎭ππππ2π332k x k +≤-<+和k ∈Z ,解得ππ5ππ,32122k k x ⎡⎫∈++⎪⎢⎣⎭,k ∈Z 故②错误; 对于③,因为()7π7ππ4ππ2sin 22sin 22sin 2126633f x x x x g x ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 所以()y f x =与()y g x =图象关于7π24x =对称,故③正确. 故答案为:③ 25.12【分析】由题意,利用图像平移变换法则得到π6为函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭的一个周期,从而得到12kω=()*N k ∈,可得ω的最小值.【详解】将函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度后所得图象与()f x 的图象重合,故π6为函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭的一个周期即2ππ6k ω=()*N k ∈,则12k ω=()*N k ∈,故当1k =时,则ω取得最小值12. 故答案为:12 26.4π 【分析】根据平移后的可得函数()cos(22)g x x ϕ=+,根据题意可得(0)0g =可得22k πϕπ=+,取一值即可得解.【详解】将函数()cos 2f x x =的图象向左平移(0)ϕϕ>个单位长度 可得()cos(22)g x x ϕ=+,由函数()g x 的图象关于原点对称 可得(0)cos(2)0g ϕ== 所以22k πϕπ=+ 42k ππϕ=+当0k =时,则4πϕ=.故答案为:4π 27134n ππ⎛⎫-+ ⎪⎝⎭或134n ππ⎛⎫++ ⎪⎝⎭ 【分析】由递推关系推出n a 的通项公式,发现n a 周期为2,求出w π=,则排除②,再根据,1a ,2a 的取值,求出14B =,排除④,分别讨论①和③作为条件时是否成立,得到最终的表达式. 所以数列{}n a 周期为2,即22T wπ==,解得w π=,则②不能作为条件,此时sin()n a A n B πϕ=++ 有sin()11sin(2)2A B A B πϕπϕ++=⎧⎪⎨++=-⎪⎩ 解得14B =,则④不能作为条件,此时1sin()4n a A n πϕ=++当①作为条件时,则1)4n a n πϕ=++,11)14a πϕ++=此时sin ϕ=3πϕ=-代入n a 成立,故①可作为条件,此时1)34n a n ππ=-+ 当③作为条件时,则1sin()34n a A n ππ=++,则11sin()134a A n ππ=++=,此时A =n a 成立,故③可作为条件,此时1)34n a n ππ=++. 故答案为:1)34n a n ππ=-+或1)34n a n ππ=++.【点睛】思路点睛:(1)本题在求出数列{}n a 的通项公式后,先根据周期性和特殊值确定ω和B 的值,排除部分选项,然后逐一讨论其他选项是否成立; (2)三角函数中解析式的确定,一般由周期确定ω,由特殊值确定ϕ,由最值确定A ,由对称中心确定B .28.ABD【分析】根据三角函数的图象求得,A ϕ的值,得出函数()f x ,进而求得()g x 的解析式,结合正弦函数的图象与性质,逐项判定,即可求解.【详解】根据函数()y f x =的图象,可知2A =当0x =时,则满足()02f =-,则2cos 12ϕ-=-,即1cos 2ϕ=- 因为0ϕπ<<,所以23ϕπ=,可得()22sin 23g x x π⎛⎫=- ⎪⎝⎭. 对于A 中,当12x π=-时,则112g π⎛⎫-=- ⎪⎝⎭,可得函数()g x 的图象不关于直线12x π=-对称,所以A 项错误;对于B 中,当12x π=时,则12g π⎛⎫= ⎪⎝⎭()g x 的图象不关于点,02π⎛⎫ ⎪⎝⎭对称,所以B 项错误; 对于C 中,因为()212cos 23y f x x π⎛⎫=+=+ ⎪⎝⎭232sin 232x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦52sin 26x π⎛⎫=- ⎪⎝⎭,将其图象向左平移12π个单位,可得函数522sin 22sin 21263y x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,所以C 项正确; 对于D 中,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以223323,x πππ⎡⎤-∈⎢⎥⎣⎦-,所以当222,332x πππ⎡⎤-∈--⎢⎥⎣⎦,即[0,]12x π∈时,则()g x 单调递减,所以D 项错误.故选:ABD29.BCD 【分析】进行平移可得()2sin(2)6g x x π=+,根据三角函数的性质,逐项分析判断即可得解. 【详解】2sin 2()2sin(2)666()x g x x πππ⎡⎤=+-=+⎢⎥⎣⎦,故A 错误; 令12x π=-可得()2sin 0012g π-==,故B 正确; 令3x π=-可得()2sin()232g ππ-=-=-,故C 正确; [,]66x ππ∈-,所以2,662x πππ⎡⎤+∈-⎢⎥⎣⎦易知sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦单增,所以()g x 在,62ππ⎡⎤-⎢⎥⎣⎦单增,故D 正确.故选:BCD。
武汉市必修第一册第五单元《三角函数》测试(答案解析)
一、选择题1.已知曲线C 1:y =2sin x ,C 2:2sin(2)3y x π=+,则错误的是( )A .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平行移动6π个单位长度,得到曲线C 2 B .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平行移动56π个单位长度,得到曲线C 2 C .把C 1向左平行移动3π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 D .把C 1向左平行移动6π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 2.若将函数1()sin 223f x x π⎛⎫=+ ⎪⎝⎭图象上的每一个点都向左平移3π个单位长度,得到()g x 的图象,则函数()g x 的单调递增区间为( )A .3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,()44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦3.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程是( ) A .π2x =-B .π4x =-C .π8x =-D .πx =4.已知函数()sin()(0)f x x ωω=>在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( ) A .362k -,k ∈N B .362k +,k ∈N C .32D .35.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-6.计算cos 20cos80sin160cos10+=( ). A .12B .3 C .12-D .3-7.函数()(13tan )cos f x x x =+的最小正周期为( ) A .πB .32π C .2πD .2π 8.函数πsin 25y x ⎛⎫=- ⎪⎝⎭的最小正周期是( ) A .2π B .πC .2πD .4π9.要得到函数3sin 224y x π⎛⎫=++ ⎪⎝⎭的图象只需将函数3cos 22y x π⎛⎫=- ⎪⎝⎭的图象( )A .先向右平移8π个单位长度,再向下平移2个单位长度 B .先向左平移8π个单位长度,再向上平移2个单位长度C .先向右平移4π个单位长度,再向下平移2个单位长度D .先向左平移4π个单位长度,再向上平移2个单位长度10.若角α,β均为锐角,25sin 5α=,()4cos 5αβ+=-,则cos β=( )A .25B .2525 C .25或2525D .25-11.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=-⎪⎝⎭B .()2sin 23f x x π⎛⎫=-⎪⎝⎭C .()2sin 26f x x π⎛⎫=- ⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭12.要得到cos 26y x π⎛⎫=- ⎪⎝⎭的图像,只需将函数sin 22y x π⎛⎫=+⎪⎝⎭的图像( ) A .向左平移12π个单位B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位 二、填空题13.已知角θ的终边经过点(,3)P x (0x <)且10cos x θ=,则x =___________. 14.已知()tan 3πα+=,则2tan 2sin αα-的值为_______.15.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______. 16.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________. 17.已知tan 34πα⎛⎫+= ⎪⎝⎭,则2sin sin 2αα+=______. 18.若0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,则m 的取值范围为_______________. 19.设函数()()2sin 0,2f x x πωφφφ⎛⎫=+><⎪⎝⎭的部分图象如图.若对任意的()()2x R f x f t x ∈=-,恒成立,则实数t 的最小正值为____.20.若πcos cos 24αα⎛⎫-= ⎪⎝⎭,则sin 2α=________. 三、解答题21.已知函数()2sin cos 3f x x x x ωωω=的周期为π,其中0>ω;(1)求ω的值,并写出函数()f x 的解析式;(2)设ABC 的三边a ,b ,c 依次成等比数列,角B 的取值范围为集合P ,则当x P ∈时求函数()f x 的值域.22.(1)求值:4cos130tan140︒︒-;(2)已知3177cos ,45124x x πππ⎛⎫+=<< ⎪⎝⎭,求2sin 22sin 1tan x x x+-的值.23.已知函数()2cos cos f x x x x =.(1)求()f x 的最小正周期; (2)函数()f x 的单调递减区间.24.已知函数2()sin()sin()36f x x x x ππ=++--(1)求()f x 的最小正周期及对称中心; (2)若1()6f α=,且()123ππα∈,,求cos2α的值. 25.已知3cos cos 5αβ+=,4sin sin 5αβ+=,求()cos αβ-的值. 26.在①1cos 3B =,②2b =,ABC 的周长为8,③3c =,ABC 的外接圆半径为2,这三个条件中任选一个,补充到下面的问题中,并加以解答.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,2sin b a C =, ?求sin A .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用函数()sin +y A x ωϕ=的图象变换规律对各个选项进行检验即可. 【详解】A. 1C 上各点横坐标缩短到原来的12倍,得到2sin 2y x =,再向左平移6π个单位长度,得到2sin 2+=2sin 2+63y x x ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,正确;B. 1C 上各点的横坐标缩短到原来的12倍,得到2sin 2y x =,再向右平移56π个单位长度,得到5552sin 2=2sin 2=2sin 222sin 26333y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=+⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,正确; C. 1C 向左平移3π个单位长度,得到2sin +3y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+3y x π⎛⎫= ⎪⎝⎭,正确; D. 1C 向左平移6π个单位长度,得到2sin +6y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+6y x π⎛⎫= ⎪⎝⎭,错误. 故选:D2.A解析:A 【分析】 求出()1sin 22g x x =-,令()322222k x k k Z +≤≤+∈ππππ即可解出增区间. 【详解】 由题可知()()111sin 2sin 2sin 223322g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦, 令()322222k x k k Z +≤≤+∈ππππ,解得()344k x k k Z ππππ+≤≤+∈, ∴()g x 的单调递增区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 故选:A.3.C解析:C 【分析】根据余弦函数的对称轴可得π22π4x k +=,解方程即可求解. 【详解】π22π4x k +=,k Z ∈,则有ππ8x k =-+,k Z ∈ 当0k =时,πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程为π8x =-.故选:C解析:C 【分析】 由题意知,当3x π=时,函数()f x 取得最大值,可求得362k ω=+,k ∈N .再由函数的单调区间得出不等式组,解之可得选项. 【详解】 由题意知,当3x π=时,函数()f x 取得最大值,所以232k ππωπ⋅=+,k Z ∈.得362k ω=+,k ∈N .因为()f x 在区间,123ππ⎛⎤-⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-, 解得1205ω<≤.因此32ω=.故选:C.5.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.6.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .解析:C 【分析】由切化弦,及两角和的正弦公式化简函数,然后由正弦函数的周期性得结论. 【详解】 由已知,()(1)cos f x x x =+cos x x =+12cos 2x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭, ∴最小正周期为221T ππ==, 故选:C .8.B解析:B 【分析】按照三角函数的周期公式求最小正周期即可. 【详解】解:函数πsin 25y x ⎛⎫=- ⎪⎝⎭的最小正周期为22T ππ==. 故选:B.9.B解析:B 【分析】根据三角函数图像平移规则,进行平移即可 【详解】解:由函数222248y x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,222y x x π⎛⎫=-= ⎪⎝⎭,所以先向左平移8π个单位长度,得2())84y x x ππ=+=+的图像,再向上平移2个单位长度,得 224y x π⎛⎫=++ ⎪⎝⎭的图像,故选:B10.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算.α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++435555=-⨯+⨯=. 故选:B .11.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<,所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.12.B【分析】化简函数cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,即可判断. 【详解】cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,∴需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图象向右平移12π个单位.故选:B.二、填空题13.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为: 解析:1-【分析】由余弦函数的定义可得cos 10x θ==,解出即可. 【详解】由余弦函数的定义可得cos x θ==, 解得0x =(舍去),或1x =(舍去),或1x =-,1x ∴=-.故答案为:1-.14.【分析】利用诱导公式求出再利用二倍角公式求出以及同角三角函数的基本关系求出即可得解;【详解】解:由题意所以所以所以故答案为: 解析:3320-【分析】利用诱导公式求出tan α,再利用二倍角公式求出tan2α,以及同角三角函数的基本关系求出2sin α,即可得解; 【详解】解:由题意()tan 3πα+=,所以tan 3α=,所以22tan 3tan 21tan 4ααα==--,222222sin tan 9sin sin cos tan 110αααααα===++,所以23933tan 2sin 41020αα-=--=-.故答案为:3320-15.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 16.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-+=-= ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈; 函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.17.1【分析】首先根据已知条件求得再结合齐次方程求得【详解】由已知得解得所以故答案为:1解析:1 【分析】首先根据已知条件求得tan α,再结合齐次方程求得2sin sin 2αα+. 【详解】 由已知得1tan 31tan αα+=-,解得1tan 2α=.所以22222211sin 2sin cos tan 2tan 4sin sin 211sin cos tan 114αααααααααα++++====+++. 故答案为:118.【分析】根据三角函数的性质求得的最大值进而可求出结果【详解】因为由可得所以则因为恒成立所以只需故答案为:解析:)+∞【分析】根据三角函数的性质,求得sin cos x x +的最大值,进而可求出结果. 【详解】因为sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭,由0,2x π⎛⎫∈ ⎪⎝⎭可得3,444x πππ⎛⎫+∈ ⎪⎝⎭,所以sin 4x π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,则(sin cos 4x x x π⎛⎫+=+∈ ⎪⎝⎭, 因为0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,所以只需m ≥故答案为:)+∞.19.【分析】由图象求得再根据求得从而求得函数解析式再根据由函数图象的对称轴为直线x=t 求解【详解】由图象知:即则由五点法得所以即因为所以所以又因为所以函数图象的对称轴为直线x=t 则所以解得当k=0时t 取解析:12π【分析】 由图象5556124T ππ⎛⎫--= ⎪⎝⎭,求得ω,再根据506f π⎛⎫= ⎪⎝⎭,求得φ,从而求得函数解析式,再根据()()2f x f t x =-,由函数()f x 图象的对称轴为直线x =t 求解. 【详解】 由图象知:5556124T ππ⎛⎫--= ⎪⎝⎭,即T π=, 则22Tπω==, 由“五点法”得552sin 063f ππφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以()53k k Z πφπ+=∈,即()53k k Z πφπ=-∈, 因为2πφ<, 所以3πφ=,所以()2sin 23f x x π⎛⎫=+⎪⎝⎭, 又因为()()2f x f t x =-,所以函数()f x 图象的对称轴为直线x =t ,则()2sin 223f t t π⎛⎫=+=± ⎪⎝⎭, 所以23t π+()2k k Z ππ=+∈,解得()212k t k Z ππ=+∈, 当k =0时,t 取到了最小正值为12π. 故答案为:12π.【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.20.或【分析】根据两角差的余弦公式和余弦的二倍角展开再进行平方再根据正弦的二倍角公式可答案得【详解】由得即所以或当时两边同时平方得所以解得;当时所以所以所以故答案为:或解析:1-或12【分析】根据两角差的余弦公式和余弦的二倍角展开,再进行平方,再根据正弦的二倍角公式可答案得. 【详解】由πcos cos 24αα⎛⎫-= ⎪⎝⎭,得)22cos +sin cos sin 2αααα=-,即)()()cos +sin cos sin cos +sin 2αααααα=-,所以cos sin =2αα-或cos +sin 0αα=,当cos sin =2αα-时,两边同时平方得112sin cos =2αα-,所以11sin2=2α-.解得sin 2α=12; 当cos +sin 0αα=时,tan 1α=-,所以()+,4k k Z παπ=-∈所以()2+2,2k k Z παπ=-∈所以sin 21α=-,故答案为:1-或12. 三、解答题21.(1)1ω=,()sin 32+f x x π⎛⎫= ⎪⎝⎭2)⎣⎦. 【分析】(1)先逆用两角差的正弦公式化成正弦型函数的标准形式,然后利用周期公式2T ωπ=求ω的值,进而写出函数()f x 的解析式;(2)利用余弦定理结合基本不等式求出cos B 的范围,再根据B 为三角形的内角求出B 的范围,得出()f x 的定义域,从而求出()f x 的值域. 【详解】解:(1)()2sin cos f x x x x ωωω=)1cos 21sin 2+22x x ωω+=sin 2++32x πω⎛⎫= ⎪⎝⎭ 由22T ππω==,解得1ω=,所以函数()f x 的解析式为()sin 32++2f x x π⎛⎫= ⎪⎝⎭; (2)因为2b ac =,所以222cos 2a c b B ac +-==22121122222a c ac ac ac +-≥-=,当且仅当a c =时取“=”;又B 为三角形内角,所以03B π<≤,即03x π<≤,所以2+33x πππ<≤,所以0sin 2+13x π⎛⎫⎪⎝⎭sin 2+3x π⎛⎫≤≤ ⎪⎝⎭,即函数()f x 的值域是⎣⎦. 【点睛】关键点点睛:运用三角恒等变换将函数化成正弦型函数的标准形式,利用余弦定理和基本不等式将三角形的边的关系转化为角的范围.22.(1)2)2875-. 【分析】(1)先利用诱导公式将4cos130tan140︒︒-,转化为4cos50tan 40︒︒-+,然后利用三角恒等变换求解. (2)由3177cos ,45124x x πππ⎛⎫+=<<⎪⎝⎭,利用平方关系求得4sin 45x π⎛⎫+=- ⎪⎝⎭,得到cos cos 44x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,然后由 2sin 22sin 2sin (cos sin )1tan 1tan x x x x x x x ++=--求解. 【详解】(1)4cos130tan140︒︒-,sin 404cos50tan 404cos50cos 40︒︒︒︒︒=-+=-+, 04cos50cos 40sin 404sin 40cos 40sin 40cos 40cos 40︒︒︒︒︒︒︒-+-+==, 02sin 80sin 402cos10sin 40cos 40cos 40︒︒︒︒︒-+-+==, ()2cos 4030sin 40cos 40︒︒︒︒--+=,040sin 40sin 40cos 40︒︒︒-+=,== (2)1775,212434x x πππππ<<∴<+<, 4sin 45x π⎛⎫∴+=- ⎪⎝⎭,cos cos cos cos sin sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,3455⎫=-=⎪⎝⎭, sin tan 7x x ∴===, 22sin 22sin 2sin cos 2sin 2sin (cos sin )1tan 1tan 1tan x x xx x x x x x xx +++∴==---, 2101010281775⎛⨯--- ⎝⎭⎝⎭==--. 23.(1)π;(2)2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【分析】(1)利用二倍角的正弦、余弦公式将函数化为()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,由周期公式即可求解.(2)由正弦函数的单调递减区间32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,整体代入即可求解. 【详解】(1)()21cos 221cos cos sin 22262x x f x x x x x π+⎛⎫==+=++ ⎪⎝⎭, 所以函数的最小正周期222T πππω===, (2)3222,262k x k k Z πππππ+≤+≤+∈, 解不等式可得2,63k x k k Z ππππ+≤≤+∈, 所以函数()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦24.(1)T π=;对称中心为(,0),Z 26k k ππ-∈;(2)6.【分析】(1)利用二倍角公式、辅助角公式化简得1()sin(2)23f x x π=+求得最小正周期及对称中心;(2)求得1sin(2)33πα+=,对角拆分2(2)33ππαα=+-利用两角和差的余弦公式得解.【详解】(1) 1cos2()sin()sin()2266x f x x x πππ+=++--12cos()sin()266x x x ππ=+⨯--1sin(2)23x x π=+-1111(sin 2cos2(sin 2cos22222x x x x x =+⋅-=⋅+ 1sin(2)23x π=+. 所以()f x 的最小正周期22T ππ==. 由2,Z 3x k k ππ+=∈得,Z 26k x k ππ=-∈,所以()f x 的对称中心为(,0),Z 26k k ππ-∈. (2) 由1()6f α=得1sin(2)33πα+=,因为(,)123ππα∈,所以2(,)32ππαπ+∈,所以cos(2)3πα+==,所以cos2cos[(2)]cos(2)cos sin(2)sin 333333ππππππαααα=+-=+⋅++⋅1123=+=. 【点睛】熟练运用二倍角公式、辅助角公式、两角和差的余弦公式及合理拆分角是解题关键,属于基础题.25.12-【分析】根据3cos cos 5αβ+=,4sin sin 5αβ+=,分别平方两式相加,利用两角差的余弦公式求解. 【详解】因为3cos cos 5αβ+=,4sin sin 5αβ+=, 所以()2229cos cos cos 2cos cos cos 25αβααββ+=+⋅+=, ()22216sin sin sin 2sin sin sin 25αβααββ+=+⋅+=, 两式相加得:()22cos 1αβ+-=, 所以()1cos 2αβ-=- 故答案为:12-26.答案见解析. 【分析】利用正弦定理,作边化角,然后利用正弦的两角和与差的公式,再利用三角函数的诱导公式即可求解 【详解】 若选条件①,由正弦定理2cos b a C =可化为sin 2sin cos B A C =, 又()B A C π=-+,所以sin()2sin cos A C A C +=,sin cos cos sin 2sin cos A C A C A C +=,sin cos cos sin 0A C A C -=,sin()0A C -=,因为0A π<<,0C π<<,所以A C ππ-<-<,0A C -=,A C =, 则()22cos cos()cos(2)cos 212sin 2sin 1B A C A A A A ππ=--=-=-=--=-,又1cos 3B =,所以212sin 13A -=,22sin 3A =,sin A =若选条件②,由正弦定理,2cos b a C =可化为sin 2sin cos B A C =, 又()B A C π=-+,所以sin()2sin cos A C A C +=,sin cos cos sin 2sin cos A C A C A C +=,sin cos cos sin 0A C A C -=,sin()0A C -=,因为0A π<<,0C π<<,所以A C ππ-<-<,0A C -=,A C =,所以a c =, 因为ABC 的周长为8,2b =,所以3a c ==,由余弦定理可得2223231cos 2233A +-==⨯⨯,所以sin A =. 若选条件③,由正弦定理,2cos b a C =可化为sin 2sin cosB AC =, 又()B A C π=-+,所以sin()2sin cos A C A C +=,sin cos cos sin 2sin cos A C A C A C +=,sin cos cos sin 0A C A C -=,sin()0A C -=,因为0A π<<,0C π<<,所以A C ππ-<-<,0A C -=,A C =,所以a c =, 又3c =,所以3a =,因为ABC 的外接圆半径为2,所以34sin A =,所以3sin 4A =. 【点睛】本题考查正弦定理、正弦的两角和与差的公式以及三角函数的诱导公式,主要考查学生的运算能力,属于中档题。
武汉市华一寄宿学校必修第一册第五单元《三角函数》检测卷(包含答案解析)
一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .lg y x = C .()f x x =-D .()cos f x x =2.已知曲线1:sin C y x =,曲线2:sin 23C y x π⎛⎫=-⎪⎝⎭,则下列结论正确的是( ) A .把曲线1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2C B .把曲线1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C C .把曲线1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2C D .把曲线1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C 3.若将函数1()sin 223f x x π⎛⎫=+ ⎪⎝⎭图象上的每一个点都向左平移3π个单位长度,得到()g x 的图象,则函数()g x 的单调递增区间为( )A .3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,()44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦4.sin 3π=( )A .12B .12-C .2D . 5.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程是( ) A .π2x =-B .π4x =-C .π8x =-D .πx =6.先将函数()sin (0)f x x ωω=>的图象向左平移2π个单位长度,再向上平移2个单位长度后得到函数()g x 的图象,若方程()()f x g x =有实根,则ω的值可以为( )A .12B .1C .2D .47.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性D .函数()f x 的值域为R8.计算cos 20cos80sin160cos10+=( ).A .12B C .12-D . 9.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π 10.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭11.sin34sin64cos34sin 206︒︒-︒︒的值为( )A .12B .2C .2D .112.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫-⎪⎝⎭C .,012π⎛⎫⎪⎝⎭D .,03π⎛⎫⎪⎝⎭二、填空题13.方程cos 306x π⎛⎫+= ⎪⎝⎭在[]0,π上的解的个数为______.14.已知()sin()cos()1f x a x b x παπβ=++-+,其中α,β,a ,b 均为非零实数,若()20202f =,则()2021f =________.15.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______. 16.设()sin 2cos2f x a x b x =+,0ab ≠,若()6f x f π⎛⎫≤ ⎪⎝⎭对任意x ∈R 成立,则下列命题中正确的命题是______.(填序号) ①11012f π⎛⎫=⎪⎝⎭;②7105f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;③()f x 不具有奇偶性;④()f x 的单调增区间是()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;⑤可能存在经过点(),a b 的直线与函数的图象不相交. 17.已知函数()()sin cos 0f x x x ωωω=+>,若()f x 在()π,π-上有且只有3个零点,则ω的取值范围为______.18.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,且在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数,则ω的取值范围为______. 19.设函数()()2sin 0,2f x x πωφφφ⎛⎫=+><⎪⎝⎭的部分图象如图.若对任意的()()2x R f x f t x ∈=-,恒成立,则实数t 的最小正值为____.20.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 三、解答题21.已知tan 1tan 1αα=--,求下列各式的值:(1)sin 3cos sin cos αααα-+;(2)2sin sin cos 2ααα++.22.已知向量2(cos ,sin )m x a x =,(3,cos )n x =-,函数3()f x m n =⋅-. (1)若1a =,当[0,]2x π∈时,求()f x 的值域;(2)若()f x 为偶函数,求方程3()4f x =-在区间[,]-ππ上的解. 23.(1)求值:4cos130tan140︒︒-;(2)已知3177cos ,45124x x πππ⎛⎫+=<< ⎪⎝⎭,求2sin 22sin 1tan x x x+-的值.24.已知函数()sin (sin )1f x x x x =+-.(1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间.25.已知向量a =cos x ,-1),b =(sin x ,cos 2x ),函数()f x a b =⋅. (1)求函数()f x 的单调递增区间; (2)求函数()f x 在区间[2π-,0]上的最大值和最小值,并求出相应的x 的值. 26.已知1cos cos 634ππαα⎛⎫⎛⎫+-=-⎪ ⎪⎝⎭⎝⎭,,32ππα. (1)求sin 2α的值; (2)求1tan tan αα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据基本初等函数的性质,以及函数奇偶性的定义,逐项判定,即可求解. 【详解】对于A 中,函数()sin f x x =,根据正弦函数的性质,可得函数()sin f x x =在[]1,1-上单调递增,不符合题意;对于B 中,函数lg y x =,满足()()lg lg f x x x f x -=-==,所以函数lg y x =为偶函数,不符合题意;对于C 中,函数()f x x =-,根据一次函数的性质,可得函数()f x x =-为奇函数,且在[]1,1-上单调递减函数,符合题意;对于D 中,函数()cos f x x =,满足()()cos()cos f x x x f x -=-==,所以函数()cos f x x =为偶函数,不符合题意.故选:C.2.D解析:D 【分析】根据三角函数的伸缩变换与平移变换原则,可直接得出结果. 【详解】 因为sin 2sin 236y x x ππ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以将sin y x =图象上各点的横坐标缩短为原来的12,纵坐标不变,可得sin 2y x =的图象,再将sin 2y x =的图象向右平移6π个单位,即可得到sin 23y x π⎛⎫=- ⎪⎝⎭的图象. 故选:D.3.A解析:A 【分析】 求出()1sin 22g x x =-,令()322222k x k k Z +≤≤+∈ππππ即可解出增区间. 【详解】 由题可知()()111sin 2sin 2sin 223322g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦, 令()322222k x k k Z +≤≤+∈ππππ,解得()344k x k k Z ππππ+≤≤+∈, ∴()g x 的单调递增区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 故选:A.4.C解析:C 【分析】根据特殊角对应的三角函数值,可直接得出结果. 【详解】sin3π=. 故选:C.5.C解析:C【分析】根据余弦函数的对称轴可得π22π4x k +=,解方程即可求解. 【详解】π22π4x k +=,k Z ∈,则有ππ8x k =-+,k Z ∈ 当0k =时,πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程为π8x =-. 故选:C6.C解析:C 【分析】先根据三角函数图象的变换得出()g x 的解析式,然后根据三角函数的图象性质分析()()f x g x =的条件并求解ω的值.【详解】由题意可知()sin 22g x x πωω⎛⎫=++ ⎪⎝⎭,则函数()g x 的最大值为3,最小值为1,又()sin (0)f x x ωω=>的最大值为1,所以当()()f x g x =有实根时,()f x 的最大值点与()g x 的最小值点重合,故应平移(21),2T n n N +∈个单位,所以()212n ππω=+, 得42,n n N ω=+∈,故只有C 选项符合.故选:C. 【点睛】本题考查根据三角函数图象的平移变换、考查根据函数图象有交点求参数的取值范围,难度一般. 解答的关键在于: (1)得出函数()g x 的解析式;(2)分析出()()f x g x =时,()f x 的最大值点与()g x 的最小值点重合.7.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B8.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .9.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.10.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.11.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒= 故选:C .12.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A二、填空题13.3【分析】先求出解的一般形式再根据范围可求解的个数【详解】因为故故令故故答案为:3解析:3 【分析】先求出解的一般形式,再根据范围可求解的个数. 【详解】 因为cos 306x π⎛⎫+= ⎪⎝⎭,故3,62x k k Z πππ+=+∈, 故,39k x k Z ππ=+∈,令039k πππ≤+≤,故0,1,2k =, 故答案为:3.14.0【分析】由题设条件结合周期性及诱导公式运算即可得解【详解】由题意所以所以故答案为:0解析:0 【分析】由题设条件结合周期性及诱导公式运算即可得解. 【详解】由题意,()sin(2020)cos(2020)1sin cos()12020a b a b f παπβαβ++-++-=+=sin cos 12a b αβ=++=,所以sin cos 1αβ+=a b ,所以()sin(2021)cos(202)201211f a b παπβ++-+=sin()cos()1sin cos 1110a b a b παπβαβ==++-+-+=-+=-.故答案为:0.15.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1216.①③【分析】由题可知直线与函数的图象的一条对称轴可求得可化简函数的解析式为计算出的值可判断①的正误;计算可判断②的正误;利用特殊值法可判断③的正误;取利用正弦函数的单调性可判断④的正误;假设命题⑤正解析:①③ 【分析】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可求得3ab ,可化简函数()f x 的解析式为()2sin 26f x b x π⎛⎫=+ ⎪⎝⎭.计算出1112f π⎛⎫⎪⎝⎭的值,可判断①的正误;计算710f π⎛⎫ ⎪⎝⎭、5f π⎛⎫ ⎪⎝⎭,可判断②的正误;利用特殊值法可判断③的正误;取0b >,利用正弦函数的单调性可判断④的正误;假设命题⑤正确,求出直线的方程,结合函数()f x 的最值可判断⑤的正误.【详解】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可得162f b π⎛⎫=+= ⎪⎝⎭,整理可得2230a b -+=,即()20a -=,a ∴=.()sin 2cos 22sin 26f x x b x b x π⎛⎫∴=+=+ ⎪⎝⎭.对于命题①,11112sin 2012126f b πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,①正确; 对于命题②,7747172sin 22sin 2sin 101063030f b b b ππππππ⎛⎫⎛⎫⎛⎫=⨯+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17172sin 2sin 3030b b ππ=-=,172sin 22sin 55630f b b ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以,7105f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,②不正确;对于命题③,2sin 66f b b ππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,2sin 262f b b ππ⎛⎫== ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭且66f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 不具有奇偶性,③正确; 对于命题④,当()2,63x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z 时,则()3222262k x k k Z πππππ+≤+≤+∈, 当0b >时,函数()f x 在区间()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 上单调递减,④错误; 对于命题⑤,假设经过点(),a b 的直线与函数()f x 的图象不相交,则该直线与x 轴平行,此时该直线的方程为y b =,则2b b >,由于0b ≠,矛盾,⑤错误.故答案为:①③. 【点睛】关键点点睛:本题考查正弦型函数()()sin f x A x =+ωϕ的单调性、奇偶性、三角函数值的计算,解题的关键就是从()6f x f π⎛⎫≤⎪⎝⎭分析得出直线6x π=与函数()f x 的图象的一条对称轴,进而借助辅助角公式化简得出a 、b 的倍数关系.17.【分析】利用辅助角公式对进行化简得令解得故即可解得答案【详解】解:令解得的零点为:……若在上有且只有3个零点则需满足解得:故答案为:【点睛】关键点点睛:本题解题的关键是:将的解析式利用辅助角公式化为 解析:5744ω<≤ 【分析】利用辅助角公式对()sin cos f x x x ωω=+进行化简,得()4f x x πω⎛⎫=+ ⎪⎝⎭,令()4x k k z πωπ+=∈,解得()4k x k z ππωω=-+∈,故37449544πππωωπππωω<≤-≤-<-⎧⎨⎩,即可解得答案. 【详解】 解:()sin cos f x x x ωω=+,()4f x x πω⎛⎫∴=+ ⎪⎝⎭,令()4x k k z πωπ+=∈,解得()4k x k z ππωω=-+∈, ()f x ∴的零点为:…,94πω-,54πω-,4πω-,34πω,74πω,…若()f x 在()π,π-上有且只有3个零点,则需满足37449544πππωωπππωω<≤-≤-<-⎧⎨⎩, 解得:5744ω<≤.故答案为:5744ω<≤.【点睛】关键点点睛:本题解题的关键是:将()f x 的解析式利用辅助角公式化为()sin y A ωx φ=+的形式,或者()cos y A x ωϕ=+,再结合正余弦函数的图象计算即可. 18.【分析】由函数图象关于原点对称可得再由在区间上是增函数可得解不等式即可【详解】由函数的图象关于原点对称得即因为在区间上是减函数所以在区间上是增函数又是函数的单调递增区间所以又解得故答案为:解析:30,4⎛⎤⎥⎝⎦【分析】由函数图象关于原点对称可得2ϕπ=,再由2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,可得22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解不等式即可.【详解】由函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,得2ϕπ=, 即()2cos 2sin 2f x x x πωω⎛⎫=+=- ⎪⎝⎭,因为()f x 在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数, 所以2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数, 又,22ππωω⎡⎤-⎢⎥⎣⎦是函数2sin y x ω=的单调递增区间, 所以22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,又0>ω,解得304ω<≤.故答案为:30,4⎛⎤ ⎥⎝⎦19.【分析】由图象求得再根据求得从而求得函数解析式再根据由函数图象的对称轴为直线x=t 求解【详解】由图象知:即则由五点法得所以即因为所以所以又因为所以函数图象的对称轴为直线x=t 则所以解得当k=0时t 取解析:12π 【分析】 由图象5556124T ππ⎛⎫--= ⎪⎝⎭,求得ω,再根据506f π⎛⎫= ⎪⎝⎭,求得φ,从而求得函数解析式,再根据()()2f x f t x =-,由函数()f x 图象的对称轴为直线x =t 求解. 【详解】 由图象知:5556124T ππ⎛⎫--= ⎪⎝⎭,即T π=, 则22Tπω==, 由“五点法”得552sin 063f ππφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()53k k Z πφπ+=∈,即()53k k Z πφπ=-∈, 因为2πφ<, 所以3πφ=,所以()2sin 23f x x π⎛⎫=+⎪⎝⎭, 又因为()()2f x f t x =-,所以函数()f x 图象的对称轴为直线x =t ,则()2sin 223f t t π⎛⎫=+=± ⎪⎝⎭, 所以23t π+()2k k Z ππ=+∈,解得()212k t k Z ππ=+∈, 当k =0时,t 取到了最小正值为12π. 故答案为:12π. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.20.【分析】由结合诱导公式和二倍角公式得出答案【详解】故答案为:解析:19-【分析】 由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案. 【详解】2sin 63πα⎛⎫+= ⎪⎝⎭,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭, 1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-三、解答题21.(1)53-;(2)2.6. 【分析】 由tan 1tan 1αα=--求出1tan 2α=.(1)由sin 3cos sin cos αααα-+分子分母同除以cos α求解;(2)将2sin sin cos 2ααα++,变形为22223sin sin cos 2cos sin cos αααααα+++,再分子分母同除以2cos α求解 【详解】因为tan 1tan 1αα=--,所以1tan 2α=.(1)sin 3cos tan 35sin cos tan 13αααααα--==-++;(2)2sin sin cos 2ααα++,22223sin sin cos 2cos sin cos αααααα++=+, 223tan tan 2tan 1ααα++=+, 31242114++=+, 2.6=22.(1)[-;(2)75,1212x ππ=±±. 【分析】(1)将()f x 化为()cos(2)6f x x π=+,然后可得答案; (2)由()f x 为偶函数可求出0a =,然后可得答案. 【详解】(1)2()sin cos 2sin 22a f x x a x x x x =-=- 当1a =,1()2sin 2cos(2)26f x x x x π=-=+由7[0,],2[,],cos(2)[1,266662x x x πππππ∈∴+∈∴+∈- 所以()f x的值域为[-(2)若()f x 为偶函数,则()()f x f x -=恒成立2sin 22sin 222a a x x x x +=-成立,整理得sin 20,0a x a =∴=所以由3()24f x x ==-得cos 22x =-又752[2,2],,1212x x ππππ∈-∴=±± 23.(1)2)2875-. 【分析】(1)先利用诱导公式将4cos130tan140︒︒-,转化为4cos50tan 40︒︒-+,然后利用三角恒等变换求解. (2)由3177cos ,45124x x πππ⎛⎫+=<<⎪⎝⎭,利用平方关系求得4sin 45x π⎛⎫+=- ⎪⎝⎭,得到cos cos 44x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,然后由 2sin 22sin 2sin (cos sin )1tan 1tan x x x x x x x ++=--求解. 【详解】(1)4cos130tan140︒︒-,sin 404cos50tan 404cos50cos 40︒︒︒︒︒=-+=-+, 04cos50cos 40sin 404sin 40cos 40sin 40cos 40cos 40︒︒︒︒︒︒︒-+-+==, 02sin 80sin 402cos10sin 40cos 40cos 40︒︒︒︒︒-+-+==, ()2cos 4030sin 40cos 40︒︒︒︒--+=,040sin 40sin 40cos 40︒︒︒-+=,== (2)1775,212434x x πππππ<<∴<+<,4sin 45x π⎛⎫∴+=- ⎪⎝⎭,cos cos cos cos sin sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,3425510⎫=-=-⎪⎝⎭,sin ,tan 710x x ∴==-=, 22sin 22sin 2sin cos 2sin 2sin (cos sin )1tan 1tan 1tan x x x x x x x x x x x+++∴==---,2101010281775⎛⨯--- ⎝⎭⎝⎭==--. 24.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==, (2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.25.(1),,63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ;(2)=2x π-时,最大值为0;=6x π-时, 最小值为32-. 【分析】(1)由()f x a b =⋅,根据向量的数量积的运算可得()f x 的解析式,将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间. (2)在0,2π⎡⎤⎢⎥⎣⎦上时,求出内层函数的取值范围,结合三角函数的图象和性质,可得出()f x 的最大值和最小值.【详解】解:(1)2()=3sin cos cos f x a b x x x =⋅-cos 21222x x -- 1=sin 2coscos 2sin662x x ππ-- 1=sin 2)62x π--(由2,262k x k k πππππ--+∈Z 2≤≤2, 解得:,63k x k k ππππ-+∈Z ≤≤,所以函数()f x 的单调递增区间为:[,],63k k k ππππ-+∈Z .(2)因为02x π⎡⎤∈-⎢⎥⎣⎦,,所以72666x πππ⎡⎤-∈--⎢⎥⎣⎦,,所以1sin2)62x π--1≤(≤,即31sin 2)0262x π---≤(≤, 当=2x π-时,()f x 有最大值为0;当=6x π-时, ()f x 有最小值为32-.【点睛】关键点睛:利用三角函数的二倍角公式,化简得到, 2()=3sin cos cos f x a b x x x =⋅-1=sin2)62x π--(, 进而利用复合函数的单调性进行求解,难度属于中档题26.(1)12;(2) 【分析】(1)利用诱导公式以及二倍角公式可得1sin 232πα⎛⎫+=- ⎪⎝⎭,再由sin 2sin 233ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角差的正弦公式即可求解.(2)根据切化弦以及二倍角公式即可求解. 【详解】 解:(1)cos cos cos sin 6366ππππαααα⎛⎫⎛⎫⎛⎫⎛⎫+-=++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11sin 2234πα⎛⎫=+=- ⎪⎝⎭, 即1sin 232πα⎛⎫+=- ⎪⎝⎭, 因为,32ππα,所以42,33ππαπ⎛⎫+∈ ⎪⎝⎭,所以cos 23πα⎛⎫+= ⎪⎝⎭, 所以sin 2sin 233ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦sin 2cos cos 2sin 3333ππππαα⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭111222⎛=-⨯-= ⎝⎭. (2)因为,32ππα,所以22,3παπ⎛⎫∈⎪⎝⎭, 又由(1)知1sin 22α=,所以cos 22α=-. 所以221sin cos sin cos tan tan cos sin sin cos αααααααααα--=-=2cos 2221sin 22αα-==-⨯=。
新人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)(5)
一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .lg y x = C .()f x x =-D .()cos f x x =2.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x-=C .()sin 2f x x =D .()22x x f x -=-3.若将函数1()sin 223f x x π⎛⎫=+ ⎪⎝⎭图象上的每一个点都向左平移3π个单位长度,得到()g x 的图象,则函数()g x 的单调递增区间为( )A .3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,()44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦4.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2πB .πC .2πD .4π5.下列三个关于函数()sin 2sin 23f x x x π⎛⎫=-+ ⎪⎝⎭的命题:①只需将函数()2g x x =的图象向右平移6π个单位即可得到()f x 的图象;②函数()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称; ③函数()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增. 其中,真命题的个数为( ) A .3B .2C .1D .06.若把函数sin y x =的图象沿x 轴向左平移3π个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数()y f x =的图象,则()y f x =的解析式为( )A .sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 23y x π⎛⎫=+⎪⎝⎭C .1sin 23y x π⎛⎫=+⎪⎝⎭D .12sin 23y x π⎛⎫=+⎪⎝⎭7.已知函数()sin()(0)f x x ωω=>在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( ) A .362k -,k ∈N B .362k +,k ∈N C .32D .38.先将函数()sin (0)f x x ωω=>的图象向左平移2π个单位长度,再向上平移2个单位长度后得到函数()g x 的图象,若方程()()f x g x =有实根,则ω的值可以为( )A .12B .1C .2D .49.已知()3sin 5πα+=,则sin()cos()sin 2απαπα--=⎛⎫- ⎪⎝⎭( ) A .45-B .45C .35D .3510.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725 C .2425D .725-11.函数cos 2y x =的单调减区间是( )A .ππ,π,Z 2k k k ⎡⎤+∈⎢⎥⎣⎦ B .π3π2π,2π,Z 22k k k ⎡⎤++∈⎢⎥⎣⎦ C .[]2π,π2π,Z k k k +∈ D .πππ,π,Z 44k k k ⎡⎤-+∈⎢⎥⎣⎦ 12.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 二、填空题13.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.14.已知定义在[],a a -上的函数()cos sin f x x x =-是减函数,其中0a >,则当a 取最大值时,()f x 的值域是______.15.若函数()|2cos |f x a x =+的最小正周期为π,则实数a 的值为____. 16.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .17.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________. 18.设函数2()2cos 23cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时()f x 的值域为17,22⎡⎤⎢⎥⎣⎦,则实数m 的值是________. 19.已知50sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 20.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 三、解答题21.有一展馆形状是边长为2的等边三角形ABC ,DE 把展馆分成上下两部分面积比为1:2(如图所示),其中D 在AB 上,E 在AC 上.(1)若D 是AB 中点,求AE 的值; (2)设AD x =,ED y =. ①求用x 表示y 的函数关系式;②若DE 是消防水管,为节约成本,希望它最短,DE 的位置应在哪里? 22.已知函数()22sin cos 2sin 1f x x x x =-+.(1)求4f π⎛⎫ ⎪⎝⎭的值; (2)求()f x 的最小正周期; (3)求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值. 23.已知函数()()2cos 23sin cos sin f x x x x x =+-.(1)求函数()f x 的单调递增区间; (2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于()f x m ≥的不等式 _______,求实数m 的取值范围. 请选择①和②中的一个条件,补全问题(2),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分. 24.已知函数212()2cos sin 1f x x x ωω=+-. (Ⅰ)求(0)f 的值;(Ⅱ)从①11ω=,21ω=; ②11ω=,22ω=这两个条件中任选一个,作为题目的已知条件,求函数()f x 在[,]26ππ-上的最小值,并求函数()f x 的最小正周期.25.已知2510sin cos αβ==,α、(0)2πβ∈,. (1)求cos(2)3πα-的值;(2)求αβ+的值.26.如图,以Ox 为始边作角α与β(0)βαπ<<<),它们的终边分别与单位圆相交于点P 、Q ,已知点P 的标为34,55⎛⎫- ⎪⎝⎭(1)求sin 2cos 211tan ααα+++的值;(2)若0OP OQ ⋅=,求sin()αβ+的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据基本初等函数的性质,以及函数奇偶性的定义,逐项判定,即可求解. 【详解】对于A 中,函数()sin f x x =,根据正弦函数的性质,可得函数()sin f x x =在[]1,1-上单调递增,不符合题意;对于B 中,函数lg y x =,满足()()lg lg f x x x f x -=-==,所以函数lg y x =为偶函数,不符合题意;对于C 中,函数()f x x =-,根据一次函数的性质,可得函数()f x x =-为奇函数,且在[]1,1-上单调递减函数,符合题意;对于D 中,函数()cos f x x =,满足()()cos()cos f x x x f x -=-==,所以函数()cos f x x =为偶函数,不符合题意.故选:C.2.D解析:D【分析】A.根据32()f x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断. 【详解】A. 32()f x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误;D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D3.A解析:A 【分析】 求出()1sin 22g x x =-,令()322222k x k k Z +≤≤+∈ππππ即可解出增区间. 【详解】由题可知()()111sin 2sin 2sin 223322g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦, 令()322222k x k k Z +≤≤+∈ππππ,解得()344k x k k Z ππππ+≤≤+∈, ∴()g x 的单调递增区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 故选:A.4.B解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==,故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B5.C解析:C 【分析】先对函数()f x 进行化简,得到()26f x x π⎛⎫- ⎪⎝⎭,对于①运用三角函数图像平移进行判断;对于②计算出函数()f x 的对称中心进行判断;对于③计算出函数()f x 的单调增区间进行判断. 【详解】因为1()sin 2sin 2sin 22sin 232f x x x x x x π⎛⎫=-+=+ ⎪⎝⎭3sin 222x x =26x π⎛⎫=- ⎪⎝⎭对于①,将函数()2g x x =的图像向右平移6π个单位可得函数23y x π⎛⎫=- ⎪⎝⎭的图像,得不到()26f x x π⎛⎫=- ⎪⎝⎭,故①错误; 对于②,令()26x k k Z ππ-=∈,解得()122k x k Z ππ=+∈,故无论k 取何整数,函数()f x 的图像不会关于点5,012π⎛⎫⎪⎝⎭对称,故②错误; 对于③,当()222262k x k k Z πππππ-+≤-≤+∈,即()63k x k k Z ππππ-+≤≤+∈时函数()f x 递增,当0k =时,()f x 的一个递增区间为,63ππ⎡⎤-⎢⎥⎣⎦,故③正确.只有1个命题正确. 故选:C 【点睛】思路点睛:解答此类题目需要熟练掌握正弦型函数的单调性、对称性,以及三角函数的图像平移,在计算单调区间和对称中心时要能够通过整体代入计算求出结果,如()222262k x k k Z πππππ-+≤-≤+∈等.6.C解析:C【分析】根据三角函数图象平移、伸缩的公式,结合题中的变换加以计算,可得函数()y f x =的解析式. 【详解】 解:将函数sin y x =的图象沿x 轴向左平移3π个单位,得到函数sin()3y x π=+的图象; 将sin()3y x π=+的图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到1sin()23y x π=+的图象.∴函数sin y x =的图象按题中变换得到函数()y f x =的图象,可得1()sin 23y f x x π⎛⎫==+ ⎪⎝⎭.故选:C .7.C解析:C 【分析】 由题意知,当3x π=时,函数()f x 取得最大值,可求得362k ω=+,k ∈N .再由函数的单调区间得出不等式组,解之可得选项. 【详解】 由题意知,当3x π=时,函数()f x 取得最大值,所以232k ππωπ⋅=+,k Z ∈.得362k ω=+,k ∈N .因为()f x 在区间,123ππ⎛⎤-⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-, 解得1205ω<≤.因此32ω=.故选:C.8.C解析:C 【分析】先根据三角函数图象的变换得出()g x 的解析式,然后根据三角函数的图象性质分析()()f x g x =的条件并求解ω的值.【详解】由题意可知()sin 22g x x πωω⎛⎫=++ ⎪⎝⎭,则函数()g x 的最大值为3,最小值为1,又()sin (0)f x x ωω=>的最大值为1,所以当()()f x g x =有实根时,()f x 的最大值点与()g x 的最小值点重合,故应平移(21),2T n n N +∈个单位,所以()212n ππω=+, 得42,n n N ω=+∈,故只有C 选项符合.故选:C. 【点睛】本题考查根据三角函数图象的平移变换、考查根据函数图象有交点求参数的取值范围,难度一般. 解答的关键在于: (1)得出函数()g x 的解析式;(2)分析出()()f x g x =时,()f x 的最大值点与()g x 的最小值点重合.9.C解析:C 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【详解】 ∵3sin()sin 5παα+==-,∴3sin 5α=-, 则sin()cos()sin (cos )3sin cos 5sin 2απααααπαα---⋅-===-⎛⎫- ⎪⎝⎭, 故选:C10.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.11.A解析:A 【分析】根据余弦函数的性质,令222,k x k k Z πππ≤≤+∈求解.【详解】令222,k x k k Z πππ≤≤+∈, 解得2,2k x k k Z πππ≤≤+∈,所以函数cos 2y x =的单调减区间是ππ,π,Z 2k k k ⎡⎤+∈⎢⎥⎣⎦, 故选:A12.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 二、填空题13.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒1222=-=, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒12=+=,1tan 45tan 30tan 75tan(4530)21tan 45tan 30+︒+︒︒=︒+︒===+-︒︒ 山高h 为PQ 长度,根据图可得,200sin1550CQ =︒=,3tan 603h AQ h ==︒,tan 75PCBC=︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos155062h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.14.【分析】先求出函数单调减区间的一般形式根据函数在的单调性可得利用整体法可求当取最大值时的值域【详解】令则故的减区间为由题设可得为的子集故且故故当时故故的值域为故答案为:【点睛】关键点点睛:正弦型函数解析:2⎡⎣【分析】先求出函数单调减区间的一般形式,根据函数在[],a a -的单调性可得max 4a π=,利用整体法可求当a 取最大值时,()f x 的值域. 【详解】()cos sin 24f x x x x π⎛⎫=-=- ⎪⎝⎭,令22,242k x k k Z πππππ-≤-≤+∈,则322,44k x k k Z ππππ-≤≤+∈, 故()f x 的减区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 由题设可得[],a a -为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦的子集,故0k =且4340a a a ππ⎧-≥-⎪⎪⎪≤⎨⎪>⎪⎪⎩,故04a π<≤,故max 4a π=,当44x ππ-≤≤时,024x ππ-≤-≤,故0sin 4x π⎛⎫≤-≤ ⎪⎝⎭故()f x的值域为⎡⎣.故答案为:⎡⎣.【点睛】关键点点睛:正弦型函数在给定范围(含参数)上的单调性可由单调区间的一般形式得到参数满足的条件,这是解决此类问题的通法.15.【分析】利用来求解【详解】因为函数的最小正周期为所以都有成立故则故答案为: 解析:0【分析】利用()()f x f x π=+来求解. 【详解】因为函数()f x 的最小正周期为π,所以x R ∀∈,都有()()f x f x π=+成立, 故()2cos 2cos 2cos a x a x a x π+=++=-,则0a =. 故答案为:0.16.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面解析:(100002【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF R θ= ,则2sin EF R θ=所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 2322R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.17.9【分析】根据扇形的弧长是6圆心角为2先求得半径再代入公式求解【详解】因为扇形的弧长是6圆心角为2所以所以扇形的面积为故答案为:9解析:9 【分析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式12S lr =求解. 【详解】因为扇形的弧长是6,圆心角为2, 所以632l r α===, 所以扇形的面积为1163922S lr ==⨯⨯=, 故答案为:9.18.【分析】利用二倍角公式与辅助角公式化简解析式为根据定义域求出函数值域为利用可得答案【详解】因为则由得且故故答案为:【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形三角函数的图象和性质利用正余解析:12【分析】利用二倍角公式与辅助角公式化简解析式为2sin 216x m π⎛⎫+++ ⎪⎝⎭,根据定义域求出函数值域为[,3]m m +,利用17[,3],22m m ⎡⎤+=⎢⎥⎣⎦可得答案. 【详解】因为2()2cos cos f x x x x m =++1cos 222sin 216x x m x m π⎛⎫=++=+++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,2666x ππ7π∴≤+≤,则1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦.()2sin 21[,3]6f x x m m m π⎛⎫∴=+++∈+ ⎪⎝⎭,由17[,3],22m m ⎡⎤+=⎢⎥⎣⎦得,12m =且732m +=,故12m =. 故答案为:12. 【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式,再结合正弦函数与余弦函数的性质求解.19.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 444444525220ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.20.【分析】由结合诱导公式和二倍角公式得出答案【详解】故答案为:解析:19-【分析】 由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案. 【详解】2sin 63πα⎛⎫+= ⎪⎝⎭,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭, 1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-三、解答题21.(1)43AE =;(2)①2,23y x ⎡⎤=∈⎢⎥⎣⎦;②//DE BC . 【分析】(1)利用三角形的面积公式,得到43AD AE ⋅=,根据D 是AB 中点,即可求得AE 的长;(2)对于①中,由(1)得到4433AE AD x==,求得223x ≤≤,在ADE 中,由余弦定理,即可求得函数的解析式;②根据DE 是消防水管,结合基本不等式,即可求得x 的值,得到DE 的位置. 【详解】(1)依题意,可得211112sin 60sin 603322ADE ABC S S AD AE ==⋅⋅⋅︒==⋅︒△△ 解得43AD AE ⋅=, 又因为D 是AB 中点,则1AD =,所以43AE =. (2)对于①中,由(1)得43AD AE ⋅=,所以4433AE AD x==, 因为2AE ≤,可得23x ≥,所以223x ≤≤, 在ADE 中,由余弦定理得2222221642cos6093y DE AD AE AD AE x x ==+-⋅⋅︒=+-,所以2,23y x ⎡⎤=∈⎢⎥⎣⎦.②如果DE 是消防水管,可得y =≥=,当且仅当243x =,即x =此时AE =,故//DE BC ,且消防水管路线最短为DE =. 【点睛】利用基本不等式求解实际问题的解题技巧:利用基本不等式求解实际应用问题时,一定要注意变量的实际意义及其取值范围; 根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值; 在应用基本不等式求最值时,若等号取不到,可利用函数的单调性求解.22.(1)1;(2)π;(3).【分析】(1)由题意利用三角恒等变换化简函数的解析式,从而求得4f π⎛⎫⎪⎝⎭的值 (2)由(1)得,利用正弦函数的周期性,得出结论; (3)由(1)得,利用正弦函数的单调性,得出结论; 【详解】(1)()22sin cos 2sin 1sin 2cos2f x x x x x x =-+=+π24x ⎛⎫=+ ⎪⎝⎭∴πππ1424f ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭或直接求2ππππ2sin cos 2sin 114444f ⎛⎫=-+=⎪⎝⎭. (2)由(1)得,所以()f x 的最小正周期为2π2ππ2T ω=== (3)由(1)得,∵π02x -≤≤,∴3πππ2444x -≤+≤,∴πsin 21,42x ⎡⎛⎫+∈-⎢⎪⎝⎭⎣⎦当ππ242x +=-,即3π8x =-时,()f x 取得最小值为. 【点睛】关键点睛:解题的关键在于,利用三角恒等变换化简函数的解析式得到()π24f x x ⎛⎫=+ ⎪⎝⎭,进而利用正弦函数的性质求解,属于中档题23.(1)[,],36k k k Z ππππ-++∈;(2)若选择①,2m ≤. 若选择②,1m ≤-.【分析】(1)先结合二倍角公式及辅助角公式对已知函数进行化简,然后结合正弦函数的单调性可求; (2)若选择①,由()f x m ≥有解,即max ()m f x ≤,结合正弦函数的性质可求; 若选择②,由()f x m ≥恒成立,即min ()m f x ≤,结合正弦函数的性质可求. 【详解】(1)因为()()2cos cos sin f x x x x x =+-22cos s n cos i x x x x =+-2cos2x x =+2sin(2).6x π=+令222,262k x k k Z πππππ-+≤+≤+∈,解得36k x k k Z ππ-+π≤≤+π,∈. 所以函数()f x 的单调递增区间,,.36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)若选择①,由题意可知,不等式()f x m ≥有解,即max ()m f x ≤, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当262x ππ+=,即6x π=时,()f x 取得最大值,且最大值为()26f π=,所以2m ≤.若选择②,由()f x m ≥恒成立,即min ()m f x ≤,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当7266x ππ+=,即2x π=时,()f x 取得最小值,且最小值为()12f π=-,所以1m ≤- 【点睛】关键点点睛:考查了二倍角公式辅助角公式在三角函数化简中的应用,还考查了正弦函数性质的综合应用,其中,考查了存在性命题与全称命题的理解,理解含量词命题转化成适当的不等式是解题关键,属于中档试题.24.(Ⅰ)1;(Ⅱ)选择条件①,最小正周期为2π,在[,]26ππ-取得最小值2-;选择条件②,最小正周期为π,在[,]26ππ-取得最小值. 【分析】(I)将0x =代入求值即可;(II)①121,1ωω==,()222cos sin 2sin sin 2f x x x x x =+=-++利用抛物线知识求解②用二倍角和辅助角公式化简可得()+)+14f x x π=,再由[,]26x ππ∈-可得372[,]4412x πππ+∈-,结合正弦函数图象求解最值; 【详解】解:(Ⅰ)2(0)2cos 0sin 011f =+-=. (Ⅱ)选择条件①.()f x 的一个周期为2π.2()2cos sin 1f x x x =+-22(1sin )sin 1x x =-+-2192(sin )48x =--+.因为[,]26x ππ∈-,所以1sin [1,]2x ∈-.所以 当sin =1x -时,即π=2x -时,()f x 在[,]26ππ-取得最小值2-.选择条件②.()f x 的一个周期为π.2()2cos sin 21f x x x =+-sin2+cos2x x =22)x x =+2)4x π=+(. 因为[,]26x ππ∈-,所以372+[,]4412x πππ∈-.当2=42x ππ+-时,即3π=8x -时,()f x 在[,]26ππ-取得最小值. 【点睛】本题考查三角恒等变换在三角函数图象和性质中的应用.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成sin()A xk 或cos()A xk 的形式;(2)根据自变量的范围确定x ωϕ+的范围,根据相应的正弦曲线或余弦曲线求值域或最值.(3)换元转化为二次函数研究最值.25.(1)310;(2)34αβπ+=. 【分析】(1)先求出cos2α的值,再计算sin 2α的值,将cos(2)3πα-展开即可求解;(2)求出cos α和sin β的值,再计算()cos αβ+的值,结合α、(0)2πβ∈,,即可求出αβ+的值.【详解】(1)因为02πα<<,sin 5α=,所以cos 5α===,所以223cos 212sin 125αα=-=-⨯=-⎝⎭,4sin 22sin cos 2555ααα==⨯⨯=,314cos 2cos 2cos sin 2sin 333525πππααα⎛⎫-=+=-⨯+=⎪⎝⎭ (2)因为02πβ⎛⎫∈ ⎪⎝⎭,,cos β=sin β==, ()cos cos sin sin 502cos αβαβαβ-+=-===-, 因为02πα<<,02πβ<<,所以0αβ<+<π,所以34παβ+=. 【点睛】方法点睛:解给值求角问题的一般步骤 (1)求角的某一个三角函数值; (2)确定角的范围;(3)根据角的范围写出角的大小. 26.(1)1825;(2)725. 【分析】(1)根据终边上点的坐标,利用三角函数定义得到角α的正弦值与余弦值,利用二倍角的正弦公式、二倍角法余弦公式,切化弦,把要求的式子化简,约分整理,将所求三角函数值代入求解即可;(2)以向量的数量积为0为条件,可得2παβ-=,从而可得3sin 5β=,进而得4cos 5β=,利用两角和的正弦公式可得结果. 【详解】 (1)由三角函数定义得3cos 5α=-, 4sin 5α= ∴原式()222cos sin cos 2sin cos 2cos 2cos sin sin cos 1cos cos αααααααααααα++===++2=·235⎛⎫- ⎪⎝⎭=1825 (2)0OP OQ ⋅=,∴2παβ-= , ∴2πβα=-,∴3sin sin cos 25πβαα⎛⎫=-=-= ⎪⎝⎭ 4cos cos sin 25πβαα⎛⎫=-== ⎪⎝⎭, ∴()sin sin cos cos sin αβαβαβ+=+ 44337555525⎛⎫=⋅+-⋅= ⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .lg y x = C .()f x x =-D .()cos f x x =2.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两条对称轴之间的距离为2π,且该函数图象关于点()0,0x 成中心对称,00,2x π⎡⎤∈⎢⎥⎣⎦,则0x 等于( )A .512π B .4π C .3π D .6π 3.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .B .19-C D .194.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-5.已知角θ终边经过点)P a ,若6πθ=-,则a =( )AB C .D .6.cos45sin15sin 45cos15︒︒-︒︒=( ).A .1B .12-C D .127.已知函数()()sin 20,2f x A x A πϕϕ⎛⎫=+>< ⎪⎝⎭满足03f π⎛⎫= ⎪⎝⎭,则()f x 图象的一条对称轴是( ) A .6x π=B .56x π=C .512x π=D .712x π=8.sin34sin64cos34sin 206︒︒-︒︒的值为( )A .12B .2C .2D .19.已知()1sin 2=-f x x x ,则()f x 的图象是( ).A .B .C .D .10.若角α,β均为锐角,25sin 5α=,()4cos 5αβ+=-,则cos β=( )A 25B 25C 2525D .2511.已知1cos 2α=,322παπ<<,则sin(2)πα-=( ) A .3 B .12C .12-D 312.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.若ππ2α<<,π02β<<,且5sin α,3π3cos 85β⎛⎫+=- ⎪⎝⎭,则3πcos 8αβ⎛⎫++= ⎪⎝⎭______.14.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.15.设函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,若()4f x f π⎛≤⎫⎪⎝⎭对任意的实数x 都成立,则ω的最小值为___________________.16.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 17.已知α是第一象限角,且4tan 3α=,则sin 2α=_______ 18.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________. 19.若3sin 5αα=,是第二象限角,则sin 24πα⎛⎫+= ⎪⎝⎭__________.20.已知:3sin 25πα⎛⎫+= ⎪⎝⎭,且α为第四象限角,则cos 4πα⎛⎫+= ⎪⎝⎭___________. 三、解答题21.已知函数()()30,22f x x ππωϕωϕ⎛⎫=+>-≤<⎪⎝⎭的图象关于直线3x π=对称,且图象上相邻两个最高点的距离为π. (1)求ω和ϕ的值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()y f x =的最大值和最小值. 22.已知函数2()2sin 23cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 23.已知函数()322sin cos 3f x x x x π⎛⎫=-- ⎪⎝⎭. (1)求()f x 的最小正周期和单调减区间;(2)求证:当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()12f x ≥-.24.若函数2cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合.25.已知m ∈R ,函数2222()1sin cos (2)|sin |33f x x x m x =++-+. (1)若0m =,求()f x 的最大值; (2)若()f x 在02x π≤≤时的最小值为12,求m 的值.26.已知函数()()2cos cos sin f x x x x x =+-.(1)求函数()f x 的单调递增区间; (2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于()f x m ≥的不等式 _______,求实数m 的取值范围. 请选择①和②中的一个条件,补全问题(2),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据基本初等函数的性质,以及函数奇偶性的定义,逐项判定,即可求解. 【详解】对于A 中,函数()sin f x x =,根据正弦函数的性质,可得函数()sin f x x =在[]1,1-上单调递增,不符合题意;对于B 中,函数lg y x =,满足()()lg lg f x x x f x -=-==,所以函数lg y x =为偶函数,不符合题意;对于C 中,函数()f x x =-,根据一次函数的性质,可得函数()f x x =-为奇函数,且在[]1,1-上单调递减函数,符合题意;对于D 中,函数()cos f x x =,满足()()cos()cos f x x x f x -=-==,所以函数()cos f x x =为偶函数,不符合题意.故选:C.2.A解析:A 【分析】由已知条件求得函数()f x 的最小正周期T ,可求得ω的值,再由已知可得()026x k k Z ππ+=∈,结合00,2x π⎡⎤∈⎢⎥⎣⎦可求得0x 的值. 【详解】由题意可知,函数()f x 的最小正周期T 满足22T π=,T π∴=,22T πω∴==,()sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,由于函数()f x 的图象关于点()0,0x 成中心对称,则()026x k k Z ππ+=∈,解得()0212k x k Z ππ=-∈, 由于00,2x π⎡⎤∈⎢⎥⎣⎦,解得0512x π=. 故选:A. 【点睛】结论点睛:利用正弦型函数的对称性求参数,可利用以下原则来进行: (1)函数()()sin f x A x =+ωϕ关于直线0x x =对称()02x k k Z πωϕπ⇔+=+∈;(2)函数()()sin f x A x =+ωϕ关于点()0,0x 对称()0x k k Z ωϕπ⇔+=∈.3.D解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算. 【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 4.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求.【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .5.C解析:C 【分析】根据三角函数的定义,列出方程,即可求解. 【详解】由题意,角θ终边经过点)P a ,可得OP =,又由6πθ=-,根据三角函数的定义,可得cos()6π-=且0a <,解得a =. 故选:C.6.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.7.D解析:D 【分析】利用三角函数的性质,2()sin()033f A ππϕ=+=,求ϕ,然后,令()f x A =,即可求解 【详解】根据题意得,2()sin()033f A ππϕ=+=,得23k πϕπ+=,k z ∈又因为2πϕ<,进而求得,3πϕ=,所以,()sin(2)3f x A x π=+,令()f x A =,所以,sin(2)13x π+=,所以,2,32x k k z πππ+=+∈,解得,k x k z 122ππ=+∈,当1k =时,712x π=,所以,()f x 图象的一条对称轴是712x π= 故选D 【点睛】关键点睛:求出ϕ后,令()f x A =,所以,sin(2)13x π+=,进而求解,属于中档题8.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒2= 故选:C .9.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.10.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin 5α=,()4cos 5αβ+=-,cos 5α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4355=-=. 故选:B .11.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】 解:因为1cos 2α=,322παπ<<,所以sin α==,所以sin(2)sin παα-=-=. 故选:D .12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】先根据题意求出和再根据两角和的余弦公式求解即可【详解】由可得因为所以所以故答案为:【点睛】本题主要考和角公式的应用解题时会判断所求角所在的象限属于基础题【分析】先根据题意求出cos α和3πsin 8β⎛⎫+ ⎪⎝⎭,再根据两角和的余弦公式求解即可.【详解】由ππ2α<<,sin α=,可得cos α==,因为π3π3π7π02888ββ<<⇒<+<,3π3cos 85β⎛⎫+=- ⎪⎝⎭,所以3π4sin 85β⎛⎫+== ⎪⎝⎭, 所以3π3π3πcos cos cos sin sin 888αβαβαβ⎛⎫⎛⎫⎛⎫++=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭34555525⎛⎛⎫=-⨯--= ⎪ ⎝⎭⎝⎭.【点睛】本题主要考和角公式的应用,解题时会判断所求角所在的象限,属于基础题.14.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒12==, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒12=+=,31tan 45tan 303tan 75tan(4530)231tan 45tan 3031+︒+︒︒=︒+︒===+-︒︒-, 山高h 为PQ 长度,根据图可得,()200sin155062CQ =︒=-,3tan 60h AQ h ==︒,tan 75PCBC =︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos155062h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.15.【分析】由是最大值点结合正弦函数的最大值可得的表达式再求得的最小值即可【详解】由可知时函数取得最大值故有解得所以最小值为故答案为:解析:43【分析】 由4x π=是最大值点,结合正弦函数的最大值可得ω的表达式,再求得ω的最小值即可.【详解】 由()4f x f π⎛≤⎫⎪⎝⎭可知4x π=时函数取得最大值. 故有2()462k k Z πππωπ+=+∈,解得48()3k k Z ω=+∈,所以最小值为43.故答案为:43.16.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 17.【分析】根据同角三角函数的关系解出根据二倍角公式即可求出【详解】是第一象限角且则解得故答案为: 解析:2425【分析】根据同角三角函数的关系解出43sin ,cos 55αα==,根据二倍角公式即可求出sin 2α. 【详解】α是第一象限角,且4tan 3α=, 则22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,解得43sin ,cos 55αα==,∴24sin 22sin cos 25ααα==. 故答案为:2425. 18.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值. 【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 19.【分析】根据条件分别求再代入求两角和的正弦【详解】且是第二象限角故答案为:解析:50-【分析】根据条件分别求cos α,sin 2α,cos2α,再代入求两角和的正弦 【详解】3sin 5α=,且α是第二象限角,4cos 5α∴==- 27cos 22cos 125αα∴=-=,3424sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭,)sin 2sin 2cos 24250πααα⎛⎫+=+=-⎪⎝⎭.故答案为:50-20.【分析】由诱导公式求得然后由平方关系求得再由两角和的余弦公式可得结论【详解】由已知又为第四象限角∴∴故答案为:解析:10【分析】由诱导公式求得cos α,然后由平方关系求得sin α,再由两角和的余弦公式可得结论. 【详解】 由已知3sin cos 25παα⎛⎫+== ⎪⎝⎭,又α为第四象限角,∴4sin 5α=-,∴34cos cos cos sin sin ()444525210πππααα⎛⎫+=-=⨯--⨯= ⎪⎝⎭故答案为:10. 三、解答题21.(1)2ω=,6πϕ=-;(2)max ()f x =min ()f x = 【分析】(1)由图象上相邻两个最高点的距离为π得()f x 的最小正周期T π=,故2ω=,由函数图象关于直线3x π=对称得232k ππϕπ⨯+=+,k Z ∈,再结合范围得6πϕ=-;(2)由(1)得()26f x x π⎛⎫=- ⎪⎝⎭,进而得52666x πππ-≤-≤,再结合正弦函数的性质即可得答案. 【详解】(1)因为()f x 的图象上相邻两个最高点的距离为π, 所以()f x 的最小正周期T π=,从而22Tπω==. 又因为()f x 的图象关于直线3x π=对称,所以232k ππϕπ⨯+=+,k Z ∈,又22ππϕ-≤<,所以2236ππϕπ=-=-. 综上,2ω=,6πϕ=-.(2)由(1)知()26f x x π⎛⎫=- ⎪⎝⎭.当0,2x π⎡⎤∈⎢⎥⎣⎦时,可知52666x πππ-≤-≤.故当226x ππ-=,即3x π=时,max ()f x =当266x ππ-=-,即0x =时,min ()2f x =-. 【点睛】本题解题的关键在于先根据0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,进而结合正弦函数的性质,采用整体思想求解,考查运算求解能力,是中档题. 22.(1)π;(2)最小值为1,最大值为4.【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. (2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解. 23.(1)最小正周期π,单调减区间为12127,k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈;(2)证明见解析. 【分析】(1)利用两角差余弦公式、正弦倍角公式及辅助角公式可得()sin 23f x x,即可求最小正周期,整体代入求单调减区间; (2)由44x ππ-≤≤得52636x πππ-≤+≤,即可得()f x 的值域,进而判断()12f x ≥-是否成立. 【详解】解:(1)3()sin 2sin 22f x x x x =+-1sin 22sin 223x x x π⎛⎫=+=+ ⎪⎝⎭, ∴()f x 的最小正周期22T ππ==.令3222232k x k πππππ+≤+≤+,k Z ∈,解得71212k x k ππππ+≤≤+,k Z ∈, ∴单调减区间为12127,k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)由44x ππ-≤≤,知:52636x πππ-≤+≤,则有()f x 的值域为1[,1]2-,∴1sin 232x π⎛⎫+≥- ⎪⎝⎭,即当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()12f x ≥-得证. 【点睛】关键点点睛:(1)利用三角恒等变换:两角和差公式、辅助角公式化简三角函数式,并确定函数性质. (2)根据(1)的三角函数解析式结合已知定义域范围确定值域,判断函数不等式是否成立.24.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可. 【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题. 25.(1)2;(2)12±. 【分析】(1)先代入0m =,然后对sin x 正负讨论,化简出函数解析式,然后再求出最大值即可,(2)根据x 的范围即可化简函数解析式,然后再根据x 的范围即可判断函数什么时候取得最小值,进而可以求出m 的值. 【详解】解:(1)0m =,则函数222()1sin cos |sin |33f x x x x =++-,当sin [0x ∈,1]时,2()1cos f x x =+, 当cos 1x =时,max ()2f x =,当sin [1x ∈-,0)时,2244()1sin cos 1sin 1sin 33f x x x x x =++=++-2222(sin )239x =--+,所以当sin 0x =时,max ()2f x =, 综上,函数()f x 的最大值为2; (2)当02xπ时,2222()1sin cos (2)sin 33f x x x m x =++-+222212sin cos sin 2sin 2m x x x m x =-+=--+224(sin )2x m m =-+++,所以当sin 1x =时,2min 1()212f x m =-+=,所以214m =,即12m =±, 故m 的值为12±. 【点睛】关键点点睛:本题考查了三角函数求最值以及含参数求最小值的问题考查了学生的运算能力,属于基础题.解题关键是对sin x 按正负分类讨论,去掉绝对值符号后利用三角函数性质求最值. 26.(1)[,],36k k k Z ππππ-++∈;(2)若选择①,2m ≤. 若选择②,1m ≤-.【分析】(1)先结合二倍角公式及辅助角公式对已知函数进行化简,然后结合正弦函数的单调性可求; (2)若选择①,由()f x m ≥有解,即max ()m f x ≤,结合正弦函数的性质可求; 若选择②,由()f x m ≥恒成立,即min ()m f x ≤,结合正弦函数的性质可求. 【详解】(1)因为()()2cos cos sin f x x x x x =+-22cos s n cos i x x x x =+-2cos2x x =+2sin(2).6x π=+令222,262k x k k Z πππππ-+≤+≤+∈,解得36k x k k Z ππ-+π≤≤+π,∈. 所以函数()f x 的单调递增区间,,.36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)若选择①,由题意可知,不等式()f x m ≥有解,即max ()m f x ≤, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当262x ππ+=,即6x π=时,()f x 取得最大值,且最大值为()26f π=,所以2m ≤.若选择②,由()f x m ≥恒成立,即min ()m f x ≤,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当7266x ππ+=,即2x π=时,()f x 取得最小值,且最小值为()12f π=-,所以1m ≤- 【点睛】关键点点睛:考查了二倍角公式辅助角公式在三角函数化简中的应用,还考查了正弦函数性质的综合应用,其中,考查了存在性命题与全称命题的理解,理解含量词命题转化成适当的不等式是解题关键,属于中档试题.。