2019-2020成都七中万达学校中考数学模拟试题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020成都七中万达学校中考数学模拟试题含答案
一、选择题
1.已知一个正多边形的内角是140°,则这个正多边形的边数是()
A.9B.8C.7D.6
2.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()
A.24B.18C.12D.9
3.下列命题中,其中正确命题的个数为()个.
①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;
③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.
A.1B.2C.3D.4
4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()
A.15°B.22.5°C.30°D.45°
5.菱形不具备的性质是()
A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形
6.2
-的相反数是()
A.2-B.2C.1
2
D.
1
2
-
7.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )
A.﹣3B.﹣5C.1或﹣3D.1或﹣5
8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()
A .12
B .24
C .123
D .163 9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠
DBC 的度数为( )
A .10°
B .15°
C .18°
D .30°
10.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )
A .(1,2,1,2,2)
B .(2,2,2,3,3)
C .(1,1,2,2,3)
D .(1,2,1,1,2) 11.下列计算正确的是( )
A .()3473=a b a b
B .()23
2482--=--b a b ab b C .32242⋅+⋅=a a a a a
D .22(5)25-=-a a 12.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中
阴影部分面积为( )
A .23π﹣3
B .13π3
C .43π﹣3
D .43
π3 二、填空题
13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.
14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:
摸球实验次数100100050001000050000100000
“摸出黑球”的次数36387201940091997040008
“摸出黑球”的频率
(结果保留小数点后三
位)
0.3600.3870.4040.4010.3990.400
根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).15.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例
函数y=k
x
的图象上,则k的值为________.
16.在函数
3
y
x
=-的图象上有三个点(﹣2,y1),(﹣1,y2),(
1
2
,y3),则y1,
y2,y3的大小关系为_____.
17.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠
A=30°,则劣弧BC的长为 cm.
18.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.
19.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a +的值等于_______.
20.计算:21(1)211x x x x ÷-+++=________. 三、解答题
21.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.
(1)求证:四边形BFDE 是矩形;
(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .
22.如图,在平面直角坐标系中,直线AB 与函数y =k x
(x >0)的图象交于点A (m ,2),B (2,n ).过点A 作AC 平行于x 轴交y 轴于点C ,在y 轴负半轴上取一点D ,使
OD =
12
OC ,且△ACD 的面积是6,连接BC . (1)求m ,k ,n 的值;
(2)求△ABC 的面积. 23.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平
方,如:232212+=(),善于思考的小明进行了以下探索: 设(2
a b 2m 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2+=++
∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+法.
请你仿照小明的方法探索并解决下列问题:
当a b m n 、、、均为正整数时,若(2a b 3m 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;
(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +
3)2;
(3)若()2
433
a m n +=+,且a
b m n 、、、均为正整数,求a 的值. 24.
小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)
(参考数据:o o o o 3
3711sin 37tan37s 48tan48541010
in ,,,≈≈≈≈) 25.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图: 等级
成绩(s ) 频数(人数) A
90<s≤100 4 B
80<s≤90 x C
70<s≤80 16 D s≤70 6
根据以上信息,解答以下问题:
(1)表中的x= ;
(2)扇形统计图中m= ,n= ,C 等级对应的扇形的圆心角为 度;
(3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
分析:根据多边形的内角和公式计算即可.
详解:
.
答:这个正多边形的边数是9.故选A.
点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.
2.A
解析:A
【解析】
【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
【详解】∵E是AC中点,
∵EF∥BC,交AB于点F,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长是4×6=24,
故选A.
【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
3.C
解析:C
【解析】
【分析】
利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】
①方差是衡量一组数据波动大小的统计量,正确,是真命题;
②影响超市进货决策的主要统计量是众数,正确,是真命题;
③折线统计图反映一组数据的变化趋势,正确,是真命题;
④水中捞月是随机事件,故错误,是假命题,
真命题有3个,
故选C.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.
4.A
解析:A
【解析】
试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.
考点:平行线的性质.
5.B
解析:B
【解析】
【分析】根据菱形的性质逐项进行判断即可得答案.
【详解】菱形的四条边相等,
菱形是轴对称图形,也是中心对称图形,
菱形对角线垂直但不一定相等,
故选B.
【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.
6.B
解析:B
【解析】
【分析】
根据相反数的性质可得结果.
【详解】
因为-2+2=0,所以﹣2的相反数是2,
故选B.
【点睛】
本题考查求相反数,熟记相反数的性质是解题的关键 .
7.A
解析:A
【解析】
分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.
详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,
∴4=|2a+2|,a+2≠3,
解得:a=−3,
故选A.
点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.
8.D
解析:D
【解析】
如图,连接BE,
∵在矩形ABCD中,AD∥BC,∠EFB=60°,
∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,
∴∠BEF=∠DEF=60°.
∴∠AEB=∠AEF-∠BEF=120°-60°=60°.
在Rt△ABE中,AB=AE•tan∠AEB=2tan60°3.
∵AE=2,DE=6,∴AD=AE+DE=2+6=8.
∴矩形ABCD的面积33D.
考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.
9.B
解析:B
【解析】
【分析】
直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【详解】
由题意可得:∠EDF=45°,∠ABC=30°,
∵AB ∥CF ,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°﹣30°=15°.
故选B.
【点睛】
本题考查的是平行线的性质,熟练掌握这一点是解题的关键.
10.D
解析:D
【解析】
【分析】
根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案.
【详解】
解:由已知中序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,
A 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故A 不满足条件;
B 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故B 不满足条件;
C 、3有一个,即序列S 0:该位置的数出现了三次,按照变换规则,应为三个3,故C 不满足条件;
D 、2有两个,即序列S 0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,
故选D .
【点睛】
本题考查规律型:数字的变化类.
11.C
解析:C
【解析】
【分析】
根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.
【详解】
A.43123()a b a b =,故该选项计算错误,
B.()23
2482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,
D.22(5)1025a a a -=-+,故该选项计算错误,
故选B.
【点睛】
本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.
12.C
解析:C
【解析】
分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:
∵圆的半径为2,
∴OB=OA=OC=2,
又四边形OABC是菱形,
∴OB⊥AC,OD=1
2
OB=1,
在Rt△COD中利用勾股定理可知:22
213
-=,3
∵sin∠COD=
3
2 CD
OC
=,
∴∠COD=60°,∠AOC=2∠COD=120°,
∴S菱形ABCO=1
2
B×AC=
1
2
×2×33
S扇形AOC=
2
12024
3603
π
π
⨯⨯
=,
则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=4
23 3
π-
故选C.
点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=1
2 a•b
(a、b是两条对角线的长度);扇形的面积=
2
360
n rπ
,有一定的难度.
二、填空题
13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出
A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出
A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得
解析:2n-1
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.
【详解】
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:△A n B n A n+1的边长为 2n-1.
故答案是:2n-1.
【点睛】
此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.
14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求
解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率 解析:4
【解析】
【分析】
大量重复试验下摸球的频率可以估计摸球的概率,据此求解.
【详解】
观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,
故摸到白球的频率估计值为0.4;
故答案为:0.4.
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.
15.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等
解析:-6
【解析】
因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,
k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X
,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x
=⨯-⨯=菱形,解得 6.k =- 16.y2>y1>y3【解析】【分析】根据图象上的点(xy )的横纵坐标的积是定值k 可得xy=k 据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=
解析:y 2>y 1>y 3.
【解析】
【分析】
根据图象上的点(x ,y )的横纵坐标的积是定值k ,可得xy=k ,据此解答即可.
【详解】
解:∵函数y=-
3x 的图象上有三个点(-2,y 1),(-1,y 2),(12,y 3), ∴-2y 1=-y 2=12
y 3=-3, ∴y 1=1.5,y 2=3,y 3=-6,
∴y2>y1>y3.
故答案为y2>y1>y3.
【点睛】
本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
17.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B
解析:2π.
【解析】
根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出
∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).
又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).
∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).
又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).
∴∠BOC=60°(等边三角形的每个内角等于60°).
又∵⊙O的半径为6cm,∴劣弧BC的长=606
=2
180
π
π
⋅⋅
(cm).
18.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:
AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G
解析:cm.
【解析】
试题解析:如图,折痕为GH,
由勾股定理得:AB==10cm,
由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,
∴∠AGH=90°,
∵∠A=∠A,∠AGH=∠C=90°,
∴△ACB∽△AGH,
∴,
∴,
∴GH=cm.
考点:翻折变换
19.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:
解析:【解析】
【分析】
根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.
【详解】
解:根据题意得:
△=4﹣4a(2﹣c)=0,
整理得:4ac﹣8a=﹣4,
4a(c﹣2)=﹣4,
∵方程ax2+2x+2﹣c=0是一元二次方程,
∴a≠0,
等式两边同时除以4a得:
1
2
c
a -=-,
则1
2
c
a
+=,
故答案为:2.
【点睛】
本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.
20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛
解析:
1
1 x+
【解析】
【分析】
先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到
()21x
x +÷111
x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.
【详解】
原式=()
21x x +÷111x x +-+ =
()21x x +·1x x
+ =11x +. 故答案为
11
x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.
三、解答题
21.(1)见解析(2)见解析
【解析】
试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DF A =∠F AB ,根据等腰三角形的判定与性质,可得∠DAF =∠DF A ,根据角平分线的判定,可得答案.
试题分析:(1)证明:∵四边形ABCD 是平行四边形,
∴AB ∥CD .
∵BE ∥DF ,BE =DF ,
∴四边形BFDE 是平行四边形.
∵DE ⊥AB ,
∴∠DEB =90°,
∴四边形BFDE 是矩形;
(2)∵四边形ABCD 是平行四边形,
∴AB ∥DC ,
∴∠DF A =∠F AB .
在Rt △BCF 中,由勾股定理,得
BC =,
∴AD =BC =DF =5,
∴∠DAF =∠DF A ,
∴∠DAF =∠F AB ,
即AF 平分∠DAB .
【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.22.(1) m=4,k=8,n=4;(2)△ABC的面积为4.
【解析】
试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD
的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;
(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.
试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,
∴OC=2,AC⊥y轴,
∵OD=OC,
∴OD=1,
∴CD=3,
∵△ACD的面积为6,
∴CD•AC=6,
∴AC=4,即m=4,
则点A的坐标为(4,2),将其代入y=可得k=8,
∵点B(2,n)在y=的图象上,
∴n=4;
(2)如图,过点B作BE⊥AC于点E,则BE=2,
∴S△ABC=AC•BE=×4×2=4,
即△ABC的面积为4.
考点:反比例函数与一次函数的交点问题.
23.(1)22
,2mn;(2)4,2,1,1(答案不唯一);(3)a=7或a=13.m3n
【解析】
【分析】
【详解】
(1)∵2(a m +=+,
∴2232a m n +=++,
∴a =m 2+3n 2,b =2mn .
故答案为m 2+3n 2,2mn .
(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.
故答案为13,4,1,2(答案不唯一).
(3)由题意,得a =m 2+3n 2,b =2mn .
∵4=2mn ,且m 、n 为正整数,
∴m =2,n =1或m =1,n =2,
∴a =22+3×
12=7,或a =12+3×22=13. 24.43米
【解析】
【分析】
【详解】
解:设CD = x .
在Rt △ACD 中,
tan 37AD CD ︒=
, 则34AD x
=, ∴34AD x =
. 在Rt △BCD 中,
tan48° =
BD CD
, 则1110BD x
=, ∴1110BD x = ∵AD +BD = AB , ∴
31180410
x x +=. 解得:x≈43. 答:小明家所在居民楼与大厦的距离CD 大约是43米.
25.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为
16
. 【解析】
【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即
可得出x的值;
(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;
(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.
【详解】(1)∵被调查的学生总人数为6÷15%=40人,
∴x=40﹣(4+16+6)=14,
故答案为14;
(2)∵m%=4
40
×100%=10%,n%=
16
40
×10%=40%,
∴m=10、n=40,
C等级对应的扇形的圆心角为360°×40%=144°,
故答案为10、40、144;
(3)列表如下:
a1和b1的有2种结果,
∴恰好选取的是a1和b1的概率为
21 126
.
【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.。