解释理论示功图
典型示功图分析(全)
AB—增载线(游动凡尔关闭,仅光杆上行,抽油杆伸长,油管收缩))
BC—活塞上行程线,也是最大载荷线(吸入线,固定凡尔打开)
CD—卸载线(固定凡尔关闭,仅光杆下行,抽油杆收缩,油管伸长)
DA—活塞下行程线,也是最小载荷线(排出线,游动凡尔打开)
ABC —驴头上行程线
CDA —驴头下行程线
0A—下冲程时光杆承受的最小静载荷
17
P 理论示功图
S活 S光
S λ
精选ppt
18
P 理论示功图
S活 S光
S λ
精选ppt
19
P 理论示功图
S活 S光
S λ
精选ppt
20
P 理论示功图
S活 S光
S λ
当弹性变形完毕,活塞开始下行,液体就通过游动凡 尔向活塞以上转移,此过程中,光杆所受的负荷不变,于 是画出直线DA,画成一个封闭的曲线,即为示功图。
在上移,但活塞相对于泵筒来说,实际未动,这样就画出示
功图中的AB斜直线,它表示光杆负载增加的过程,称为增载
线。
精选ppt
3
P 理论示功图
S活 S光
S λ
精选ppt
4
P
理论示功图 S
S活 S光
精选ppt
5
P 理论示功图
S活 S光
S λ
精选ppt
6
P 理论示功图
S活 S光
S λ
精选ppt
7
P 理论示功图
C
D S
28
1、气体影响示功图
P
而当进泵气量很大
而沉没压力很低时,泵
B
B’
C
内气体处于反复压缩和
膨胀状态,吸入和排出
示功图的分析和解释
油井结蜡对示功图的影响
2、油管和油杆结蜡 油管和油杆结蜡,会缩小油流 通道,增大油流阻力,增大光杆 负荷,严重时,可将油管全部堵 死,迫使油井停产。它的特点是: 光杆上行时,由于结蜡所引起的 附加阻力,使负荷在整个上冲程 中都超过了最大理论值;光杆下 行时,又由于结蜡阻碍,负荷立 即减小,当到达结蜡严重部位, 负荷就很快降到最小理论值以下。
于是图形就变宽。这类图形和抽油杆与油 管内壁结蜡造成出油管道截面变小阻力增 大的图形近似。其区别是蜡卡图形不规则, 上下负荷线波动较大;而这类图形较规则, 上下负荷线波动不大。
漏失对示功图的影响
1、吸入部分漏失在示功图上的表现 当光杆从上死点开始下行时,固定凡尔关闭、活塞 开始挤压泵筒中的液体,使液体压力增高,当压力超 过油套管环形空间液柱在凡尔座处形成的压力后,泵 筒中的液体就从吸入部分的不严密处漏入井中。活塞 的运动速度是变化的,活塞离开上死点下行运动速度 越来越快,当漏失速度小于活塞挤压液体的速度时, 泵筒中的压力就增高,当此压力施加给游动凡尔的力 大于油管中液柱压力时,游动凡尔就打开,泵筒中的 油开始流向游动凡尔上边,卸载过程完毕。
抽油泵工作正常时的示功图
随着冲数的 增加,惯性 载荷和振动 载荷也相应 的增加使图 形波动和偏 转的更加厉 害。
油井出砂对示功图的影响
1、活塞砂阻: 当沙粒进入泵内,活 塞在行程中增加了一个 附加阻力,上冲程中使 光杆负荷增加,下冲程 减少,并且由于砂子在 泵中分布不均,致使影 响大小不同,光杆负荷 在很短时间内发生多次 急剧变化,这时功图表 现为负荷线上呈现不规 则的锯齿状尖峰,且在 连续测图时尖峰是移动 的。
抽油泵工作正常时的示功图
1、浅井泵工作 正常时的示功图:
除了由于抽油 设备轻微振动引 起一些微小的波 纹外,没有其他 因素的影响
示功图(1)
7、计算抽油机悬点(驴头)最大、最小载荷
• 抽油机在抽汲中悬点除抽油杆和液柱重量,还有惯性载荷、振动载荷、摩檫载 荷等,同时井下沉没压力井口回压对悬点载荷也有影响,要准确计算悬点载荷 是比较困难的。一般按以下简便公式计算: • 最大载荷: PI最大=P′液+P杆(b+Sn2/1440) PI最小=P杆(b-Sn2/1440) (只考虑液柱和抽油杆重量及抽油杆惯性载荷) • 最小载荷: PII最大=(P′液+P杆)(1+Sn2/1790) PII最小=P杆(b-Sn2/1790) (考虑液柱的惯性载荷)具体选用应与实测结果对比后确定。 式中:P′液――作用在活塞整个截面积上的液柱重量(千克); P杆――抽油杆在空气中的重量(千克); b---------抽油杆柱在液体中减轻重量系数;b=(1-r液/r钢)r钢为钢的相对密度;r液 为抽汲液体的相对密度;式中P′液=Fr液L r液――抽汲液重度(N/m3) L―――下泵深度(m) F―――活塞截面积(m2) • 如果沉没压力与井口的回压的差别很大,需要考虑时则: P′液=F(r液L折液+P回) L折液――折算动液面深度(套压等于零时,为实测深度); P回――井口回压(Pa)
实测示功图分析与典型示功图特征 (规律)
实测示功图的特征
• 示功图的特征: 任何事物都有其一定的规律和特殊性 可循,示功图也不列外,测试仪器在正常的情况下其测 出的同一类问题的不同油井的图形形状都是基本相似的。 不相似也只是载荷的大小与图形大小而已,是有它的规 律可循的,这就是所谓的典型示功图,因为深井泵出现 同一类问题的本身它都超越不出泵必然发生的工况范围, 这一共性是产生图形相似的必然结果。因此基于这一点 为了加深判断分析将其编成“口诀”的形式以便加深记 忆和理解。
二、机械采油(功图、液面)
3、液面曲线的识别
典型液面曲线记录图如下图所示:
Ls Le
Ls表示电磁笔从井口波到音标反射波在记录纸带上所走的距 离,单位mm。 Le表示电磁笔从井口波到液面反射波在记录纸带上所走的距 离, 单位mm。
3、液面曲线的识别
(2)
波形A为井口波,波形B,C分别为回音标、液面 反射波形。b、c、d…为油管接箍波形。
冲程损失在图上的长度B'B=DD'=126/30=4.2(mm)
P 4.2 λ
B’
S活
B
9.4
A 19.8 D λ 4.2
C
D’
o
S活
S
50
抽油杆在空气和不同相对密度原油中的重量
公称直径 in
直径 mm
截面积 cm2
抽油杆密度,kg/m
在空气中 在相对密度 在相对密度 0.86的原油 0.8的原油 中 中 在相对密 度0.9的 原油中
例题二
某井的动液面测试资料如下图所示,查该井作业 油管记录如表1,计算液面深度。
表1 某井作业油管数据
油管序号
油管长度,m
1~10 11~20 21~30 31~40 41~50 51~60 61~70 71~80 81
95.41 96.45 96.06 96.49 95.65 96.35 96.42 96.02 9.64
L N L
式中: N ——油管接箍数
L ——平均油管长度,m
2、利用油管接箍数计算液面深度
油管接箍波峰在液面曲线上只反映一部分。
现场上,由于井筒条件、仪器、操作水平等多方面因素影 响,井筒中液面以上的接箍并不明显地全部反映在曲线上,如 图所示,针对此情况可在曲线上选出不少于10个分辨明显、连 续均匀的接箍波进行计算。
功图分析
抽油泵工况分析由于抽油井的情况较为复杂,在生产过程中,深井泵将受到制造质量、安装质量,以及砂、蜡、水、气、稠油和腐蚀等多种因素的影响,所以,实测示功图的形状很不规则。
为了正确分析和解释示功图,常需要以理论示功图及典型示功图为基础,进而分析和解释实测示图。
一、理论示功图分析1.静载荷作用的理论示功图图10-17静载荷理论示功图为上冲程静载荷作用的理论示功图为一平行四边形,如图10-17所示。
静载变化线,其中为加载线。
加载过程中,游动阀和固定阀均处于关闭状态,点加载结束,因此始打开液体进泵,故为卸载线。
卸载过程中,游动阀和固为下冲程静载变化线,其中定阀均处于关闭状态,到发生相对位移,游动阀被顶开,泵开始排液,故DA为排出过程,并且2. 惯性和振动载荷作用的理论示功图考虑惯性载荷的理论示功图是将惯性载荷叠加在静载荷上,结果因惯性载荷的影响使静载荷理论示功图被扭曲一个角度,并且变为不规则四边形,如图10-18所示。
当考虑振动载荷时,则将由抽油杆振动引起的悬点载荷叠加在四边形上。
由于抽油杆柱的振动发生在粘性液体中,为阻尼振动,因此振动载荷的影响将逐渐减弱。
另外,由于振动载荷的方向具有对称性,反映在示功图上的振动载荷也是按上、下冲程对称的。
图10-18 考虑惯性和振动后的图10-19 气体影响的理论示功图理论示功图3. 气体影响下的理论示功图由于气体很容易被压缩,表现在示功图上便是加载和卸载缓慢。
如图10-19所示,气体影响下示功图的典型特征是呈现明显的“刀把”形在下冲程末余隙内还残存一定数量的溶解气,上冲程开始后泵内的压力因气点)、加载缓慢。
体膨胀而不能很快降低,使吸入阀打开滞后(点),因此使得卸载变得缓慢(4. 漏失影响下的理论示功图漏失的影响与漏失程度、运动过程以及抽汲速度有关。
即:漏失越严重,对示功图影响越大;漏失的影响只发生在要求其密闭的运动过程中;抽汲速度越快,漏失的影响就越小。
排出部分漏失的影响只发生在上冲程,由于运动速度的影响,出现加载缓慢和提前卸载现象,如10-20所示。
典型示功图分析(全)
理论示功图
理论示功图就是认为光杆只承受抽油杆柱与活塞截面积以上液柱的静 载荷时,理论上所得到的示功图。 深井泵质量合格,工作正常。 不考虑活塞在上、下冲程中,抽油杆柱所受到的摩擦力、惯性力、 震动载荷与冲击载荷等的影响,假设力在抽油杆柱中的传递是瞬 间的,凡尔的起落也是瞬间的。 抽油设备在工作中,不受砂、蜡、水、气等因素的影响,认为进 入泵内的液体不可压缩。 油井没有连抽带喷现象。 油井供液能力充足,泵能够完全充满 。
A—驴头下死点位置 B—固定阀打开,游动阀关闭,活塞开始上行程 C—驴头上死点,活塞运行到最高点 D—固定阀关闭,游动阀打开,活塞开始下行程 S—光杆冲程 , m S活—活塞冲程, m P—光杆负荷, KN P’杆—抽油杆在液体中质量, KN P’液—柱塞以上液柱质量, KN P静—光杆承受最大静负荷, KN λ—冲程损失,m λ= λ1+ λ2 λ1—抽油杆伸缩长度,m λ2—油管伸缩长度,m AB—增载线(游动凡尔关闭,仅光杆上行,抽油杆伸长,油管收缩)) BC—活塞上行程线,也是最大载荷线(吸入线,固定凡尔打开) CD—卸载线(固定凡尔关闭,仅光杆下行,抽油杆收缩,油管伸长) DA—活塞下行程线,也是最小载荷线(排出线,游动凡尔打开) ABC —驴头上行程线 CDA —驴头下行程线 0A—下冲程时光杆承受的最小静载荷 0B1—上冲程时光杆承受的最大静载荷
B
C
D'
D
S
2、充不满影响的示功图
P
有时,当柱塞碰到液面 时,由于振动,最小载荷线 会出现波浪线。充不满程度 越严重,则卸载线越往左移。
B
C3Βιβλιοθήκη 21AD´
D
S
2、充不满影响的示功图
图形右下缺一块, 增载正常卸载慢。
示功图
吸入部分和排出部分都漏失时的示功图
排出部分和吸入部分同时漏失时的理论示功图
排出部分和吸入部分同时漏失
吸入部分和排出部分都漏失时的示功图
广9-7
广12-2
供液能力差对示功图的影响
广平8 (2007.7.5)
供液能力差时的理论示功图 广2-8 (2007.1.22)
供液能力差对示功图的影响
周16平1
11月15日 液面1568m, 分析为管漏
油管断对示功图的影响
起压0.2MPA--15个冲程-0.2MPA 液25-0吨,沉没度41905米 起出第83根φ62mm油管 脱扣,共有2根油管扣坏, 20根杆体偏磨,另有10 根接箍偏磨;
油管断对示功图的影响
该井抽蹩20冲 程,0.4MPa不变 产量0,沉没度井口 第54根油管公扣断
λ = λ1 + λ 2 =
(
一、理论示功图的绘制和解释
当采用二级抽油杆柱时: 当采用二级抽油杆柱时:
P杆=q杆1L1+q杆2L2
p液 L1 L L λ= ( + 2 + ) E f 杆1 f杆 2 f管
当采用二级油管柱时: 当采用二级油管柱时:
p液 L L管1 L管2 λ= ( + + ) E L杆 f管1 f管2
一、理论示功图的绘制和解释
S光——光杆冲程,米; S活——活塞行程,米; P杆——抽油杆柱在井液体中的重量,
公斤;
P液——活塞以上的液柱重量,公斤; P静= P杆+P液——光杆承受的最大静
负荷,公斤;
λ1——抽油杆伸缩长度,米; λ2——油管伸缩长度,米; λ=λ1+λ2——冲程损失,米。
二、典型与实测示功图的分析和解释
示功图分析
一、示功图的相关概念
•深井泵的工作原理:
当活塞下行时,由于泵筒内液柱受 压,压力增高,而使固定凡尔关闭。当 泵筒内压力超过油管内液柱压力时,游 动凡尔被顶开,液体从泵筒内经过空心 活塞上行进入油管。
游 动 凡 尔
泵
筒 内 液 体 进
固 定 凡 尔
二、选择: 1、当活塞上行时,游动凡尔受油管内活塞以上液柱的压力而(
)。 泵筒内压力( ),固定凡尔被油套环形空间液柱压力顶开,井内液体 进入泵筒内,充满活塞上行所让出的空间。 A、(关闭) B、(被顶开) C 、(上升) D 、(下降) )。
2、活塞实际冲程( )光杆冲程,这一差值即为(
A、(大于) B、(小于) C 、(冲程损失) D 、(弹性损失) 3、当活塞开始上行时,游动凡尔关闭,液柱重量由油管上传给抽油杆, 抽油杆因增载而( ),油管因卸载而( )。 A、(伸长) B、(增大) C 、(缩短) D 、(减小)
蜡析出点时,蜡就从原油中析出。蜡刚从原油中析出的温度称为初始结晶 温度或析蜡点。
油管结蜡后,缩小了油管孔径,增加了油流阻力,油流入井内的阻力
增加,大量原油留在地下变成了“死油”,就会降低采收率。
三、典型示功图分析
3、油井结蜡对示功图的影响
影响油井结蜡的因素有哪些?
(1)含蜡:含蜡量高的原油容易结蜡。 (2)温度:温度低,蜡就从原油中析出,温度下降越快,结蜡越严重。
A点为下死点
S(米)
λ2
S活
二、理论示功图的形成
增、卸载荷阶段,正好是形成抽油杆增 长、油管缩短和抽油杆缩短、油管增长的阶 段。所以,这是增、卸载过程中在图上表现
为斜线段的原因。
示功图分析
采取措施:
供液差的油井,要选择合理的工作参数。对供液 极差的油井,可进行间歇抽油或酸化处理或进行 压裂。
思考题
实测示功图出现“刀把形”,供液不足示功图是 由几种原因造成的?
1、油井结蜡:
因吸入阀及排出阀都受 到结蜡影响,引起漏失, 且因油管,抽油杆结蜡, 增大了油流阻力。所以 活塞上行时,光杆负荷 增加,超过了最大理论 载荷值;下行时,光杆 负荷不稳定,在图上呈 现出波浪起伏的变化。
(一)、深井泵漏失示功图分析
2、游动阀漏失:
活塞上行时,泵筒中液 体压力下降,活塞上下 之间产生压力差,使活 塞上部液体经游动阀不 严密处漏到活塞下面。 在加载过程中,漏失速 度随活塞下面压力下降 而增大,光杆负荷不能 及时上升到最大值,漏 失越大,固定阀打开迟, 甚至打不开固定阀。如 图:
(一)、深井泵漏失示功图分析
采取的措施:
1、油井结蜡可采取热洗清蜡、要求排量由小 到大,温度由低到高,油井出口温度应达到 500C以上。 2、油井结蜡也可采取套管加化学药剂清蜡。 3、以上措施均无效应进行检泵清蜡。 4、制定合理的单井护理措施。
1、活塞砂阻:
砂子随油流进入泵筒内,造 成活塞在工作筒 内遇阻,使 活塞在整个冲程中或某局部 地方受到一个附加阻力。上 冲程时负载增加,下冲程时, 光杆负荷减少,且砂子在筒 内各处分布不一,影响大小 也不一样,使光杆负荷在短 时间内发生多次急剧变化。 所以图形表现为锯齿状尖峰, 连续测图时,尖峰位置不固 定,但抽油井仍能出油。
示功图分析
1、定义:理论示功图是在一
定理想条件下绘制出来的,只考 虑驴头所承受的静载荷引起抽油 杆柱及油管柱弹性变形,而不考 虑其它因素影响。主要是用来与 实测示功图进行对比分析。
(整理)年十二月技能培训教案.
理论示功图解释及典型示功图分析教案类别:技能培训教案备课时间: 2012年11月30日备课人:审核时间:2012年11月31日审核人:王喜兵培训内容:一、理论示功图点线面解释示功图:是驴头悬点载荷与光杆位移的关系曲线所围成的面积,面积的大小反映深井泵做功情况的好坏。
示功图分为理论示功图和实测示功图。
理论示功图是在理想情况下绘制出来的,用以与实测示功图进行比较,从中找出负荷变化的差异,以此对比分析深井泵工作状况。
理论示功图是在理想情况下绘制出来的,理想情况是指:1)、假设泵、油管没有漏失,泵工作正常:2)、油层供液能力充足,充满程度良好:3)、不考虑动载荷影响:4)、不考虑沙、蜡、稠油的影响:5)、不考虑油井连喷带抽:6)、认为进入泵的液体是不可压缩地,凡尔是瞬间开闭的。
下图中AB为抽油机上行加载线, BC为活塞上行冲程线, CD为抽油机下行卸载线, DA为抽油机下行冲程线,各线所圈括面积ABCD为深井泵做功的面积。
P负荷——光杆(驴头)承受的最大负荷(千克):P液——抽油泵活塞以上液柱重量(千克):/杆——抽油杆在油中的重量(千克):λ——冲程损失(米):λ1——抽油杆伸缩长度(米):λ2——油管在井中的伸缩长度(米):二、典型实测示功图的分析和解释实测示功图由动力仪测出。
在油井管理中我们把实测示功图和理论示功图加以比较就能分析出深井泵工作状况好坏,光杆上负荷的变化,抽油机受力情况,油井动态及抽油装置的各项参数选择是否合理,并能分析出泵是受哪些因素的影响,从而采取什么方法来解决存在的问题,同时还能判断油层供液能力的好坏程度,为合理开采、选择适当的抽油参数提供依据。
一、典型实测示功图分析及相应措施1.气体和充不满对示功图的影响(图4-21)图4-22 供液不足影响示功图 由于在下冲程末余隙内还残存一定量的溶解气和压缩气,在上冲程开始后泵内压力由于气体膨胀而不能很快降低,固定凡尔打开滞后,加载变缓。
理论示功图的名词解释
理论示功图的名词解释理论示功图是指某一机械装置或发动机在工作过程中所产生的功率输出和扭矩输出的关系图表。
它能够直观地反映出装置的性能和工作特点,是工程设计、机械制造以及技术研究中相当重要的工具。
一、理论示功图的构成理论示功图通常由两个坐标轴组成,横轴表示转速或工况点,纵轴表示功率或扭矩。
此外,不同装置可能还会有不同的标注或单位。
例如,在内燃机中,横轴一般表示转速(单位为转/分钟),纵轴表示功率(单位为千瓦)或扭矩(单位为牛·米)。
二、理论示功图的应用1. 了解设备性能:理论示功图可以帮助用户更好地了解机械装置的性能和特点。
通过分析示功图,可以得知设备在不同工况下的工作状态、最大输出功率或扭矩等信息。
这对于设备选型、性能评估以及工艺优化具有重要意义。
2. 设计和改进:理论示功图也是工程设计和改进的重要依据。
通过绘制和分析理论示功图,设计师可以优化设备的结构和参数,以提高其性能和工作效率。
例如,在内燃机中,传统的四冲程燃烧过程所对应的理论示功图可以用来分析和改进进、排气系统的设计,以增加燃烧效率。
3. 故障诊断与维修:理论示功图也可以用于故障诊断和设备维修。
通过与实际测量得到的示功图进行比较,可以发现设备工作状态的异常或问题。
这有助于快速定位故障原因,并采取相应的维修措施。
三、常见装置的理论示功图解释1. 内燃机:在内燃机中,理论示功图描述了气缸内燃烧过程所产生的功率输出和扭矩输出。
一般情况下,内燃机的理论示功图可以分为四个阶段:进气、压缩、爆发和排气。
在进气阶段,活塞向下运动,进气门打开,气缸中燃烧物质被吸入;在压缩阶段,活塞向上运动,气缸中的燃烧物质被压缩;在爆发阶段,点火系统引发燃烧,燃烧物质迅速膨胀,推动活塞向下运动;在排气阶段,活塞再次向上运动,排气门打开,燃烧物质被排出。
2. 汽车变速器:在汽车变速器中,理论示功图描述了不同挡位下输出功率和扭矩的变化关系。
一般来说,随着挡位的增加,输出功率逐渐增大,但同时扭矩逐渐降低。
理论、典型示功图讲解稿
理论示功图
实测示功图
典型示功图分析
7.凡尔漏失 (1)固定阀(吸入部分)漏失 图形特征∶两下角缺失 下冲程开始后,由于固定阀漏失,泵内 压力不能及时提高而延缓了卸载过程, 同时使游动阀不能及时打开。当柱塞速 度大于漏失速度后,泵内压力提高到大 于液柱压力,将排出阀打开而卸去液柱 载荷,下冲程后半冲程中因柱塞速度减 小,当小于漏失速度时,泵内压力降低 使排出阀提前关闭,悬点提前加载(当 吸入阀严重漏失时,排除阀一直不能打 开,悬点不能卸载)。 成因分析∶由于固定凡尔与凡尔座配合 不严,凡尔座锥体装配不紧,凡尔罩内 落入脏物或结蜡而卡住凡尔球等原因, 都会造成深井泵的吸入部分漏失。
理论示功图
实测示功图
典型示功图分析
3. 泵工作正常但供液不足 图型特征∶卸载线和加载线平行,越左 移说明充满越不好,也就是供液能力越 差,形成的图形为“刀把”形。 成因分析: 深井泵的工作制度或抽汲参数组合不合 理,泵的排出能力大于油层的供液能力, 造成沉没度太小,液体充满不了泵筒。
理论示功图
实测示功图
实测示功图
典型示功图分析
14.泵工作正常但油稠 图形特点∶上负荷线高于最 大理论负荷线,下负荷线低 于最小理论负荷线,图形肥 胖,四个角是圆滑的。 成因分析∶油稠,使摩擦等 附加阻力变大,造成上负荷 线偏高,下负荷线偏低。同 时,使得凡尔开关比正常时 滞后,凡尔和凡尔座配合不 严密,造成较大漏失。
理论示功图
实测示功图
典型示功图分析
9 .连抽带喷井的示功图 图形特征∶游动阀和固定阀同时打开, 液柱载荷基本上加不到悬点,示功图 的位置和载荷变化大小取决于喷势的 强弱及抽汲液体的黏度。油井连喷带 抽,在柱塞上冲程时,由于游动凡尔 下部压力较大,致使游动凡尔不能关 闭或关闭不严密,载荷升到游动凡尔 载荷线,当下冲程时,由于固定凡尔 下部压力较大,致使固定阀也不能关 闭或关闭不严,载荷将不到固定凡尔 载荷线。图形特征为近于水平状,很 少有振动波。图形两端有一段曲线近 于平行。 成因分析∶刚由自喷转抽油,油井能 量较高,井筒内动液面较高,且有气 体在做功的井常为这样的图。
典型示功图应用与分析
(4)气体影响下的示功图:
油井气油比越高,圆弧的曲率半径越大,表明 油套管环空内有泡沫段存在,沉没压力偏小,充满 不好。 对受气体影响较大的井或易发生气锁的井应尽
可能加深泵挂,增大泵的沉没度,采用大泵径长冲
程生产,特别是防冲距要调到最小,尽量减小余隙
体积;下气锚和防气泵,合理控制套管气,使之保
持在较低值。
当游动阀和固定阀
同时存在漏失,但均未
达到完全失效时,油井 仍在出油,在上冲程中, 双凡尔漏失 泵主要是游动阀漏失的影响;在 下冲程中,主要是受固定阀漏失
的影响,示功图呈近似的椭圆形。
7、油管漏失影响的示功图:
由于油管漏失不是深井泵装置本身造成的, 所以,测示功图形状不会发生变异,与泵工作 正常时的示功图基本一样,只有当漏失严重(油 井不产液)时,实测示功图的最大载荷线要低于 最大理论载荷线;L的长度相当于漏失处至井口 这段液柱在光杆出所产生的负荷,即:油管漏 失点越深L值越大,判定方法将根据现场实际生 P 产情况综合分析、判定。
理论示功图
AB段:加载线 B点:悬点加载完毕,载荷增加到固定阀打开 BC段:上静载线 CD段:卸载线 D点:悬点卸载完载线,表示悬点上行时,游动凡尔关闭, 液柱载荷由活塞传递到悬点的过程。
B1B相当于活塞与泵筒发生相对位移之前,悬点上行的距离 即:B1B= λ
由于深井泵的防冲距过小,在抽油
机下行过程中,当活塞运行到下死点 位置时,活塞撞击固定凡尔罩而使示
功图左下角多出一点或显示打扭,这
一类图形中左上角
是不缺的,图形显
示基本完好。
12、活塞遇卡影响的示功图:
抽油机在运行过程中,上行时,抽油杆柱先 把被压弯的抽油杆柱拉直,悬点载荷先是缓慢增 加,然后,抽油杆柱受拉弹性伸长,悬点载荷急 剧升高且远远高于最大理论载荷线;下行时,先 是抽油杆柱恢复弹性变形,然后抽油杆柱被压缩 而发生弯曲,悬点载荷急 剧下降,载荷远远低于最 小理论载荷线,且接近基 线,示功图上先急剧卸载 后缓慢卸载,示功图呈现 两个斜率段。
解释抽油机井理论示功图
序号
考核
内容
评分要素
配分
评分标准
检测
结果
扣分
得分
备注
1
绘制ቤተ መጻሕፍቲ ባይዱ
辅助线
绘制载荷辅助线
10
绘制冲程辅助线
lO
标注辅助线的名称、符号
5
序号
考核
内容
评分要素
配分
评分标准
检测
结果
扣分
得分
备注
2
解释
理论
示功图
解释示功图的上、F死点
(A、B点)
10
未解释或者解释错误不得分;解
释不准确扣5分
解释示功图的增载线(4B
WL;解释静载荷W静
10
未解释或者解释错误不得分;解
释不准确扣5分
解释示功图(口ABCD面积)
10
未解释或者解释错误不得分;解
释不准确扣5分
解释活塞冲程(AD);解释
光杆冲程(AD1、)
10
未解释或者解释错误不得分;解
释不准确扣5分
3
书写答卷
卷面清洁、无乱涂改
5
卷面脏、乱不得分
4
考核时限
在规定时间内完成操作
到时停止操作
合计
100
考伴员:核分员:年月日
点);解释示功图的减载线
(CD点)
10
未解释或者解释错误不得分;解
释不准确扣5分
解释示功图的冲程损失线
(λ1、λ2)
10
未解释或者解释错误不得分;解
释不准确扣5分
解释示功图的上行载荷线
(BC点);解释示功图的下
行载荷线(DA点)
10
绘制解释抽油机井理论示功图
泵功图
表示泵的工作状态和排量 随位移变化的关系,反映 了泵的工作效率和排量。
示功图的绘制方法
数据采集
采集抽油机井的工况和参数, 如载荷、位移、液柱压力等。
理论计算
根据抽油机井的工况和参数, 进行理论计算和分析,得出载 荷曲线、液柱压力曲线和泵功 图。
图形绘制
将计算结果绘制成图形,形成 理论示功图。
理论示功图在生产中的应用
01
理论示功图可以用于预测抽油机 井在不同工况下的性能表现,如 不同采油速度、不同泵挂深度等 。
02
通过比较理论预测与实际生产数 据,可以指导抽油机井的优化设 计和生产参数调整,提高采油效 率。
理论示功图在故障诊断中的作用
当抽油机井出现故障时,理论示功图 可以作为参考,帮助分析故障原因, 如气锁、砂卡等。
结合人工智能和大数据 开展多学科交叉研究, 加强国际合作与交流,
技术,实现对抽油机井 将抽油机井理论示功图 共同推动抽油机井理论
的实时监测和智能诊断, 的研究与机械工程、计 示功图研究的进步和应
进一步提高生产效率和 算机科学、数据科学等 用。
安全性。
领域相结合,推动相关
领域的技术创新和发展。
THANKS FOR WATCHING
作用
理论示功图可以用于分析抽油机井的工作状态和工况,了解泵的排量和效率, 预测泵的未来工作状况,为抽油机井的优化设计和生产管理提供依据。
示功图的基本组成
01
02
03
载荷曲线
表示抽油杆上所承受的载 荷随位移变化的关系,反 映了抽油杆的受力情况。
液柱压力曲线
表示液柱压力随位移变化 的关系,反映了液体对泵 的作用力。
绘制解释抽油机井理 论示功图
示功图分析
左上图为斜形向上的“黄瓜状”示功图,属于柱塞卡死在泵筒内不动。 左上图为斜形向上的“黄瓜状”示功图,属于柱塞卡死在泵筒内不动。若活塞卡死 在冲程中部位置,就像此图;若柱塞卡死在冲程下部,图形位置比这还高; 在冲程中部位置,就像此图;若柱塞卡死在冲程下部,图形位置比这还高;若柱塞卡死 在冲程上部,图形位置比该图要低。 在冲程上部,图形位置比该图要低。 右上图的图形水平,油井不出油;固定阀被卡住(张开着 张开着)。 右上图的图形水平,油井不出油;固定阀被卡住 张开着 。上、下运动只是抽油杆 带着柱塞运动,没有进油过程,也没有排油过程。 带着柱塞运动,没有进油过程,也没有排油过程。 左下图属于泵的游动阀和固定阀都发生严重漏失,特征为上行曲线呈凸状, 左下图属于泵的游动阀和固定阀都发生严重漏失,特征为上行曲线呈凸状,下行曲 线呈凹状,油井不出油,需要检泵。 线呈凹状,油井不出油,需要检泵。 右下图为游动阀球卡死(张开着),或是修井作业时柱塞没有下人泵筒, ),或是修井作业时柱塞没有下人泵筒 右下图为游动阀球卡死(张开着),或是修井作业时柱塞没有下人泵筒,或是井下 泄油器被打开,均不出油。 泄油器被打开,均不出油。
左上图为泵固定阀漏失的示功图。示功图左下方呈圆形缺损; 左上图为泵固定阀漏失的示功图。示功图左下方呈圆形缺损;如果阀或阀座被严重 刺坏时,不出油,下行曲线呈图中虚线形状。 刺坏时,不出油,下行曲线呈图中虚线形状。 右上图为进油部位堵塞,示功图左下角多一面积,且下行曲线呈圆弧形, 右上图为进油部位堵塞,示功图左下角多一面积,且下行曲线呈圆弧形,油井不出 井口检查为软性碰泵,不出油。 油,井口检查为软性碰泵,不出油。 左下图是动力仪操作问题或是测试仪器有问题时所测得的图, 左下图是动力仪操作问题或是测试仪器有问题时所测得的图,左下部位呈三角形缺 其实油井生产正常。 损,其实油井生产正常。 右下图为防冲距太小,柱塞在下冲程近下死点处发生硬性碰泵。 右下图为防冲距太小,柱塞在下冲程近下死点处发生硬性碰泵。对于这类井应该及 时停抽,重对防冲距,避免长时间碰泵而撞掉泵筒发生落井事故。 时停抽,重对防冲距,避免长时间碰泵而撞掉泵筒发生落井事故。
理论示功图的分析和解释
示功图的分析和解释前言抽油机井采油是目前油田开发中普遍应用的方式,抽油机井的管理水平的好坏,关系到油田整体经济效益的高低。
要做好抽油机井的生产管理工作,必须取准取全各项生产资料,制定抽油机井合理的工作制度,不断进行分析,适应不断变化的油藏动态,加强并提高抽油机井的日常管理水平。
分析和解释示功图,就是直接了解深井泵工作状况好坏的一个主要手段,不但深井泵工作中的一切异常现象可以在示功图上比较直观的反映出来,而且,还可以结合有关资料,来分析判断油井工作制度是否合理,抽油设备与油层和原油性质是否适应,还可以通过“示功图法”对低产、低能井制定出合理的开关井时间,减少设备的磨损和电能的浪费等。
由于抽油井的情况复杂,在生产过程中,深井泵不但要受到抽油设备制造质量和安装质量的影响,而且要受到油层中的砂、蜡、气等多种因素的影响。
致使实测示功图形状多变,各不相同。
尤其是在深井上,这种情况就更为突出。
因此,在分析示功图时,既要全面地了解油井的生产情况、设备状况和测试仪器的好坏程度,根据多方面的资料综合分析,又要善于从各种因素中,找出引起示功图变异的主要因素,这样,才能做出正确的判断。
一、示功图的基础知识1、示功图的概念:示功图的概念:反映深井泵工作状况好坏,由专门的仪器测出,画在坐标图上,被封闭的线段所围成的面积表示驴头在一次往复运动中抽油机所做的功,称为示功图。
动力仪力比:示功图上每毫米横坐标长度所代表的负荷值。
减程比:示功图上每毫米横坐标长度所代表的位移值。
2、计算驴头最大负荷、最小负荷计算公式:(1)根据油井生产资料,绘制该井理论示功图.(2)根据油井生产参数,计算并画出驴头最大负荷、最小负荷在图中理论负荷线上的位置。
两种较简便的计算公式:①最大载荷:P1大=P液/+P杆[b+sn2/1440]P2大=P液/+P杆[b+sn2/1790]②最小载荷:P1小=P杆[b-sn2/1440]P2小=P杆[b-sn2/1790]式中:P1大------悬点最大载荷(第一种计算方法);P2大------悬点最大载荷(第二种计算方法);P1小------悬点最小载荷(第一种计算方法);P2小------悬点最小载荷(第二种计算方法);P液/------作用在活塞整个截面积上的液柱质量,kg;P液=Fγ液×L,如果井口回压与沉没压力接近,便可忽略它们对悬点载荷的影响;P杆------抽油杆在空气中的质量,kg;B-------考虑抽油杆柱在液体中的减轻质量系数,b=[1-γ液/γ钢];γ液-------抽汲液的相对密度;γ钢-------钢的相对密度;S--------抽油机光杆冲程,m;n--------抽油机冲次,次/min;F--------活塞截面积,m2;L--------下泵深度,m;在现场分析抽油井示功图时,可利用示功图计算:P大=力比×h; P小=力比×h/式中:力比-------所用动力仪的力比,N/mm;P大、P小-------悬点的最大载荷和最小载荷;h-------上行线最高点距基线的距离,mm;h/-------下行线最低点距基线的距离,mm;两种计算公式的区别:第一套公式是把抽油井悬点运动看做曲柄滑块机构的滑块运动,并取曲柄旋转半径与连杆长度的区别为1/4,它只考虑了液柱和抽油杆质量以及抽油机杆柱的惯性载荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 绘制辅助线
1、绘制载荷辅助线
2、绘制冲程辅助线
3、标注辅助线的名称、符号
AB —增载线 BC —活塞上行程线,最大载荷线
• CD —减载线 DA —活塞下行程线,最小载荷线
• ABC —驴头上行程线 CDA —驴头下行程线
• S 光—光杆冲程 S 活—活塞冲程 λ—冲程损失 λ1—抽油杆的伸缩长度 λ2—油管在井中的伸缩长度 (米)
• P 杆—抽油杆在液体中重量 P 液—活塞截面上液柱载荷
• P 静—光杆(驴头)承受的最大负荷(千克)。
了解理解理论示功图的概念:
P309页:
二、解释理论示功图
A 点——A 点表示抽油机驴头处于下死点的位置,从A 点开始,光杆开始上行,但活塞还未运动的瞬间,光杆
加载;
AB ——当活塞开始上行时,游动凡尔关闭,液柱重量由油管上传给抽油杆,抽油杆因增载而伸长(λ1),油管
因卸载而缩短(λ2) ;当活塞运动到B 点时,液柱重全部由抽油杆承受,此时,光杆虽然在上移,但活塞相应于泵筒来说,实际未动,这样,就画出了图中AB 斜直线,AB 线表示了光杆载荷增加的过程,称为增载线。
BB ’—— 当活塞开始上行时,游动凡尔关闭,液柱重量由油管上传给抽油杆,抽油杆因增载而伸长(λ1),油
管因卸载而缩短(λ2) ;油管和抽油杆发生伸长和缩短,因而使活塞实际冲程小于光杆冲程,B ’B 的长度表示抽油杆柱伸长和油管柱缩短值,这一差值即为上冲程损失。
BC ——当弹性变形完毕,光杆带动活塞开始上行(由B 点开始),固定凡尔打开,液体进入泵筒并充满活塞所让
出的泵筒空间,此时,光杆处所承受的负荷,仍和B 点时一样没有变化,所以,画出一条直线BC ,为上行载荷线。
CD ——当活塞到达上死点后,开始下行时,固定凡尔关闭,原来由抽油杆承受的液柱重量从C 点开始传到油管
上,这一过程到D 点结束抽油杆因卸载而缩短(λ1),油管因增载而伸长(λ2) ;当活塞运动到D 点时,液柱重全部由油管承受,此时,光杆虽然在下移,但活塞相应于泵筒来说,实际未动,这样,就画出了图中CD 斜直线,CD 线表示了光杆载荷卸载的过程,称为卸载线。
DD ’—— 当活塞开始下行时,固定凡尔关闭,原来由抽油杆承受的液柱重量从C 点开始传到油管上,这一过程
到D 点结束抽油杆因卸载而缩短(λ1),油管因增载而伸长(λ2);管和抽油杆发生伸长和缩短,因而使活塞实际冲程小于光杆冲程,这一差值即为下冲程损失。
DA ——当弹性变形完毕,活塞开始下行,液体就通过游动凡尔向活塞以上转移,在液体向活塞以上转移的过程
中,光杆上所受的负荷不变,所以画出一条和BC 平行的直线DA ,为下行载荷线。
P P (千克)。