船舶电力推进系统
船舶电力推进系统
船舶电力推进系统船舶电力推进系统是现代船舶设计中的重要部分,它的作用是为船舶提供高效、可靠的动力,以满足船舶的各种需求。
本文将详细介绍船舶电力推进系统的构成、特点、应用场景及其发展趋势。
一、系统构成船舶电力推进系统主要由发电机、变压器、配电板、变频器、推进器等组成。
其中,发电机负责将机械能转化为电能,变压器则将发电机输出的电压和电流进行调节,配电板负责对电能进行分配和控制,变频器则将电源频率转换为推进器所需的频率,推进器则最终将电能转化为机械能,推动船舶前行。
二、系统特点船舶电力推进系统具有以下优点:1、能量利用率高:电力推进系统中的电动机能量转换效率高达90%以上,相比传统燃油发动机,能量利用率更高。
2、航行平稳:由于电力推进系统可以通过调节电动机的转速和转向来控制推进器,因此可以实现船舶的平稳航行,减少震动和噪音。
3、维护方便:电力推进系统的机械部件相对较少,因此维护相对简单,寿命也更长。
4、环保:由于电力推进系统使用的燃料是电力,因此不会产生废气和噪音,对环境更加友好。
三、应用场景电力推进系统在船舶中的应用非常广泛,尤其是在大型船舶、高速船和军舰中,电力推进系统的优势更加明显。
例如,在大型油轮中,电力推进系统可以更好地满足油轮的平稳航行和货物运输需求;在高速船中,电力推进系统可以实现更高的航速和更好的舒适性;在军舰中,电力推进系统可以提高舰船的隐蔽性和作战能力。
四、发展趋势随着科技的不断进步,船舶电力推进系统也在不断发展。
未来,电力推进系统将更加智能化、高效化和环保化。
具体来说,以下是一些发展趋势:1、智能控制:未来的电力推进系统将更加智能化,可以通过传感器和人工智能技术实现自动化控制和优化,提高系统的效率和可靠性。
2、高效能源:未来的电力推进系统将更加注重能源的高效利用,例如采用更高效的发电机和电动机,以及更先进的能量储存技术,以提高系统的能量利用率。
3、环保技术:未来的电力推进系统将更加注重环保,例如采用更环保的燃料电池或太阳能等可再生能源技术,以减少对环境的影响。
船舶推进系统电力电子电控
基于信号的故障诊断
通过对船舶推进系统各种信号进行采集、处理和 分析,提取故障特征并进行诊断,具有实时性和 灵敏性。
基于知识的故障诊断
利用专家系统、模糊逻辑等人工智能技术,对船 舶推进系统故障进行智能诊断,具有自学习和自 适应能力。
06 船舶推进系统安全管理 和法规要求
安全管理体系建设
01
建立完善的安全管理制 度和流程,明确各级职 责和权限。
02
设立安全管理机构,配 备专业安全管理人员。
03
定期开展安全风险评估 和隐患排查,制定并落 实整改措施。
04
建立安全奖惩机制,激 励员工积极参与安全管 理工作。
法规要求和标准解读
01
定义
船舶推进系统是船舶动力装置的 核心部分,负责将动力装置产生 的能量转化为船舶前进的推力。
功能
船舶推进系统的主要功能包括提 供船舶航行所需推力、控制船舶 航速和航向,以及实现船舶的倒 车、停泊等操作。
船舶推进方式分类
01
机械推进
通过机械传动装置将主机动力传递至螺旋桨,推动船舶前进。机械推进
具有结构简单、可靠性高等优点,但传动效率较低,且难以实现灵活控
包括船舶航速、加速度、推力等,反映推进 系统的动力输出能力。
可靠性指标
考虑推进系统的故障率、维修性等因素,评 估其可靠运行的能力。
经济性指标
如燃油消耗率、能效比等,衡量推进系统在 经济性方面的表现。
环保性指标
针对推进系统排放的废气、噪音等污染物, 制定相应的环保性评估指标。
仿真模拟与实验验证方法
仿真模拟方法
组织开展各类安全培训活动,提高员 工安全意识和技能水平。
船舶电力推进技术pdf
船舶电力推进技术
船舶电力推进技术是指使用电力驱动船舶推进系统的技术。
相比于传统的机械推进技术,电力推进技术具有更高的效率、更低的噪音和更少的污染排放,因此在现代船舶设计中得到了越来越广泛的应用。
船舶电力推进系统通常由以下几个部分组成:
1. 发电机:将机械能转换成电能,产生所需的电力。
2. 电动机:将电能转换成机械能,驱动船舶的螺旋桨旋转,产生推进力。
3. 电池组:作为备用电源,提供紧急电力供应或在需要时提供额外的电力。
4. 控制系统:负责监测和调节电力系统的运行,确保系统的稳定和安全。
船舶电力推进技术的优点包括:
1. 高效节能:电力推进系统可以实现高效节能,降低船舶的燃料消耗和排放。
2. 噪音低:电力推进系统的运转噪音较低,减少了对周围环境的噪音污染。
3. 灵活性高:电力推进系统可以根据需要调节输出功率,提高船舶的操纵灵活性。
4. 维护方便:电力推进系统的维护相对简单,可以减少
船舶的维护成本和停机时间。
船舶电力推进技术的缺点包括:
1. 初始成本高:电力推进系统的建设成本相对较高,需要投入大量资金。
2. 技术要求高:电力推进系统的设计和维护需要具备较高的技术水平。
3. 受电网限制:电力推进系统的运行需要依赖电网供电,受到电网供电的限制。
船舶电力推进系统综述报告
船舶电力推进系统综述报告张文超201221024017一、船舶电力推进系统的发展船舶电力推进系统已有近百年历史,但是由于受各种因素制约,发展缓慢,且大多数只应用在特种船舶上。
从20世纪80年代起,供电系统、推进电机和微电子及信息技术的迅猛发展,使船舶电力推进装置打破了长期徘徊局面,得到了大力的发展。
电力推进系统基本由机械原动机(柴油机、燃气轮机或核动力)构成,用以驱动交流发电机,发电机再为推进电动机提供动力。
电动机可能是直流、交流同步电动机或交流感应电动机。
同传统的机械推进方式相比,采用电力推进系统的船舶在经济性、振动噪声、船舶操纵、布置和安全可靠性等方面具有明显优点。
船舶综合全电力推进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理,是现行船舶平台的电力和动力两大系统发展的综合;它不是电力推进加自动电站的简单组合,而是从概念到方案、组成、配置、技术等均发生重大变化,给未来的船舶带来一场革命。
二、电力推进系统的组成船舶电力推进装置一般由原动机﹑发电机﹑电动机﹑螺旋桨以及控制单元组成。
原动机带动发电机,发电机带动推进电机,电机驱动螺旋桨,推动船舶航行。
因螺旋桨所需功率很大,一般需要设置两个单独的电站:推进电机电站和辅机电站,分别给推进电机和辅机供电。
目前的原动机一般使用高速或中高速的柴油机,推进装置一般有直流电力推进和交流电力推进两种。
目前世界上使用电力推进的船舶,主要可分为两类:一类是电力推进与其他发动机推进结合的混合推进;另一类是全电力推进,即使用一个电站供电给推进装置和其他辅助装置。
三、船舶电力推进方式的优缺点1.电力推进方式的优点(1)操纵灵活,机动性能好,靠离码头时可不需拖轮协助,有更好的经济性;(2)电力推进装置的操纵由驾驶台直接控制,应付紧急状态能力强,有利于提高安全。
(3)有很好的低速特性,恒功率特性,恒电流特性和陡转特性;(4)因省去了主机与螺旋桨之间的轴系以及舵,节省了大量的空间,可以增加船舶有效空间和有效载荷;(5)可采用中高速的非反转原动机,主机的选择有很大的灵活性;(6)原动机和螺旋桨系柔性连接,使得螺旋桨的转速不受原动机转速的限制,彼此都可以工作在最佳状态;(7)噪声小,震动小,废气NOx排放减少;(8)若采用吊舱式电力推进系统,省去了长轴系,操舵装置和舵,可不设舵机房,也省去了bow throuster,减轻了设备的重量,增加了有效载荷。
船舶电力推进系统
船舶电力推进系统Edited by 阳光的cxf 第一章1. 电力推进系统的优缺点P10优点:(1)机动性能好(2)机舱小,布置灵活可增加船舶的载货载客能力(3)推进效率高(4)节能,有利于环保(5)适合于特种船舶的应用P47优点:(1)通过减少燃料消耗和维护费用减少生命周期成本,尤其是在负载变化大的地方(2)增强了系统对单一故障的抵抗性,使优化原动机负载分配成为可能(3)中高速柴油机重量轻(4)占用空间少,甲板空间利用更加灵活(5)推进器位置布置更加灵活(6)更好的机动性(7)更小的推进噪声和震动缺点:(1)初始投资增加(2)原动机和推进器之间有额外的器件,增加了满负荷运行时的损耗(3)新型设备需要不同的操作,维护策略2. 不同推进方式船舶操纵性能对比项目机械推进常规电力推进POD推进回转直径120% 100% 75%零航速回转180 度所需时间118% 100% 41%全速回转180 度所需时间145% 100% 42%全速到停止所需时间280% 100% 42%零航速至全速所需时间210% 100% 90%第二章3. 电力推进系统类型(1)可控硅整流器+直流电动机。
应用:船舶推进所应用的直流推进电机的容量,在2~3MW 之间。
优点:1)启动电流和启动转矩接近零2)动态响应快缺点:1)转矩控制不精准2)换向器易发生故障3)谐波污染较大4)直流电动机结构复杂,成本高,体积大,维护困难,效率低(2)交流异步电动机+可调螺距螺旋桨模式。
应用:这种推进方式只适合于中、小功率船舶,或1000kW 以下的侧推装置,因为微软起动器目前还只有中、小功率的低压产品。
优点1)几乎没有谐波污染2)转矩稳定没有脉动3)设计点运行效率高缺点:1)启动电流大2)启动瞬间机械轴承受转矩大3)功率因数低4)功率及转矩动态响应慢5)反转慢,制动距离长6)变矩桨结构复杂,价格贵,可靠性差7)变距桨液压控制系统复杂(3)电流型变频器CSI (Current Source Inverter) + 交流同步电动机。
科技成果——船舶综合电力推进系统
科技成果——船舶综合电力推进系统技术开发单位中国船舶重工集团公司第七一二研究所技术简介船舶综合电力推进系统是近年来在船舶行业兴起的一种新的推进技术,具有节能降耗、低噪音振动、提升舱室有效空间、操作灵活方便等诸多优点,在工程、游船、海洋工程船、现代渔船等多种船型上非常适用,目前正在被越来越多的国内外船东接受并实际应用。
其系统包括了柴油发电机组、变压器、变频器、推进电动机等核心设备,之前只有国外少数几家企业具备其技术开发和产品供货能力。
技术开发单位是目前国内唯一具备船舶电力推进系统集成和自主核心设备供货的单位,形成了具有完全自主知识产权的电力推进系统及变频器、推进电机、功率管理系统等核心设备系列化产品研制生产能力,并建立了产业化生产基地,是国内唯一通过CCS系列化产品型式认可的产品;同时还具备20MW以下核心设备的定制供货能力。
主要技术指标低压690V/中压3300V,20MW及以下各类船舶电力推进系统集成能力,包括DFE、AFE、直流、混合等多种模式;低压690V、功率3MW以下,中压3300V、功率10MW以下船用变频器系列化产品;低压690V、功率3MW以下,中压3300V、功率10MW以下高、低速船用推进电动机系列化产品。
技术特点具有为船舶提供电力推进系统提供完整解决方案的能力;船用水冷变频器具有效率高、模块化、调速能力强等优点;推进电机具有功率因数高、效率高等优点;功率管理系统具有良好的人机互动、系统兼容型强等优点。
技术水平国际先进适用范围挖泥船、游船、豪华邮轮、海洋工程船、科考船、渔船等多种电力推进船舶;海洋工程平台、生活平台等各类海工平台变频驱动领域。
专利状态授权专利10余项。
技术状态批量生产、成熟应用阶段合作方式市场合作:与有行业资源或资金实力的相关单位开展市场合作,拓展自主知识产权电力推进系统的市场,为用户提供性价比高的电力推进系统及核心设备。
预期效益在船舶电力推进领域,目前国内越来越多船东接受和使用电力推进系统,电力推进系统属于典型的高技术含量装备,一般一船套系统价值都在千万元人民币左右,年产值可达数亿元,毛利润率在30%以上。
第5章船舶电力推进自动控制系统
按照上述要求, 电动机的输出特性应控制在如图 5-5 所示的由最高转速 nmax、 最大转矩 Temax 和最大功率围成的工作区间内,其最大值的限制为:
nmax = (1.2 ~ 1.4 )n N Temax = (1.5 ~ 2.5)TeN
(5-1) (5-2) (5-3)
Te Temax
Pmax = Pe
(5-11)
U a Ra U = 0 F
0 I a + RF I F
ψ E p a + a ψ F 0
(5-12)
式中:ψa=Laia 为电枢绕组磁链,ψF=LFiF 为励磁绕组磁链。 这样,由式(5-10)~(5-12)就构成了他励直流电动机的动态数学模型。 当直流电动机稳态运行时, 其电流为直流并保持恒定不变,可得直流电动机 的稳态模型,即
u s R s u = 0 r
0 i s + Rr i r
Ψ p s Ψ r
(5-14)
式中: u s = [u s1 ,u s2 u sN ]和 i s = [is1 ,is2 isN ] 为定子电压和电流向量; Rs 为定子电阻矩阵,表示如下
旋桨对电动机产生阻力矩 QP,即为电动机的负载转矩 TL,且有 TL=QP。
Te 电动机 nm 电力传动 动力学 Qp np 螺旋桨 水动力学 Tp vsh 船舶 水动力学
图 5-2 船舶推进系统的力学关系
由此分析, 电动机传动控制应采用转矩控制方法,使螺旋桨按一定的转速旋 转,以产生所需的船舶推力,保持船舶的航速。这样,船舶运动系统的反馈闭环 控制结构应如图 5-3 所示,船速作为系统的指令,控制器根据给定船速 vsh*与实 际船速 vsh 比较产生电动机的转速指令 与实际转速ωm 的误差产生转矩控制信号 ; 而电力推进控制系统则根据给定转速 ,使电动机输出所需的电磁转矩 Te,
船舶电力推进系统
电力推进系统1引言传统的船舶推进方式利用柴油机带动螺旋桨推动船舶前进,但是随着人类环保意识的进一步加强,国际海事组织(IMO)对排放(尤其是对 NOX 与 SOX 的排放)提出了严格的要求。
燃用低质燃油受到限制。
石油资源的短缺、燃油价格的上涨进一步影响了船舶营运者的利益。
船舶制造商和船舶柴油机生产商采取各种措施提高营运中的经济利益。
与此同时,电力推进作为船舶的新型推进动力,世界各国都在进行深入的研究。
国外已经开发了多种类型的电力推进系统,并在多型船舶上应用。
国内在此领域内的研究则刚刚起步。
作为船舶主动力系统的电力推进系统,由于其高效率、高可靠性、高自动化以及低维护,正成为水面船舶青睐的主推进系统。
2电力推进系统组成电力推进系统一般由电站(柴油发电机组、配电盘、变压器)、变频器、推进电机变频异步电动机(驱动螺旋桨)、一般动力负载(辅助机械需要的电动机如各种泵)、螺旋桨、控制设备等其他负荷组成电力系统基本结构1.电站(柴油发电机组、配电盘、变压器)电站由柴油发电机组和一套主配电板组成。
在电力推进的船舶上,一般配置 2~3 台航行柴油发电机组,另加一台停泊发电机组。
发电机组通常供电给一个 380V 或 690V 的低压电网,为船上的电力推进系统和其他主要设备供电。
对电力需求量较大的特种工程船舶来说,电站的用电设备多、容量大,可能采用 3.3KV 中压电网,以降低电网传输电流,减小发电机体积。
2.变频器交流推进电机的控制或变速驱动依赖于变压变频技术。
交流推进电动机的调速主要采用变频调速,这就要求向交流电机供电的电源能够同时改变电压和频率。
目前常用的变频器有三种:同步变频器(交-交变频器)、循环变频器(交-直 -交变频器)和脉宽调制变频器。
间接变频方式的工作原理是先将电网输入的交流电变为直流电,然后再在变流电路中将直流转变为频率可调的交流输出。
变频器具有结构简单、输出频率变化范围大、功率因数高、谐波易于消除、可应用于各种大功率设备等优点。
船舶综合电力推进系统故障诊断技术
变频器
用于改变电机的转速。
推进电机和螺旋桨
用于将电能转化为机械能,实现船舶的推 进。
控制系统和监测系统
用于控制和监测系统的运行状态。
船舶综合电力推进系统的特点
可以实现全船的集中供电,提高 电力资源的利用效率。
可以实现电力的就地消耗,减少 对主机的依赖,提高船舶的续航 能力。
船舶综合电力推进系统具有以下 特点
在未来的研究中,可以进一步探索该方法在其 他复杂系统中的应用,并优化其性能以提高故 障诊断的准确性和实时性。
此外,还可以结合深度学习等先进技术,开发 更智能、高效的故障诊断系统,为船舶行业的 安全和稳定运行提供保障。
THANKS
感谢观看
利用实际运行数据对神经网络模型进行训练,优化模型的参数 与结构,提高故障诊断的准确性与效率。
实时故障诊断
将船舶综合电力推进系统的实时运行数据输入神经网络模型, 通过模型计算,输出故障类型与位置的建议值。
基于模糊理论的故障诊断技术在船舶综合电力推进系统的 应用
建立模糊逻辑系统
根据船舶综合电力推进系统的故障特点,建立基于模糊逻辑的故 障诊断பைடு நூலகம்统。
可以实现电力的分布式管理和控 制,提高船舶的稳定性和安全性 。
可以实现电力的灵活分配,满足 不同设备的用电需求。
02
船舶综合电力推进系统故障诊 断技术
基于信号处理的故障诊断技术
频域分析
对船舶电力推进系统的振动、声音、电流等信号 进行频谱分析,以识别和诊断特定的故障类型。
时域分析
对信号的时域波形进行分析,以检测和识别异常 现象,如谐波畸变、电压波动等。
基于其他智能算法的故障诊断技术
支持向量机
01
船舶电力推进系统OK
a. DC variable control system of thirstier rectifier as the power supply b. AC variable control system of AC - AC converter as the power supply c .AC variable control system of AC -DC-AC current source inverter-fed d .AC variable control system of PWM inverter AC-DC-AC converter-fed
变频装置及控制系统(Control system):
It controls the speed of the motor,be divided int进电动机(Propulsion motors ): Synchronous motor,asynchronous motor.The trend is the permanent magnet motor.
变频装置及控制系统
Frequency Changer Drives And Control systems
The new pulse width modulation inverter device which the rectifier uses diodes,the inverter which uses IGBT,the filter is voltage-type has been used by more and more ships to promote the power.
正弦波PWM即SPWM控制方式 (Sinusoidal Pulse Width Modulation)
现代船舶电力推动系统的发展PPT
高效能电机技术采用了先进的电磁设计、材料和制造工艺,提高了电机的效率和可靠性。它能够有效地将电能转化为机械能,为船舶推进提供强大的动力。同时,该技术还能够降低能耗和排放,减少对环境的影响。
详细描述
高效能电机技术
总结词
船舶电网技术是现代船舶电力推动系统的重要组成部分,它能够实现船舶各系统的高效、安全供电,提高船舶的稳定性和可靠性。
船舶电力推动系统的挑战与机遇
05
结论
船舶电力推动系统是指通过电力方式驱动船舶推进器的一种技术。随着科技的不断进步,现代船舶电力推动系统已经成为船舶领域的重要发展方向。
自20世纪中叶以来,随着电力电子技术和电机控制技术的飞速发展,船舶电力推动系统逐渐成为研究的热点。经过几十年的发展,船舶电力推动系统的技术已经日趋成熟,并在大型船舶、特种船舶和海洋工程装备等领域得到广泛应用。
详细描述
船舶电网技术通过优化船舶电力系统的结构和布局,实现了船舶各系统的高效、安全供电。它采用了先进的电力电子技术和智能控制技术,提高了船舶电网的稳定性和可靠性。同时,该技术还能够降低船舶电网的能耗和排放,减少对环境的影响。
船舶电网技术
智能船舶与无人船舶技术
智能船舶与无人船舶技术是现代船舶电力推动系统的重要发展方向,它能够提高船舶的自主航行能力和智能化水平,降低人工成本和安全风险。
高效稳定
电力推动系统能够实现快速启动和稳定运行,提高船舶的机动性和稳定性。
降低成本
电力推动系统的长期运营成本相对较低,能够节省大量的维护和运营费用。
03
现代船舶电力推动系统的技术发展
大功率电力电子变换器技术是现代船舶电力推动系统的核心技术之一,它能够实现高效率、高功率密度的电能转换,为船舶推进系统提供稳定、可靠的动力。
第1章 船舶电力推进介绍
船舶推进器一般采用定距螺旋桨,因为其效率高,尺 寸较小。
1.1.2电力推进系统的分类
1.按原动机类型分类 (1)柴油机电力推进 (2)蒸汽轮机电力推进 (3)燃气轮机电力推进 (4)原子能反应堆装置电力推进 (5)燃料电池电力推进
电力推进的缺点:
(1)在最高速度时的总效率通常较低。 (2)采用电气设备可能引来一些需要防避的附加危害,如电气设备 中可能的火灾,故障引起的扰乱(闪络、短路和接地)、电击造成 的人身伤害等等。
(3)电力推进装置需要受过较好训练且具有较高技能的操作人员。 (4)需要种类繁多的备件。
1.2船舶电力推进的应用
1.电力推进现状 船舶综合电力系统主要包括发电、配电、电能 变换、电力推进、监测与控制等内容。
原动机 发电机 G
脉冲负载
电力交 换模块
推进变 流器 M 推进电机
推进负载 发电和推进系统
区域配电 交/直流母线
交/直流母线 监测与控制系统
原动机 G 发电机
电力交 换模块
脉冲负载
推进变 流器
M 推进电机
(3)推进器
推进器的种类有:常规轴系推进器、Z型 推进器和吊舱式推进器等
2.电力推进的发展趋势
船舶操纵的灵活性、高可靠性、高效率、装备的高功率密度等必 然是电力推进追求的目标。随着科学技术的不断进步,船舶电力推 进技术也将不断地向前发展。
美、英、法等国正在开展新一代综合电力系统的关键技术研究。 其中,一些新技术如推进电机采用高温超导电机、变频调速装置采 用基于碳化硅的功率器件以及输电电网采用直流电网等,将大大降 低新一代综合电力系统的体积、重量,提高其应用范围和应用灵活 性。
船舶综合电力推进系统
电缆和变压器参数计算
确定电缆截面积、绝缘材料和变压器 容量等,以满足系统电压、电流和功 率要求。
优化策略及实施方法
能量管理策略优化
01
通过智能算法和实时数据分析,优化能量分配和管理,提高系
统效率和稳定性。
设备布局与空间优化
02
合理布局设备,减少空间占用和重量,提高船舶载货量和航行
性能。
控制系统集成与优化
制技术等。
技术挑战分析
分析综合电力推进系统在市场推 广过程中遇到的困难,如成本较 高、船东接受度有限等,并提出 相应的解决策略。
市场推广难题
研究国际和国内法规政策对综合 电力推进系统发展的影响,以及 如何通过政策引导推动其更广泛 的应用。
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
控制策略
采用先进的控制算法和技术,如矢量控制、直接转矩控制等,实现推进装置的高 效控制和优化运行。
储能装置及其应用
储能装置
包括电池、超级电容、飞轮等储能设 备,用于储存和释放电能。
应用场景
在船舶电力推进系统中,储能装置可 用于峰值削峰、能量回收、备用电源 等场景,提高电力系统的稳定性和经 济性。
PART 03
02
采用先进的故障诊断算 法,及时发现并定位故 障点。
03
制定详细的故障排除流 程,指导船员快速有效 地解决故障问题。
04
建立故障数据库,对常 见故障进行分类整理, 为后续的故障预防提供 参考。
预防性维护计划制定
01
02
03
04
根据船舶电力推进系统的特点 和运行状况,制定针对性的预
防性维护计划。
合理安排维护周期和项目,确 保关键部件得到及时维护和更
船舶电力推进第三讲
降低噪音和振动
与传统的机械推进方式 相比,电力推进系统的 电动机工作噪音和振动 较小,提高了船舶的舒 适性。
船舶电力推进的应用场景
大型游轮
大型游轮需要大功率的推进系统,同 时要求船舶布局更加灵活,因此电力 推进系统成为大型游轮的首选。
船舶电力推进第三讲
目录
• 船舶电力推进系统概述 • 船舶电力推进系统的组成 • 船舶电力推进系统的运行与维护 • 船舶电力推进技术的发展趋势 • 船舶电力推进系统的未来展望 • 船舶电力推进案例分析
01 船舶电力推进系统概述
船舶电力推进的定义
船舶电力推进是指通过电动机直接驱 动船舶螺旋桨,实现船舶推进的一种 技术方式。
科考船的电力推进系统
01
科考船的电力推进系统通常采用柴油发电机组或燃料电池作为主电源, 以满足科考任务的需求。
02
科考船的推进电机通常采用电动机,通过减速器和推进轴将动力传递 到螺旋桨上。
03
科考船的电力推进系统还需要配备多种传感器和控制系统,以实现精 确的航行控制和动力分配。
04
科考船的电力推进系统还需要考虑环保性能,以降低排放和噪音对环 境的影响。
THANKS FOR WATCHING
感谢您的观看
军用舰艇的电力推进系统
军用舰艇通常采用燃气轮机或柴油发电机组作为主电源, 以满足高功率和快速响应的需求。
为了提高机动性和作战能力,军用舰艇通常配备有多种 推进系统,如全电力推进、柴电联合推进等。
军用舰艇的推进电机通常采用电动机或柴油发电机,通 过减速器和推进轴将动力传递到螺旋桨上。
军用舰艇的电力推进系统还需要考虑隐身性能,以降低 电磁、声学和红外信号特征。
船舶全电力推进系统工作特性仿真研究的开题报告
船舶全电力推进系统工作特性仿真研究的开题报告一、选题背景与研究意义船舶的推进系统一直是海洋工程研究的热点之一。
近年来,随着环保意识的提高和航行效率的需求增强,全电力推进系统逐渐取代传统的燃油推进系统成为一种优势的船舶推进方式。
全电力推进系统通过将燃油机设置为发电机,利用电能实现整个船舶的推进和控制,不仅减少了燃油消耗和环境污染,还具有运行稳定性更好、功率调节更精准的特点。
因此,对于全电力推进系统的工作特性进行研究具有重要的理论和实际意义。
二、研究内容本研究将重点研究船舶全电力推进系统的工作特性,主要包括以下方面内容:1.全电力推进系统的基本原理和组成结构。
2.全电力推进系统的建模和仿真分析,包括燃油机、发电机、电动机和推进器的模型建立、系统仿真和参数调优等。
3.全电力推进系统的性能测试和实验验证,对仿真结果进行对比和分析,检验仿真模型的准确性和可信度。
4.全电力推进系统的优化设计,针对电力传输过程中的损耗、能耗和运行稳定性等问题,提出相应的设计方案和改进措施,优化系统性能和效率。
三、研究方法和技术路线本研究将采用建模、仿真、实验和优化相结合的方法,具体技术路线如下:1. 建立全电力推进系统的数学模型,包括燃油机、发电机、电动机和推进器的建模,建立仿真平台。
2. 仿真分析全电力推进系统在不同负载和工况下的动态特性和功率传输效率。
3. 设计实验验证方案,对仿真结果进行实验验证。
4. 分析实验结果,检验仿真模型的准确性和可信度。
5. 针对电力传输过程中的损耗、能耗和运行稳定性等问题,提出相应的设计方案和改进措施。
四、预期结果通过本研究,预计可以得到如下结果:1.研究全电力推进系统的工作特性,在理论和实践上对全电力推进系统进行深入理解和探索,为全电力推进系统的改进和优化提供理论基础。
2.建立全电力推进系统的数学模型,建立系统仿真平台,分析系统在不同工况下的动态特性和功率传输效率。
3.通过实验验证和分析,检验仿真模型的准确性和可信度。
船舶电力推动系统的现状及发展前景
(3)船舶电力系统适装性技术研究。电力推进系统装备船舶,不仅需要研究其与船舶总体的关系,还 应考虑 其与船上其他系统、设备的关系。需主要开展以下方面的研究:系统装备于船舶的适装性问 题,并研究与 此相关的对船舶安全性、可靠性等的影响,以及系统对船舶海洋环境的适装性问题等; 解决系统内部及与 其他船用电子设备之间的电磁兼容性问题。
船舶电力推进装置
• 常用船舶电力推进装置一般由下述几部分 组成:原动机、发电机、电动机、螺旋桨 以及控制调节设备。 • 船舶电力推进系统的方案分类:永磁电机技 术、超导电磁推进技术、潜艇燃料电池电 力推进装置、吊舱式电力推进系统
永பைடு நூலகம்电机技术
• 现代永磁电机采用稀土材料励磁,不仅使 电机尺寸大大减小,重量减轻,而且使之 维护方便,运行可靠, 效率提高。与同容 量的异步电动机相比,永磁电机效率提高 了 4%~13%,功率因子提高了 5%~20%。 但 由于转子磁场强度受到当前永磁材料的 限制,10~30 MW 额定功率的永磁电动机 的设计仍面临极大的困 难。
电力推进系统的优点
• • • • • 空间配置灵活。 节省燃油,提高经济性。 提高了船舶的操纵性。 振动小,噪音低。 提高了船舶的安全性。
普及电力推进系统需要研发的关键技术
1)全船电力系统总体技术研究。由于电力推进系统的设计是当今先进的电力电子技术、交流调速技 术、电 机制造技术、永磁材料技术、计算机控制技术、原动机技术等的综合运用,技术含量高。许 多不同专业的 各个设备的研制需要相互协调,功能相当且接口一致。综合电力系统各个模块是否运 行良好并相互协调以 发挥系统最佳效能,是事关整个系统优劣和良好运行的关键。需要开展构成综 合电力系统的各个模块,以 及各模块集成的技术研究,主要包括:发电模块关键技术研究,包括全 船环形电网关键技术的研究;配电 模块关键技术研究,主要包括区域配电模式研究等;电力变换模 块关键技术研究,主要包括大容量电能变 换技术研究,中、高压电网的安全性研究等;电力控制模 块关键技术研究,主要包括电力系统智能化综合 监控与管理技术研究等;能量储存模块关键技术研 究等等。在船舶电力推进系统中,电力的产生、维护、 管理就成为船舶的生命线,船舶综合电力系 统总体技术的研究必须取得突破。
舰船电力推进系统优势和新能源
舰船电力推进系统优势和新能源1. 引言舰船的电力推进系统是舰船的重要组成部分,对舰船的性能和效能起着至关重要的作用。
随着科技的发展和环境保护意识的增强,越来越多的舰船开始使用新能源作为电力推进系统的主要源。
本文将探讨舰船电力推进系统的优势以及新能源在舰船电力推进系统中的应用,并分析其带来的益处和挑战。
2. 传统电力推进系统的优势传统舰船电力推进系统主要由燃料发动机和发电机组成。
这种系统的优势在于:2.1 高效性传统电力推进系统采用燃料发动机进行发电,可以实现较高的能量转换效率。
同时,发电过程中产生的余热可以被回收利用,提高系统的整体效能。
2.2 稳定性传统电力推进系统通过燃料供应控制燃料发动机的运转,并通过发电机将机械能转化为电能。
这种系统结构简单、稳定可靠,并且在长时间航行情况下仍能保持良好的工作状态。
2.3 易于维护传统电力推进系统使用广泛,配件供应充足,维护和维修相对容易。
船舶设备工程师具备相关技能,可以快速定位和解决问题。
3. 新能源在舰船电力推进系统中的应用随着环境保护意识的增强和新能源技术的不断进步,越来越多的舰船开始采用新能源作为电力推进系统的主要能源源。
以下是几种常见的新能源在舰船电力推进系统中的应用。
3.1 太阳能太阳能是一种常见的新能源,可以通过光伏电池板将太阳能转化为电能。
舰船可以在船体上安装太阳能电池板,收集太阳能供电给电力推进系统。
太阳能的应用能够降低舰船的碳排放,减少航行对环境的影响。
3.2 风能利用风能进行舰船推进是一种传统但经济高效的方法。
船只可以配备风能发电机,通过捕捉风能并将其转化为电能,驱动舰船的电力推进系统。
这种方法可以减少对传统能源的依赖,降低运营成本。
3.3 潮汐能潮汐能是近年来新兴的能源形式,可以通过潮汐发电机将潮汐能转化为电能。
舰船可以在需要的地区利用潮汐能发电,应用于电力推进系统。
潮汐能的特点是稳定性高,可预测性强,适用于远洋航行的舰船。
4. 新能源在舰船电力推进系统中的益处和挑战4.1 益处使用新能源作为舰船电力推进系统的能源源,具有以下益处:•增强环境可持续性:新能源的使用可以降低舰船的碳排放,减少对环境的影响,有利于维护海洋生态环境的可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船舶电力推进系统上海海事大学梁伟波摘编2010-08-12关键字:船舶电力推进系统浏览量:310船舶电力推进,有直流推进和交流推进两大类。
1970年代以前,主要采用直流电力推进系统,因为直流电机转速调整范围宽广和平滑,过载起动和制动转矩大,逆转运行特性好;而交流电动机尽管具有输出功率大、极限转速高、结构简单、成本低、体积小、运行可靠等优点,但限于当时的技术限制,调速困难,应用较少。
随现代控制理论和数字控制、直接转矩控制、矢量控制等电力电子技术的发展,交流调速系统的性能已经可以与直流调速系统相媲美。
交流电力推进系统的应用,已经成为船舶电力推进发展的主流,呈现出蓬勃发展的态势。
水面船只,交流电力推进占主导地位,所选用的交流电动机,交流异步电机、交流同步电机、永磁同步电机等并存。
只有潜艇,仍是直流推进占主导地位。
世界著名的电气集团,如SIEMENS,ABB,以及ALSTOM等,都研制出船舶交流电力推进的成套装置,功率从几百千瓦到几十兆瓦,其中以吊舱式推进器最具代表性。
例如ABB 公司的AZIPOD推进系统,功率已达40MW,性能可靠,传动效率高,节省空间,已成功地应用在油轮、破冰船、邮轮、化学品船、半潜船等多种船型,并在近期新造船舶市场获得良好评价。
目前,船舶采用的电力推进系统,型式多种多样,但归纳起来基本可分为以下五类:·可控硅整流器+直流电动机·变距桨+交流异步电动机·电流型变频器+交流同步电动机·交一交变频器+交流同步电动机·电压型变频器+交流异步电动机选择电力推进装置时,主要关注价格、功率范围、推进效率、起动电流、起动转矩、动态响应、转矩波动、功率因数、功率损耗、谐波等指标。
1 可控硅整流器+直流电动机1970年代以前,船舶电力推进系统中,直流电动机占据主导地位。
1940和1950年代,推进系统采用原动机一直流发电机一直流电动机形式,通过调节发电机励磁电流的大小和方向,调节电动机转速及转向。
1950年代末,大功率可控静态电力变流元件研制成功,可控硅整流装置出现,直流电力推进系统演变成可控整流器加直流电动机模式。
晶闸管的问世加速了这种推进技术的发展,拓展了其应用领域。
至今,该种推进形式仍不失为一种高效、经济的推进方案。
可控硅整流器+直流电动机系统,采用全桥式晶体管整流器为一个电枢电流可控的直流马达供电。
这种推进方式的优点:·控制角α的控制范围,理论上是0~180°;实际上一般在15~150°,是考虑到电网的压降,确保电机可控,控制角α确保留有换流边界;·起动电流及起动转矩接近于零;·扭矩波动平滑;·动态响应一般小于100毫秒。
缺点是:·转矩控制不够精确,若要得到精确平滑的转矩控制,必须提高电枢感应系数,但会引起系统动态性能减弱,功率因数偏低,增加系统损耗;·直流电机驱动需要的换向器,是一个易发生故障的部件;·会对船舶电网产生较大的谐波污染,因为采用了大功率电力电子器件;·直流电动机固有的结构复杂、成本高、体积大、维护困难、效率低等缺点,阻碍了它在船舶电力推进领域的广泛应用。
目前,船舶推进所应用的直流推进电机的容量,在2~3MW之间。
2 交流异步电动机+可调螺距螺旋桨交流异步电动机+可调螺距螺旋桨模式,也称为DOL(Direct on line)模式,多采用鼠笼式感应恒速电机驱动变距桨实现,船速的控制靠改变螺旋桨的螺距。
为了增加可操纵性,也可用极数转换开关实现电机速度控制。
这种推进方式的优点是:·几乎没有影响电网的谐波,因为没有采用大功率电力电子器件;·电动机转矩稳定没有脉动;·在设计点运行时效率很高。
但缺点也不少,例如:·交流异步感应电机起动瞬间电流较大,通常是正常电流的5~7倍,系统电网压降大;·起动瞬间机械轴承受的转矩大,约为额定转矩的2~3倍;·极低航速,螺距近似为0时,仍要消耗额定功率的15%,电流约为正常值的45~55%;·功率因数低,满负荷时也只能达到0.85;·功率及转矩的动态响应慢,一般3~5秒才能完成,因为采用液压机构完成螺距的变换;·反转慢,制动距离长;·变距桨的液压控制系统十分复杂,并工作在水下,故障维修时需进坞;·变距桨结构复杂,可靠性差,价格贵。
为了防止起动时电流和扭矩过大等不利影响,以及满足规范对船舶电站压降的要求,这种电力推进方式启动时必须采用船舶电站规定启动大电机需要的最小台数运行机组,以及电机采用Y一△启动、软启动器启动等方式。
这种推进方式只适合于中、小功率船舶,或1000kW以下的侧推装置,因为微软起动器目前还只有中、小功率的低压产品。
3 电流型变频器+交流同步电动机电流型变频器+交流同步电机驱动方式(CSI+Synchronous motor)(1)电流型变频器CSI(Current Source Inverter)由整流器、滤波器、逆变器等三部分组成。
工作原理是整流电路将电网来的交流电转换成直流电;再经三相桥式逆变电路转变为频率可调的交流电,供给推进电动机。
电流型变频器的直流中间环节,采用大电感滤波,直流电流波形平直,对电动机来讲,基本上是一个电流源。
改变整流电路的触发角,就改变了中间直流环节的电压,相当于直流电动机的调压调速;而改变逆变电路触发脉冲的顺序,即可改变推进电动机的转矩方向,控制推进电动机转向,从而使控制电路大大简化。
(2)SYNCHRO电力推进交流电通过三相桥式全控整流电路以及平波电抗器,再经过逆变器转换后向交流同步电机供电,此种推进方式通常被称为SYNCHRO电力推进。
SYNCHRO变流装置的输出频率,受同步电机转子所处角度控制:·每当电机转过一对磁极,变流装置的交流电输出相应地交变一个周期,保证变频器的输出频率和电机的转速始终保持同步,不会出现失步和振荡。
·系统功率因数根据电机速度,从额定速度时的0.9到低速的0之间变化。
SYNCHRO电力推进系统主要有6脉波、12脉波、24脉波等三种结构形式,谐波成分比较固定,消除比较容易。
12脉波SYNCHRO电力推进系统,如果在电网侧并联有两组LC 无源滤波器,对11次、13次谐波进行补偿,则对电网产生影响的最低谐波分量就是23次谐波,此时的电网质量可以满足船级社的规定,故12脉波的SYNCHRO电力推进系统应用较多。
SYNCHRO电力推进系统的缺点是:·低速运行时,电流型变频器将电流控制在零附近脉动,转矩输出也存在脉动,给轴系带来振动;·时间常数较大(由于直流电同感性负载相连),所以系统动态响应较差;·电流型逆变电路中的直流输入电感数值很大才能够构成一个电流源,使直流回路电流恒定,所以电感重量、体积都很大,使得电流型逆变器使用受到一定限制。
而其优点是:·起动电流接近等于零,起动转矩最高可达50%额定转矩;·价格上有一定的优势;·控制方便,操作灵活;·能匹配特大功率电机,目前已达40~60MW。
10MW以上容量的电力推进装置,ALSTOM公司和STNATLAS公司倾向于选择SYNCHRO电力推进。
4 交一交变频器+交流同步电机CYCLO变频器,英文为Cycloconverter,中文译作交一交变频器或循环变频器。
该变频器广泛应用于大功率、低速范围内的交流调速,其调速上限不超过基频的40%。
交一交变频器+交流同步电机(Cyclo converter+Synchronous motor)驱动方式,采用CYCLO变频器,通过控制一个可控的桥式反并联晶闸管,选择交流电源的不同相位区间向交流同步电机提供交流电。
双绕组电动机,就是电动机定子装有2套同功率但空间相位差30°的绕组,分别由一套6脉波三相输出交一交变频装置供电。
变频装置输出的每一相都是一个两组晶闸管整流装置反并联的可逆线路:一组晶闸管整流电路提供正向输出电流,另一组提供反向输出电流。
构成这种交一交变频装置的三相桥式电路,在一个输出周期中三相电流有六次过零,带来六次转矩波动,所以这种交一交变频装置被称为6脉波交-交变频装置,是最基本的类型,应用广泛。
与6脉波变频装置相比,12脉波变频装置具有系统响应速度快、谐波含量少、损耗降低、转矩脉动低等优点。
其缺点是所需电子元件数量大,对于6脉冲电路需要36个晶闸管,而12脉冲电路需要72个晶闸管,因而增加了成本。
SIEMENS公司,针对双绕组同步电动机提供了12脉波交一交变频装置。
采用交一交变频推进的特点是:·起动平稳,起动电流(转矩)可从零起逐渐加大;·转矩脉动平滑;·功率及转矩动态响应快,一般小于100毫秒;·电力系统内谐波高低取决于电机速度;·系统功率因数由电机电压决定,通常可达0.76;·满负荷时效率高;·变频器输出频率低,可以不需要齿轮减速直接驱动螺旋桨。
这种驱动方式,性价比高,应用比较广泛。
根据国外经验,交一交循环变流器主要用于速度极低、转矩极高的场合,典型的例子就是破冰船。
目前单个电力驱动系统的功率范围在2~30MW之间。
针对特大功率低转速推进船舶,ABB和SIEMENS公司倾向于采用CYCLO电力推进方式。
5 电压型变频器+交流异步电动机电压型变频器VSI(Voltage Source Inverter),与电流型变频器CSI(Current Source Inverter)同属于交一直一交变频器,也由整流器、滤波器、逆变器三部分组成。
工作原理也是整流电路将电网来的交流电转换成直流电;再经三相桥式逆变电路转变为频率可调的交流电,供给推进电动机。
电压型变频器的中问环节采用大电容,对电动机来讲,基本上是一个电压源。
随着电力电子器件的发展,电压型变频器发展成新型的脉宽调制型(PWM),整流器用二极管组成,逆变器用IGBT(绝缘栅双极晶体管)组成。
IGBT是一种新发展起来的复合型电力电子器件,具有工作速度快,输入阻抗高,热稳定性好,载流能力强等特点。
目前绝大多数产品为此类型,并有低压及中压规格。
IGBT的特点是:·线路简单;·功率因数高;·谐波少;·调速范围宽和响应快。
这种驱动方式采用二极管将交流电整流后,再通过PWM变频直流电斩波后向电机提供电压和频率均可调节的交流电。
采用二极管整流器,可保持电力系统能在任何电机速度的时候功率因数接近0.95。
相比CSI和CYCLO驱动,PWM驱动的系统谐波含量最少,用三芯变压器为变频器提供12半周的电源还可进一步减少谐波含量[6]。