强碱性苯乙烯系阴离子交换树脂

强碱性苯乙烯系阴离子交换树脂
强碱性苯乙烯系阴离子交换树脂

201×7强碱性苯乙烯系阴离子交换树脂GB13660-92

中华人民共和国国家标准

201×7Strongly basic styrene type

anion eschange resins

国家技术督司1992-09-01批准1993-07-01实施

1主题内容与适用范围

本标准规定了201×7强碱性苯乙烯系阴离子交换树脂的技术要求、试验方法、检验规则及标志、包装、运输、贮存的要求。

本标准适用于粒径为0.315~1.25mm、以季胺基为主要活性基团的201×7强碱性苯乙烯系阴离子交换树脂。

2引用标准

GB1631离子交换树脂产品分类命名及型号

GB5475离子交换树脂取样方法

GB5476离子交换树脂预处理方法

GB5757离子交换树脂含水量测定方法

GB5758离子交换树脂粒度分布测定方法

GB8330离子交换树脂湿真密度测定方法

GB8331离子交换树脂湿视密度测定方法

GB11992氯型强碱性阴离子交换树脂交换容量测定方法

GB/T12598离子交换树脂强度测定方法渗磨法

GB11991离子交换树脂转型膨胀率测定方法

3产品型号和主要用途

201×7强碱性苯乙烯系阴离子交换树脂的型号按GB1631编制。该产品主要用于制备纯水和提炼放射性元素等。

4技术要求

4.1外观:淡黄至金黄色球状颗粒。

4.2出厂型式:氯型。

5 试验方法 5.1 外观的测定 目测。 5.2 试样预处理

采用GB 5476中规定的方法进行预处理。 5.3 含水量的测定

采用GB 5757中规定的方法进行测定。

5.4 质量全交换容量、体积全交换容量、中性盐分解容量的测定

5.4.1 质量全交换容量和中性盐分解容量的测定,采用GB 11992中规定的方法进行。 5.4.2 体积全交换容量按式(1)计算:

Q Q X v w =-ρ()1 (1)

式中 Q v ——体积全交换容量,mmol/mL ; Q w ——质量全交换容量,mmol/g ; ρ——湿视密度,g/mL ; X ——含水量,%。 5.5 湿视密度的测定

采用GB 8331中规定的方法进行测定。 5.6 湿真密度的测定

采用GB 8330中规定的方法进行测定。 5.7 粒度的测定

用孔径为0.315mm 和1.25mm 的筛子,采用GB 5758中规定的方法筛分后,按式(2)和式(3)计算:

P V V V V 1012

100%=

--? (2)

P V V 21

100%=

? (3)

式中 P 1——试样粒径为0.315~1.25mm 的树脂粒度,%; V 0——试样体积,mL ;

V 1——试样中粒径小于0.315mm 的树脂体积,mL ; V 2——试样中粒径大于1.25mm 的树脂体积,mL ;

P2——试样中粒径小于0.315mm的树脂粒度,%。

5.8有效粒径和均一系数的测定

采用GB5758中规定的方法进行测定。

5.9磨后圆球率的测定

采用GB5758中规定的方法筛分出0.50~0.63mm的试样,而后采用GB/T12598中第5.2~5.7、5.9条、第6章、第7.2~7.3条、第8~9章规定的方法进行测定。

6检验规则

6.1产品以每釜为一批。

6.2采样按GB5475中规定的方法。

6.3每批产品必须由生产厂的质量检验部门进行检验,并应保证出厂的所有产品都达到本标准规定的各项技术要求。

6.4本标准中4.1和4.3表中的含水量、质量全交换容量、体积全交换容量、中性盐分解容量、湿视密度、小于0.315mm的树脂粒度和磨后圆球率为出厂检验项目;湿真密度、0.315~1.25mm的树脂粒度、有效粒径、均一系数为抽检项目,每月至少抽检一次。型式检验按GB1.3中6.6.1条规定进行。

6.5使用单位有权按本标准规定对所收到的产品进行检验。如需复验,应在收到产品3个月内向生产厂提出。

6.6检验结果有某项技术要求不符合本标准规定时,应重新自该批产品两倍量的包装中取样复验,以复验结果定等级。

6.7当供需双方对产品的质量发生异议时,由双方协商解决或由法定质量检测部门进行仲裁。

7标志、包装、运输、贮存

7.1标志

每批产品应有质量检验报告单。每一包装件上应有清晰、牢固的标志、标明产品名称、型号、等级、批号、净重、生产日期和生产厂名。

7.2包装

产品应包装在内衬塑料袋的容器或编织袋中,每一包装件应附有合格证。

7.3运输

本产品在运输过程中应保持在5~40℃的环境中,避免过冷过热,注意不使树脂失水。

本产品为非危险品。

7.4贮存

本产品在符合7.3条所规定的温度条件下,贮存期为两年。超过贮存期,可按本标准规定进行复验,若复验结果符合本标准要求,仍可使用。

附录A

201×7强碱性苯乙烯系阴离子交换树脂

转型膨胀率

(参考件)

A1本产品由氯型转为氢氧型的转型膨胀率小于或等于32%。

A2试验方法采用GB11991中规定的方法。

_____________________

附加说明:

本标准由中华人民共和国化学工业部提出。

本标准由全国塑料标准化技术委员会塑料树脂产品分会(SC4)归口。

本标准由上海树脂厂负责起草。

本标准主要起草人李燕声、陆芳云、俞采章。

自本标准实施之日起,原化学工业部部标准HG2—886—76《201×7强碱性苯乙烯阴离子交换树脂》作废。

阴阳离子交换树脂

【新树脂的预处理】 新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。所以,新树脂在投运前要进行预处理。 1、阳离子树脂的预处理:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐水中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用2-4%NaOH溶液,其量与上相同,在其中浸泡2-4小时(或小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止;最后用5%HCL溶液,其量亦与上同,浸泡4-8小时,放尽酸液,用清水漂流至中性待用。 2、阴离子树脂的预处理:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐水中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;而后用5%HCL浸泡4-8小时,然后放尽酸液,用水清洗至中性;而后用2%-4% NaOH溶液浸泡4-8小时后,放尽碱液,用清水洗至中性待用。 分类产品名 称 功能基团 体积交换 容量 mmol/ml≥ 出场形 式 国外树脂对应 牌号主要用途 强酸性苯乙烯系阳离子树脂001*4 -SO3H 4.50 Na+ Amberlite IR-118 高纯水制备及抗菌素提炼等002-sc Amberlite IR-122 抗菌素提取与D113SC配套双层床 大孔弱酸性丙烯酸系阳离子树脂D111 -COOH 9.5 H+ Amberlite IRC-84 循环水处理、废水处理、脱色110 11.5 Amberlite IRC-84 用于提取链霉素及分离碱性抗菌素、 硬水软化、纯水制备 122 4.00 用于提纯维生素B12、钼酸铵精制、 链霉素、土霉素、四环素等抗菌素的 脱色味精脱色 强碱性苯乙烯系阴离子树脂201*4 -N+/(CH3)3 3.80 CL- Amberlite IRA-401 纯水、高纯水置备、糖液脱色、生化 制品的制备等 202 -N+/(CH3)2 \C2H4OH 3.10 Amberlite IRA-900 纯水制备、配套双层床 大孔强碱性苯乙烯系阴离子树脂D296 3.60 CL- 用于有机物脱色和纯水制备 D202 -N+/(CH3)2 \C2H4OH 3.50 Amberlite IRA-910 纯水制备、放射性元素提取、稀有元 素分离 大孔弱碱性苯乙烯系阴离子树脂330 -N+/(CH3) 2.H2O 9.00 Wofatit L-165 用在链霉素提炼中起中和作用、也可 用于中和有机酸及用于制备纯水 离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。 阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为 2R—SO3H+Ca2+—(R—SO3)2Ca+2H+(这也是硬水软化的原理)

乙苯制苯乙烯

南京工业大学 化学化工学院 《化工过程与工艺设计》 设计题目乙苯脱氢制苯乙烯装置工艺设计 学生姓名吴美妍班级、学号化工100704 指导教师姓名林陵 设计时间 2013年 6 月27日-2013 年7月12日 课程设计成绩:

指导教师签字 目录 第一部分设计说明书 前言·······················错误!未定义书签。第一章概述····················错误!未定义书签。 工艺路线与产品················错误!未定义书签。 ···················错误!未定义书签。 ···················错误!未定义书签。 ···················错误!未定义书签。第二章原料与产品的性质··············错误!未定义书签。 原料性质···················错误!未定义书签。 产品性质···················错误!未定义书签。第四章安全和工业卫生···············错误!未定义书签。 第五章三废排放及治理方案·············错误!未定义书签。 第七章主要设备一览表···············错误!未定义书签。 表一非定型设备一览表(一)··········错误!未定义书签。 表二非定型设备一览表(二)·········错误!未定义书签。第八章原料、动力消耗及排出一览表·········错误!未定义书签。 第二部分设计计算书 第一章物料衡算··················错误!未定义书签。 第二章主要设备物料衡算、热量衡算和设备计算····错误!未定义书签。 进料泵····················错误!未定义书签。

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

各种型号离子交换树脂

几种常用的离子交换树脂型号 一、001x7Na(732)阳离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有磺酸基(-SO 3 H)的离子交换树脂,它具有交换容量高、交换速度快、机械强度好等特点。 本产品相当于美国Amberlite IR-120;Dowex-50,德国:Lewatit-100.日本:精品文档,超值下载 Diaion SK-1,法国AllassionCS;Duolite C-20,前苏联ky-3;SDB-3,相当于我国老牌号:732;强酸1号、2号、3号、4号;010。 用途:本产品主要用于硬水软化、脱盐水、纯水和高纯水的制备,也用于催化剂和脱水剂,以及湿法冶金、分离提纯稀有元素、食品、制药、制糖工业等。 二、201x7(717)强碱性阴离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有季铵基[N(CH 3) 3 OH]的阴离子 交换树脂,该树脂具有机械强度好,耐热性能高等特点。 本产品相当于美国Amberlite IRA-400,德国:Lewatit M500,日本:Diaion SA-10A,法国Allassion AG217,前苏联AB-17,相当于我国老牌号:717、702、强碱2号、4号、2041号。 用途:本产品主要用于纯水、高纯水的制备,废水处理,生化制品的提取,放射性元素提炼,抗菌素分离等。 三、D201大孔强碱阴离子交换树脂 本产品的性能与201×7强碱性阴离子交换树脂相似,但有更好的物理及化学稳定性(耐渗透压力,耐磨损等)及抗污染性能,由于具有大孔结构,因此可用于吸附分子尺寸较大的杂质以及在非水溶液中使用。 本产品相当于美国Amberlite IRA-900,德国:Lewatit MP-500日本:Diaion PA 308。相当于我国老牌号:D231;DK251;731;290。 用途:本产品主要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净化装置(H-OH或NH 4 -OH混床系统),也用于废水处理,回收重金属,生化药物分离和糖类提纯。 四、D301大孔弱碱性苯乙烯系阴离子交换树脂 本产品是大孔结构的苯乙烯一二乙烯苯共聚体上带有叔胺基[-N(CH3)2]的离子交换树脂,其碱性较弱,能在酸性、近中性介质中有效地交换无机酸及硅酸根,并能吸附分子尺寸较大的杂质以及在非水溶液中使用,该树脂具有再生效率高、碱水耗低、交换容量大、抗有机物污染及抗氧化能力强、机械强度好等优点。 本产品相当于美国Amberlite IRA-93,德国Lewatit MP-60,日本Diaion WA-30,法国Duolite A305,前苏联AH-89×77Ⅱ,英国Zerolite MPH,相当于我国老牌号:D354、D351、710、D370。 用途:本产品主要用于纯水及高纯水的制备,用于阴复床、阴双层床系统,对含盐量较高的水源尤为合适,并能保护强碱阴树脂不受有机物污染,以及糖液脱色含铬废水的处理及回收等等。

实验八苯乙烯与马来酸酐的交替共聚合

实验一甲基丙烯酸甲酯的本体聚合 一、实验目的 1. 了解自由基聚合的基本原理和体系中各组分的作用。 2. 掌握甲基丙烯酸甲酯本体聚合的实施方法。 二、实验原理 本体聚合是指单体本身在不加溶剂及其他分散介质的情况下由微量引发剂或光、热、辐射能等引发进行的聚合反应。由于聚合体系中的其他添加物少(除引发剂外,有时会加入少量必要的链转移剂、颜料、增塑剂、防老剂等),因而所得聚合产物纯度高,特别适合于制备一些对透明性和电性能要求高的产品。 本体聚合的体系组成和反应设备是最简单的,但聚合反应却是最难控制的,这是由于本体聚合不加分散介质,聚合反应到一定阶段后,体系粘度大,易产生自动加速现象,聚合反应热也难以导出,因而反应温度难控制,易局部过热,导致反应不均匀,使产物分子量分布变宽。这在一定程度上限制了本体聚合在工业上的应用。为克服以上缺点,常采用分阶段聚合法,即工业上常称的预聚合和后聚合。 除产物纯度高外,本体聚合的另一大优点是可进行浇铸聚合,即将预聚合产物浇入模具中进行后聚合,反应完成后即可获得产品。 三、仪器与试剂 仪器:恒温水浴,试管夹,试管,锥形瓶(50 mL) 试剂:甲基丙烯酸甲酯(MMA)20 mL,过氧化二苯甲酰(BPO)0.019 g 四、实验步骤 1. 预聚合 在50mL锥形瓶中加入20 mL MMA及单体质量0.1%的BPO,瓶口用胶塞塞上,用试管夹夹住瓶颈在85~90℃的水浴中不断摇动,进行预聚合约0.5 h,注意观察体系的粘度变化,当体系粘度变大,但仍能顺利流动时,结束预聚合。 2. 浇铸灌模 将以上制备的预聚液小心地分别灌入预先干燥的两支试管中,浇灌时注意防止锥形瓶外的水珠滴入。 3. 后聚合 将灌好预聚液的试管口塞上棉花团,放入45~50℃的水浴中反应约20 h,注意控制温度不能太高,否则易使产物内部产生气泡。然后再升温至100~105℃反应2~3 h,使单体转化完全,完成聚合。 4. 取出所得有机玻璃棒,观察其透明性,是否有气泡。 五、思考题 1. 进行本体浇铸聚合时,如果预聚阶段单体转化率偏低会产生什么后果? 2. 为什么要严格控制不同阶段的反应温度? 六、注意事项 1. 塞锥形瓶的胶塞必须用聚四氟乙烯膜或铝箔包裹,以防止在聚合反应过程中MMA蒸汽将胶塞中的添加物(如防老剂等)溶出,影响聚合反应。

阴离子交换树脂

阴离子交换树脂 离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的 一种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。 离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1~1mm,其离子交换能力依其交换能力特征可分: 1. 强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。 如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 2. 弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。 3 .对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42-> NO3->Cl-> HCO3-> OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:

乙苯脱氢制苯乙烯

乙苯脱氢制苯乙烯实验指导书 一、实验目的 1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 2、学会稳定工艺操作条件的方法。 3、掌握乙苯脱氢制苯乙烯的转化率、选择性、收率与反应温度的关系;找出最适宜的反应温度区域。 4、了解气相色谱分析方法。 二、实验的综合知识点 完成本实验的测试和数据处理与分析需要综合应用以下知识: (1)《化工热力学》关于反应工艺参数对平衡常数的影响,工艺参数与平衡组成间的关系。 (2)《化学反应工程》关于反应转化率、收率、选择性等概念及其计算、绝热式固定床催化反应器的特点。 (3)《化工工艺学》关于加氢、脱氢反应的一般规律,乙苯脱氢制苯乙烯的基本原理、反应条件选择、工艺流程和反应器等。 (4)《催化剂工程导论》关于工业催化剂的失活原因及再生方法。 (5)《仪器分析》关于气相色谱分析的测试方法。 三、实验原理 1、本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2、影响本反应的因素 (1)温度的影响 乙苯脱氢反应为吸热反应,?H o >0,从平衡常数与温度的关系式20ln RT H T K p p ?= ???? ????可知,

提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 (2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式Kp=Kn= γ? ? ? ? ? ? ? ∑i n P 总可知,当?γ> 0时,降低总压P总可使Kn增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高乙苯的平衡转化率。较适宜的水蒸气用量为:水﹕乙苯=1.5﹕1(体积比)或8﹕1(摩尔比)。 (3)空速的影响 乙苯脱氢反应系统中有平行副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,故需采用较高的空速,以提高选择性。适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 3、催化剂 本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。 四、预习与思考 1、乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?实验室是如何来实现的,工业上又是如何来实现的? 2、对本反应而言是体积增大还是减小?加压有利还是减压有利,工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以降低烃分压? 3、在本实验中你认为有哪几种液体产物生成?有哪几种气体产物生成?如何分析? 4、进行反应物料衡算,需要—些什么数据?如何搜集并进行处理? 五、实验装置及流程 乙苯脱氢制苯乙烯实验装置及流程见图1。 六、实验步骤及方法 1、反应条件控制 汽化温度300℃,脱氢反应温度540~600℃,水﹕乙苯=1.5﹕1(体积比),相当于乙苯加料0.5mL/min,蒸馏水0.75 mL/min (50毫升催化剂)。 2、操作步骤 (1)了解并熟悉实验装置及流程,搞清物料走向及加料、出料方法。 (2)接通电源,使汽化器、反应器分别逐步升温至预定的温度,同时打开冷却水。 (3)分别校正蒸馏水和乙苯的流量(0.75mL/min和0.5mL/min) (4)当汽化器温度达到300℃后,反应器温度达400℃左右开始加入已校正好流量的蒸馏水。当反应温度升至500℃左右,加入已校正好流量的乙苯,继续升温至540℃使之稳定半小时。 (5)反应开始每隔10~20分钟取一次数据,每个温度至少取两个数据,粗产品从分离器中放入量筒内。然后用分液漏斗分去水层,称出烃层液重量。 (6)取少量烃层液样品,用气相色谱分析其组成,并计算出各组分的百分含量。 (7)反应结束后,停止加乙苯。反应温度维持在500℃左右,继续通水蒸气,进行催化剂的清焦再生,约半小时后停止通水,并降温。

离子交换树脂的交换原理是什么

离子交换树脂的交换原理是什么 离子交换树脂的结构 离子交换树脂的内部结构,如下图所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成; (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶孔)和高分子结构之间的孔(毛细孔)。在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高分子的基体上,不能自由移动,所以称为固定离子;交换基团的活动部分则是与固定离子以离子键结合的符号相反的离子,称为反离子或可交换离子。反离子在溶液中可以离解成自由移动的离子,在一定条件下,它能与符号相同的其他反离子发生交换反应。 离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它 置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有

关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于强酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。 (文档由洛阳宏昌工贸整理提供)

苯乙烯-马来酸酐共聚物的合成

实验七苯乙烯-马来酸酐共聚物的合成 教学目的: 1.掌握自由基聚合的原理和方法; 2.通过苯乙烯与马来酸酐共聚制备其共聚物。 教学重点:掌握自由基聚合的原理和方法 教学难点:聚合过程中反应速度和终点的控制 一实验目的 1.学习自由基聚合的原理和沉淀聚合方法; 2.掌握苯乙烯-马来酸酐共聚物的合成方法。 二实验原理 马来酸酐是强的吸电子单体而苯乙烯是强的给电子单体,因此二者等量混合,在引发剂引发下易发生共聚而形成交替共聚物。 本实验采用过氧化苯甲酰(BPO)作为引发剂,引发苯乙烯与马来酸酐发生自由基聚合,形成苯乙烯-马来酸酐共聚物,并通过碱性水解制备水解的苯乙烯-马来酸酐共聚物。 由于苯乙烯与马来酸酐均可以溶解于甲苯中,而其共聚物在甲苯中不溶,因此其共聚物可以从甲苯中沉淀出来而称为沉淀聚合。 三实验方法 1.共聚物的合成 250 ml的四口烧瓶中加入150 ml经蒸馏的甲苯,10.4g苯乙烯、9.8g马来酸酐和0.1gBPO,升温至50左右,搅拌15分钟使马来酸酐完全溶解。然后,升温到80℃左右反应1小时。反应物降至室温,将产物滤出,在60℃下真空干燥。 2.共聚物皂化 在100 ml圆底烧瓶中加入2g干燥的共聚物和50 ml 2mol/L的氢氧化钠溶液,加热至沸腾,待聚合物溶解后继续回流1h。降温至50,将溶液倾入200 ml 3mol/L的盐酸中,使聚合物沉淀,过滤、洗涤、干燥,获得水解的苯乙烯-马来酸酐共聚物。 四注意事项 1 实验中使用的苯乙烯、马来酸酐、BPO实验前应该精制 2 聚合过程中要控制反应温度不可以太高,以免反应太快! 五思考题 1 影响共聚反应的竟聚率的因素主要有哪些? 2 聚合反应的溶剂选择要考虑哪些因素? 3 苯乙烯-马来酸酐共聚物有哪些应用?

乙苯脱氢制苯乙烯

实验报告 课程名称: 化工专业实验 指导老师: 成绩:__________________ 实验名称: 乙苯脱氢制苯乙烯 实验类型: 同组学生姓名: 一.实验目的 1.了解以乙苯为原料,氧化铁为催化剂,在固定床单管反应器种制备苯乙烯的过程。 2.学会稳定工艺操作条件的方法。 3.掌握乙苯脱氢制苯乙烯的转化率,选择性,收率及反应温度的关系,找出最适宜的反应温度区域。 4.学会使用温度控制和流量控制的一般仪表,仪器。 5.了解气相色谱分析及使用方法。 二.实验原理 1.本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2.影响本反应的因素 (1)温度的影响

乙苯脱氢反应为吸热反应,?H 0>0,从平衡常数与温度的关系式 可知,提高温度可增大平衡 常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 (2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式Kp =Kn=γ ???? ? ??∑i n P 总可知,当?γ>0时,降低总压P 总可使Kn 增大,从而增加了反应的平衡转化率,故降低压力(高温反应无法采用负压操作,可以通入惰性组分使分压下降)有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高乙苯的平衡转化率。较适宜的水蒸气用量为:水﹕乙苯=1.5﹕1(体积比)或8﹕1(摩尔比)。 (3)空速的影响 乙苯脱氢反应系统中有平行副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,故采用较高的空速,以提高选择性。适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 3.催化剂 本实验采用GS-08催化剂,以Fe ,K 为主要活性组分,添加少量的IA ,IIA ,IB 族以稀土氧化物为助剂。 三.实验装置及流程 乙苯脱氢制苯乙烯实验装置及流程,用Microsoft Visio 软件绘制见下图: 1 34 2 水

耐高温强碱阴离子交换树脂研究进展_范云鸽

离子交换与吸附, 2005, 21(4): 376 ~ 384 ION EXCHANGE AND ADSORPTION 文章编号: 1001-5493(2005)04-0376-09 耐高温强碱阴离子交换树脂研究进展* 范云鸽1 肖国林2 1 南开大学高分子化学研究所,天津 300071 2 华中科技大学环境科学研究所,武汉 430074 摘要:羟型强碱阴离子交换树脂的最高使用温度一般为60℃,三菱化学公司研究制备了能耐受100℃高温的强碱阴离子交换树脂。本文对近年来强碱阴离子交换树脂在热稳定性方面的改进及提高做简要概述。 关键词:强碱阴离子交换树脂;热稳定性;耐高温 中图分类号: 文献标识码:A 1 前 言 强碱阴离子交换树脂主要用于水处理,在物质的净化、浓缩、分离、物质离子组成的转变、物质的脱色以及催化剂等方面也有着广泛的用途,但强碱阴离子交换树脂特别是羟型树脂的使用温度仅限于60℃以下,这就限制了强碱阴离子交换树脂的应用范围。近年来,人们对强碱阴离子交换树脂的热稳定性进行了相当广泛的研究及改进。本文就耐高温强碱阴离子交换树脂近年的研究作简要概述。 2 强碱阴离子交换树脂的结构及耐热性能 强碱阴离子交换树脂是一类显示阴离子交换功能的高分子材料,在交联结构高分子基体上以化学键结合着许多季胺交换基团,树脂在水中可按如下形式解离 N R R 1R 2R 3+OH -N R R 1R 2R 3+OH -+ 其碱性较强,相当于一般季胺碱,它在酸性、中性甚至碱性介质中都可显示离子交换功能。 2.1 常用强碱阴离子交换树脂及其制备方法 常用的强碱阴离子交换树脂是用苯乙烯-二乙烯苯共聚球粒经氯甲基化反应后得到氯球,然后与叔胺反应而得到。当用三甲胺胺化时,得到强碱Ⅰ型阴离子交换树脂;用二甲基乙醇胺胺化,得到强碱Ⅱ型 * 收稿日期: 2004年9月20日 作者简介: 范云鸽(1958-), 女, 河南省人, 副教授. E-mail: fanyunge@https://www.360docs.net/doc/806126818.html,

乙苯脱氢制取苯乙烯

一、实验目的 1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 2、学会稳定工艺操作条件的方法。 二、实验原理 1、本实验的主副反应 主反应:氢气 ?117.8kJ/mol 苯乙烯 乙苯+ 副反应:乙烯 苯 ?105.0kJ/mol 乙苯+ ? +-31.5kJ/mol 乙苯+ 氢气 苯 乙烷 乙苯+ +-54.4kJ/mol ? 乙烯 甲苯 氢气 在水蒸汽存在的条件下,还可能发生下列反应: + ? 2 + + 氢气 乙苯3 二氧化碳 水 甲苯 此外,还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2、影响反应的因素 (1)温度的影响 乙苯脱氢为吸热反应,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯的选择性下降,能耗增加,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为540~600oC。 (2)压力的影响 乙苯脱氢为体积增大的反应,降低总压可使平衡常数增大,从而增加反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸汽的目的是降低乙苯的分压,以提高平衡转化率。较适宜的水蒸汽用量为:水/乙苯=1.5/1(体积比)。 (3)空速的影响

乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为止。 3、本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。 三、实验装置及流程 实验装置及流程如图1所示。 图1乙苯脱氢制苯乙烯工艺实验流程图 1-乙苯流量计;2、4-加料泵;3-水计量管;5-混合器;6-汽化器;7-反应器;8-电热夹套;9、11-冷凝器;10-分离器;12-热电偶 四、反应条件控制 汽化温度300oC,脱氢反应温度540~600oC,水:乙苯=1.5:1(体积比),相当于乙苯加料0.5ml/min,蒸馏水0.75ml/min(50ml催化剂)。

离子交换树脂

1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。 2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。 若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。 3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。 食盐溶液浓度与冰点的关系如下表: 4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施: 阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。 阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。 2 树脂的预处理 在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下: 1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。 2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,排去酸液,用洁净水冲洗至出水呈中性,冲洗流速为10-20m/h。 3、用约2倍树脂体积的2-5%NaOH溶液,按上面进HCl溶液的方法通入和浸泡。排去碱液,用洁净水冲洗至出水呈中性,冲洗流速同上。 酸、碱溶液若能重复进行2-3次,则效果更佳。

离子交换树脂结构及交换原理

一.氢型与钠型阳离子交换树脂是什么? 氢型阳离子交换树脂(有时简称氢型树脂)是一种人造有机聚合物产品。最常用的原料是:苯乙烯或丙烯酸(酯),先经过聚合反应生成具有三度空间立体网状结构的聚合物骨架(树脂母体),再于骨架上导入不同的「化学活性基」而成。由于它的活性基,如磺酸基(-SO3H)、羧基(-COOH)等,都含有活性氢离子,可在水中解离出来,用于与其它阳离子进行交换,所以特别在阳离子树脂名称之前再冠上“氢型”两字,以与同一系统的“钠型”种类有所区别。不过“钠型”可以利用强酸处理成为“氢型”,“氢型”也可以用氢氧化钠或食盐水溶液处理成为“钠型”,即二者可以互相转换。氢型阳离子交换树脂不溶于水和一般溶剂。和其它离子交换树脂一般,常被制成颗粒状,外观看起来有些像鱼卵,粒径大约在0.3-1.2 mm之间,但大部分在0.4-0.6 mm范围内。化学性质相当稳定,摸起来硬而有弹性,机械强度也足够承受相当压力,颜色由白色至近乎黑色都有,颜色浅时呈透明状,深时呈半透明状,都有光鲜亮丽的树脂光泽。氢型阳离子交换树脂最常应用的地方,就是硬水的软化,即让硬水流过树脂层,把硬水中的硬度离子,如钙、镁等离子吸收在树脂中,就变成不带硬度离子的软水了,这也是阳离子交换树脂最初被制造的主要目的,但它在工业上应用没有「钠型」来的多,因为在软化过程中,它会直接释出氢离子,使水质呈酸性,可能会因此腐蚀相关金属设备。依需要的不同,它也可以应用到水质预处理工艺中,用作软化水质及降低pH值之用。 二离子交换树脂的结构 离子交换树脂的内部结构,如2.1所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成: (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶 孔)和高分子结构之间的孔(毛细孔)。 在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高

苯乙烯-马来酸酐共聚物及应用

万方数据

万方数据

万方数据

万方数据

万方数据

苯乙烯-马来酸酐共聚物及应用 作者:李小华, 强西怀, 洪新球, LI Xiao-hua, QIANG Xi-huai, HONG Xin-qiu 作者单位:陕西科技大学资源与环境学院,陕西西安,710021 刊名: 皮革科学与工程 英文刊名:LEATHER SCIENCE AND ENGINEERING 年,卷(期):2009,19(2) 被引用次数:1次 参考文献(26条) 1.BARUAH;LASKAR Styrene-Maleic Anhydride Copolymers:Synthesis,Characterization and Thermal Properties[外文期刊] 1996(60) 2.邱广明苯乙烯和马来酸酐共聚物的合成及其功能化膜和微球的研究[学位论文] 2006 3.Wu D C;Hong C Y;He W D Study on controlled radical alternating copolymerization of styrene with maleic anhydride under UV irradiation[外文期刊] 2003(1) 4.沈一丁表面活性剂在皮革工业中的应用 2003 5.胡英近代化工热力学 1994 6.李春生;张书香;郑安呐超临界CO2中马来酸酐与苯乙烯的聚合[期刊论文]-高分子材料科学与工程 2006(05) 7.Jack E S;Kim M N;Lee L M Living radical copolymerization of styrene/maleic anhydride 1973 8.张举贤KS-1合成鞣剂的研究 1983(01) 9.来水利;沈一丁无规苯乙烯-马来酸酐树脂复鞣剂的合成及性能[期刊论文]-中国皮革 1999(07) 10.高嫄;黄发荣苯乙烯-马来酸酐共聚物的生物降解性研究[期刊论文]-功能高分子学报 2004(02) 11.Walling C;Briggs E R;Wolfstirm K B;Mayo FR Copolymerization.X.The effect of meta-and para-substitution on the reactivity of the styrene double bond 1948 12.卢行芳;殷家雄;白涛阳离子皮革染色助剂的试制与应用[期刊论文]-皮革化工 2005(04) 13.Dilip R;Abayasckara;Raphacl M Ottenbriew查看详情 1985(02) 14.潘卉;张治军;张举贤一种新型纳米复合鞣剂MPNS/SMA的制备及应用研究[期刊论文]-中国皮革 2004(27) 15.周家达;房宽峻;张霞苯乙烯-马来酸酐共聚物的阳离子化改性及其对颜料的分散[期刊论文]-化工新型材料2007(03) 16.向远清;刘朋生苯乙烯-马来酸酐交替共聚物接枝液化MDI的合成与表征[期刊论文]-弹性体 2002(04) 17.王荣伟;郁剑乙低分子量SMA交替共聚物的合成 1994(11) 18.吴娇娇;顾恩光;王兵雷苯乙烯-马来酸酐共聚物磺酸钾的合成及分散性能[期刊论文]-嘉兴学院学报 2002(51) 19.叶文玉;马新起;刘伟磺化苯乙烯-顺丁烯二酸酐共聚物(SS/NMA)的合成及其阻垢性能 1998(04) 20.Kim S Y;Lee Y M Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene-glycol) and poly(ε-caprolactone) as novel anticancer drug carriesrs 2001 21.Kataoka K;Harada A;Nagasaki Block copolymer micelles for drug delivery:design,characterization and biological significance 2001 22.Leckband D E;Borisov O V;HalperinA Cold and hot denaturation of polysoaps[外文期刊] 1998(07) 23.胡中青一类含马来酸醉交替共聚单元的高分子表面活性剂的辐射法合成及其应用 2006 24.朱明强;魏柳荷;周鹏马来酸酐和苯乙烯的可逆加成-断链链转移聚合及新型嵌段共聚物的合成[期刊论文]-高分子学报 2001(03)

离子交换树脂)

摘要纠错编辑摘要 离子交换树脂常用于原水处理的有钠型阳离子交换树脂和阴离子交换树脂,全名称由分类名称、骨架(或基因)名称、基本名称构成。根据树脂的酸碱性分,属酸性的在名称前加“阳”,强酸性阳离子树脂与NaCl作用,转变为钠型树脂使用,就叫做“钠型阳离子交换树脂”。属碱性的在名称前加“阴”。 离子交换树脂-离子交换树脂 离子交换树脂-正文 一类带有功能基的网状结构的高分子化合物,加热不熔,也不溶解于任何介质,能同溶液里的离子起交换反应。离子交换反应与无机化学的置换或复分解反应类似,如硫酸钠与硝酸钡的化学反应: 所差异的只是,无机化学的复分解反应一般是均相反应,而在离子交换树脂上进行的反应是非均相反应。最主要的离子交换反应有: ①阳离子交换树脂的交换反应: R为高分子强酸基,如结构式a、b。 ②阴离子交换树脂的交换反应: R为高分子强碱基,如结构式c。 简史离子交换树脂开始出现于1935年,当时,英国人B.A.亚当斯和E.L.霍姆斯发现,苯酚磺酸-甲醛逐步聚合物能够交换阳离子,其后,又发现间苯二胺与甲醛的聚合物具有交换阴离子的性能。1939年德国法本公司和1941年美国的树脂产品和化学品公司先后开始工业生产,并分别以Wofatit和Amberlite作为商品名。1944年美国人G.F.达莱利奥合成了苯乙烯系离子交换树脂。第二次世界大战期间,在德国,Wofatit除用于水的精制外,还从人造丝工厂废液中回收铜氨,从照像废液中回收银。在这期间,美国将离子交换树脂用于从贫铀矿中提取铀及用于核裂变生成物、超铀元素、稀土元素的分离。战后,离子交换树脂的合成和应用进一步得到发展,在水纯化领域中,采用混合床脱盐法,制得了电阻率为1800万欧·厘米的高纯水。50年代以后,开展了膜状离子交换树脂的研究,开辟了电化学的新领域。60年代初期,为适应尖端科学的发展,又研制出耐压、耐磨、高交换速度、能交换或吸

D阴离子交换树脂

D301阴离子交换树脂 本产品是大孔结构的苯乙烯一二乙烯苯共聚体上带有叔胺基[-N(CH3)2]的离子交换树脂,其碱性较弱,能在酸性、近中性介质中有效地交换无机酸及硅酸根,并能吸附分子尺寸较大的杂质以及在非水溶液中使用,该树脂具有再生效率高、碱水耗低、交换容量大、抗有机物污染及抗氧化能力强、机械强度好等优点。本产品相当于美国Amberlite IRA-93,德国Lewatit MP-60,日本Diaion W A-30,法国Duolite A305,前苏联AH-89×77Ⅱ,英国Zerolite MPH,相当于我国老牌号:D354、D351、710、D370。 用途:本产品主要用于纯水及高纯水的制备,用于阴复床、阴双层床系统,对含盐量较高的水源尤为合适,并能保护强碱阴树脂不受有机物污染,以及糖液脱色含铬废水的处理及回收等等。 使用时参考指标 1.PH范围:0-9 2.允许温度(℃):≤100 3.膨胀率:%(OH-→Cl-)≤35 4.工业用树脂层高度:m 1.0-3.0 5.再生液浓度:%NaOH:2.0-4.0 6.再生剂用量(按100%计), kg/m3湿树脂:NaOH(工业):40-70 7.再生液流速:m/h 4-6 8.再生接触时间:minute: 30-50 9.正洗流速:m/h:15-25 10.正洗时间:minute:约25 11.运行流速:m/h, 15-25 12.工作交换容量:mmol/l(湿树脂)≥950或对六价铬吸附量g/l(湿树脂)≥75 主要性能指标: 指标名称D301D301FC D301SC 全交换容量 mmol/g≥ 4.8 强地基团容量 mmol/g≥ 1.0 体积交换容量 mmol/ml≥ 1.4 含水量%48-58 湿视密度g/ml0.65-0.72 湿真密度g/ml 1.03-1.06 粒度%(0.315-1.25mm) ≥95 (0.45-1.25mm)≥95(0.315-0.60mm≥95 有效粒径mm0.40-0.70≥0.50.35-0.50均一系数≤ 1.60 1.60 1.40

离子交换树脂注意事项

2015离子交换树脂的贮存和装填 一、Lewatit 离子交换树脂的贮存 1、要保持树脂的水分。Lewatit树脂出厂时,其含水率是饱和的,在贮存过程中必须防止水分的消失。建议将离子交换树脂储存于干燥、没有阳光直射的室内.如发现树脂变干时,切忌将树脂直接置于水中浸泡,而应该将它置于饱和食盐水中浸泡,使树脂缓慢膨胀,然后再逐渐稀释食盐水溶液。 2、应将树脂贮存在产品资料中推荐的合适温度下。若贮存的温度过高,容易引起树脂交换基团的分解和微生物污染。若贮存在水的冰点之下,会使树脂内的水分冻结。如果树脂冻结,不能用机械方法处理,将其置于环境温度中逐步解冻。在处理或使用前,应当使树脂完全解冻。不能试图去加速解冻过程。 3、防止树脂受到污染。树脂贮存时要避免和铁容器、氧化剂和油类物质直接接触,以免树脂被污染或被氧化降解。 4、贮存期不要超过产品资料中的推荐值。 二、树脂的装填 1、离子交换器在装填树脂前要彻底清理和检查。确保所有接受树脂的容器在装树脂前是清洁的并用去离子水淋洗过。 2、用去离子水将树脂装入再生塔中,在再生塔中加入去离子水,以使下部排水管免受树脂的冲击。建议用水力引入器将混合水的树脂装入容器。也可以“倒”入容器,但是要始终将液面保持在树脂层上面。不要用机械泵装填树脂。速率最大不超过1m/s,水和树脂的混合比例>2:1。 3、确信去离子水的液面至少高于已经装入的树脂床的0.5m以上。然后将树脂浸泡在去离子水中至少2小时。浸泡时间越长越好,对树脂无害。(对于弱碱性和中碱性树脂(Lewatit MP 62,MonoPlus MP 64等)必须过夜使之浸泡透,防止反洗时损失树脂。 4、浸泡结束后,仔细并彻底反洗树脂约30min。除去所有的树脂细颗粒以及在装填过程中带入的外界杂质。可能会有一些细树脂,也可能没有。反洗出口处不应该有视窗,其会妨碍树脂细颗粒的去除。所有的细颗粒必须反洗出容器。小心不要将好的树脂也反洗出容器。阳树脂的反洗流出液开始的时候可能是棕色的,不必担心,这是磺酸树脂的共有特点,继续反洗,一直到反洗液澄清无细颗粒。推荐分步反洗,每次反洗50%的树脂,反洗速率根据各树脂的技术资料。阴树脂和阳树脂最好使用两个不同的反洗塔,防止交叉污染。 5、在所有的过程中,需要使用去离子水,如果没有去离子水,先用原水反洗阳离子树脂,然后用阳离子树脂软化后的原水,反洗和装填阴树脂。 5、第一次使用树脂前,使用倍量再生剂,再生树脂。注意:只需要增加再生剂的量,不要增加再生剂的浓度。 6、由于树脂在再生过程中会膨胀,所以推荐先装填90%的树脂,再生,淋洗,然后根据树脂的膨胀程度补填剩余的树脂 离子交换树脂床正确的反洗和再生 只有对离子交换树脂床采用适当的反洗和再生措施,才可以使离子交换树脂床正常有效的运行。如果反洗和再生的措施不恰当,可能会导致下列问题: a)树脂床的压降增高 b)由于额外的机械压力,会导致树脂颗粒易破碎 c)离子柱出口出的离子泄漏增大

相关文档
最新文档