八年级数学压轴题 期末复习试卷测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学压轴题期末复习试卷测试卷附答案
一、压轴题
1.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平
-+-=.
面直角坐标系,点A(0,a),C(b,0)满足a6b80
(1)a= ;b= ;直角三角形AOC的面积为.
(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.
(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分
∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).
2.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM =BM,连接AD.
(1)如图①,求证:DAM≌BCM;
(2)已知点N是BC的中点,连接AN.
①如图②,求证:ACN≌BCM;
②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.
3.如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC
(1)如图1,求C点坐标;
(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;
(3)在(2)的条件下若C、P,Q三点共线,直接写出此时∠APB的度数及P点坐标
4.如图,在平面直角坐标系中,直线y=﹣3
4
x+m分别与x轴、y轴交于点B、A.其中B
点坐标为(12,0),直线y=3
8
x与直线AB相交于点C.
(1)求点A的坐标.
(2)求△BOC的面积.
(3)点D为直线AB上的一个动点,过点D作y轴的平行线DE,DE与直线OC交于点E (点D与点E不重合).设点D的横坐标为t,线段DE长度为d.
①求d与t的函数解析式(写出自变量的取值范围).
②当动点D在线段AC上运动时,以DE为边在DE的左侧作正方形DEPQ,若以点H
(1
2
,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点时,请直接写出t
的取值范围.
5.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.
图1 图2 (1)求直线BC 的解析式;
(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标;
(3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标;
6.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:
若1,(2),(2)
b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).
(1)①点3,1)-的限变点的坐标是________;
②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)
(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.
7.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .
①请直接写出∠AEB 的度数为_____;
②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;
(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.
8.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.
(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;
(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.
9.(1)填空
①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;
②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.
(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.
10.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .
(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;
(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接
BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.
11.如图,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥AD ,且AB =AD +BC ,E 是DC 的中点,连结BE 并延长交AD 的延长线于G .
(1)求证:DG=BC;
(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.
(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.12.在等腰Rt△ABC中,AB=AC,∠BAC=90°
(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF
①求证:△AED≌△AFD;
②当BE=3,CE=7时,求DE的长;
(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.
【参考答案】***试卷处理标记,请不要删除
一、压轴题
t=时,使得△ODP与△ODQ的面积相等;(3)1.(1)6;8;24;(2)存在 2.4
∠GOD+∠ACE=∠OHC,见解析
【解析】
【分析】
(1)利用非负性即可求出a,b即可得出结论,即可求出△ABC的面积;
(2)先表示出OQ,OP,利用那个面积相等,建立方程求解即可得出结论;
(3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理
∠FHO=∠GOD,即可得出结论.
【详解】
--=,
解:(1) 解:(1)∵a6b80
∴a-6=0,b-8=0,
∴a=6,b=8, ∴A (0,6),C (8,0);
∴S △ABC=6×8÷2=24,
故答案为(0,6),(8,0); 6;8;24
(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322
ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =
∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等
(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:
∵x 轴⊥y 轴,
∴∠AOC=∠DOC+∠AOD=90°
∴∠OAC+∠ACO=90°
又∵∠DOC=∠DCO
∴∠OAC=∠AOD
∵y 轴平分∠GOD
∴∠GOA=∠AOD
∴∠GOA=∠OAC
∴OG ∥AC ,
如图,过点H 作HF ∥OG 交x 轴于F ,
∴HF ∥AC
∴∠FHC=∠ACE
同理∠FHO=∠GOD ,
∵OG ∥FH ,
∴∠GOD=∠FHO ,
∴∠GOD+∠ACE=∠FHO+∠FHC
即∠GOD+∠ACE=∠OHC ,
∴2∠GOA+∠ACE=∠OHC .
∴∠GOD+∠ACE=∠OHC .
【点睛】
此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.
2.(1)见解析;(2)①见解析;②见解析
【解析】
【分析】
(1)由点M 是AC 中点知AM=CM ,结合∠AMD=∠CMB 和DM=BM 即可得证;
(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;
②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由
∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.
【详解】
解:(1)∵点M是AC中点,
∴AM=CM,
在△DAM和△BCM中,

AM CM
AMD CMB
DM BM
=


∠=∠

⎪=


∴△DAM≌△BCM(SAS);
(2)①∵点M是AC中点,点N是BC中点,
∴CM=
1
2
AC,CN=
1
2
BC,
∵△ABC是等腰直角三角形,
∴AC=BC,
∴CM=CN,
在△BCM和△ACN中,

CM CN
C C
BC AC
=


∠=∠

⎪=


∴△BCM≌△ACN(SAS);
②证明:取AD中点F,连接EF,
则AD=2AF,
∵△BCM≌△ACN,
∴AN=BM,∠CBM=∠CAN,
∵△DAM≌△BCM,
∴∠CBM=∠ADM,AD=BC=2CN,
∴AF=CN,
∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,
由(1)知,△DAM≌△BCM,
∴∠DBC=∠ADB ,
∴AD ∥BC ,
∴∠EAF=∠ANC ,
在△EAF 和△ANC 中,
AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩

∴△EAF ≌△ANC (SAS ),
∴∠NAC=∠AEF ,∠C=∠AFE=90°,
∴∠AFE=∠DFE=90°,
∵F 为AD 中点,
∴AF=DF ,
在△AFE 和△DFE 中,
AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩

∴△AFE ≌△DFE (SAS ),
∴∠EAD=∠EDA=∠ANC ,
∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,
∴BD ⊥DE .
【点睛】
本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.
3.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒
∠= 【解析】
【分析】
(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;
(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;
(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到
∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.
【详解】
解:(1)作CH ⊥y 轴于H ,
则∠BCH+∠CBH=90°,
因为AB BC ⊥,
所以.∠ABO+∠CBH=90°,
所以∠ABO=∠BCH ,
在△ABO 和△BCH 中,
ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩
ABO BCH ∴∆≅∆
:BH=OA=3,CH=OB=1,
:OH=OB+BH=4,
所以C 点的坐标为(1,-4);
(2)因为∠PBQ=∠ABC=90°,
,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠
在△PBA 和△QBC 中,
BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩
PBA QBC ∴∆≅∆
:.PA=CQ ;
(3) ()135,1,0APB P ︒
∠= BPQ ∆是等腰直角三角形,
:所以∠BQP=45°,
当C 、P ,Q 三点共线时,∠BQC=135°,
由(2)可知,PBA QBC ∴∆≅∆;
所以∠BPA=∠BQC=135°,
所以∠OPB=45°,
所以.OP=OB=1,
所以P 点坐标为(1,0) .
【点睛】
本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
4.(1)点A 坐标为(0,9);(2)△BOC 的面积=18;(3)①当t <8时,d =﹣98t+9,当t >8时,d =98t ﹣9;②12≤t≤1或7617≤t≤8017
. 【解析】
【分析】
(1)将点B 坐标代入解析式可求直线AB 解析式,即可求点A 坐标;
(2)联立方程组可求点C 坐标,即可求解;
(3)由题意列出不等式组,可求解.
【详解】
解:(1)∵直线y
=﹣
3
4
x+m与y轴交于点B(12,0),
∴0=﹣3
4
×12+m,
∴m=9,
∴直线AB的解析式为:y=﹣3
4
x+9,
当x=0时,y=9,
∴点A坐标为(0,9);
(2)由题意可得:
3
8
3
9
4
y x
y x

=
⎪⎪

⎪=+
⎪⎩

解得:
8
3 x
y
=


=


∴点C(8,3),
∴△BOC的面积=1
2
×12×3=18;
(3)①如图,
∵点D的横坐标为t,
∴点D(t,﹣3
4
t+9),点E(t,
3
8
t),
当t<8时,d=﹣3
4
t+9﹣
3
8
t=﹣
9
8
t+9,
当t>8时,d=3
8
t+
3
4
t﹣9=
9
8
t﹣9;
②∵以点H(1
2
,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点,
∴12≤t≤1或919829918
t t t t ⎧-+≤-⎪⎪⎨⎪-+≥-⎪⎩, ∴12≤t≤1或7617≤t≤8017
. 【点睛】
本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.
5.(1)443y x =-
+;(2)612(,)55M ;(3)23(0,)7
G 或(0,-1)G 【解析】
【分析】
(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;
(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;
(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.
【详解】
解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,
∴A (-2,0),B (0,4),,
又∵OC=3,
∴C (3,0),
设直线BC 的解析式为y=kx+b ,将B 、C 的坐标代入得: 304k b b +=⎧⎨=⎩
, 解得:434
k b ⎧=-⎪⎨⎪=⎩,
∴直线BC 的解析式为443
y x =-
+; (2)连接OM ,
∵S△AMB=S△AOB,
∴直线OM平行于直线AB,故设直线OM解析式为:2
y x
=,
将直线OM的解析式与直线BC的解析式联立得方程组
2
4
4
3
y x
y x
=



=-+
⎪⎩

解得:
6
5
12
5
x
y

=
⎪⎪

⎪=
⎪⎩
故点
612
(,)
55
M;
(3)∵FA=FB,A(-2,0),B(0,4),
∴F(-1,2),设G(0,n),
①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.
∵四边形FGQP是正方形,易证△FMG≌△GNQ,
∴MG=NQ=1,FM=GN=n-2,
∴Q(n-2,n-1),
∵点Q在直线44
3
y x
=-+上,

4
1(2)4
3
n n
-=--+,
∴23=7
n , ∴23(0,
)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),
∵点Q 在直线443y x =-
+上, ∴4+1(2)43
n n =-
-+, ∴n=-1, ∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,
)7
G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
6.(1)①
()3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】
【分析】
(1)利用限变点的定义直接解答即可;
(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;
(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;
(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.
【详解】
解:(1)①∵32
a =<,
∴11b b ==-=',
∴坐标为:(
)
3,1,
故答案为:()3,1; ②∵对于限变点来说,横坐标保持不变,
∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,
, 限变点(2,1)B 对应的原来点的坐标为:()2,2,
∵()2,2满足2y =,
∴这个点是B ,
故答案为:B ;
(2)∵点C 的坐标为(2,2)--,
∴OC 的关系式为:()0y x x =≤,
∵点D 的坐标为(2,2)-,
∴OD 的关系式为:()0y x x =-≥,
∴点P 满足的关系式为:()(
)00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:
当2x ≥时:1b x '=--,
当02x <<时:b x x '=-=,
当0x ≤时,b x x '==-,
图像如下:
通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,
当2x <时,0b '≥,∴0m =,
∴()033s m n =-=--=;
(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,
,, 把(2,5)E --,(,3)F k k -代入得:253
a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x
b x x x -⎧'=⎨
-=--<⎩, 图象如下:
当x =2时,b ′取最小值,b '=2﹣4=﹣2,
当b '=5时,
x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,
当b ′=1时,
x ﹣4=1,解得:x =5,
∵ 25b '-≤≤,
∴由图象可知,k 的取值范围时:59k ≤≤.
【点睛】
本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.
7.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.
【解析】
【分析】
(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;
(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,
∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出
△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .
【详解】
(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,
∴∠ACD=∠BCE ,
在△ACD 和△BCE 中,
AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩
, ∴△ACD ≌△BCE ,
∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,
∴∠AEB=∠CEB−∠CED=60°;
②AD=BE.
证明:∵△ACD ≌△BCE ,
∴AD=BE .
(2)∠AEB =90°;AE=2CM+BE ;理由如下:
∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,
∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,
∴△ACD ≌△BCE ,
∴AD = BE ,∠BEC = ∠ADC=135°.
∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.
在等腰直角△DCE 中,CM 为斜边DE 上的高,
∴CM =DM= ME ,∴DE = 2CM .
∴AE = DE+AD=2CM+BE .
【点睛】
本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.
8.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或
(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2
P -,(2,2)Q -.
【解析】
【分析】
(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;
(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.
【详解】
(1)AP PD ⊥
90APB DPC ∴∠+∠=
AB x ⊥轴
90A APB ∴∠+∠=
A DPC ∴∠=∠
在ABP ∆和PCD ∆中
A DPC A
B PC
ABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩
()ABP PCD ASA ∴∆≅∆
AP DP ∴=,3DC PB ==
(2,3)D ∴
(2)设(,0)P a ,(2,)Q b
①AB PC =,BP CQ =
223a a b ⎧-=⎪⎨+=⎪⎩
,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,
322a a b +=-⎧⎨=⎩,解得122
a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2
P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)
Q -或1(,0)2P -
,(2,2)Q -或1(,0)2
P -,(2,2)Q - 【点睛】 考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.
9.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.
【解析】
【分析】
(1)①如图①知1112EMC BMC ∠=∠,1112
C MF C MC ∠=∠得 ()1112
EMF BMC C MC ∠=∠+∠可求出解.
②由图②知111111,22EBA ABC C BF C BC ∠=
∠∠=∠得()1112
EBF ABC C BC ∠=∠+∠可求出解. (2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出
11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.
②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出
()
112906090AMC ︒︒︒-+∠=,即可求出解. (3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.
【详解】
解:(1)①如图①中,
1112EMC BMC ∠=∠,1112
C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=
∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22
EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=
∠+∠=⨯=, 故答案为45︒.
(2)①如图③中由折叠可知,
11,CMF FMC BME EMB ∠=∠∠=∠,
1111C MF EMB EMF C MB ∠+∠-∠=∠,
11CMF BME EMF C MB ∴∠+∠-∠=∠,
11()BMC EMF EMF C MB ∴∠-∠-∠=∠,
111808020C MB ︒︒︒∴-=∠=;
②如图④中根据折叠可知,
11,CMF C MF ABE A BE ∠=∠∠=∠,
112290CMF ABE A MC ︒∠+∠+∠=,
112()90CMF ABE A MC ︒∴∠+∠+∠=,
()1129090EMF AMC ︒︒∴-∠+∠=,
()11
2906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;
(3)如图⑤-1中,由折叠可知,aββγ
-=-,
2
aγβ
∴+=;
如图⑤-2中,由折叠可知,aββγ
-=+,
2
aγβ
∴-=.
【点睛】
本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.
10.(1)全等,理由见解析;(2)t=3.5秒或5秒
【解析】
【分析】
(1)根据垂直的定义得到∠DAC=∠ECB,利用AAS定理证明△ACD≌△CBE;
(2)分点F沿C→B路径运动和点F沿B→C路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;
【详解】
解:(1)△ACD与△CBE全等.
理由如下:∵AD⊥直线l,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠DAC=∠ECB,
在△ACD和△CBE中,
ADC CEB
DAC ECB
CA CB
∠=∠


∠=∠

⎪=


∴△ACD≌△CBE(AAS);
(2)由题意得,AM=t,FN=3t,
则CM=8-t,
由折叠的性质可知,CF=CB=6,
∴CN=6-3t,
点N在BC上时,△CMN为等腰直角三角形,
当点N沿C→B路径运动时,由题意得,8-t=3t-6,
解得,t=3.5,
当点N沿B→C路径运动时,由题意得,8-t=18-3t,
解得,t=5,
综上所述,当t=3.5秒或5秒时,△CMN为等腰直角三角形;
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.
11.(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析
【解析】
【分析】
(1)证明△DEG≌△CEB(AAS)即可解决问题.
(2)想办法证明∠AFD=∠ABG=45°可得结论.
(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.
【详解】
(1)证明:∵AD∥BC,
∴∠DGE=∠CBE,∠GDE=∠BCE,
∵E是DC的中点,即DE=CE,
∴△DEG≌△CEB(AAS),
∴DG=BC;
(2)解:当F运动到AF=AD时,FD∥BG.
理由:由(1)知DG=BC,
∵AB=AD+BC,AF=AD,
∴BF=BC=DG,
∴AB=AG,
∵∠BAG=90°,
∴∠AFD=∠ABG=45°,
∴FD∥BG,
故答案为:F运动到AF=AD时,FD∥BG;
(3)解:结论:FH=HD.
理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,
∵FD∥BG,
∴AE⊥FD,
∵△AFD为等腰直角三角形,
∴FH=HD,
故答案为:FH=HD.
【点睛】
本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.
12.(1)①见解析;②DE=29
7
;(2)DE的值为517
【解析】
【分析】
(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;
(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.
【详解】
(1)①如图1中,
∵将△ABE绕点A逆时针旋转90°后,得到△AFC,
∴△BAE≌△CAF,
∴AE=AF,∠BAE=∠CAF,
∵∠BAC=90°,∠EAD=45°,
∴∠CAD+∠BAE=∠CAD+∠CAF=45°,
∴∠DAE=∠DAF,
∵DA=DA,AE=AF,
∴△AED≌△AFD(SAS);
②如图1中,设DE=x,则CD=7﹣x.
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵∠ABE=∠ACF=45°,
∴∠DCF=90°,
∵△AED≌△AFD(SAS),
∴DE=DF=x,
∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,
∴x2=(7﹣x)2+32,
∴x=29
7

∴DE=29
7

(2)∵BD=3,BC=9,
∴分两种情况如下:
①当点E在线段BC上时,如图2中,连接BE.
∵∠BAC=∠EAD=90°,
∴∠EAB=∠DAC,
∵AE=AD,AB=AC,
∴△EAB≌△DAC(SAS),
∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,
∴∠EBD=90°,
∴DE2=BE2+BD2=62+32=45,
∴DE=35;
②当点D在CB的延长线上时,如图3中,连接BE.
同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,
∴DE2=EB2+BD2=144+9=153,
∴DE=317,
综上所述,DE的值为35或317.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。

相关文档
最新文档