2019数学二轮基本内容十大攻略第03讲函数与不等式问题的解题技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲函数与不等式问题的解题技巧
【命题趋向】
全国高考数学科《考试大纲》为走向高考的莘莘学子指明了复习备考的方向.考纲是考试法典,是命题的依据,是备考的总纲.科学备考的首要任务,就是要认真学习、研究考纲.对照2007 年的考纲和高考函数试题有这样几个特点:
1.通过选择题和填空题,全面考查函数的基本概念,性质和图象.
2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现.
3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查.
4.一些省市对函数应用题的考查是与导数的应用结合起来考查的.
5.涌现了一些函数新题型.
6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导.
函数类试题在试题中所占分值一般为22---35 分.
而2007 年的不等式试题则有这样几个特点:
1 .在选择题中会继续考查比较大小,可能与函数、方程、三角等知识结合出题.
2 .在选择题与填空题中注意不等式的解法建立不等式求参数的取值范围,以及求最大值和最小值应用题.
3 .解题中注意不等式与函数、方程、数列、应用题、解几的综合、突出渗透数学思想和方法.
分值在27---32 分之间,一般为 2 个选择题,1个填空题, 1 个解答题.
可以预测在2008 年的高考试题中,会有一些简单求函数的反函数,与导数结合的函数单调性-函数极值-函数最值问题;选择题与填空题中会出现一些与函数、方程、三角等知识结合的不等式
问题,在解答题中会出现一些不等式的解法以及建立不等式求参数的取值范围,和求最大值和最小值的应用题特别是不等式与函数、方程、数列、应用题、解几的综合题,这些题目会突出渗透数学思想和方法,值得注意。
【考点透视】
1.了解映射的概念,理解函数的概念.
2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.
3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.
4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.
6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.7.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力.
8.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式.
9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法
等),
使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题.
10.通过证明不等式的过程, 培养自觉运用数形结合、 函数等基本数学思想方法证明不 等式的能力.
11 •能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.
12.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解 析几何等各部分知识中的应用, 深化数学知识间的融汇贯通, 从而提高分析问题解决问题的
能力.在应用不等式的基本知识、方法、
思想解决问题的过程中, 提高学生数学素质及创新
意识.
【例题解析】 1•函数的定义域及其求
法
函数的定义域及其求法是近几年高考考查的重点内容之一 •这里主要帮助考生灵活掌握
求定义域的各种方法,并会应用用函数的定义域解决有关问题
1
例1 . (2007年广东卷理)已知函数f (x)
.的定义域为M , g(x)= In(1 x)的定义域为N ,则Min N=
(A ) {x| x 1} (B ) {x|x 1}
(C ) {x| 1 x 1}
(D )
命题意图:本题主要考查含有分式、无理式和对数的函数的定义域的求法
1 解:函数f (x) ----- 的定义域 M= x x 1 , g(x)= ln(1 x)的定义域 N= x x 1 ,「• Mn V 1 x
N={x| 1 x 1}. 故选C
例2. ( 2006年湖南卷)函数 y 函2门的定义域是(
(3,+ s ) (B ) [3, + s )
(C ) (4, +s ) ( D )
本题主要考查含有无理式和对数的函数的定义域的求法
x ,x 2
、x, x 0.
故选C.
(A ) 命题意图: 0
log 2 x 2
2.求函数的反函数 求函数的反函数 概念的理解.
解:由X X 4,故选D.
,有助与培养人的逆向思维能力和深化对函数的定义域、值域
,以及函数
例3. (2006年安徽卷)函数
2x, x 2
x ,x
的反函数是(
)
x 2,x
x,x (B)
2x, x 0 .x,x 0 x 2 ,x
.x,x 0
(D)
2x, x 0
x,x 0
命题意图: 2x, x 本题主要考查有关分段函数的反函数的求法
y 2 0,
f 1
(x)
x ?(x 0);
2
x ,y 1
(x)