湖北高考数学试题及答案(理科)

合集下载

年高考真题试卷(湖北卷)数学(理科)参考答案

年高考真题试卷(湖北卷)数学(理科)参考答案

年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.B 2.A 3.B 4.D 5.C 6.B 7.A 8.D 9.C 10.A 二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.162;12.(21),(或满足2a b =的任一组非零实数对()a b ,)13.32-14.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力. 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴. (Ⅱ)2π()2sin 324f θθθ⎛⎫=+⎪⎝⎭π1cos 2322θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦ (1sin 2)32θθ=+-πsin 23212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)分组 频数 频率[)1.301.34, 4 0.04 [)1.341.38, 25 0.25[)1.381.42, 30 0.30 [)1.421.46, 29 0.29 [)1.461.50, 10 0.10 [)1.501.54, 2 0.02 合计1001.00(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于 1.40的概率约为10.040.250.300.442++⨯=. (Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 在CHD Rt △中,2sin 2CH a θ=; 设CBH ϕ∠=,在BHC Rt △中,sin CH a ϕ=,2sin θϕ=. π02θ<<∵, 样本数据频率/组距1.30 1.34 1.38 1.42 1.46 1.50 1.540sin 1θ<<∴,20sin 2ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴.即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫⎪⎝⎭,.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则2(000)(00)(00)000tan 222a a C A a B a D V θ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,, 于是,2tan 22a aVD θ⎛⎫= ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,. 从而2211(0)0002222a aABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥. 同理22211(0)tan 0022222a aAB VD a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··,即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,nn ··. 得02tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,. 可取(112)θ=,,n ,又(00)BC a =-,,, 于是22sin sin 222cot BC BCa ϕθθ===+n n ···, π02θ<<∵,0sin 1θ<<∴,20sin 2ϕ<<.ADBCHVADB CVyz又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则222(000)000000D A B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,220tan 22V a a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是220tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭,,,2002DC a ⎛⎫=- ⎪ ⎪⎝⎭,,,(020)AB a =,,.从而(020)ABDC a =,,·20002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理22(020)0tan 022AB DV a a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,,·,即AB DV ⊥. 又DCDV D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··n n ,得2022tan 022ay ax az θ⎧=⎪⎨-+=⎪⎩,. 可取(tan 01)θ=,,n ,又22022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,, 于是2tan 22sin sin 21tan BC a BC θϕθθ===+n n ···, π02θ<<∵,0sin 1θ<<∴,20sin ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴, 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.ADBCVxy解法4:以CA CB CV ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)022a aC A a B aD ⎛⎫ ⎪⎝⎭,,,,,,,,,,,. 设(00)(0)V t t >,,. (Ⅰ)(00)0(0)22a a CV t CD AB a a ⎛⎫===- ⎪⎝⎭,,,,,,,,,(0)(00)0000AB CV a a t =-=++=,,,,··,即AB CV ⊥.22(0)0002222a a a a AB CD a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.又CV CD C =,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ, 设()x y z =,,n 是平面VAB 的一个非零法向量,则()(0)0()(0)0AB x y z a a ax ay AV x y z a t ax tz ⎧=-=-+=⎪⎨=-=-+=⎪⎩,,,,,,,,,,n n ····取z a =,得x y t ==.可取()t t a =,,n ,又(00)CB a =,,, 于是22222sin 22ta CB CBa t t at aa t ϕ====+++⎛⎫+ ⎪⎝⎭···n n(0)t ∈+,∵∞,sin ϕ关于t 递增. 0sin 2ϕ<<∴,π04ϕ⎛⎫∈ ⎪⎝⎭,∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知A DB CVyz识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122ABN BCN ACN S S S p x x =+=-△△△·.2121212()4p x x p x x x x =-=+-22224822p p k p p k =+=+∴当0k =时,2min ()22ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.2222111111()222O P AC x y p y p '==+-=+∵, 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴2221111()(2)44y p a y p =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2pa =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2p y =, 即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得NO ACB yxNO AC ByxO 'l222222212121211()4148AB k x k x x x x k p k p =+-=++-=++··22212p k k =++·又由点到直线的距离公式得21d k=+.从而22221121222221ABN S dAB p k k p k k ==++=++△·····∴当0k =时,2min ()22ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,, 则有34114()2()22p p PQ x x a y a p a a y a p a ⎡⎤⎛⎫⎛⎫=-=-+-=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令02p a -=,得2pa =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2p y =, 即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=,由题意00()()f x g x =,00()()f x g x ''=.即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =-(舍去).即有222221523ln 3ln 22b a a a a a a a =+-=-. 令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>; 当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数,于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->, 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.解法1:(Ⅰ)证:用数学归纳法证明:(ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+, 因为20x≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1kx kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(Ⅱ)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥,于是11133n nmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mn mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n =,,,. (Ⅲ)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n nnnn n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2131333n nnn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∴. 即34(2)(3)nnn n n n ++++<+.即当6n ≥时,不存在满足该等式的正整数n .故只需要讨论12345n =,,,,的情形: 当1n =时,34≠,等式不成立; 当2n =时,222345+=,等式成立; 当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立;当5n =时,同4n =的情形可分析出,等式不成立. 综上,所求的n 只有23n =,.解法2:(Ⅰ)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明:当1x >-,且0x ≠时,2m ≥,(1)1mx mx +>+. ①(ⅰ)当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立;(ⅱ)假设当(2)m k k =≥时,不等式①成立,即(1)1kx kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >.于是在不等式(1)1kx kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴, 而由(Ⅰ),111033mm n n ⎛⎫--> ⎪++⎝⎭≥, 1111332nnm m m n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤. (Ⅲ)解:假设存在正整数06n ≥使等式00000034(2)(3)nn n n n n ++++=+成立,即有0000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. ② 又由(Ⅱ)可得00000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭000000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭00011111112222n n n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭,与②式矛盾. 故当6n ≥时,不存在满足该等式的正整数n . 下同解法1.。

全国高考湖北省数学(理)试卷及答案【精校版】

全国高考湖北省数学(理)试卷及答案【精校版】

普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 为虚数单位,则=+-2)11(ii ( )A. 1-B. 1C. i -D. i 2. 若二项式7)2(xa x +的展开式中31x 的系数是84,则实数=a ( ) A.2 B.54 C. 1 D.42得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0), (1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A. ①和②B.③和①C. ④和③D.④和② 6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数: ①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.37.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.1 B.1 C. 3 D.78.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.3551139.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.3 B.3C.3D.2 10.已知函数f (x )是定义在R上的奇函数,当0x ≥时,2221()(||)|2|3).2f x x a x a a =-+--若,(1)(),x R f x f x ∀∈-≤则实数a 的取值范围为( )A.11[,]66-B.[C. 11[,]33- D.[ 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设向量(3,3)a =r ,(1,1)b =-r,若()()a b a b λλ+⊥-r r r r ,则实数λ=________.12.直线1l :y=x+a 和2l :y=x+b 将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数.(1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)(二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为BA ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为________17、(本小题满分11分)某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?18(本小题满分12分) 已知等差数列满足:=2,且,成等比数列.(1) 求数列的通项公式.(2) 记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明理由.19(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C. (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。

湖北高考数学试卷2024

湖北高考数学试卷2024

湖北高考数学试卷一、单选题1.已知sin 2sin 36ππαα⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则sin 23πα⎛⎫+= ⎪⎝⎭( ) A.34- B. 34 C.45- D.45 2.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.2023年杭州亚运会期间,甲、乙、丙3名运动员与4名志愿者站成一排拍照留念,若甲与乙相邻、丙不排在两端,则不同的排法种数有( )A.720B.960C.1120D.14405.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.306.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞ 7.设集合{}{}234345M N ==,,,,,, 那么M N ⋃=( )A.{} 2345,,,B.{}234,,C.{}345,,D.{}34,8.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( ) A.[)(]0,11,2 B.[)(]0,11,4 C.[0,1) D.(1,4]9.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=-10.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( )A. D.11.函数y =的定义域为( )A .{|21}x x x >-≠且B .{|21}x x x ≥-≠且C .)[(21,1,)-⋃+∞D .)((21,1,)-⋃+∞12.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120°下13.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位二、填空题14.某班统计考试成绩,数学得90分以上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人.则两科都在90分以上的人数为( ).15.已知球的体积为36π,则该球大圆的面积等于______.16.某校高一、高二、高三年级的学生人数之比为4:4:3,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生数为15,则抽取的样本容量为_______三、解答题17.已知函数1()2f x x x =+- (1)用定义证明函数()f x 在(0,1]上是减函数,在[1,)+∞上是增函数;(2)当函数()lg y f x k =-有两个大于0的零点时,求实数k 的取值范围(3)若不等式f (2x )≧m ·2x 对x ЄR 恒成立,求实数m 的取值范围。

普通高等学校招生全国统一考试数学理试题(湖北卷,解析版)

普通高等学校招生全国统一考试数学理试题(湖北卷,解析版)

普通高等学校招生全国统一考试数学理试题(湖北卷,解析版)本试题卷共4页,三大题21小题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。

2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

咎在试题卷、草稿纸上无效。

3填空题和解答题用0.5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。

答在试题卷、草稿纸上无效。

4考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.i 为虚数单位,则=⎪⎭⎫⎝⎛-+201111i iA.i -B.1-C.iD.1【答案】A解析:因为()i i i i i =-+=-+221111,所以i i i i i i -====⎪⎭⎫⎝⎛-++⨯3350242011201111,故选A.2.已知{}1,log 2>==x x y y U ,⎭⎬⎫⎩⎨⎧>==2,1x x y y P ,则=P C U A. ⎪⎭⎫⎢⎣⎡+∞,21 B.⎪⎭⎫ ⎝⎛21,0 C.()+∞,0 D. ()⎪⎭⎫⎢⎣⎡+∞∞-,210, 【答案】A解析:由已知()+∞=,0U .⎪⎭⎫ ⎝⎛=21,0P ,所以⎪⎭⎫⎢⎣⎡+∞=,21P C U ,故选A.3.已知函数()x x x f cos sin 3-=,R x ∈,若()1≥x f ,则x 的取值范围为A. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,3ππππ B. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,232ππππC. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,656ππππ D. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ 【答案】B解析:由条件1cos sin 3≥-x x 得216sin ≥⎪⎭⎫⎝⎛-πx ,则 652662πππππ+≤-≤+k x k ,解得ππππ+≤≤+k x k 232,Z k ∈,所以选B. 4.将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则A. 0=nB. 1=nC. 2=nD. 3≥n 【答案】C解析:根据抛物线的对称性,正三角形的两个 顶点一定关于x 轴对称,且过焦点的两条直线 倾斜角分别为030和0150,这时过焦点的直线 与抛物线最多只有两个交点,如图所以正三角形 的个数记为n ,2=n ,所以选C.5.已知随机变量ξ服从正态分布()2,2σN ,且()8.04=<ξP ,则()=<<20ξPA. 6.0B. 4.0C. 3.0D. 2.0 【答案】C 解析:如图,正态分布的密度函数示意图所示,函数关于 直线2=x 对称,所以()5.02=<ξP ,并且()()4220<<=<<ξξP P则()()()2420<-<=<<ξξξP P P3.05.08.0=-=所以选C.6.已知定义在R 上的奇函数()x f 和偶函数()x g 满足()()2+-=+-xxaa x g x f()1,0≠>a a 且,若()a g =2,则()=2fA. 2B. 415C. 417 D. 2a 【答案】B解析:由条件()()22222+-=+-aa g f ,()()22222+-=-+--a a g f ,即()()22222+-=+--a a g f ,由此解得()22=g ,()222--=a a f ,所以2=a ,()41522222=-=-f ,所以选B. 7.如图,用21A A K 、、三类不同的元件连接成一个系统,K 正常工作且21A A 、至少有一个正常工作时,系统正常工作.已知21A A K 、、正常工作的概率依次为9.0、8.0、8.0,则系统正常工作的概率为A. 960.0B. 864.0C. 720.0D. 576.0 【答案】B解析:21AA 、至少有一个正常工作的概率为()()211A P A P -()()94.004.018.018.011=-=-⨯--=,系统正常工作概率为()()()()864.096.09.0121=⨯=-A P A P K P ,所以选B.8.已知向量a ()3,z x +=,b ()z y -=,2,且a ⊥b .若y x ,满足不等式1≤+y x ,则z 的取值范围为A. []2,2-B. []3,2-C. []2,3-D. []3,3- 【答案】D解析:因为a ⊥b ,()()032=-++z y z x , 则y x z 32+=,y x ,满足不等式1≤+y x ,则点()y x ,的可行域如图所示,当y x z 32+=经过点()1,0A 时,y x z 32+=当y x z 32+=经过点()1,0-C 时,y x z 32+=取得最小值-3 所以选D.9.若实数b a ,满足0,0≥≥b a ,且0=ab ,则称a 与b 互补,记()b a b a b a --+=22,ϕ,那么()0,=b a ϕ是a 与b 互补A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要的条件 【答案】C解析:若实数b a ,满足0,0≥≥b a ,且0=ab ,则a 与b 至少有一个为0,不妨设0=b ,则K A 1A 2()0,2=-=-=a a a a b a ϕ;反之,若()0,22=--+=b a b a b a ϕ,022≥+=+b a b a两边平方得ab b a b a 22222++=+0=⇔ab ,则a 与b 互补,故选C.10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002t M t M -=,其中0M 为0=t 时铯137的含量,已知30=t 时,铯137的含量的变化率...是2ln 10-(太贝克/年),则()=60M A. 5太贝克 B. 2ln 75太贝克 C. 2ln 150太贝克 D. 150太贝克 【答案】D解析:因为()300/22ln 301tM t M -⨯-=,则()2ln 1022ln 3013030300/-=⨯-=-M M ,解得6000=M ,所以()302600tt M -⨯=,那么()150416002600603060=⨯=⨯=-M (太贝克),所以选D.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.答错位置,书写不清,模棱两可均不得分11.在1831⎪⎪⎭⎫ ⎝⎛-x x 展开式中含15x 的项的系数为 .(结果用数值表示)【答案】17【解析】二项式展开式的通项公式为rr r r x x C T ⎪⎪⎭⎫ ⎝⎛-=-+3118181rr r r x C ⎪⎭⎫ ⎝⎛-=--31211818,令2152118=⇒=--r r r ,含15x 的项的系数为17312218=⎪⎭⎫ ⎝⎛-C ,故填17.12.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为 .(结果用最简分数表示) 【答案】14528 解析:从这30瓶饮料中任取2瓶,设至少取到1瓶已过了保质期饮料为事件A ,从这30瓶饮料中任取2瓶,没有取到1瓶已过了保质期饮料为事件B ,则A 与B 是对立事件,因为()291513272302527⨯⨯==C C B P ,所以()()145282915132711=⨯⨯-=-=B P A P ,所以填14528. 12.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升.【答案】6667 解析:设该数列{}n a 的首项为1a ,公差为d ,依题意⎩⎨⎧=++=+++439874321a a a a a a a ,即⎩⎨⎧=+=+421336411d a d a ,解得⎪⎪⎩⎪⎪⎨⎧==+6673471d d a , 则d d a d a a 374115-+=+=6667662134=-=,所以应该填6667. 14.如图,直角坐标系xOy 所在的平面为α,直角坐标系//Oy x (其中/y 轴与y 轴重合)所在的平面为β,0/45=∠xOx .(Ⅰ)已知平面β内有一点()2,22/P ,则点/P 在平面α内的射影P 的坐标为 ; (Ⅱ)已知平面β内的曲线/C 的方程是()02222/2/=-+-y x,则曲线/C 在平面α内的射影C 的方程是 .【答案】()2,2,()1122=+-y x解析:(Ⅰ)设点/P 在平面α内的射影P 的坐标为()y x ,,则点P 的纵坐标和()2,22/P 纵坐标相同,所以2=y ,过点/P 作Oy H P ⊥/,垂足为H ,连结PH ,则0/45=∠HP P ,P 横坐标0/45cos H P PH x ==2222245cos 0/=⨯==x , 所以点/P 在平面α内的射影P 的坐标为()2,2;(Ⅱ)由(Ⅰ)得2245cos /0/⨯==x x x ,y y =/,所以⎪⎩⎪⎨⎧==yy x x //2代入曲线/C 的方程()02222/2/=-+-y x,得()⇒=-+-0222222y x ()1122=+-y x ,所以射影C的方程填()1122=+-y x .15.给n 个则上而下相连的正方形着黑色或白色.当4≤n 时,在所有不同的着色方案中,黑色正方形互不相邻....的着色方案如下图所示:由此推断,当6=n 时,黑色正方形互不相邻....着色方案共有 种,至少有两个黑色正方形相邻..着色方案共有 种.(结果用数值表示) 【答案】43,21解析:设n 个正方形时黑色正方形互不相邻....的着色方案数为n a ,由图可知, 21=a ,32=a , 213325a a a +=+==, 324538a a a +=+==,由此推断1365435=+=+=a a a ,21138546=+=+=a a a ,故黑色正方形互不相邻....着色方案共有21种;由于给6个正方形着黑色或白色,每一个小正方形有2种方法,所以一共有6422222226==⨯⨯⨯⨯⨯种方法,由于黑色正方形互不相邻....着色方案共有21种,所以至少有两个黑色正方形相邻..着色方案共有432164=-种着色方案,故分别填43,21. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分) 设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC ∆的周长; (Ⅱ)求()C A -cos 的值.本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力n=1n=2 n=3 n=4解析:(Ⅰ)∵441441cos 2222=⨯-+=-+=C ab b a c ∴2=c∴ABC ∆的周长为5221=++=++c b a .(Ⅱ)∵41cos =C ,∴415411cos 1sin 22=⎪⎭⎫ ⎝⎛-=-=C C ,∴8152415sin sin ===cCa A ∵c a <,∴C A <,故A 为锐角,∴878151sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=-=A A ∴()C A -cos C A C A sin sin cos cos +=16114158154187=⨯+⨯=. 17.(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数. (Ⅰ)当2000≤≤x 时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时) 本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力. 解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a故函数()x v 的表达式为()x v =()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x(Ⅱ)依题意并由(Ⅰ)可得()=x f ()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x x x当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20020≤≤x 时,()()()310000220031200312=⎥⎦⎤⎢⎣⎡-+≤-=x x x x x f , 当且仅当x x -=200,即100=x 时,等号成立.所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时. 18.(本小题满分12分) 如图,已知正三棱柱111C B A ABC -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.(Ⅰ)当1=CF 时,求证C A EF 1⊥;(Ⅱ)设二面角E AF C --的大小为θ,θtan 的最小值. 本题主要考查空间直线与平面的位置关系和二面角等基础 知识,同时考查空间想象能力、推理论证能力和运算求解 能力. 解析:ABCEA 1C 1B 119.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,且满足:1a a =(0)a ≠,n n rS a =+1 (n ∈N *,,1)r R r ∈≠-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若存在k ∈ N *,使得1+k S ,k S ,2+k S 成等差数列,试判断:对于任意的m ∈N *,且2m ≥,1+m a ,m a ,2+m a 是否成等差数列,并证明你的结论.20. (本小题满分14分)平面内与两定点1(,0)A a -,2(,0)A a (0)a >连续的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆成双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值得关系;(Ⅱ)当1m =-时,对应的曲线为1C ;对给定的(1,0)(0,)m U ∈-+∞,对应的曲线为2C ,设1F 、2F 是2C 的两个焦点。

(完整版)年湖北高考数学试卷理科+答案

(完整版)年湖北高考数学试卷理科+答案

2012年普通高等学校招生全国统一考试(湖北A卷)数学(理工类)数学(理工类)一、选择题:本大题共10小题,每小题5分,共50分 ,在每小题给出的四个选项中,只有一项是符合题目要求的题目要求的1. 方程2+6+13=0x x 的一个根是的一个根是A -3+2iB 3+2iC -2 + 3iD 2 + 3i()()222+6+13=+3+4=0+3=-4,+3=2x x x x x i ∴±,所以=-32x i ±,故选A2. 命题“命题“300,R x C Q x Q ∃∈∈”的否定是”的否定是A 300,R x C Q x Q ∃∉∈ B 300,R x C Q x Q ∃∈∉ C300,R x C Q x Q ∀∉∈ D 300,R x C Q x Q ∀∈∉存在性命题的否定为“∃”改为“∀”,后面结论加以否定,故为300,R x C Q x Q ∀∈∉,选D 3. 已知二次函数()=y f x 的图像如图所示的图像如图所示, 则它与x 轴所围图形的面积为轴所围图形的面积为A.25πB.43C.32D.2π 由图像可知,二次函数解析式为()2=1-f x x设面积为S ,则()()111223-10014=1-=21-=2-=33Sx dx x dx x x ⎛⎫ ⎪⎪⎝⎭⎰⎰,故选B4.4.已知某几何体的三视图如图所示,则该几何体的体积为已知某几何体的三视图如图所示,则该几何体的体积为已知某几何体的三视图如图所示,则该几何体的体积为 A.83π B.3π C. 103πD.6π 此几何体为一个圆柱切去了一部分,此圆柱底面半径为此几何体为一个圆柱切去了一部分,此圆柱底面半径为 1 1,高为,高为,高为 4 4,现,现在此几何体上方补上一个和此几何体完全一样的几何体在此几何体上方补上一个和此几何体完全一样的几何体,从而构成一个底面半径为1,高为6的圆柱,这个圆柱的体积为=6V π,要求几何体的体积为圆柱体积的一半,为3π,故选B5.5.设设a Z ∈,且013a ≤≤,若201251+a 能被13整除,则=a A.0 B.1 C.11 D.12()()2012201220121201120112012201220122012201251+=52-1+=52-52++-52++a a CCCC a L ,显然上式除了+1a 外,其余各个因式都能被13整除,所以201251+a 能被13整除,只需=12a ,故选,故选 DD 6.6.设设,,,,,a b c x y z 是正数,且222222++=10,++=40,++=20a b c x y z ax by cz ,则++=++a b cx y z A. 14 B. 13 C.12 D.34 由柯西不等式知()()()22222222222++++++=400a b cx y zax by cz ≥,而此时()()222222++++=400a b cx y z 恰好满足取等条件==a b c x y z ,令===,=,=,=a b ck a kx b yk c zk x y z代入到222++=10a b c 中得中得()2222211++=10,=,>0=42k x y z k k k ∴∴,所以由合比定理得++1=====++2a b c a b ck x y z x y z ,故选C7.7.定义在(定义在(定义在(--∞,∞,00)∪()∪(00,+∞)上的函数()f x ,如果对于任意给定的等比数列{}n a ,{}{}n f a 仍是等比数列,则称()f x 为“保等比数列函数”。

湖北省高考数学试卷A(理科)及解析

湖北省高考数学试卷A(理科)及解析

2
1.( 2012?湖北)方程 x +6x+13=0 的一个根是(

A .﹣ 3+2i B. 3+2i C.﹣ 2+3i D. 2+3i
考点 :复数相等的充要条件。
专题 :计算题。
分析: 由方程
x
2
+6x+13=0
中, △ =36 ﹣52= ﹣ 16<0,知
解答: 解:∵方程
2
x +6x+13=0 中,
所求几何体的体积为:
=3π.
故选 B .
点评: 本题考查三视图与几何体的关系,正确判断几何体的特征是解题的关键,考查计算能力.
2012
5.( 2012?湖北)设 a∈ Z ,且 0≤a≤13,若 51 +a 能被 13 整除,则 a=( )
A .0 B. 1 C.11ቤተ መጻሕፍቲ ባይዱD. 12
考点 :二项式定理的应用。
20XX 年湖北省高考数学试卷 A(理科)
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的
2
1.( 2012?湖北)方程 x +6x+13=0 的一个根是(

A .﹣ 3+2i B. 3+2i C.﹣ 2+3i D. 2+3i
2.( 2012?湖北)命题 “?x 0∈CRQ, ∈ Q”的否定是(
专题 :计算题。
分析: 由二项式定理可知
512012+a= (
52﹣1)
2012
+a
的展开式中的项
含有因数 52,要使得能 512012+a 能被 13 整除,只要 a+1

新版湖北省高考理科数学试卷及答案(word版)

新版湖北省高考理科数学试卷及答案(word版)

1 (
1 )n ,
22
22
2个 1 2
五边形数
N (n,5)
3 n2
1 n = (1
1
1)n2
(1
1
1 )n ,
2 2 222
222
1 3个
2
六边形数
N (n,6)
2n2 n
1 =(
1
1
1)n2
1 (
1
1
1 )n= ,
2222
2222
4个 1 2
2个 1 2
………………………………………
推测 k 边形 N ( n, k )

22
2n2 n ,
………………………………………
可以推测 N (n, k) 的表达式,由此计算 N (10,24) _________.
考点名称 创新与拓展 【 13】( C,湖北,理 13) 1000
解析:三角形数 正方形数
N ( n,3)
12 n
1 n,
22
N(n,4) n 2
1 =(
1 )n2
影为
32 A.
2
3 15 B.
2
考点名称 平面向量的概念及其运算
【 7】(A ,湖北,理 6 文 7) A
32 C.
2
3 15 D.
2
解析: AB =( 2,1), CD =(5,5),则向量 AB 在向量 CD 方向上的射影为
AB cos
AB CD (2,1) (5,5) 2 5 1 5 3 2
.
没有降落在指定范围 ”,所以命题 “至少有一位学员没有降落在指定范围 ”可表示为 ( p) ∨ ( q) .
【 6】(B ,湖北,理 4 文 6)将函数 y 3 cos x sin x ( x R) 的图象向左平移 m (m 0) 个单位长度后,所得

理数高考试题答案及解析-湖北

理数高考试题答案及解析-湖北

普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程26130x x ++=的一个根是A .32i -+B .32i +C .23i -+D .23i + 考点分析:本题考察复数的一元二次方程求根. 难易度:★解析:根据复数求根公式:6x 322i -==-±,所以方程的一个根为32i -+ 答案为A.2.命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别. 难易度:★解析:根据对命题的否定知,是把谓词取否定,然后把结论否定。

3.已知二次函数()y f x =的图象如图所示,则它与xA .2π5B .43C .32D .π2考点分析:本题考察利用定积分求面积. 难易度:★解析:根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为12311114(1)()33S x dx x x --=-+=-+=⎰.4.已知某几何体的三视图如图所示,则该几何体的体积为 A .8π3B .3π俯视图侧视图正视图C .10π3D .6π考点分析:本题考察空间几何体的三视图. 难易度:★解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a = A .0B .1C .11D .12考点分析:本题考察二项展开式的系数. 难易度:★ 解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D.6.设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++A .14B .13C .12D .34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于222222)())((2cz by ax z y x c b a ++≥++++等号成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x cb a z y xc b a z c y b x a 所以,答案选C.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()f x = ④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序号为 A .① ② B .③ ④ C .① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,212++=n n n a a a ,①()()()()122212222++++===n n n n n n a f a a a a f a f ;②()()()12221222222+++=≠==+++n a a a a an n a f a f a f n n n n n ;③()()()122122++++===n n n n n n a f a a a a f a f ;④()()()()122122ln ln ln ++++=≠=n n n n n n a f a a a a f a f .选C8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。

2021年高考真题——理科数学(湖北卷) Word版含解析

2021年高考真题——理科数学(湖北卷) Word版含解析

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 为虚数单位,607i =( ) A .i B .-i C .1 D .-1 【答案】A 【解析】试题分析:i i i i -=⋅=⨯31514607,选 B . 考点:复数概念.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1365石 【答案】B 【解析】试题分析:依题意,这批米内夹谷约为169153425428=⨯石,选B. 考点:用样本估量总体.3.已知(1)n x +的开放式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.122B .112 C .102 D .92 【答案】D考点:1.二项式系数,2.二项式系数和. 4.设211(,)XN μσ,222(,)YN μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥【答案】C考点:正态分布密度曲线. 5.设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】试题分析:对命题p :12,,,n a a a 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立;②当0≠n a 时,依据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a 成等比数列, 所以p 是q 的充分条件,但不是q 的必要条件.考点:1.等比数列的判定,2.柯西不等式,3.充分条件与必要条件.6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B 【解析】试题分析:由于()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,由于1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.考点:1.符号函数,2.函数的单调性.7.在区间[0,1]上随机取两个数,x y ,记1p 为大事“12x y +≥”的概率,2p 为大事“1||2x y -≤”的概率,3p 为大事“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<【答案】B(1) (2) (3) 考点:几何概型.8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D考点:1.双曲线的性质,2.离心率.9.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30 【答案】C 【解析】试题分析:由于集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.考点:1.集合的相关学问,2.新定义题型.10.设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6 【答案】 B考点:1.函数的值域,2.不等式的性质.二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答.题卡对应题号......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.已知向量OA AB ⊥,||3OA =,则OA OB •=. 【答案】9 【解析】试题分析:由于OA AB ⊥,||3OA =,所以OA OB •=93||||)(222===•+=+•OA OB OA OA AB OA OA . 考点:1.平面对量的加法法则,2.向量垂直, 3.向量的模与数量积. 12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为.【答案】2考点:1.二倍角的正弦、余弦公式,2.诱导公式,3.函数的零点.13.如图,一辆汽车在一条水平的大路上向正西行驶,处处A 时测得大路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =m.【答案】6100 【解析】试题分析:依题意,30=∠BAC ,105=∠ABC ,在ABC ∆中,由180=∠+∠+∠ACB BAC ABC ,所以45=∠ACB ,由于600=AB ,由正弦定理可得30sin 45sin 600BC=,即2300=BC m , 在BCD Rt ∆中,由于30=∠CBD ,2300=BC ,所以230030tan CD BC CD == ,所以6100=CD m. 考点:1.三角形三内角和定理,2.三角函数的定义,3.有关测量中的的几个术语,4.正弦定理. 14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),。

高考理科数学试卷及解析(湖北卷)

高考理科数学试卷及解析(湖北卷)

普通高等学校夏季招生全国统一考试数学理工农医类(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖北,理1)在复平面内,复数2i=1iz +(i 为虚数单位)的共轭复数对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限2.(2013湖北,理2)已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,B ={x |x 2-6x +8≤0},则A ∩=( ).A .{x|x≤0}B .{x|2≤x≤4}C .{x|0≤x<2或x >4}D .{x|0<x≤2或x≥4}3.(2013湖北,理3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ).A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q 4.(2013湖北,理4)将函数y 3x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ).A .π12B .π6C .π3D .5π65.(2013湖北,理5)已知π0<<4θ,则双曲线C 1:2222=1cos sin x y θθ-与C 2:22222=1sin sin tan y x θθθ-的( ). A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等6.(2013湖北,理6)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB 在CD 方向上的投影为( ).A .322B .3152C .322- D .3152- 7.(2013湖北,理7)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=25731t t-++(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ).A .1+25ln 5B .118+25ln3 C .4+25ln 5 D .4+50ln 28.(2013湖北,理8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V 1,V 2,V 3,V 4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ).A .V1<V2<V4<V3B .V1<V3<V2<V4C .V2<V1<V3<V4D .V2<V3<V1<V49.(2013湖北,理9)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ).A .126125B .65C .168125D .7510.(2013湖北,理10)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ).A .f(x1)>0,f(x2)>12-B .f(x1)<0,f(x2)<12-C .f(x1)>0,f(x2)<12-D .f(x1)<0,f(x2)>12-二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上,答错位置,书写不清,模棱两可均不得分. 11.(2013湖北,理11)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x 的值为__________;(2)在这些用户中,用电量落在区间[100,250)内的户数为__________.12.(2013湖北,理12)阅读如图所示的程序框图,运行相应的程序,输出的结果i =__________.13.(2013湖北,理13)设x ,y ,z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z 则x +y +z =__________. 14.(2013湖北,理14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为2111222n n n n (+)=+.记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=21122n n +, 正方形数 N (n,4)=n 2, 五边形数 N (n,5)=23122n n -, 六边形数 N (n,6)=2n 2-n ,…… ……可以推测N (n ,k )的表达式,由此计算N (10,24)=__________.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.)15.(2013湖北,理15)(选修4—1:几何证明选讲)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB =3AD ,则CEEO的值为______.16.(2013湖北,理16)(选修4—4:坐标系与参数方程) 在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为πsin 42m ρθ⎛⎫+= ⎪⎝⎭(m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为__________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(2013湖北,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.18.(2013湖北,理18)(本小题满分12分)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125. (1)求数列{a n }的通项公式; (2)是否存在正整数m ,使得121111ma a a +++≥?若存在,求m 的最小值;若不存在,说明理由.19.(2013湖北,理19)(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =,记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E -l -C 的大小为β,求证:sin θ=sin αsin β.20.(2013湖北,理20)(本小题满分12分)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的椭机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(1)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4.)(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21.(2013湖北,理21) (本小题满分13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D.记λ=mn,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(2013湖北,理22)(本小题满分14分)设n是正整数,r为正有理数.(1)求函数f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;(2)证明:111111<<11r r r rrn n n nnr r++++-(-)(+)-++;(3)设x∈R,记[x]为不小于...x的最小整数,例如[2]=2,[π]=4,3=12⎡⎤--⎢⎥⎣⎦.令3125S+,求[S]的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈)2013年普通高等学校夏季招生全国统一考试数学理工农医类(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:D解析:∵2i 2i 1i =1i 1i 1i z (-)=+(+)(-)=i(1-i)=1+i , ∴复数2i=1iz +的共轭复数z =1-i ,其在复平面内对应的点(1,-1)位于第四象限.2.答案:C解析:由题意知集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭={x |x ≥0},集合B ={x |x 2-6x +8≤0}={x |2≤x ≤4},={x |x <2或x >4}.因此A ∩()={x |0≤x <2或x >4}.3.答案:A解析:“至少有一位学员没有降落在指定范围”包括甲或乙没有落在指定范围或者两人均没有落在指定范围,因此应为(⌝p )∨(⌝q ).4.答案:B解析:∵y 3x +sin x =π2sin 3x ⎛⎫+ ⎪⎝⎭,∴函数y 3x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,变为函数π=2sin 3y x m ⎛⎫++ ⎪⎝⎭的图象.又∵所得到的图象关于y 轴对称,则有π3+m =k π+π2,k ∈Z , ∴m =ππ6k +,k ∈Z .∵m >0,∴当k =0时,m 的最小值为π6. 5.答案:D解析:对于双曲线C 1:2222=1cos sin x y θθ-,21a =cos 2θ,21b =sin 2θ,21c =1; 对于双曲线C 2:22222=1sin sin tan y x θθθ-,22a =sin 2θ,22b =sin 2θtan 2θ,22c =sin 2θ+sin 2θtan 2θ=sin 2θ(1+tan 2θ)=22222sin sin sin 1cos cos θθθθθ⎛⎫+= ⎪⎝⎭=tan 2θ. ∵只有当θ=ππ4k +(k ∈Z )时,21a =22a 或21b =22b 或21c =22c , 而π0<<4θ,∴排除A ,B ,C. 设双曲线C 1,C 2的离心率分别为e 1,e 2,则2121cos e θ=,22222tan 1sin cos e θθθ==. 故e 1=e 2,即两双曲线的离心率相等.6.答案:A解析:由题意可知AB =(2,1),CD =(5,5),故AB 在CD方向上的投影为2AB CD CD⋅==.7.答案:C 解析:由于v (t )=7-3t +251t+,且汽车停止时速度为0, 因此由v (t )=0可解得t =4, 即汽车从刹车到停止共用4 s. 该汽车在此期间所行驶的距离4025=73d 1s t t t ⎛⎫-+ ⎪+⎝⎭⎰ =423725ln 12tt t ⎡⎤-+(+)⎢⎥⎣⎦ =4+25ln 5(m). 8.答案:C解析:由三视图可知,四个几何体自上而下分别为圆台,圆柱,四棱柱,四棱台.结合题中所给数据可得:V 1=13(4π+π+2π)=7π3,V 2=2π, V 3=23=8,V 4=13(16+4+8)=283.故V 2<V 1<V 3<V 4.9.答案:B解析:由题意可知涂漆面数X 的可能取值为0,1,2,3.由于P (X =0)=27125,P (X =1)=54125,P (X =2)=36125,P (X =3)=8125, 故E (X )=275436815060+1+231251251251251255⨯⨯⨯⨯==+.10.答案:D解析:由题意知,函数f (x )=x (ln x -ax )=x ln x -ax 2有两个极值点, 即f ′(x )=ln x +1-2ax =0在区间(0,+∞)上有两个根. 令h (x )=ln x +1-2ax ,则h ′(x )=121=2ax a x x-+-=,当a ≤0时h ′(x )>0,f ′(x )在区间(0,+∞)上递增,f ′(x )=0不可能有两个正根,∴a >0.由h ′(x )=0,可得12x a =,从而可知h (x )在区间10,2a ⎛⎫ ⎪⎝⎭上递增,在区间1,2a ⎛⎫∞ ⎪⎝⎭上递减.因此需111=ln +11=ln >0222h a a a ⎛⎫- ⎪⎝⎭,即1>12a 时满足条件,故当10<<2a 时,h (x )=0有两个根x 1,x 2,且121<2x x a<.又h (1)=1-2a >0, ∴1211<2x x a<<,从而可知函数f (x )在区间(0,x 1)上递减,在区间(x 1,x 2)上递增,在区间(x 2,+∞)上递减.∴f (x 1)<f (1)=-a <0,f (x 2)>f (1)=12a ->-.故选D. 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应.....题号..的位置上,答错位置,书写不清,模棱两可均不得分. 11.答案:(1)0.004 4 (2)70解析:(1)由频率分布直方图知[200,250)小组的频率为1-(0.002 4+0.003 6+0.006 0+0.002 4+0.001 2)×50=0.22, 于是x =0.2250=0.004 4. (2)∵数据落在[100,250)内的频率为(0.003 6+0.006 0+0.004 4)×50=0.7, ∴所求户数为0.7×100=70. 12.答案:5解析:第一次执行循环体后:a =5,i =2;第二次执行循环体后:a =16,i =3;第三次执行循环体后:a =8,i =4;第四次执行循环体后:a =4,i =5,满足条件,循环结束.输出i =5. 13.解析:由柯西不等式得(x 2+y 2+z 2)(12+22+32)≥(x +2y +3z )2当且仅当123x y z==时等号成立,此时y =2x ,z =3x .∵x 2+y 2+z 2=1,x +2y +3z∴14x =,14y =,14z =. ∴x +y +z=147=. 14.答案:1 000解析:由题中数据可猜想:含n 2项的系数为首项是12,公差是12的等差数列,含n 项的系数为首项是12,公差是12-的等差数列,因此 N (n ,k )=2211112433222222k k k n k n n n ⎡⎤--⎡⎤⎛⎫+(-)++(-)-=+ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦.故N (10,24)=11n 2-10n =11×102-10×10=1 000.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.答案:8解析:设AD =2,则AB =6, 于是BD =4,OD =1. 如图,由射影定理得CD 2=AD ·BD =8, 则CD=在Rt △OCD 中,DE=·OD CD OC ==则83CE ===,EO =OC -CE =81333-=.因此83=813CE EO =.16.答案:3解析:将椭圆C的参数方程cos,sinx ay bϕϕ=⎧⎨=⎩(φ为参数,a>b>0)化为标准方程为22221x ya b+=(a>b>0).又直线l的极坐标方程为πsin42mρθ⎛⎫+=⎪⎝⎭(m为非零常数),即sin cos mρθθ⎛+=⎝⎭,则该直线的一般式为y+x-m=0.圆的极坐标方程为ρ=b,其标准方程为x2+y2=b2.∵直线与圆O相切,b,|m.又∵直线l经过椭圆C的焦点,∴|m|=c.∴c=,c2=2b2.∵a2=b2+c2=3b2,∴22223cea==.∴3e=.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=12或cos A=-2(舍去).因为0<A<π,所以A=π3.(2)由S=12bc sin A=12bc==bc=20.又b=5,知c=4.由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=.又由正弦定理得sin B sin C=222035sin sin sin2147b c bcA A Aa a a⋅==⨯=.18.解:(1)设等比数列{a n}的公比为q,则由已知可得331211125,||10,a qa q a q⎧=⎨-=⎩解得15,33,aq⎧=⎪⎨⎪=⎩或15,1.aq=⎧⎨=-⎩故1533nna-=⋅,或a n=-5·(-1)n-1.(2)若1533nna-=⋅,则113153nna-⎛⎫=⋅ ⎪⎝⎭,故1na⎧⎫⎨⎬⎩⎭是首项为35,公比为13的等比数列,从而1311531=113mmn na=⎡⎤⎛⎫⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-∑=9191<110310m⎡⎤⎛⎫⋅-<⎢⎥⎪⎝⎭⎢⎥⎣⎦.若a n=(-5)·(-1)n-1,则111(1)5nna-=--,故1na⎧⎫⎨⎬⎩⎭是首项为15-,公比为-1的等比数列,从而11,21,150,2,mn nm k kam k k+=+⎧-=-(∈)⎪=⎨⎪=(∈)⎩∑NN故111mn na=<∑.综上,对任何正整数m ,总有111mn na =<∑. 故不存在正整数m ,使得121111ma a a +++≥成立. 19. (1)解:直线l ∥平面PAC ,证明如下:连接EF ,因为E ,F 分别是PA ,PC 的中点, 所以EF ∥AC .又EF 平面ABC ,且AC ⊂平面ABC , 所以EF ∥平面ABC .而EF ⊂平面BEF ,且平面BEF ∩平面ABC =l ,所以EF ∥l .因为l 平面PAC ,EF ⊂平面PAC , 所以直线l ∥平面PAC .(2)证明:(综合法)如图1,连接BD ,由(1)可知交线l 即为直线BD ,且l ∥AC . 因为AB 是O 的直径, 所以AC ⊥BC , 于是l ⊥BC .已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC ⊥l . 而PC ∩BC =C ,所以l ⊥平面PBC . 连接BE ,BF ,因为BF ⊂平面PBC , 所以l ⊥BF .故∠CBF 就是二面角E -l -C 的平面角, 即∠CBF =β. 由12DQ CP =,作DQ ∥CP ,且12DQ CP =. 连接PQ ,DF ,因为F 是CP 的中点,CP =2PF ,所以DQ =PF ,从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF =θ. 又BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF 为锐角,故∠BDF 为异面直线PQ 与EF 所成的角,即∠BDF =α, 于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得sin θ=CF DF ,sin α=BF DF ,sin β=CFBF, 从而sin αsin β=CF BF CFBF DF DF⋅==sin θ, 即sin θ=sin αsin β. (向量法)如图2,由12DQ CP =,作DQ ∥CP ,且12DQ CP =. 连接PQ ,EF ,BE ,BF ,BD ,由(1)可知交线l 即为直线BD .以点C 为原点,向量CA ,CB ,CP 所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系,设CA =a ,CB =b ,CP =2c ,则有C (0,0,0),A (a,0,0),B (0,b,0),P (0,0,2c ),Q (a ,b ,c),E 1,0,2a c ⎛⎫⎪⎝⎭,F (0,0,c ).于是1,0,02FE a ⎛⎫=⎪⎝⎭,QP =(-a ,-b ,c ),BF =(0,-b ,c ),所以cos α=FE QPFE QPa⋅=⋅,从而sin α=.又取平面ABC 的一个法向量为m =(0,0,1),可得sin QP QPa θ⋅==⋅m m ,设平面BEF 的一个法向量为n =(x ,y ,z ),所以由0,0,FE BF ⎧⋅=⎪⎨⋅=⎪⎩n n 可得10,20.ax by cz ⎧=⎪⎨⎪-+=⎩取n =(0,c ,b ).于是|cos β|=||||||⋅=⋅m n m n从而sin β=.故sin αsin β==sin θ,即sin θ=sin αsin β.20.解:(1)由于随机变量服从正态分布(800,50), 故有μ=800,σ=50,P (700<X ≤900)=0.954 4. 由正态分布的对称性,可得p 0=P (X ≤900)=P (X ≤800)+P (800<X ≤900) =1122P +(700<X ≤900)=0.977 2. (2)设A 型、B 型车辆的数量分别为x ,y 辆,则相应的营运成本为1 600x +2 400y . 依题意,x ,y 还需满足:x +y ≤21,y ≤x +7,P (X ≤36x +60y )≥p 0. 由(1)知,p 0=P (X ≤900),故P (X ≤36x +60y )≥p 0等价于36x +60y ≥900.于是问题等价于求满足约束条件21,7,3660900,,0,,,x y y x x y x y x y +≤⎧⎪≤+⎪⎨+≥⎪⎪≥∈⎩N且使目标函数z =1 600x +2 400y 达到最小的x ,y .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上截距2400z 最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆.21.解:依题意可设椭圆C 1和C 2的方程分别为C 1:2222=1x y a m +,C 2:2222=1x y a n+.其中a >m >n >0,λ=>1mn.(1)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为x =0,则S1=12|BD |·|OM |=12a |BD |,S 2=12|AB |·|ON |=12a |AB |,图1所以12||||S BD S AB =. 在C 1和C 2的方程中分别令x =0,可得y A =m ,y B =n ,y D =-m ,于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12=S S λ,则1=1λλλ+-,化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ. 解法2:如图1,若直线l 与y 轴重合,则|BD |=|OB |+|OD |=m +n ,|AB |=|OA |-|OB |=m -n ;S 1=12|BD |·|OM |=12a |BD |, S 2=12|AB |·|ON |=12a |AB |.所以12||1||1S BD m n S AB m n λλ++===--.若12=S S λ,则1=1λλλ+-,化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ.(2)解法1:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则1d ==,2d ==d 1=d 2.图2又S 1=12|BD |d 1,S 2=12|AB |d 2,所以12||||S BD S AB λ==,即|BD |=λ|AB |. 由对称性可知|AB |=|CD |,所以|BC |=|BD |-|AB |=(λ-1)|AB |,|AD |=|BD |+|AB |=(λ+1)|AB |,于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知x C =-x B ,x D =-x A ,于是2||||2A Bx AD BC x ==从而由①和②式可得11λλλ+=(-).③ 令1=1t λλλ+(-),则由m >n ,可得t ≠1,于是由③可解得22222211n t k a t λ(-)=(-).因为k ≠0,所以k 2>0.于是③式关于k 有解,当且仅当222221>01n t a t λ(-)(-), 等价于2221(1)<0t t λ⎛⎫-- ⎪⎝⎭由λ>1,可解得1λ<t <1,即11<11λλλλ+<(-),由λ>1,解得λ> 当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2;当λ>l 使得S 1=λS 2.解法2:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则1d ==,2d ==d 1=d 2.又S 1=12|BD |d 1,S 2=12|AB |d 2,所以12||=||S BD S AB λ=.因为||||A B A Bx x BD AB x x λ+===-,所以11A B x x λλ+=-.由点A (x A ,kx A ),B (x B ,kx B )分别在C 1,C 2上,可得22222=1A A x k x a m +,22222=1B B x k x a n+,两式相减可得22222222=0A B A B x x k x x a mλ-(-)+, 依题意x A >x B >0,所以22A B x x >.所以由上式解得22222222A B B A m x x k a x x λ(-)=(-).因为k 2>0,所以由2222222>0A B B A m x x a x x λ(-)(-),可解得<1A B x x λ<. 从而11<<1λλλ+-,解得λ>当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2; 当λ>l 使得S 1=λS 2.22. (1)解:因为f ′(x )=(r +1)(1+x )r -(r +1)=(r +1)[(1+x )r-1],令f ′(x )=0,解得x =0.当-1<x <0时,f ′(x )<0,所以f (x )在(-1,0)内是减函数; 当x >0时,f ′(x )>0,所以f (x )在(0,+∞)内是增函数. 故函数f (x )在x =0处取得最小值f (0)=0.(2)证明:由(1),当x ∈(-1,+∞)时,有f (x )≥f (0)=0,即(1+x )r +1≥1+(r +1)x ,且等号当且仅当x =0时成立, 故当x >-1且x ≠0时,有(1+x )r +1>1+(r +1)x .①在①中,令1x n =(这时x >-1且x ≠0),得+1111>1+r r n n+⎛⎫+ ⎪⎝⎭. 上式两边同乘nr +1,得(n +1)r +1>nr +1+n r(r +1),即1111r r rn n n r ++(+)-<+.②当n >1时,在①中令1x n=-(这时x >-1且x ≠0),类似可得 1111r r rn n n r ++-(-)>+.③且当n =1时,③也成立. 综合②,③得11111111r r r r rn n n n n r r ++++-(-)(+)-<<++.④(3)解:在④中,令13r =,n 分别取值81,82,83,…,125,得4444333333(8180)(8281)44--<, 4444333333(8281)(8382)44--<, 4444333333(8382)(8483)44--<, ……4444333333(125124)(126125)44--<. 将以上各式相加,并整理得4444333333(12580)(12681)44S --<<. 代入数据计算,可得44333(12580)210.24-≈,44333(12681)210.94-≈.由[S ]的定义,得[S ]=211.。

湖北数学高考真题及答案

湖北数学高考真题及答案

湖北数学高考真题及答案
湖北省普通高校招生考试,简称湖北高考,旨在选拔优秀的学子,评价其学业水平和综合素质。

数学是湖北高考的一门科目,其考试内容涵盖了高中数学课程的各个部分,难度较大,考察学生的思维逻辑和解决问题的能力。

以下将为大家介绍一些湖北数学高考的真题及答案。

一、选择题
1. 设数列{an}的通项公式为an = 2n^2 - 3n + 1,求an + an+1的值。

A. 4n^2 + 4n + 2
B. 4n^2 - 4n + 2
C. 4n^2 - 2
D. 4n^2 + 4n - 2
【答案】A. 4n^2 + 4n + 2
2. 函数f(x) = 36 + 2x^3以O(0,36)为中心的圆C1与函数g(x) = mx^2交于A、B两点,已知四边形OACB为菱形,求m的取值范围。

A. m > √36
B. m ≥ 12
C. m ≤ 10
D. m < 〒36
【答案】B. m ≥ 12
二、填空题
1. 已知集合A = {x | 0 < x ≤ 4},B = {x | -3 ≤ x < 0},则A ∪ B =
______。

【答案】{x | -3 ≤ x ≤ 4}
2. 设a,b为非零实数,若方程组{4x + ay = 8y + b{3x + (a + 1)y = 4y + 3b无解,则a = ____,b = ____。

【答案】a ≠ 4,b ≠ 3
以上为部分湖北数学高考的真题及答案,考生在备考过程中可以参考这些题目,加深对数学知识的理解和运用。

祝各位考生取得优异的成绩,实现自己的高考梦想!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷类型:A
2010年普通高等学校招生全国统一考试(湖北卷)
数学(理工类)
本试卷共4页,三大题21小题,全卷满分150分。

考试用时120分钟。

★祝考试顺利★
注意事项:
1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上。

并将准考证号条形码横贴在答题卡的指定位置。

在用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 为虚数单位,则201111i i +⎛⎫ ⎪-⎝⎭=
A.- i
B.-1
C. i
D.1
2.已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭
,则U C P = A. 1[,)2+∞ B. 10,2⎛⎫ ⎪⎝⎭
C. ()0,+∞
D. 1(,0][,)2
-∞+∞ 3.已知函数11()3cos ,f x x R θθ--=-∈,若()1f x ≥,则x 的取值范围为 A. |,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. |22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭
C. 5{|,}66x k x k k Z π
πππ+≤≤+∈ D. 5{|22,}66
x k x k k Z ππππ+≤≤+∈ 4.将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则
A. n=0
B. n=1
C. n=2
D. n ≥3
试卷类型:A
5.已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=
A.0.6 B.0.4 C.0.3 D.0.2
6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a -+=-+(a >0,且0a ≠).若()2g a =,则()2f =
A .2 B. 154 C. 174
D. 2a 7.如图,用K 、1A 、2A 三类不同的元件连接成一个系统。

当K 正常工作且1A 、2A 至少有一个正常工作时,系统正常工作,已知K 、1A 、2A 正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为
A .0.960 B.0.864 C.0.720 D.0.576
8.已知向量a=(x+z,3),b=(2,y-z),且a ⊥ b.若x,y 满足不等式1x y +≤,则z 的取值范围为
A..[-2,2]
B.[-2,3]
C.[-3,2]
D.[-3,3]
9.若实数a,b 满足0,0,a b ≥≥且0ab =,则称a 与b 互补,记
,那么(),0a b ϕ=是a 与b 互补的
A.必要而不充分的条件
B.充分而不必
要的条件
C.充要条件
D.即不充分也不必要的条件
10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。

假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2t
M t M -=,其中M 0为t=0
时铯137的含量。

已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M (60)=
A.5太贝克
B.75In2太贝克
C.150In2太贝克
D.150太贝克
二、填空题:本大题共5小题,每小题5分,共25分。

请将答案填在答题卡对应题号的位置上,一题两空的题,其中答案按先后次序填写。

答错位置,书写不清,模棱俩可均不给分。

11. 18
x ⎛ ⎝
的展开式中含15x 的项的系数为 12.在30瓶饮料中,有3瓶已过了保质期。

从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 。

(结果用最简分数表示)
13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。

试卷类型A
14.如图,直角坐标系xOy 所在平面为α,直角坐标系''x Oy (其中'y 与y 轴重合)所在的平面为β,'45xOx ∠=︒。

(Ⅰ)已知平面β内有一点'2)P ,则点'P 在平面α内的射影P 的坐标为 ;
(Ⅱ)已知平面β内的曲线'C 的方程是'2'2(220x y +-=,则曲线'C 在平面α内的射影C 的方程是 。

15. 给n 个自上而下相连的正方形着黑色或白色。

当4n ≤时,在所有不同的着色
方案中,黑色正方形互不相连....
的着色方案如下图所示:
由此推断,当6n =时,黑色正方形互不相连....
的着色方案共有 种,至少有两个黑色正方形相连..
的着色方案共有 种,(结果用数值表示) 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分10分)
设ABC 的内角..A B C 所对的边分别为..a b c ,已知11. 2.cos .4
a b C === (Ⅰ)求ABC 的周长
(Ⅱ)求()cos A C -的值
17. (本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况。

在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流速度x 的函数。

当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.
(Ⅰ)当0200x ≤≤时,求函数()v x 的表达式;
(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()().f x x v x =可以达到最大,并求最大值(精确到1辆/每小时)
18. (本小题满分12分)
如图,已知正三棱柱111ABC A B C -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.
(Ⅰ)当CF =1时,求证:EF ⊥1A C ; (Ⅱ)设二面角C AF E --的大小为θ,求tan θ的最小值.
19.(本小题满分13分)
已知数列{}n a 的前n 项和为n S ,且满足:1a a =(0)a ≠,1n n a rS += (n ∈N *,,1)r R r ∈≠-.
(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若存在k ∈ N *,使得1k S +,k S ,2k S +成等差数列,是判断:对于任意的m ∈N *,且2m ≥,1m a +,m a ,2m a +是否成等差数列,并证明你的结论.
20. (本小题满分14分)
平面内与两定点1(,0)A a -,2(,0)A a (0)a >连续的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆成双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值得关系; (Ⅱ)当1m =-时,对应的曲线为1C ;对给定的(1,0)(0,)m U ∈-+∞,对应的曲线为2C ,设1F 、2F 是2C 的两个焦点。

试问:在1C 撒谎个,是否存在点N ,使得△1F N 2F 的面积2||S m a =。

若存在,求tan 1F N 2F 的值;若不存在,请说明理由。

21.(本小题满分14分)
(Ⅰ)已知函数()1f x Inx x =-+,(0,)x ∈+∞,求函数()f x 的最大值; (Ⅱ)设11,a b (1,2k =…,)n 均为正数,证明:
(1)若1122a b a b ++…n n a b ≤12b b ++…n b ,则`11b a 22b a …n b n a 1≤;
(2)若12b b ++…n b =1,则1n ≤11a b 22a b …n a n b ≤21b +22b …2n b 。

相关文档
最新文档