初中七年级下册数学知识点总结(人教版)

合集下载

人教版七年级数学下册知识点总结归纳

人教版七年级数学下册知识点总结归纳

人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。

垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

在同一平面内,过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

同位角相等,两直线平行。

判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

内错角相等,两直线平行。

判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

同旁内角互补,两直线平行。

5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。

两直线平行,同位角相等。

性质2 两条平行线被第三条直线所截,内错角相等。

两直线平行,内错角相等。

性质3 两条平行线被第三条直线所截,同旁内角互补。

两直线平行,同旁内角互补。

5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。

题设是已知事项,结论是由已知事项推出的事项。

数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。

如果题设成立,那么结论一定成立,这样的命题叫做真命题。

题设成立时,不能保证结论一定成立,这样的命题中做假命题。

人教版七年级数学知识点归纳上下册

人教版七年级数学知识点归纳上下册

初一数学知识点总结(初一上学期)代数初步知识一、代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有必然的限制,第一字母所取得数应保证它所在的式子成心义,第二字母所取得数还应使实际生活或生产成心义;单唯一个数或一个字母也是代数式。

二、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常利用“· ” 乘,或省略不写。

(2)数与数相乘,仍应利用“×”乘,不用“· ”乘,也不能省略乘号。

(3)数与字母相乘时,一样在结果中把数写在字母前面,如a×5应写成5a 。

(4)在代数式中显现除法运算时,一样用分数线将被除式和除式联系,如3÷a 写成a3的形式;(5)a 与b 的差写作a-b ,要注意字母顺序;假设只说两数的差,当别离设两数为a 、b 时,那么应分类,写做a-b 和b-a . 3、几个重要的代数式:(1)a 与b 的平方差是:a 2-b 2; a 与b 差的平方是:(a-b )2。

(2)假设a 、b 、c 是正整数,那么两位整数是:10a+b ;那么三位整数是:100a+10b+c 。

(3)假设m 、n 是整数,那么被5除商m 余n 的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个持续整数是:n-一、n 、n+1。

(4)假设b >0,那么正数是:a 2+b ,负数是:-a 2-b ,非负数是:b 2,非正数是:-b 2。

有理数1、有理数: (1)凡能写成ab(a 、b 都是整数且a≠0)形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

(注意:0即不是正数,也不是负数;-a 不必然是负数,+a 也不必然是正数;p 不是有理数)(2)有理数中,一、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

人教版初一数学单元知识点

人教版初一数学单元知识点

人教版初一数学单元知识点初一下册数学知识点总结1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。

这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、全等图形:两个能够重合的图形称为全等图形。

18、变量:变化的数量,就叫变量。

19、自变量:在变化的量中主动发生变化的,变叫自变量。

20、因变量:随着自变量变化而被动发生变化的量,叫因变量。

21、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

22、对称轴:轴对称图形中对折的直线叫做对称轴。

初一下册数学知识点整理一、同底数幂的乘法(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;b)指数是1时,不要误以为没有指数;c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;二、幂的乘方与积的乘方三、同底数幂的除法(1)运用法则的前提是底数相同,只有底数相同,才能用此法则(2)底数可以是具体的数,也可以是单项式或多项式(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负四、整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

人教版七年级数学下册第七章平面直角坐标系知识点归纳完整版

人教版七年级数学下册第七章平面直角坐标系知识点归纳完整版

人教版七年级数学下册第七章平面直角坐标系知识点归纳HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】平面直角坐标系知识点总结1、在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中a为横坐标,b为纵坐标;3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;Y 坐标轴上的点不属于任何象限; b P(a,b)4、四个象限的点的坐标具有如下特征:1象限横坐标x纵坐标y-3 -2 -1 0 1a x-1第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:(1)点 P()所在的象限横、纵坐标、y的取值的正负性;(2)点 P(x,y)所在的数轴横、纵坐标x、y中必有一数为零;y5、在平面直角坐标系中,已知点 P (a,b),则a ;b P (a,b )(1)点 P 到x轴的距离为b;(2)点 P 到y轴的距离为ab (3)点 P 到原点 O 的距离为 PO=a2?b2O x6、平行直线上的点的坐标特征:a)在不x轴平行的直线上,所有点的纵坐标相等;YA B点 A、B 的纵坐标都等于m;mXb)在不y轴平行的直线上,所有点的横坐标相等;YC点 C、D 的横坐标都等于n;n7、 对称点的坐标特征:a) 点 P (m , n ) 关于 x 轴的对称点为 P 1 (m ,?n ) , 即横坐标丌变,纵坐标互为相反数; b) 点 P (m , n ) 关于 y 轴的对称点为 P 2 (?m , n ) , 即纵坐标丌变,横坐标互为相反数; c) 点 P (m , n ) 关于原点的对称点为 P 3 (?m ,?n ) ,即横、纵坐标都互为相反数;yyyPPn P2n n POmX? m? mm XO m X O? n P 1 ? nP 3关于 x 轴对称 关于 y 轴对称 关于原点对称d) 点 P (a , b )关于点 Q (m , n ) 的对称点是 M (2m-a ,2n-b );8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P ( m , n )在第一、三象限的角平分线上,则 m ? n ,即横、纵坐标相等;b) 若点 P ( m , n )在第二、四象限的角平分线上,则 m ???n ,即横、纵坐标互为相反数;yyn P PnOm Xm OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移(1)点的平移将点(x , y )向右(或向左)平移 a 个单位,可得对应点(x+a , y ){或(x-a , y )},可记为“右加左减,纵不变”;将点(x , y )向上(或向下)平移 b 个单位,可得对应点(x , y+b ){或(x , y-b )},可记为“上加下减,横不变”;(2)图形的平移把一个图形各个点的横坐标都加上(或减去)一个正数 a ,相应的新图像就是把原图形向右(或向左)平移 a 个单元得到的。

人教版七年级数学知识点归纳

人教版七年级数学知识点归纳

人教版初一数学知识点总结1(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a0 a是正数;a0 a是负数;a≥0 a是正数或0 a是非负数;a≤0 ? a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.人教版初一数学知识点总结2一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。

它们都是比0小的数。

0既不是正数也不是负数。

我们可以用正数与负数表示具有相反意义的量。

知识点2:有理数的概念和分类:整数和分数统称有理数。

有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数。

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念:(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结

Ⅶ、假设a>0,b<0,a+b>0,那么a、-a、b、-b的大小关系是〔〕A、-a<b<-b<aB、-a<-b<b<aC、-b<a<-a<bD、-b<-a<a<bⅧ、当-1<a<0时,那么有〔〕A、1/a>aB、∣-a3∣>-a3C、-a>a2D、a3<-a2Ⅸ、如果x>2,那么以下四个式子中:①x2>2x②xy>2y③2x>x④1/x<1/2正确的个数是〔〕A、4个B、3个C、2个D、1个Ⅹ、假设x+y>x-y,y-x>y,那么以下式子正确的选项是〔〕A、x+y>0B、y-x<0C、xy<0D、y/x>0Ⅺ、如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,那么〔〕A、m=6B、m等于5,6,7C、5<m<7D、5≤m≤7Ⅻ、-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对任意的a、b,对应的代数式的值最大的是〔〕A、a+bB、a-bC、a+b2D、a2+b4、运用不等式的性质比较大小:例:ⅰ、制作某产品有两种用料方案:方案1是用5X A型钢板,7X B型钢板;方案2是用3X A型钢板,9X B型钢板。

A型钢板比B型钢板的面积大,从省料的角度考虑,应选哪种方案?〔用求差法比较大小〕ⅱ、设a>2,b>3,c>6,令M=abc,N=ab+bc+ac,那么M、N的大小关系是〔〕<提示:用作商比较法>A、M>NB、M<NC、M=ND、以上三种情况都有可能ⅲ、甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条〔a+b〕/2的价格把鱼全部卖出去,结果发现亏了钱,原因是〔〕A、a>bB、a<bC、a=bD、与a、b的大小无关ⅳ、a、b、c、d都是正实数,且a/b<c/d,比较b/(a+b)和d/(c+d)的大小。

〔提示:用求倒数法〕5、不等式与方程、方程组的结合:2x+y=1+3m例:ⅰ、方程组满足x+y<0,那么〔〕A、m>-1B、m>1C、m<-1D、m<1x+2y=1-mⅱ、方程x+2k=4(x+k)+1的解是正数,求k的取值X围。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

()相等的两个角互为对顶角。

()2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

初中数学七年级下册知识点及公式总结大全(人教版)

初中数学七年级下册知识点及公式总结大全(人教版)

初中数学七年级下册知识点及公式总结大全(人教版)第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

4.平行线:在同一平面内,永不相交的两条直线叫做平行线。

5.同位角、内错角、同旁内角:同位角:∠1与∠5、∠2与∠6像这样具有相同位置关系的一对角叫做同位角。

内错角:∠4与∠6、∠3与∠5像这样的一对角叫做内错角。

同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。

6.命题:判断一件事情的语句叫命题。

7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

9.对顶角的性质:对顶角相等。

10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

12.平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

13.平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角互补,两直线平行。

第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。

A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。

2019年人教版七年级数学下册知识点大全(含概念、公式、实用)

2019年人教版七年级数学下册知识点大全(含概念、公式、实用)

第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

七下数学人教版知识点总结

七下数学人教版知识点总结

七下数学人教版知识点总结
七年级的数学学习是初中数学教育的一个重要阶段,同时也是中学数学知识的基础。

在七年级数学学习中,我们将从数的基本概念、整数、分数、代数、几何等方面进行学习。

下面,我将对七下数学人教版的知识点进行总结。

一、数的基本概念
1. 自然数、整数和有理数的概念及它们的互相转化。

2. 正数、零和负数的概念。

3. 分数的概念、分数的运算及其应用。

二、整数
1. 整数的加减法、乘法及其性质,以及用整数解决实际问题的方法。

2. 大于、小于、不大于、不小于、相等和不等的符号。

三、分数
1. 分数的加减、乘除及其性质。

2. 分数的化简、分数的比大小及分数的应用。

四、代数
1. 代数运算基本性质,如交换律、结合律和分配律。

2. 一元一次方程的解法及其应用。

五、几何
1. 角的概念及分类,如钝角、直角和锐角。

2. 线段、射线、直线和平面的概念。

3. 三角形、四边形和多边形的概念及分类。

4. 探究勾股定理的条件和应用。

六、统计与概率
1. 数据的分类、整理和统计。

2. 概率的基本概念及其计算方法。

以上为七下数学人教版的知识点总结,这些知识点是本学年数学教学的重点。

同时,这些知识点的学习还需要我们进行大量的练习,才能够真正掌握,从而更好地应用到实际生活中。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结本章使生了解在平面不重合的直相交平行的位置系,究了直相交的形成的角的学内两条线与两种关研两条线时特征,直互相垂直所具有的特性,直平行的期共存件和所有的特征以及有形平移的两条线两条线长条它关图变换性,利用平移一些美的案质设计优图.。

重点:垂和的性线它质,平行的判定方法和的性,平移和的性,线它质它质以及些的用这组织运.5.1相交线1、邻补角与对顶角直相交所成的四角中存在几不同系的角,的念及性如下表:两线个种关它们概质形图点顶的系边关大小系关角对顶∠1∠与2有公共点顶∠1的两边与∠2的互两边为反向延长线角相等对顶即∠1=∠2角邻补 ∠3∠与4有公共点顶∠3∠与4有一公共,另一条边互反向延边为长。

线∠3+∠4=180°注意点:⑴角是成出的,角是具有特殊位置系的角;对顶对现对顶关两个⑵如果∠α∠与β是角,那一定有∠对顶么α=∠β;反之如果∠α=∠β,那∠么α∠与β不一定是角对顶⑶如果∠α∠与β互角,一定有∠为邻补则α+∠β=180°;反之如果∠α+∠β=180°,∠则α∠与β不一定是角邻补。

⑶直相交形成的四角中,每一角的角有,而角只有一。

两线个个邻补两个对顶个2、垂线⑴定,直相交所成的四角中,有一角是直角,就直互相垂直,其中的一直叫做义当两条线个个时说这两条线条线另一直的垂,的交点叫做垂足。

条线线它们符言作:号语记 第1页共7页1243A BCDO如所示:图AB⊥CD ,垂足为O⑵垂性线质1:一点有且只有一直已知直垂直 过条线与线(平行公理相比与较记)⑶垂性线质2:接直外一点直上各点的所有段中,垂段最短。

:垂段最短。

连线与线线线简称线3、垂线的画法:⑴直上一点已知直的垂;⑵直外一点已知直的垂。

过线画线线过线画线线注意:①一段或射的垂,就是所在直的垂;②一点作段的垂,垂足可在段上,也画条线线线画它们线线过线线线可以在段的延上。

线长线法:⑴一靠:用三角尺一直角靠在已知直上,⑵二移:移三角尺使一点落在的另一直角上,⑶画条边线动它边边三:沿着直角,不要成人的印象是段的。

人教版七年级数学下册一元一次不等式组(基础) 知识讲解

人教版七年级数学下册一元一次不等式组(基础) 知识讲解

人教版七年级数学下册一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.【答案】(1)2x>;(2)3x<-;(3)32x-<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1)313112123x xx x+<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x+>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。

第10章+数据的收集知识点总结及思维导图+2023—2024学年人教版数学七年级下册

第10章+数据的收集知识点总结及思维导图+2023—2024学年人教版数学七年级下册

第10章数据的收集、整理与描述【思维导图】10.1统计调查【知识点】1.在统计调查中,我们采用问卷调查的方法收集数据,利用表格整理数据,利用统计图描述数据,通过分析表和图来了解情况.2.统计图通常有条形统计图、扇形统计图、折线统计图.3.扇形统计图反映的是部分在整体中所占的比例,条形统计图能反映出各部分的具体数目,折线统计图反映了变化趋势,据此可选择合适的统计图来描述数据.4.扇形统计图的制作步骤:(1)根据有关数据先算出各部分在总体中所占的百分数,即部分数据×100%;再算出各总体数据部分圆心角的度数,公式:各部分扇形圆心角的度数=部分占总体的百分比×360°;(2)按比例取适当半径画一个圆;(3)按求得的扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;(4)在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.5.统计调查的方法有全面调查和抽样调查. 考察全体对象的调查叫做全面调查,也叫普查.全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且有些调查不宜用全面调查.6.只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做抽样调查,抽样调查中,抽取的样本必须具有代表性、广泛性和机会均等性.抽取的样本要有随机性,为了使样本能较好的反映总体的情况,除了有合适的样本容量外,抽取时还有尽量使每一个个体都有相等的机会被抽到.7.要正确选择合理的调查方式,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义和价值不大时,应选择抽样调查,对于精确度要求高的调查、事关重大的调查往往选用全面调查.8.要考察的全体对象称为总体,组成总体的每一个考察对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目,称为样本容量.9.样本考察对象是物体某一方面的特征数据,不是物体本身,样本容量是一个数,不带单位.10.抽取样本的过程中,总体的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样.10.2直方图【知识点】1.绘制频数分布直方图的一般步骤是:(1)计算最大值与最小值的差;(2)决定组距和)(3)列频数分布表;(4)画频数分布直方图.组数;(组数= 最大值−最小值组距【注意】(1)一般每组数据取值含左端点,不含右端点;(2)由组距确定组数时,当最大值与最小值的差不能被组距整除时,组数要加1. 同样由组数确定组距时,组距也要增加.2.一般地,数据越多,组数也越多,当数据在100个以内时,按照数据的多少,常分成5-12组.3.把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.4.各个小组内数据的个数叫做频数,常采用划记法进行累计.5.为了更直观形象地看出频数分布情况,可以画出频数分布直方图. 频数分布直方图是= 频数)来反映数据落在各个小组内的频数的大小,小长以小长方形的面积(=组距×频数组距方形的宽为组距,小长方形的高是频数与组距的比值. 为了画图与看图方便,一般画等距分组的频数分布直方图,直接用小长方形的高表示频数.各组频数之和等于数据的总个数.习题练习一、选择题1. 为了解某校九年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指()A. 400名学生B. 被抽取的50名学生C. 400名学生的体重D. 被抽取的50名学生的体重2.某校要调查七、八、九三个年级1200名学生的睡眠情况,下列抽样选取最合适的是()A.选取该校100名七年级的学生B.选取该校100名男生C.选取该校100名女生D.随机选取该校100名学生3.下列调查中,适合用全面调查方式的是()A.了解某班学生的身高情况B.了解一批灯泡的使用寿命C.了解目前中学生的睡眠情况D.了解一批炮弹的杀伤半径4.下列问题中,适合采用全面调查的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月人均网上购物的次数C.调查全班同学最想去的春游目的地D.了解全国中学生的睡眠时间5.某住宅小区六月份1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是()A.30吨B.31吨C.32吨D.33吨6.汽车的“燃油效率”是指汽车每消耗1L汽油最多可行驶的公里数,如图描述了A,B 两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是()①消耗1L汽油,A车最多可行驶5km;①B车以40km/h的速度行驶1h,最少消耗4L 汽油;①对于A车而言,行驶速度越快越省油;①某城市机动车最高限速80km/h,相同条件下,在该市驾驶B车比驾驶A 车更省油.A.①①B.①①C.①①D.①①①7.某班主任老师想了解本班学生平均每月有多少零用钱,随机抽取了10名同学进行调查,他们每月的零用钱数目是(单位:元)10,20,20,30,20,30,10,10,50,100,则该班学生每月平均零用钱约为()A.10元B.20元C.30元D.40元二、填空题8.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是9.某校抽查部分学生1分钟垫球测试成绩(单位:个),将测试成绩分成4组,得到如图所示的不完整的频数直方图(每一组含前一个边界值,不含后一个边界值).已知在120~150 组别的人数占抽测总人数的40%,则1分钟垫球少于90个的有名.10.为了解某产品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他的做法是(填“全面调查”或“抽样调查”).11.一组数据的最大值与最小值的差为20,若确定组距为3,则分成的组数是.三、解答题12.学校图书馆有励志、文学、科技及漫画四类图书.为了了解学生上周图书借阅情况(每人仅限借阅一本),图书管理员统计后绘制了如图不完整的扇形统计图,请根据图中所给信息解答以下问题:(1)借阅人数最少的是类图书;(2)求借阅文学类图书人数是多少?(3)如果借阅漫画类图书的人数占全校学生总人数的2%,那么全校学生总人数是多少?13.某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?14.育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下,请你根据图中提供的信息,完成下列问题:(1)图1中“电脑”部分所对应的圆心角为多少?(2)在图2中,将“体育”部分的图形补充完整?(3)爱好“书画”的人数占被调查人数的百分数是多少?(4)估计育才中学现有的学生中,有多少人爱好“书画”?。

初一数学知识点归纳总结人教版(最全)

初一数学知识点归纳总结人教版(最全)

初一数学知识点归纳总结人教版(最全)七年级数学知识点总结1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.初中数学的学习方法一、抓住课堂理科学习重在平日功夫,不适于突击复习。

平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。

同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

二、高质量完成作业所谓高质量是指高正确率和高速度。

写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。

人教版七年级数学知识点总结

人教版七年级数学知识点总结

人教版七年级数学知识点总结七年级数学是初中数学的开始,是学生们从小学数学转向初中数学的一个重要环节。

下面是人教版七年级数学的知识点总结:1. 自然数和整数:- 自然数的概念和表示方法;- 整数的概念和表示方法;- 整数的加法和减法。

2. 有理数:- 有理数的概念和表示方法;- 有理数的加法和减法;- 有理数的乘法和除法。

3. 分数:- 分数的概念和表示方法;- 分数的比较大小;- 分数的加法和减法;- 分数与整数的运算;- 分数的乘法和除法。

4. 小数:- 小数的概念和表示方法;- 小数的加法和减法;- 小数的乘法和除法。

5. 代数式:- 代数式的概念和表示方法;- 代数式的加法和减法;- 代数式的乘法和除法;- 代数式的因式分解和合并。

6. 方程:- 方程的概念和解方程的基本方法;- 一元一次方程的解法;- 一元一次方程的应用。

7. 比例与比例关系:- 比例的概念和表示方法;- 比例的性质和应用;- 比例关系的概念和表示方法;- 比例关系的性质和应用。

8. 百分数:- 百分数的概念和表示方法;- 百分数的转化和运算;- 百分数在实际问题中的应用。

9. 直线和角:- 直线的概念和性质;- 相交线和平行线;- 角的概念和表示方法;- 角的性质和分类。

10. 三角形和四边形:- 三角形的概念和性质;- 三角形的分类;- 四边形的概念和性质;- 四边形的分类。

11. 平面图形的相似与全等:- 图形的相似性质和判定方法;- 图形的全等性质和判定方法。

12. 圆和圆的性质:- 圆的概念和性质;- 圆的定理和推理方法。

13. 统计与概率:- 图表的制作和图表资料的分析;- 概率的概念和计算方法。

以上是人教版七年级数学的大致内容,每个知识点都有具体的内容和例题练习,学生们在学习过程中需要注重理论和实际应用的结合,加强练习和巩固。

七年级数学上下册知识点总结---1-10章

七年级数学上下册知识点总结---1-10章

初级中学数学一轮复习知识点回顾与总结七年级(第一章---第十章)学校:姓名:学号:人教版数学七年级(上)第一章有理数知识点1.1正数和负数知识点1 正数和负数的概念(1)像3、1.5、12、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。

(2)像-3、-1.5、12、-584等在正数前面加“-”(读作负)号的数,叫做负数。

负数比0小。

(3)零即不是正数也不是负数,零是正数和负数的分界。

(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。

例如:-a一定是负数吗?答案是不一定。

因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。

知识点2 用正数、负数表示具有相同意义的量正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6C和零下4C等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。

用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。

1.2有理数知识点1 有理数的有关概念(1)有理数:整数和分数统称为有理数。

注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。

但是本讲中的分数不包括分母是1的分数。

(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。

(3)“0”即不是正数,也不是负数,但“0”是整数。

(2) 整数包括正整数、零、负整数。

例如:1、2、3、0、-1、-2、-3等等。

人教版七年级下册数学课本知识点归纳完整版(最新最全)

人教版七年级下册数学课本知识点归纳完整版(最新最全)

人教版七年级下册数学课本知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。

1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

3.对顶角相等。

二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:在在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

四、平行线(一) 平行线1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b(在同一平面内,不相交的两条直线叫做平行线。

)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:①平行于同一直线的两条直线互相平行。

②在同一平面内,垂直于同一直线的两条直线互相平行。

(二)平行线的判定:1.同位角相等,两直线平行。

2.内错角相等,两直线平行。

3.同旁内角互补,两直线平行。

(三)平行线的性质1.两条平行线被第三条直线所截,同位角相等。

2.两条平行线被第三条直线所截,内错角相等。

3.两条平行线被第三条直线所截,同旁内角互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线一、相交线相交线:如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。

如直线AB、CD相交于点O。

A DC O B对顶角:两条直线相交出现对顶角。

顶点相同,角的两边互为反向延长线.,满邻补角:有一条公共边,角的另一边互为反向延长线.满足这种关系的两个角,互为领补角。

邻补角与补角的区别与联系❖ 1.邻补角与补角都是针对两个角而言的,而且数量关系都是两角之和为180°❖ 2.互为邻补角的两个角一定互补,但是互为补角的两个角不一定是邻补角即:互补的两个角只注重数量关系而不谈位置,而互为邻补角的两个角既要满足数量关系又要满足位置关系。

领补角与对顶角的比较二、垂线垂直:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。

从垂直的定义可知,判断两条直线互相垂直的关键:要找到两条直线相交时四个交角中一个角是直角。

垂直的表示:用“⊥”和直线字母表示垂直例如:如图,a 、b 互相垂直,O 叫垂足.a 叫b 的垂线,b 也叫a 的垂线。

则记为:a ⊥b 或b ⊥a ; 若要强调垂足,则记为:a ⊥b, 垂足为O.垂直的书写形式: 如图,当直线AB 与CD 相交于O 点,∠AOD=90°时,AB ⊥CD ,垂足为O 。

书写形式:∵∠AOD=90°(已知)∴AB ⊥CD (垂直的定义)反之,若直线AB 与CD 垂直,垂足为O ,那么,∠AOD=90°。

书写形式:∵ AB ⊥CD (已知) ∴ ∠AOD=90° (垂直的定义)应用垂直的定义:∠AOC=∠BOC=∠BOD=90°垂线的画法:如图,已知直线 l 和l 上的一点A ,作l 的垂线. 则所画直线AB 是过点A 的直线l 的垂线.工具:直尺、三角板1放:放直尺,直尺的一边要与已知直线重合;2靠:靠三角板,把三角板的一直角边靠在直尺上;3移:移动三角板到已知点;4画线:沿着三角板的另一直角边画出垂线.垂线的性质:1、同一平面内,过一点有且只有一条直线与已知直线垂直.2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

b aO D A OC B B A l三、同位角、内错角、同旁内角(出现在一条直线与两条直线分别相交的情形) 同位角:一边都在截线上而且同向,另一边在截线同侧的两个角。

如∠1和∠5,∠4和∠8。

内错角:一边都在截线上而且反向,另一边在截线两侧的两个角。

(两个角在两条截线内)如∠3和∠5,∠4和∠6。

同旁内角:一边都在截线上而且反向,另一边在截线同旁的两个角。

(两个角在两条截线内)如∠3和∠6,∠4和∠5。

同位角、内错角、同旁内角的比较四、平行线平行线:在同一平面内,不相交的两条直线叫做平行线。

平行线的表示: 我们通常用符号“//”表示平行。

1 2 4 357 6 C B D A 8EF任意两条直线,有两种位置关系,一种是相交,另一种是平行。

平行线的画法:已知直线a 和直线外的一个已知点P,经过点P 画一条直线与已知直线a 平行。

一、帖(线) 二、靠(尺) a 三、移(点) 四、画(线)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

∵ b ∥a b ∥ c ∴ a ∥c a b平行线具有传递性。

c●P五、平行线的判定判定方法1: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等, 两直线平行 判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线互相平行.六、平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等.简单地说:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单地说:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补. 简单地说:两直线平行,同旁内角互补.七、命题、定理、证明命题:判断一件事情的语句,叫做命题。

命题由题设和结论两部分组成。

题设是已知事项,结论是由已知事项推出的事项。

数学中的命题常可以写成“如果……那么……”的形式,“如果”后的部分是题设,“那么”后的部分是结论。

如果题设成立,那么结论一定成立,这样的命题称真命题。

命题成立,而结论不一定成立,这样的命题称假命题。

定理:有些真命题是基本事实,它们的正确性是经过推理证实的,无需再次进行证明的,这样的真命题叫定理。

证明:很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理的过程叫做证明。

1 2a b c 32ab c 3 4a bc九、平移平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移的性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

平移作图:将线段AB 平移,使点A 与点D 对应。

1、连结AD2、过点B 作AD 的平行线3、在平行线上作线段BC ,使BC=AD4、连结CD第六章 实数一、平方根算术平方根:如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 叫做a 的算术平方根。

a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数。

0的算术平方根是0。

平方根:如果一个数x 的平方等于a,即x 2=a (x 可能为正数,也可能为负数),那么x 就叫做a 的平方根(二次方根).开平方:求一个数a 的平方根的运算,叫做开平方. 平方与开平方互为逆运算。

平方根的表示方法:如果x 2=a (a ≥0), 那么x = a ±,a ±读作“正负根号a ”。

a +表示a 的正的平方根。

a -表示 a 的负的平方根。

规定:正数a 的正的平方根 a 叫做a 的算数平方根;0的算数平方根是0.归纳:1、正数有两个平方根,它们互为相反数;2、0的平方根是0;3、负数没有平方根。

例题1:0225812=-x方法: 1、把x 2当作一个整体,求出x 2=a;2、再根据平方根的定义求x.例题2: (1) 81的平方根是 ________ 。

(2)81的平方根是 ________ 。

二、立方根立方根:若一个数的立方(三次方)等于a,那么这个数叫做 a 的立方根(三次方根)若x 是 a 的立方根,则说明x 3 = a 。

a的立方根记为: ,读作“三次根号a ”。

根指数开立方:我们把求立方根的运算称之为开立方,它与立方运算是互逆的。

(1) 8 的立方根:283= (2)- 64 的立方根:4-64-3=归纳:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

平方根和立方根的异同点3a3a被开方数三、实数无理数:无限不循环小数称为无理数。

(开方开不尽的数;含有π的数;有规律但不循环的数。

)如2,3等实数:有理数和无理数统称实数。

实数与数轴:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一点都表示一个实数。

即实数和数轴上的点是一一对应的。

归纳:1、a是一个实数,它的相反数为-a2、一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。

(在实数范围内,相反数、绝对值的意义和有理数范围内的相反数、绝对值的意义完全一样。

)第七章平面直角坐标系一、有序数对有序数对:把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。

利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。

二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点.①条数轴②互相垂直③公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。

平面直角坐标系中两条数轴特征:(1)互相垂直(2)原点重合(3)通常取向上、向右为正方向(4)单位长度一般取相同的平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b)注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.直角坐标系中点的坐标的特点:三、用坐标表示平移平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。

平移后图形的位置改变,形状、大小不变。

我们先试一试:在坐标中描出点A(-2,-3)并进行如下平移:(1)将点A向右平移5个单位长度得到点A1,则点A1的坐标是________ (2)将点A向左平移3个单位长度得到点A2,则点A2的坐标是________ (3)将点A向右平移a(a>o)个单位长度得到点An,则点An的坐标是________ (4)将点A向左平移a(a>o)个单位长度得到点An´,则点An 的坐标是_______总结规律1:图形平移与点的坐标变化的关系(1)左、右平移:原图形上的点(x,y) ,向右平移a个单位,(x+a,y)原图形上的点(x,y) ,向左平移a个单位,(x-a,y)(2)上、下平移:原图形上的点(x,y) ,向上平移b个单位,(x,y+b)原图形上的点(x,y) ,向下平移b个单位,(x,y-b)总结规律2:图形上点的坐标变化与图形平移间的关系(1)横坐标变化,纵坐标不变:原图形上的点(x,y) ,如果要得到(x+a,y),要向右平移a个单位。

原图形上的点(x,y) ,如果要得到(x-a,y),要向左平移a个单位。

(2)横坐标不变,纵坐标变化:原图形上的点(x,y) ,如果要得到(x,y+b),要向上平移b个单位。

原图形上的点(x,y) ,如果要得到(x,y-b),要向下平移b个单位。

(3)横坐标、纵坐标都变化:原图形上的点(x,y) ,如果要得到(x+a,y+b),要向右平移a个单位,向上平移b个单位;原图形上的点(x,y) ,如果要得到(x+a,y-b),要向右平移a个单位,向下平移b个单位;原图形上的点(x,y) ,如果要得到(x-a,y+b),要向左平移a个单位,向上平移b个单位;原图形上的点(x,y) ,如果要得到(x-a,y-b),要向左平移a个单位,向下平移b个单位;第八章 二元一次方程组 一、二元一次方程组 二元一次方程:含有两个未知数,并且未知数的指数都是 1的方程叫做二元一次方程。

相关文档
最新文档