生物可降解塑料的应用、研究现状和发展方向汇总
生物降解塑料的发展现状及应用前景探究
生物降解塑料的发展现状及应用前景探究摘要:白色污染是环境污染的重要元凶之一,可降解塑料是解决白色污染最直接的手段。
可降解塑料包括生物降解塑料、水降解塑料、光/生物降解塑料等。
为深入了解生物降解塑料的应用及价值,文章研究生物降解塑料的发展历程,并对其未来发展进行展望,一方面推动生物降解塑料的应用,另一方面了解可降解塑料使用规模,为相关人士提供参考。
关键词:生物降解塑料;发展现状;应用前景塑料是现代化工业及人类生活最重要的基础材料之一,由于传统塑料不可降解,可对环境造成可持续性损害,因此可降解塑料的研发及应用成为各国关注的热点课题。
生物降解塑料是可降解塑料的一种,据初步统计,2021年全球生物降解塑料消费量达到1200kt左右,涉及众多行业。
由此可见,生物降解塑料得到极为广泛的应用,成为健康有序地推动产业发展的重点,研究生物降解塑料的发展历程也成为学术界的核心话题之一。
1、生物可降解塑料的发展现状生物降解塑料依照程度划分可分为部分降解、完全降解两种。
部分降解包括淀粉基塑料,完全降解塑料包括聚丙交酯塑料、石油基可降解塑料等。
1.1 PLA聚丙交酯塑料即PLA,通过乳酸直接缩聚制备法制备时成品分子质量较低,适用场景相对受限。
对此,有学者对制备工艺进行优化,即先用乳酸制备丙交酯,随后在催化作用下进行开环聚合,制备分子量约为700000的聚丙交酯塑料。
乳酸分子含有手性碳原子、光学异构体,所以聚丙交酯也可称为聚左旋乳酸。
聚左旋乳酸为部分结晶性聚合物,具有质地硬的特点。
相比传统塑料,聚丙交酯没有毒害作用,和生物相容性良好,并且透明度高,满足塑料制品的使用需求。
202等国。
美国企聚丙交酯生产企业以NatureWorks为主,是全球最大的聚丙交酯生产商,产能约为每年180000吨。
我国聚丙交酯生核心生产企业坐落在浙江,浙江海正生物材料集团产能约65000吨。
目前,我国兴起了大量的聚丙交酯生产企业,并着力研发新型生物可降解塑料,如山东同邦、浙江友诚、安徽丰源泰富等。
生物可降解塑料的应用研究现状及发展方向
生物可降解塑料的应用研究现状及发展方向首先,生物可降解塑料的应用研究现状主要体现在以下几个方面:1.食品包装材料:由于生物可降解塑料对食品具有良好的保护和存储性能,因此被广泛应用于食品包装领域。
如聚乳酸(PLA)被用于制作食品容器、餐具、薄膜等。
2.农业用途:生物可降解塑料在农业领域的应用主要涉及覆盖膜、育苗盘、农膜等。
这些材料具有保温、保湿、抑草、透气等特点,并且能够降解为有机肥料,不会对土壤造成污染。
3.医疗领域:生物可降解塑料在医疗器械、缝线和医药包装中得到广泛应用。
例如,聚己内酯(PCL)被用于制作可降解的缝合线,可以在人体内慢慢降解,避免了二次手术的不便。
4.一次性用品:生物可降解塑料在一次性用品领域得到广泛应用,如餐具、塑料袋等。
这些塑料制品一旦被丢弃,能够较快地降解成环境友好的物质,减少对环境造成的污染。
其次,生物可降解塑料的发展方向如下:1.提高塑料的韧性:当前生物可降解塑料在力学性能方面仍然存在挑战,比如抗拉强度低、韧性不足等问题。
因此,研究人员将致力于改善塑料的力学性能,提高其应用的范围和可行性。
2.提高生物降解速度:当前生物可降解塑料的降解速度在自然环境下较慢,有些甚至需要数年才能完全降解。
未来的研究方向是开发新的降解菌株,设计可降解塑料的结构和添加降解助剂,以提高降解的速率。
3.提高生产效率和降低成本:生物可降解塑料的生产成本较高,限制了其大规模应用。
解决这一问题的关键是开发高效的生物合成工艺,并利用廉价的原料进行生产。
4.探索新的应用领域:除了食品包装、农业和医疗领域之外,生物可降解塑料还可以在其他领域得到应用。
例如,汽车工业、建筑材料、纺织品等。
未来的研究应该重点发展这些新的应用领域,进一步推动生物可降解塑料的发展和应用。
总之,生物可降解塑料的应用研究现状已经取得了一定的进展,但仍然面临一些挑战。
通过提高塑料的力学性能、降解速度,降低生产成本等方面的研究,可以进一步推动生物可降解塑料的应用,并促进可持续发展。
生物可降解聚合物材料的发展前景
生物可降解聚合物材料的发展前景一、背景介绍随着全球环保意识的提高和塑料污染问题的日益严重,生物可降解聚合物材料作为一种环保、可持续发展的替代品逐渐受到人们的关注。
生物可降解材料是指在自然环境中能够被微生物降解而不产生有害物质的材料,具有良好的可降解性和生物相容性,被认为是一种解决传统塑料难降解、对环境污染严重的有效途径。
二、应用领域拓展生物可降解聚合物材料在各个领域的应用日益广泛,尤其在塑料制品、包装材料、医疗器械等方面有着巨大的市场潜力。
例如,生物可降解塑料袋、一次性餐具、包装材料等可以有效减少塑料废弃物对环境的影响;生物可降解医疗器械可以降低医疗废物处理难度和成本,减少对环境和健康的危害。
三、技术研发进展随着技术的不断进步,生物可降解聚合物材料的研发水平也在不断提升。
目前,人们已经成功研发出各种基于生物质、藻类、菌类等天然材料的生物可降解聚合物,具有良好的力学性能和热性能,并且在降解速度、降解产物方面也有了较大突破。
未来,有望通过生物技术、生物化学等领域的深入研究,进一步提高生物可降解材料的性能和降解速度。
四、市场前景展望生物可降解聚合物材料的发展前景十分广阔。
随着全球对环保和可持续发展的重视程度不断提高,生物可降解材料将逐渐替代传统的塑料制品,成为塑料工业的重要发展方向。
未来,随着技术的不断成熟和产业化规模的逐步扩大,生物可降解聚合物材料有望在市场上占据重要地位,为环境保护和可持续发展做出更大的贡献。
综上所述,生物可降解聚合物材料作为一种环保、可持续发展的替代品,具有广阔的应用前景和市场潜力,其发展将为全球环境保护工作带来积极影响。
希望未来在科研人员和产业界的共同努力下,生物可降解材料能够更好地为人类社会发展和环境保护提供支持。
生物可降解塑料的应用研究现状和发展方向汇总
生物可降解塑料的应用研究现状和发展方向汇总生物可降解塑料是指由可再生生物质或微生物合成的塑料,具有优良的可降解性能,能够在自然环境中被微生物分解并最终转化为二氧化碳和水。
与传统塑料相比,生物可降解塑料具有较低的能耗、较少的污染,具有更好的环境友好性和可持续性。
以下是对生物可降解塑料的应用、研究现状和发展方向的汇总:应用领域:1.包装领域:生物可降解塑料可用于食品包装袋、一次性餐具等,符合环保和卫生要求。
2.农业领域:生物可降解塑料可以应用于农膜、肥料包装袋等,可以有效减少农业用塑料的污染。
3.医疗领域:生物可降解塑料可用于医疗器械、医疗包装等,不仅具有良好的安全性,还可以降低医疗废弃物的处理难度。
4.纺织领域:生物可降解塑料纤维可用于制造纺织品,具有抗菌性和温感性能,且易于降解。
5.3D打印领域:生物可降解塑料可应用于3D打印材料,可以减少废弃物产生,降低对环境的影响。
研究现状:1.材料种类丰富:目前已经研发出多种生物可降解塑料,包括聚乳酸(PLA)、混酯(PHA)、聚酯淀粉酯(PBS)等,可以根据具体需求选择不同的材料。
2.性能改进:研究人员正在努力改善生物可降解塑料的力学性能、氧气透过性、水分敏感性等方面的问题,以提高其实际应用性能。
3.复合材料:将生物可降解塑料与其他材料进行复合,可以获得具有更好性能的材料,如生物降解塑料与木材粉末的复合材料等。
4.微生物合成:通过微生物发酵合成生物可降解塑料,不仅可以减少对化石能源的依赖,还可以提高材料的可持续性。
发展方向:1.实现规模化生产:目前,生物可降解塑料的生产成本相对较高,规模化生产仍然是一个挑战。
未来的发展方向是降低生产成本,提高生产效率,使其能够替代传统塑料。
2.提高性能稳定性:目前生物可降解塑料在高温、高湿等环境下的稳定性较差,需要进一步提高其热稳定性、湿热稳定性等性能。
3.新材料开发:继续开发新的生物可降解原料和新型生物可降解塑料,以满足不同领域的需求。
生物可降解塑料塑料的最新研究现状
⽣物可降解塑料塑料的最新研究现状⽣物可降解塑料的研究现状摘要:⽣物可降解材料因其具有可降解的特性越来越受到⼈们的关注。
本⽂主要介绍⽣物可降解塑料的应⽤背景,塑料的最新研究及其成果。
其中可降解塑料包括淀粉基⾼分⼦材料、聚乳酸和PHB。
关键词:⽣物可降解塑料⽩⾊污染淀粉基材料聚乳酸PHB现代材料包括⾦属材料、⽆机⾮⾦属材料和⾼分⼦材料作为现代⽂明三⼤⽀柱(能然、材料、信息)之⼀在⼈类的⽣产活动中起着越来越重要的作⽤。
[1]传统的⾼分⼦塑料在给国民经济带来快速发展,⼈民⽣活带来巨⼤改变的同时也给⼈类的⽣存环境带来了巨⼤的破坏。
当今社会“⽩⾊污染”的问题变得越来越受关注。
这类塑料由于在⾃然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草⽊⼀样被⽣物降解,还常常引起动物误⾷,并造成⼟壤环境恶化。
塑料制品在⾷品⾏业中⼴泛使⽤,⾼温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗⼊到⾷物中,会对⼈的肝脏、肾脏及中枢神经系统造成损害。
塑料的⼤量使⽤必然会带来如何处理废弃塑料的难题。
传统的塑料处理⽅法主要包括直接填埋、焚烧、⾼温炼油等⽅法。
这些处理⽅法不仅对环境造成破坏,同时也对⼈类健康构成巨⼤威胁。
⽯油、天然⽓等能然已⾯临危机,以⽯油为原料的塑料⽣产将受到很⼤的阻⼒。
为了减少废弃塑料对环境的污染和缓解能然危机,多年来⼈们努⼒开发⽣物可降解材料,⽤以替代普通塑料。
⽣物可降解塑料是指⼀类由⾃然界存在的微⽣物如细菌、霉菌(真菌)和藻类的作⽤⽽引起降解的塑料。
理想的⽣物降解塑料是⼀种具有优良的使⽤性能、废弃后可被环境微⽣物完全分解、最终被⽆机化⽽成为⾃然界中碳素循环的⼀个组成部分的⾼分⼦材料。
⽣物降解过程主要分为三个阶段:(1)⾼分⼦材料表⾯被微⽣物粘附;(2)微⽣物在⾼分⼦表⾯分泌的酶作⽤下,通过⽔解和氧化等反应将⾼分⼦断裂成相对分⼦量较低的⼩分⼦化合物;(3)微⽣物吸收或消化⼩分⼦化合物,经过代谢最终形成⼆氧化碳和⽔。
生物降解塑料的发展现状
生物降解塑料的发展现状随着环保意识的不断提高,塑料污染问题成为了现代社会的一大难题。
传统的塑料制品通常采用石化原料,难以降解,对环境造成了严重的影响。
为此,科学家们一直在探索新型的生物降解塑料。
生物降解塑料,也称为可降解塑料,指的是在自然环境中能够被微生物完全分解的塑料。
与传统的塑料制品不同,生物降解塑料具有良好的环保性能,且不会对环境造成污染。
目前,生物降解塑料已经成为全球环保领域的一个研究热点。
一、生物降解塑料的分类生物降解塑料按照来源可以分为三大类:植物来源、动物来源、微生物合成。
1、植物来源植物来源的生物降解塑料主要从淀粉类和纤维类制品中提取原料制备而成。
淀粉类生物降解塑料是以玉米、木薯或其他淀粉质材料为原料生产的,具有优秀的生物降解性能,并且其可生产成本相比其他生物降解塑料较低。
纤维类生物降解塑料则采用棉、麻、草等植物纤维为原料制成,具有良好的生物降解性能,但是在工业化生产上还存在一定的技术难点。
2、动物来源与植物来源的原料不同,动物来源的生物降解塑料以动物骨骼、蹄、角等无害原料为材料,通过一系列生物发酵、浸出、精制等工艺制成。
这些生物降解塑料具有优秀的可降解性能和高强度,广泛应用于医疗、食品、包装等领域。
3、微生物合成微生物合成的生物降解塑料是使用微生物发酵法合成的,是目前生物降解塑料的新兴领域。
微生物合成的生物降解塑料因为采用微生物发酵法制成,相较于其他生物降解塑料,其制备工艺更为复杂,成本相对较高,但是其生物降解性能极佳,能够在自然环境中快速分解,不会造成环境污染。
二、生物降解塑料的应用前景生物降解塑料不仅可以代替传统的塑料制品,还可以在农业生产、医疗、包装等领域产生广泛应用。
在农业生产方面,生物降解塑料可以制作成农膜、果膜等农业材料,具有良好的降解性能,不会对土壤造成二次污染。
在医疗器械方面,生物降解塑料可以用来制作医用注射器、培养皿等,具有较高的生物安全性能,能够减少污染源。
生物降解塑料替代传统塑料材料可行性分析
生物降解塑料替代传统塑料材料可行性分析引言:随着全球塑料污染问题的日益严重,人们对于塑料替代品的需求逐渐增加。
生物降解塑料作为一种环境友好的替代材料,引起了广泛的关注。
本文将对生物降解塑料替代传统塑料材料的可行性进行分析,并探讨其优势和挑战。
一、生物降解塑料的定义和特点生物降解塑料是指能够在自然环境中被微生物分解并最终转化为无害物质的塑料材料。
相比传统塑料材料,生物降解塑料具有以下特点:1. 环境友好:生物降解塑料不会造成长期的环境污染,因为它可以被自然界中的微生物分解。
2. 资源可再生:生物降解塑料大部分是由可再生原料制成,如植物淀粉、蔗糖等,相对于石油等非可再生资源,更具有可持续性。
3. 降解速度可控:生物降解塑料可以根据需要进行设计,可以有不同的降解速度,从几个月到几年不等。
二、生物降解塑料的优势1. 环境友好替代品:生物降解塑料可以有效减少塑料污染对环境带来的负面影响,降低海洋生物和陆地生态系统的生态风险。
2. 减少对非可再生资源的依赖:生物降解塑料主要由可再生资源制成,如玉米淀粉、纸浆等,有助于减少对石油等非可再生资源的需求。
3. 可持续发展:生物降解塑料的生产过程相对于传统塑料材料来说能够减少温室气体的排放,具有更好的可持续性。
三、生物降解塑料的挑战1. 降解速度不一致:由于不同的生物降解塑料具有不同的降解速度,需要根据实际应用情况进行选择。
而且,一些生物降解塑料在实际环境中的降解速度可能会受到环境条件(如温度、湿度)的影响。
2. 成本较高:与传统塑料材料相比,生物降解塑料的生产成本较高,这使得其在某些领域的应用受到限制。
3. 污染源控制困难:生物降解塑料需要在特定的环境中进行降解,如果随意丢弃,可能导致污染。
因此,控制生物降解塑料的污染源仍然是一个技术和管理上的挑战。
四、生物降解塑料的应用前景生物降解塑料在一些特定的领域具有广阔的应用前景,如日用品、包装材料、农业用品等。
1. 包装材料:生物降解塑料的应用可以显著减少传统塑料包装材料对环境的影响,降低塑料污染。
生物降解塑料的研究及其对环境的影响
生物降解塑料的研究及其对环境的影响近年来,随着环保意识的提高,越来越多的人开始关注塑料垃圾对环境的危害。
而被称为“生物降解塑料”的新型材料,成为了一种备受瞩目的解决方案。
这种塑料不同于传统塑料,具有更好的生物降解性能和对环境的友好性,被认为是未来塑料行业的发展方向。
本文将探讨生物降解塑料的研究进展和对环境的影响。
一、什么是生物降解塑料生物降解塑料,是指能够接受自然界生物分解作用的塑料。
这种塑料的分子结构中含有天然高分子材料,使其能够在特定的条件下被自然环境中的微生物分解,最终转化为二氧化碳和水等天然环境中存在的化学物质。
与传统塑料相比,生物降解塑料的生产过程对环境污染较小,且物质本身在使用过程中也不会对生态环境造成危害。
二、生物降解塑料的研究进展生物降解塑料是近年来新兴的材料之一,其大约于20世纪90年代开始被广泛研究。
目前,国内外学者和企业都投入了大量的研究力量。
随着技术的不断进步,生物降解塑料的质量、性能和生产成本得到了较大的提升。
1. 生物降解塑料的种类生物降解塑料的种类繁多,根据合成物质的不同,有多种方式进行分类。
一般来说,生物降解塑料可根据原材料的来源分为:生物来源塑料、合成来源塑料、混合来源塑料三类。
其中,生物来源塑料又可分为:淀粉基生物降解塑料、聚乳酸生物降解塑料、聚酯类生物降解塑料、聚氨酯生物降解塑料、纤维素类生物降解塑料、泥炭类生物降解塑料、脲醛酚塑料等。
在这些类型中,淀粉基塑料和聚乳酸塑料的研究最为深入,应用也最为广泛。
2. 生物降解塑料的性质生物降解塑料与传统塑料相比,具有良好的生物降解性。
当它们投入到自然环境中时,受到微生物和其他生物体的分解,释放出二氧化碳和水等自然产物,最终不会对生态环境造成危害。
同时,生物降解塑料的生产过程对环境污染也较低,更加符合生态平衡的理念。
三、生物降解塑料对环境的影响生物降解塑料可以降低塑料污染,对保护环境产生积极影响。
但其对环境的影响实际上还包括以下几个方面:1. 生产对环境的影响生物降解塑料生产过程相对于传统塑料生产过程对环境污染较小。
生物降解塑料的新进展与应用
生物降解塑料的新进展与应用塑料制品在我们日常生活中有着广泛的应用,它们易于制造、耐用、轻便、灵活,并且形态多样,是现代化工和制造业不可或缺的材料之一。
但是,由于绝大部分塑料制品是由石油等非可再生资源制成的,并且难以降解,一旦进入环境中就难以分解,造成了严重的污染问题。
此外,它们还有可能释放出有害物质,对人体健康产生危害。
为了解决这些问题,研究人员一直在努力研发生物降解塑料,这种塑料具有与传统塑料相似的性能,但它可以在自然环境中被微生物降解,从而减少环境污染。
一、生物降解塑料的概念生物降解塑料是指通过生物加工作用而在自然环境中分解降解的塑料,它们一般是由可再生或可降解的天然高分子或合成高分子制成的。
生物降解塑料一般具有“可降解”、“可生物降解”、“可生物降解可降解”等特性,同时还要满足良好的物理和力学性能,如抗拉强度、韧性等。
生物降解塑料通常可以按照其来源分类,分为天然高分子生物降解塑料和合成高分子生物降解塑料两种。
天然高分子生物降解塑料是利用生物质资源制备的,具有良好的生物兼容性和可生物降解性。
常见的天然高分子生物降解塑料有淀粉类、纤维素类、蛋白质类等。
而合成高分子生物降解塑料则是通过化学合成得到的,通常是由可降解的合成单体合成而成,例如聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)等。
二、生物降解塑料的新进展随着技术的进步和人们对环境问题的重视,生物降解塑料的研究和应用也得到了快速发展。
目前,研究人员正在开展的一些新进展包括:1.改善降解速率在生物降解塑料的研究中,很多研究人员关注的一个问题就是如何改进降解速率。
有些生物降解塑料虽然能够被微生物降解,但是降解速率很慢,需要很长时间才能分解完全。
因此,研究人员正在探索各种方法来加速分解。
例如,一些研究人员通过改变生物材料的结构和组合,来增加生物降解体系中的微生物数量和代谢速率,从而提高生物降解塑料的降解速率。
此外,还有一些人采用物理学或化学法对生物降解塑料进行改性,提高其降解性能。
2024年淀粉基生物降解塑料市场分析现状
2024年淀粉基生物降解塑料市场分析现状1. 引言淀粉基生物降解塑料是近年来受到广泛关注的一种环保材料。
相比于传统的石油基塑料,淀粉基生物降解塑料具有良好的可降解性和可再生性,对环境的影响更小。
本文将对淀粉基生物降解塑料市场的现状进行分析,并展望未来的发展趋势。
2. 市场规模淀粉基生物降解塑料市场在过去几年中保持着快速增长的势头。
根据市场调研机构的数据显示,2019年全球淀粉基生物降解塑料市场规模达到XX亿美元。
预计到2025年,这一市场规模将增长至XX亿美元,年复合增长率超过XX%。
主要驱动市场增长的因素包括严格的环境法规、消费者的环保意识提升以及淀粉基生物降解塑料的应用领域不断扩大等。
3. 市场分析3.1. 区域分析全球淀粉基生物降解塑料市场在不同地区呈现出差异化的特点。
•北美地区:北美是淀粉基生物降解塑料的主要市场之一。
在北美地区,强制法规和消费者对环境保护的高度认识推动了淀粉基生物降解塑料市场的发展。
预计未来几年该市场规模将持续增长。
•欧洲地区:欧洲地区是淀粉基生物降解塑料行业的中心之一。
欧洲各国政府鼓励使用淀粉基生物降解塑料,并制定了一系列环境保护法规来推动其市场发展。
预计未来几年该市场规模将继续扩大。
•亚太地区:亚太地区是全球淀粉基生物降解塑料市场增长最快的地区之一。
该地区的快速工业化和人口增长导致了对环境友好产品的需求增加。
预计未来几年该市场将保持强劲增长。
3.2. 应用领域分析淀粉基生物降解塑料在各个领域都有广泛的应用。
•包装材料:淀粉基生物降解塑料在食品包装、日用品包装等领域得到广泛应用。
其可降解性可以减少对环境的负面影响。
•农业领域:淀粉基生物降解塑料在农业领域的应用主要体现在地膜和农膜等方面。
使用淀粉基生物降解塑料制作的地膜可以降低土壤污染风险。
•医疗领域:淀粉基生物降解塑料在医疗领域有一定的应用潜力。
它可以用于一次性手术器械和医疗包装等方面,减少医疗废弃物产生。
4. 发展趋势未来的淀粉基生物降解塑料市场将呈现以下发展趋势:•技术创新:随着技术的不断进步,新型淀粉基生物降解塑料材料将不断涌现。
生物降解塑料的发展现状及前景评估
生物降解塑料的发展现状及前景评估随着环保意识的日渐增强,越来越多的人开始意识到塑料废弃物对环境和健康的危害,而生物降解塑料成为了一个备受关注的选项。
它不仅能够减少对环境的污染,还能够为塑料废弃物的处理带来新的解决方案。
本文将分析生物降解塑料的发展现状及前景,并探讨其在环保领域中的应用前景。
一、生物降解塑料的发展现状生物降解塑料是由天然物质,如植物淀粉、纤维素、木材纤维或其他生物质材料处理而成的。
与传统塑料不同的是,生物降解塑料在自然条件下能够被微生物降解,从而降低了对环境的污染。
目前生物降解塑料的技术还处于发展初期,市场规模相对较小,但发展势头良好。
据市场研究报告显示,全球生物降解塑料市场规模预计将在2020年达到28.7亿美元,到2025年将达到44.9亿美元。
其中,包装业是生物降解塑料应用领域最大的市场。
随着人们对可持续发展的追求,生物降解塑料的市场需求将会持续增长。
二、生物降解塑料的优点生物降解塑料相对于传统塑料材料有许多优点。
首先,生物降解塑料具有良好的生物降解性能,能够在自然条件下被微生物降解;其次,生物降解塑料的可再生性和可降解性能使其成为了环保材料的良好替代品;再者,生物降解塑料可以降低温室气体排放,有利于环境保护。
三、生物降解塑料的应用前景生物降解塑料的市场应用领域广泛,其中包括食品包装、医药包装、土壤改良、农业用品、一次性餐具、日用品等领域。
特别是在医药包装、日用品等领域,对生物降解塑料的要求会更高。
在未来,生物降解塑料的应用前景将会更加广阔。
一方面,随着环保意识的日益增强和人们对健康的要求提高,生物降解塑料的市场需求将持续增加。
另一方面,随着生物降解技术的不断提升,生物降解塑料的性能将会得到进一步的提升,应用场景也将逐步扩大。
总之,生物降解塑料作为一种生态友好的材料,有着广阔的应用前景,正逐渐成为塑料工业的新宠。
随着环保意识的不断提升和科技创新的持续发展,生物降解塑料必将会在未来发挥更重要的作用,为人类的可持续发展事业贡献更多的力量。
新材料发展趋势及重点发展方向
新材料发展趋势及重点发展方向引言概述:随着科技的不断进步和社会的发展,新材料的研究和应用已经成为了当今世界的热点。
新材料的浮现不仅改变了传统材料的性能,还为各行各业带来了更多的可能性。
本文将从五个方面详细阐述新材料的发展趋势及重点发展方向。
一、生物可降解材料1.1 生物可降解塑料的研究和应用生物可降解塑料是一种能够在自然环境中被微生物分解的塑料,具有良好的环境友好性。
目前,生物可降解塑料已经广泛应用于包装材料、农膜等领域,并且在医疗领域也有着广阔的应用前景。
1.2 生物基材料的开辟与应用生物基材料是以天然生物资源为原料制备的新型材料,具有良好的生物相容性和可降解性。
生物基材料已经被广泛应用于医疗器械、组织工程等领域,并且在食品包装、纺织品等方面也有着广阔的应用前景。
1.3 生物仿生材料的研究与发展生物仿生材料是通过摹仿生物体的结构和功能而设计制备的新型材料。
生物仿生材料已经在航空航天、智能机器人等领域得到了广泛应用,并且在医疗领域的人工器官、组织工程等方面也有着重要的应用价值。
二、纳米材料2.1 纳米材料的制备和表征技术纳米材料是指具有纳米尺度结构特征的材料,具有独特的物理、化学和生物学性质。
纳米材料的制备和表征技术是纳米科技领域的关键技术,包括溶胶凝胶法、热蒸发法、磁控溅射等方法。
2.2 纳米材料在能源领域的应用纳米材料在能源领域的应用是纳米科技的重要应用方向之一。
纳米材料可以用于太阳能电池、燃料电池、储能材料等方面,提高能源的转化效率和存储密度。
2.3 纳米材料在生物医学领域的应用纳米材料在生物医学领域的应用具有广阔的前景。
纳米材料可以用于药物传输、生物成像、肿瘤治疗等方面,提高治疗效果和减轻副作用。
三、功能性陶瓷材料3.1 先进陶瓷材料的研究和应用先进陶瓷材料具有高温、高强度、高硬度等特点,已经广泛应用于航空航天、电子器件、汽车创造等领域。
先进陶瓷材料的研究和应用是陶瓷科技的重要方向。
3.2 陶瓷基复合材料的开辟与应用陶瓷基复合材料是将陶瓷基体与其他材料进行复合制备的新型材料,具有良好的综合性能。
生物降解材料的研究及发展趋势
生物降解材料的研究及发展趋势生物降解材料是一种能被生物体代谢分解为无毒、无害的物质的材料,具有广阔的应用前景和环保意义。
与传统的合成材料相比,生物降解材料不会对环境产生永久性的污染,同时对人体健康也没有危害。
因此,生物降解材料成为近年来热门的研究领域之一。
一、背景介绍人类生活不断地依赖于材料,生产出的产品让我们的生活更加便利、舒适。
但是传统的合成材料不断对地球环境产生影响,使得环境污染越来越严重。
传统材料往往具有不良的耐久性,如果不能完全回收和再利用,就会在环境中存在较长时间。
例如塑料袋,在被人使用后往往会被随意丢弃,进入河流、海洋,在长时间内难以分解,对海洋的生态系统产生危害。
与之相反,生物降解材料作为一种全新类型的材料,它所使用的原材料主要来自生物大分子、生物聚合物和天然有机物等,目前已经在食品、医疗、农业、纺织、建筑、包装等领域得到广泛应用。
生物降解材料可以在短时间内被微生物降解为无毒、无害的物质,对于环境的污染减少了很多。
二、生物降解材料的种类生物降解材料大体上可以分为三类:生物可降解的聚合物材料、天然纤维素材料和生物质材料。
1. 生物可降解的聚合物材料生物可降解的聚合物材料是目前生物降解材料中研究和应用最广泛的种类,它主要是以土壤微生物降解为主。
其中,聚乳酸(PLA)、聚羟基脂肪酸酯(PHAs)、聚己内酯(PCL)、聚丙烯酸酯(PAA)等是较为常见的生物可降解材料。
这类材料的优点是可以经常热塑性加工,制备方式类似于传统的石油聚合物的制备方式。
2. 天然纤维素材料天然纤维素材料是一种天然有机物材料,它是以木质素、纤维素等天然高分子化合物作为原料,经过一定加工工艺后制成的。
这类材料做出来比较坚硬和有强度,适合制作需要耐久度较高和稳定性好的食品包装材料。
3. 生物质材料生物质材料来源于农业和林业废弃物,是一种资源和能源的复合材料。
这类材料的研究主要是为了解决环境中农业和林业发展所面临的问题,可以通过转化为汽车部件、建筑材料、生物燃料、肥料等降低对环境的污染。
生物可降解材料的研究与应用前景
生物可降解材料的研究与应用前景一、绪论生物可降解材料是指在自然环境下,经过微生物的作用、光、热等条件的影响下,能被分解成无害的物质并成为自然界营养物质的材料。
因此,生物可降解材料是一种环保材料,已经被广泛应用于医药、食品包装、农业和生态建设等领域。
二、生物可降解材料的研究当今,人们对于环境问题的关注逐渐增加,环保材料的需求也越来越大,生物可降解材料成为了高优先级的研究方向。
其中,聚乳酸、聚己内酯等生物可降解高分子材料被广泛研究,特别是聚乳酸作为生物可降解塑料的代表,已经在医药、食品包装、纺织等领域得到了广泛应用。
另外,生物可降解聚合物材料的合成方法,也得到了广泛的关注。
三、生物可降解材料的应用生物可降解材料的应用领域非常广泛,以下为几个典型领域:1. 医药方面:生物可降解聚乳酸、聚内酯、聚羟基丁酸等材料,可用于制备缝合线、骨刺、骨钉等医疗器械,不仅具有良好的生物相容性和降解性能,而且不会污染人体和环境。
2. 食品包装方面:生物可降解材料在食品包装方面得到了广泛应用,可以制作餐具、餐盒、果蔬袋等。
其好处在于,食品包装可以在使用后变成肥料,而不会污染环境。
目前,国际上已经开始推广应用生物可降解材料作为食品包装材料。
3. 农业方面:生物可降解材料可作为农膜使用,该农膜在播种前可直接覆盖在土地上,削减了农业投入,提高了生产效率,又可以避免因使用传统塑料膜而造成的土地污染。
4. 环境保护方面:生物可降解材料相较于常规合成塑料,能很好地减少垃圾堆积,避免对生态环境的污染,降低环保成本。
四、生物可降解材料的应用前景生物可降解材料拥有广泛的应用领域,其应用前景也非常可观。
随着环保意识的普及和环保法规的加强,生物可降解材料的需求必将进一步增加。
特别是在食品包装领域的应用前景非常广阔,在未来的发展中势必会取得更加广泛的应用。
总之,生物可降解材料是一种具有很强环保性的材料,应用前景非常广阔。
当前,生物可降解材料的应用已经得到了广泛的关注,相信随着科技的不断进步和环保意识的不断提高,其应用前景将会更加广泛。
生物降解塑料的发展与应用前景
生物降解塑料的发展与应用前景近年来,环境问题越来越受到人们的关注。
其中,塑料污染是一个长期困扰我们的问题。
传统塑料由于无法快速分解,被随意丢弃后,往往需要数百年甚至数千年才能自然降解。
这不仅会给地球带来恶劣的环境影响,更会给我们的后代留下环境问题的烂摊子。
因此,生物降解塑料应运而生。
与传统塑料不同,这种材料可以在自然条件下被微生物降解,转化成水、二氧化碳等对环境无害的物质。
因其环保、可持续等特性,生物降解塑料得到了越来越多人的青睐,成为了当前环保行业中的一个重要研究热点。
一、生物降解塑料的发展历程生物降解塑料的概念早在上个世纪80年代就已经提出,但其实际应用一直没有得到广泛推广。
主要原因是,生物降解塑料的性能不如传统塑料,不具备可拉伸、耐热等优点。
另外,它需要在特定条件下才能被有效降解,否则降解时间较长。
然而随着科技的不断进步,人们对生物降解塑料的研究不断深入,其应用范围也逐渐扩大。
目前,生物降解材料已经广泛应用于一次性餐具、垃圾袋、包装袋等领域。
除此之外,在医疗、农业、建筑等一些领域内,也已经开始试用。
二、生物降解塑料的种类根据生物降解塑料的来源,可以将其分为天然生物降解塑料和合成生物降解塑料两类。
1. 天然生物降解塑料天然生物降解塑料主要指来源于植物、动物等天然材料的生物降解塑料。
这种材料无毒、无害,可以在室温下迅速被微生物降解,不会对环境造成污染。
代表性的材料有淀粉基降解塑料、聚乳酸降解塑料等。
2. 合成生物降解塑料合成生物降解塑料是指通过合成方法得到的生物降解塑料。
这种材料相对天然降解塑料更加稳定,且物理化学性能较为优异。
代表性的材料有PHA、PBS等。
三、生物降解塑料的应用前景生物降解塑料的应用前景非常广阔,尤其是在当前环保压力不断加大的背景下,它被认为是替代传统塑料的一种重要手段。
1. 包装领域随着电商、快递的快速发展,包装成为了当前的热点行业。
但传统塑料在包装领域内存在的环境问题也越来越受到重视。
可生物降解塑料的发展现状与前景
位 数 速 率 增 长 ,将 从 2007年 的 5.61 合 物 。 总 部在 荷 兰 的 Avantium 公 司 传 统 塑料 包 装 并 不 现 实 。 因为 客 户 更
亿 美 元 增 长 到 2012年 的 1I.25亿 美 已开 发 出生 物 基 燃料 和塑 料 ,该 公 司 重 视成 本 效 益 。 当 前生 物 降解 塑 长率 将 为 6.9%,
在 欧洲 ,生 物 塑 料 在 终 端 的 应 用 巨 大 。
2012年 市场 价 值将 达到 6.05亿 美 元 。 奥 巴马 推 行 抑 制 温 室 气体 排 放 的
绿 色 新政 ,此 举 将 有助 于提 高 美 国生 物 聚 合 物 的需 求 量 。美 国 已提 出新 的 能 源 和 环 境 法 案 ,预 计 其 中 将 包 括 排 放 交 易 法 规 或 碳 税 ,这 使 人 们 更 加 重
生 物 塑 料 不 仅 对 环 境 友 好 , 其 对 统 聚 合 物 的 混 配 物 。
指 出 ,淀 物 和 发 酵产 品 的需 求 将 以二
收稿 日期 :2010—06-12 作者简介 :钱伯章 ,男 ,上海擎督信息科技有限公司金秋 石化科 技传播工作室 ,资深专家。 电子信箱 :bz_qian@163.COrrl
元 , 这 主 要 是 由 于 PLA、 淀 粉 掺 混 系于 2000年 从 壳牌 公 司剥 离 而 组建 。 司 都在 努 力 寻 找 一 种令 该 材 料 能 够 发
物 和透 明质 酸 的适 用 性 扩 大 以及 生 产
2009年 6月 嘉 吉 公 司 通 过 收 购 挥 最佳 效 果 的使 用 方法 ,如 延 长 产 品
Freedonia集 团 预 计 , 蛋 白 质 基 聚 合 目 标 是 , 到 2010年 , 20% 的 塑 料 要 汽 车 行 业 将 消 耗 工 程 塑 料 约 1900万
生物可降解塑料的应用研究现状及发展方向汇总
生物可降解塑料的应用研究现状及发展方向汇总
和可以完整表达要点。
一、研究现状
1.可降解塑料的发展
当今社会对生物可降解塑料的需求日益增加,研究尤为重要。
现在,
世界各国都在发展生物可降解塑料,以满足现在对可降解塑料的需求。
生
物可降解塑料有多种类型,包括植物油基、生物降解高分子复合材料、木
质素基及复合材料等。
目前,生物可降解塑料的研究正在发展,借助新型
高分子材料的发展,生物可降解塑料的性能也在持续改善。
2.生物可降解塑料的性能研究
生物可降解塑料的性能受多种因素的影响,其中包括合成材料的数量、组成、分子动力学行为及复合材料的结构。
近年来,研究人员们不断努力
从技术角度改善生物可降解塑料的性能,以提高其物理和化学特性。
近期,研究表明,结合不同材料可改善生物可降解塑料的强度和耐热性,保证它
在高温条件下保持强度和稳定性,使其适用于室温下的应用。
3.生物可降解塑料的应用研究。
生物可降解塑料的应用研究现状及发展方向
生物可降解塑料的应用、研究现状及发展方向关键词:可降解塑料,光降解塑料,光和生物降解塑料,水降解塑料, 生物降解塑料绪论半个多世纪以来,随着塑料工业技术的迅速发展,当前世界塑料总产量已超过117×108t,其用途已渗透到工业、农业以及人民生活的各个领域并与钢铁、木材、水泥并列成为国民经济的四大支柱材料。
但塑料大量使用后随之也带来了大量的固体废弃物,尤其是一次性使用塑料制品如食品包装袋、饮料瓶、农用薄膜等的广泛使用,使大量的固体废弃物留在公共场所和海洋中,或残留在耕地的土层中,严重污染人类的生存环境,成为世界性的公害{1-3}。
有资料表明,城市固体废弃物中塑料的质量分数已达10%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注[4]。
因此,解决这个问题已成为环境保护方面的当务之急。
一般来讲,塑料除了热降解以外,在自然环境中的光降解和生物降解的速度都比较慢,用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件(降雨量、透气性、温度等)不同而有所差异,但总的而言,降解速度是非常缓慢的,通常认为需要200-400年[5]。
为了解决这个问题,工业发达国家采用过掩埋、焚烧和回收利用等方法来处理废弃塑料,但是,这几种方法都存在无法克服的缺陷。
进行填埋处理时占地多,且使填埋地不稳定;又因其发出热量大,当进行焚烧处理时,易损坏焚烧炉,并排出二恶英,有时还可能排放出有害气体,而对于回收利用,往往难以收集或即使强制收集进行回收利用,经济效益甚差甚至无经济效益[6]。
不可降解的大众塑料塑料对地球的危害:(1)两百年才能腐烂。
塑料袋埋在地下要经过大约两百年的时间才能腐烂,会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘和有毒气体,长期污染环境。
(2)降解塑料难降解。
市场上常见的“降解塑料袋”,实际上只是在塑料原料中添加了淀粉,填埋后因为淀粉的发酵、细菌的分解,大块塑料袋会分解成细小甚至肉眼看不见的碎片。
生物降解塑料技术现状与发展趋势
生物降解塑料技术现状与发展趋势近年来,随着全球环保意识的普及和环境问题的加剧,生态友好型产品已经成为了市场的主流。
而在这些产品中,生物降解塑料无疑是最具代表性的一种。
它以优异的性能和良好的环境适应性在各个领域得到了广泛应用。
本文将围绕生物降解塑料技术现状与发展趋势这一主题展开论述。
一、生物降解塑料技术现状生物降解塑料,顾名思义就是可以被生物降解的一种塑料。
生物降解塑料分为两大类:一是利用化学合成方法制得的,另一个是利用生物发酵方法制得的。
根据材料的机理不同,生物降解塑料可以分为厌氧降解和好氧降解两类。
目前,市面上常见的生物降解塑料有聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)、淀粉基塑料等。
1、聚乳酸(PLA)聚乳酸是一种新型生物可降解高分子材料,是由塑料级乳酸聚合而成的塑料。
它的合成流程与传统塑料相似,但又不同于传统塑料,它是由100%可再生资源 - 玉米等植物基质(甚至是玉米芯杆、木薯等)为原料,经微生物发酵、提纯、聚合的过程,制得聚乳酸颗粒,再通过注塑、吹塑等方式成型而成。
聚乳酸是一种具有极好的生物降解和可生物降解高聚合度的高分子材料,可被微生物降解成为二氧化碳和水,没有有毒的物质释放。
同时,聚乳酸具有良好的物理力学性能、生物相容性、透明性和可加工性等优良特性,广泛应用于食品包装、纺织、医疗制品等领域。
2、聚羟基脂肪酸酯(PHA)PHA是目前应用领域广泛的生物可降解聚合物之一。
PHA是一类由微生物通过代谢途径合成的生物聚合物,其基础单元主要是羟基脂肪酸(PHA)。
PHA具有可直接溶解于水、生物降解性、生物相容性、生物可回收等特点。
由于PHAs分子结构可由多种不同的单体构成,可根据不同的单体组合制备出具有不同性能的PHA降解塑料,使用范围极为广泛。
例如,在医药领域,PHAs被广泛应用于创伤修复、与组织、细胞培养和医用具等方面;在制造领域,PHAs被广泛应用于包装、餐具、水处理、土壤修复等方面。
生物降解塑料的开发与应用
生物降解塑料的开发与应用在当今社会,塑料已经成为我们生活中不可或缺的一部分。
从日常的包装材料到工业生产中的零部件,塑料的应用无处不在。
然而,传统塑料带来的环境污染问题也日益严峻。
为了解决这一问题,生物降解塑料应运而生,并逐渐成为研究和开发的热点。
生物降解塑料是指在一定条件下,能够被微生物分解为二氧化碳、水和生物质等无害物质的塑料。
与传统塑料相比,其最大的优势在于能够有效减少塑料废弃物对环境的长期污染。
要了解生物降解塑料的开发,首先得认识其原材料的来源。
常见的生物降解塑料原材料包括淀粉、纤维素、聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)等。
淀粉和纤维素是自然界中广泛存在的多糖类物质,来源丰富且可再生。
以淀粉为基础制备的生物降解塑料,成本相对较低,但性能上可能存在一定的局限性。
而 PLA 则是通过乳酸的聚合反应得到,具有良好的力学性能和加工性能。
PHA 则是由微生物合成的聚酯类物质,其性能多样,可根据不同的微生物菌种和培养条件进行调控。
在开发生物降解塑料的过程中,关键的技术挑战在于如何提高其性能和降低成本。
一方面,要改善生物降解塑料的力学性能、耐热性、阻隔性等,以满足不同应用场景的需求。
例如,通过与其他材料共混、添加增强剂等方法,可以提高生物降解塑料的强度和韧性。
另一方面,降低生产成本是实现大规模应用的重要前提。
这需要优化生产工艺、提高原材料的利用率,以及开发更高效的合成方法。
目前,生物降解塑料已经在多个领域得到了应用。
在包装领域,生物降解塑料袋、餐盒、饮料瓶等逐渐进入市场。
这些产品在使用后,可以在一定条件下自然分解,减少了塑料垃圾的堆积。
在农业领域,生物降解塑料制成的农用地膜具有良好的保温保湿效果,并且在农作物收获后能够自行降解,避免了传统地膜残留对土壤造成的污染。
在医疗领域,生物降解塑料可用于制造一次性医疗器械,如手术缝合线、药物载体等,在完成使命后能够在体内安全降解。
然而,生物降解塑料的推广应用也面临一些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物可降解塑料的应用、研究现状及发展方向关键词:可降解塑料,光降解塑料,光和生物降解塑料,水降解塑料, 生物降解塑料绪论半个多世纪以来,随着塑料工业技术的迅速发展,当前世界塑料总产量已超过117×108t,其用途已渗透到工业、农业以及人民生活的各个领域并与钢铁、木材、水泥并列成为国民经济的四大支柱材料。
但塑料大量使用后随之也带来了大量的固体废弃物,尤其是一次性使用塑料制品如食品包装袋、饮料瓶、农用薄膜等的广泛使用,使大量的固体废弃物留在公共场所和海洋中,或残留在耕地的土层中,严重污染人类的生存环境,成为世界性的公害{1-3}。
有资料表明,城市固体废弃物中塑料的质量分数已达10%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注[4]。
因此,解决这个问题已成为环境保护方面的当务之急。
一般来讲,塑料除了热降解以外,在自然环境中的光降解和生物降解的速度都比较慢,用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件(降雨量、透气性、温度等)不同而有所差异,但总的而言,降解速度是非常缓慢的,通常认为需要200-400年[5]。
为了解决这个问题,工业发达国家采用过掩埋、焚烧和回收利用等方法来处理废弃塑料,但是,这几种方法都存在无法克服的缺陷。
进行填埋处理时占地多,且使填埋地不稳定;又因其发出热量大,当进行焚烧处理时,易损坏焚烧炉,并排出二恶英,有时还可能排放出有害气体,而对于回收利用,往往难以收集或即使强制收集进行回收利用,经济效益甚差甚至无经济效益[6]。
不可降解的大众塑料塑料对地球的危害:(1)两百年才能腐烂。
塑料袋埋在地下要经过大约两百年的时间才能腐烂,会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘和有毒气体,长期污染环境。
(2)降解塑料难降解。
市场上常见的“降解塑料袋”,实际上只是在塑料原料中添加了淀粉,填埋后因为淀粉的发酵、细菌的分解,大块塑料袋会分解成细小甚至肉眼看不见的碎片。
这是一种物理降解,并没有从根本上改变塑料产品的化学性质。
(3)影响土壤的正常呼吸。
塑料袋本身不是土壤和水体的基本物质之一,强行进入到土壤之后,由于它自身的不透气性,会影响到土壤内部热的传递和微生物的生长,从而改变土壤的特质。
这些塑料袋经过长时间的累积,还会影响到农作物吸收养分和水分,导致农作物减产。
(4)易造成动物误食。
废弃在地面上和水面上的塑料袋,容易被动物当做食物吞入,塑料袋在动物肠胃里消化不了,易导致动物肌体损伤和死亡因而越来越多的学者提倡开发和应用降解塑料,并将它看作是解决这一世界难题的理想途径。
目前,世界发达国家积极发展降解塑料,美国、日本、德国等发达国家都先后制定了限用或禁用非降解塑料的法规。
[7]可降解塑料的出现,不仅扩大了塑料功能,而且在一定程度上可缓解和抑制环境矛盾,对石油资源是一个补充,而且从合成技术上展示了生物技术和合金化技术在塑料材料领域中的威力和前景,它的发展已经成为世界研究开发的热点。
随着降解技术的完善,降解性能在不断提高而成本在不断降低,可降解塑料正在逐步进入实用化、产业化,在治理塑料废弃物对环境的污染中起着积极的作用。
我们有理由希望,在不久的将来,曾经让我们忧虑的“白色污染”会逐渐从环境中消失,更多环境友好的产品将涌入我们的生活。
我们相信,这些绿色化学技术将为人与自然的真正和谐作出巨大的贡献。
一、可降解塑料1.1可降解塑料定义降解塑料是指一类其制品的各项性能可满足使用要求,在保存期内性能不变,而使用后在自然环境条件下,能降解成对环境无害的物质的塑料。
因此,它也被称为环境降解塑料,也将是21世纪应用极其广泛的一类“功能聚合材料”。
21世纪是保护地球环境的时代,是资源、能源更趋紧张的年代,为治理那些量大、分散、脏乱、难以收集或即使强制收集进行回收利用,经济效益甚差或无效益的一次性塑料废弃物不仅对生态环境造成的污染,同时也是对资源、能源一种极大的浪费。
降解塑料能减少白色污染,有显著的经济效益和社会效益,为此高效的降解塑料的研究开发已成为塑料工业界、包装工业界以及环保界的重要发展战略,而且成为全球瞩目的研究开发热点。
同时随着人们对这类材料的认识,以及环保意识的不断提高,此类材料将有极其广阔的前景。
1.2可降解塑料的分类可降解塑料一般分为四大类:①光降解塑料:在塑料中掺入光敏剂,在日照下使塑料逐渐分解掉。
它属于较早的一代降解塑料,其缺点是降解时间因日照和气候变化难以预测,因而无法控制降解时间②生物降解塑料:指在自然界微生物(如细菌、霉菌和藻类)的作用下,可完全分解为低分子化合物的塑料。
其特点是贮存运输方便,只要保持干燥,不需避光,应用范围广,不但可以用于农用地膜、包装袋,而且广泛用于医药领域。
③光生物降解塑料:光降解和微生物降解相结合的一类塑料,它同时具有光和微生物降解塑料的特点。
④水降解塑料:在塑料中添加吸水性物质,用完后弃于水中即能溶解掉,主要用于医药卫生用具方面(如医用手套等),便于销毁和消毒处理。
在四种降解塑料中,生物降解塑料随着现代生物技术的发展越来越受到重视,成为研究开发的新一代热点,故下面对生物降解材料做详细研究。
1.3降解机理的研究由于塑料质轻,强度高,耐化学腐蚀性好,综合性能高,而得到了广泛的利用。
而正是这些优良的性质同时给垃圾的处理造成很大的问题,一般来说将塑料埋藏在地下经过20年其变化是很小的。
这样就给环境保护带来了一个难题。
为了解决这个难题,深入研究塑料的降解机理以及利用塑料的降解机理来开发各种可降解塑料,具有重大意义。
在大多数情况下,聚合物的降解主要是高分子中主化学键断裂反应所引起的。
在不同的环境条件下聚合物降解的方式和程度都不同[8]。
二、生物降解材料2.1定义生物可降解塑料至今世界上还没有统一的国际标准化定义,但通常对可降解塑料所下的定义是:在特定环境条件下,其化学机构发生明显变化,并用标准的测试方法能测定物质性能变化的塑料,生物可降解塑料的分子链可在垃圾处理系统或自然环境中,有微生物对其进行生物降解,最终变成二氧化碳(或甲烷)和水,进入生物联合循环过程,完全为环境所消纳,不留任何聚合物的碎片。
目前在我国国际GB/T19277-2003中已明确使用这一概念,2007年1月1日,《降解塑料的定义、分类、标识和降解性能要求》国家标准正式实施[9]。
2.2降解机理多数合成的纯聚合物均具有抗微生物侵蚀的能力。
但添加剂(如增塑剂、润滑剂、色素和抗氧剂等)则降低这种能力。
增塑剂残余脂肪酸如硬脂酸酯可被微生物降解并导致聚合物表面和性能甚至基础结构的破坏。
已经知道,微生物对天然聚合物的降解作用,是通过生物合成所产生的酶蛋白质来完成的。
这些酶蛋白可以着落在细胞壁上,或存在于细胞的原生质结构中。
有些酶能潜入周围的环境中,有些酶则留在细胞内,只有在细胞被溶解或机械破碎时才释放出来。
酶对生化反应,只有高度专一的催化能力,在适宜的生理条件下迅速进行[10]。
生物降解其可以分为:(1)生物物理降解法:当微生物攻击侵蚀高聚物材料后,由于生物细胞的增长使聚合物组分水解、电离或质子化而分裂成低聚物碎片,聚合物分子结构不变,这是聚合物生物物理作用而发生的降解过程。
(2)生物化学降解法:由于微生物或酶的直接作用,使聚合物分解或氧化降解成小分子,直至最终分解成为二氧化碳和水,这种降解方式属于生物化学降解方式[3]。
但是由于微生物降解具有高度的专一性,对许多聚合物机理,至今也不完全清楚,这里仅对已知的一些容易发生生物降解的聚合物机理作初步讨论。
2.3生物可降解塑料的分类(1)生物降解塑料可分”完全生物降解塑料”和”破坏性生物降解塑料”两种[10]。
完全生物降解塑料主要是由天然高分子(如淀粉、纤维素、甲壳质)或农副产品经微生物发酵或合成具有生物降解性的高分子制得。
如热塑性淀粉塑料、脂肪族聚酯、聚乳酸、淀粉/聚乙烯醇等均属这类塑料。
破坏性生物降解塑料当前主要包括淀粉改性(或填充)聚乙烯PE、聚丙烯PP、聚氯乙烯pvc、聚苯乙烯PS等。
以淀粉等天然物质为基础的生物降解塑料目前主要包括以下几种产品:聚乳酸(PLA)、聚羟基烷酸酯(PHA)、淀粉塑料、生物工程塑料、生物通用塑料(聚烯烃和聚氯乙烯)。
(2)从原材料上分类,生物降解塑料至少有以下几种:①聚己内酯(PCL)这种塑料具有良好的生物降解性,熔点是62℃。
分解它的微生物广泛地分布在喜气或厌气条件下。
作为可生物降解材料可把它与淀粉、纤维素类的材料混合在一起,或与乳酸聚合使用。
②聚丁二酸丁二醇酯(PBS)及其共聚物以PBS(熔点为114℃)为基础材料制造各种高分子量聚酯的技术已经达到工业化生产水平。
日本三菱化学和昭和高分子公司已经开始工业化生产,规模在千吨左右。
中科院理化研究所也在进行聚丁二酸丁二醇酯共聚酯的合成研究。
中科院理化研究所已经和山东汇盈公司合作建成了年产25000吨的PBS及其聚合物的生产线、广东金发公司建成了年产1000吨规模的生产线等。
清华大学在安庆和兴化工有限公司建成了年产10000吨PBS及其共聚物的生产线。
③聚乳酸美国公司在完善聚乳酸生产工艺方面做了积极有效的工作,开发了将玉米中的葡萄糖发酵制取聚乳酸,年生产能力已达1.4万吨。
日本UNITIKA公司,研发和生产了许多种制品,其中帆布、托盘、餐具等在日本爱知世博会被广泛使用。
我国产业化的有浙江海生生物降解塑料股份有限公司(规模5000千吨/年生产线),正在中试的单位有上海同杰良生物材料有限公司、江苏九鼎集团等。
④聚羟基烷酸酯(PHA)国外实现工业化生产的主要为美国和巴西等国。
国内生产单位有宁波天安生物材料有限公司(规模2千吨/年),正在中试的单位有江苏南天集团股份有限公司、天津国韵生物科技有限公司等。
利用可再生资源得到的生物降解塑料,把脂肪族聚酯和淀粉混合在一起,生产可降解性塑料的技术也已经研究成功。
在欧美国家,淀粉和脂肪族聚酯的共混物被广泛用来生产垃圾袋等产品。
国际上规模最大、销售最好的是意大利的Novamont公司,其商品名为Mater-bi,公司的产品在欧洲和美国有较大量的应用。
国内研究和生产的单位很多,其中产业化的单位有武汉华丽科技有限公司(规模4万吨/年)、浙江华发生态科技有限公司(8千吨/年)、浙江天禾生态科技有限公司(5千吨/年)、福建百事达生物材料有限公司(规模2千吨/年)、肇庆华芳降解塑料有限公司(规模5千吨/年)等。
脂肪族芳香族共聚酯德国BASF公司所制造的脂肪族芳香族无规共聚酯(Ecoflex),其单体为:己二酸、对苯二甲酸、1,4-丁二醇。
生产能力在14万吨/年。
同时开发了以聚酯和淀粉为主的生物降解塑料制品。