图像纹理特征提取方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽大学
本科毕业论文(设计、创作)
题目:图像纹理特征提取方法研究
学生姓名:朱邵成学号:Z01114175
院(系):电气工程与自动化学院专业:自动化
入学时间:2011年9月
导师姓名:寻丽娜职称/学位:讲师/博士
导师所在单位:安徽大学电气工程与自动化学院
完成时间:2015年5月
图像纹理特征提取方法研究
摘要
近年来,随着信息多媒体时代的到来,以及网络在世界范围内的日益流行、云计算的风行,人们在日常生活工作接触的信息量越来越大。图像作为信息的一种载体,具有直观、信息量大、便于不同国家间交流的特点,是网络多媒体的重要组成部分。基于文本的图像检索是基于内容图像检索的基础,用人工方式解释图像信息,其工作量我们难以想象,可行性也值得商榷。因此CBIR方法有效解决了这一个难题。基于内容的图像检索(CBIR)包括四个阶段,分别是:获取图像、提取特征、分类图像、检索图像。图像检索主要是一个核心问题:选取何种算法提取哪一种图像特征,快速有效的进行图像的区分与检测。纹理特征的提取是 CBIR 的关键问题之一,本论文也是基于图像纹理特征的提取为基础。首先,本文使用基于纹理基元的共生矩阵分析方法,用来提取纹理特征向量。此方法中,采用局部二进制模式(Local Binary Pattern,LBP)来进行图像的基本纹理基元的提取,并用灰度共生矩阵(Gray Level Co.occurrence Matrix,GLCM)中共生矩阵的分析方法来对纹理基元图像进行分析。其次文中深入研究了基于灰度共生矩阵( GLCM) 的纹理特征提取方法,给出了基于 Matlab 的简便实现代码,分析了共生矩阵各个构造参数对构造共生矩阵的影响。分析结果对优化灰度共生矩阵的构造、实现基于灰度共生矩阵( GLCM) 的特定图像的纹理特征提取等都具有重要参考意义。
关键词:纹理特征;灰度共生矩阵;基于内容的图像检索;Matlab
Study on the extraction method of image texture feature
Abstract
In recent years, along with information multimedia time arrival, as well as network in worldwide scale day by day popular, cloud computation being in fashion, the people are more and more bigger in the daily life work contact information content. The image took the information one kind of carrier, has, the information content intuitively big, is advantageous for the characteristic which between the different country exchanges, is the network multimedia important constituent. Based on the text image retrieval is based on the content image retrieval foundation, with the artificial way explanation pictorial information, its work load we imagines with difficulty, the feasibility is also worth discussing. Therefore CBIR method effective addressing this difficult problem . Based on content image retrieval (CBIR) including four stages, respectively is: Gain image, extraction characteristic, classified image, retrieval image. The image retrieval mainly is a core question: Which one kind of image characteristic selects what algorithm to withdraw, fast effective carries on the image the discrimination and the examination. The texture characteristic extraction is one of CBIR key question, the present paper also is based on the image texture characteristic extraction is a foundation. First, this paper used the co-occurrence matrix based on texture primitive to extract texture feature of image.In this method,it extracted basic texture primitive of image by Local Binary Pattem(LBP), and used co-ccurrence matrix of gray level co-occurrence matrix(GLCM) to analyze the texture primitive image. The method of texture feature extraction based on gray level co-occurrence matrix ( GLCM) was studied. Analyzed the effect of each parameter on constructing the co-occurrence matrix and implemented the feature extraction using Matlab. The analytical results provide valuable reference for creating GLCM better and extracting texture features of specific kinds of images.
Keywords: texture feature;gray level co-occurrence matrix;based on content image retrieval;Matlab