midas桥梁移动荷载动力时程分析
midas桥梁分析
131
GETTING STARTED
施工阶段分析
1. 导入分析>施工阶段分析控制对话窗口后指定施工阶段分析中所要考虑 的材料的时间依存特性并指定计算徐变所需的反复计算次数和收敛条 件。
2. 分析模型为PSC建筑物时需指定是否考虑钢束张力的损失效果。 3. 点击分析>运行分析菜单或 运行分析进行分析。 4. 分析成功的完了之后在Result菜单中对各施工阶段的应力、构件内力及
时程分析过程和输出过程所需数据及阻尼比等。
4. 将时间荷载函数以动节点荷载输入时
利用荷载>时程分析数据>动力节点荷载功能选择荷载的工况名和
函数名并输入荷载方向、到达时间等。
将时间荷载函数以地面运动输入时
利用荷载>时程分析数据>地面加速度功能选择荷载工况名和各方
向的函数名后在操作点击
键。
5. 点击分析>运行分析菜单或 运行分析进行分析。
使用特征值分析功能对永宗大桥完成系模型的特征值分析结果 (竖直1次模式 : 0.485 Hz)
128
施工阶段一
分析
施工阶段二
考虑分段浇筑的各施工阶段PSC Box墩帽的水化热分析结果(应力分布)
利用悬臂法桥梁建模助手建立的施工阶段模型 129
GETTING STARTED
查看渲染 模型窗口 使用施工阶段群将西海大桥施工阶段分析模型按各施工阶段表现的画面
127
GETTING STARTED
· 影响线分析 · 影响面分析 热传导分析 (传导、对流、辐射) · 稳态分析 · 瞬态分析 水化热分析 · 热弹性分析 (温度应力) · 强度进展、徐变、收缩、管冷 施工阶段分析 · 时间依存性材料 · 边界条件 · 静力荷载群 其它分析功能 · 使用优化法计算未知荷载的功能 · 自动考虑桥梁支座沉降的分析 · 考虑钢组合桥组合前后截面特性变化的分析
midas桥梁分析结果查看
143查看分析结果模式的转换MIDAS/Civil 为提高程序的效率和方便使用者而将程序的环境体系区分为前处理模式(Preprocessing Mode)和后处理模式(Post-processing Mode)。
建模过程中的所有输入工作只有在前处理模式才有可能,而荷载组合、反力、位移、构件内力、应力等分析结果的查看和整理工作则可在后处理模式中进行。
模式的转换可使用模式菜单或在图标(Icon Menu)上点击前处理模式或后处理模式。
若分析顺利结束的话,前处理模式会自动转换为后处理模式。
荷载组合及最大/最小值的查寻分析结果的组合MIDAS/Civil 利用结果>荷载组合功能可对静力分析、移动荷载分析、动力分析、水化热分析、非线性分析及各施工阶段分析所算出的所有结果进行任意组合,并可将组合的结果在后处理模式以图形或文本形式输出。
另外,已利用荷载工况组合的荷载组合还可以与其它荷载组合进行重新组合。
请注意,分析结束后若重新回到前处理模式对输入的事项进行修改或变更的话分析结果会被删除。
G ETTING S TARTED144MIDAS/Civil输入荷载组合数据的方法有以下两种。
用户直接输入荷载组合条件的方法从已输入的荷载组合条件文件导入数据的方法种类: 指定分析结果的荷载组合方法添加: 将分析结果进行线性组合包络: 各分析结果的最大(max),最小(min)及绝对值的最大值ABS : 反应谱分析中绝对值的和与其它分析结果的线性组合SRSS : 反应谱分析中SRSS组合结果与其它分析结果的线性组合荷载组合条件的自动生成和修改对于所输入的荷载组合条件可根据用户的需要,在结果分析过程中利用激活功能予以采用或予以排除。
查看分析结果查看分析结果MIDAS/Civil的后处理模式中对分析结果提供图形和文本两种形式以便可以对所有结果进行分析和验算。
MIDAS/Civil的各种后处理功能从属于结果菜单,其具体的种类如下。
MIDAS-桥梁移动荷载动力时程分析
车速
: 10 km/hr
最大位移
: 5.612 mm
通过桥梁时间
: 10.80 sec
最大位移发生时间 : 5.124 sec
: 0.900 sec
最大位移发生时间 : 0.443 sec
(c) 车速为120km/hr时的位移变化 图21. 随车速变化的位移比较
静力分析与时程分析结果比较
表1是对静力分析结果和时程分析结果进行的比较。时程分析的结果说明由于车速的变 化,结构产生了动力效应。车速为120 km/hr时,时程分析的结果比考虑冲击系数后的静力 分析的结果弯矩大13.8%,位移大24.6%。
下面通过对桥梁结构的移动荷载进行时程分析,来介绍使用MIDAS/Civil进行时程分析的方 法,其具体步骤如下。
1. 建立结构模型 2. 输入质量数据 3. 输入特征值分析数据 4. 进行特征值分析 5. 分析特征值分析结果 6. 输入时程分析数据 7. 进行时程分析 8. 查看时程分析结果
建立结果模型
使用
来输入前面将车辆荷载所近似模拟的三角形荷载。
荷载 > 时程分析数据 > 时程荷载函数
图7. 时程荷载函数对话框
点击
后,考虑模型中节点的间距和车速来输入1kN大小的车辆荷载。
若想定义成实际车辆荷载的大小,在定义节点动力荷载 时,调整其中的系数 即可。
图8. 添加时程函数对话框
输入时程荷载函数 时可使用以下三种方法。
例题如图1所示,为一30m跨的单跨桥梁,所施加的车辆荷载可将其理想化为如图2所示的 三角形荷载。
midasCivil在桥梁承载能力检算及荷载试验中地应用(以Civil_V2012为例)
目录1桥梁承载能力检算评定 (2)1.1检算总述 (2)1.2作用及抗力效应计算 (2)2桥梁荷载试验 (7)2.1静载试验 (7)2.1.1确定试验荷载 (7)2.1.2试验荷载理论计算 (10)2.1.3试验及数据分析 (12)2.1.4试验结果评定 (15)2.2动载试验 (16)2.2.1自振特性试验 (16)2.2.2行车动力响应试验 (18)2.2.2.1移动荷载时程分析 (18)2.2.2.2动力荷载效率 (29)2.2.3试验数据分析及结构动力性能评价 (29)参考文献 (30)结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。
另外如果作用效应与抗力效应的比值在1.0——1.2之间时,尚需根据规范规定进行荷载试验评定承载能力。
下面将对midas Civil在桥梁承载能力检算评定及荷载试验中的应用详细叙述。
1桥梁承载能力检算评定1.1检算总述进行桥梁承载能力检测评定时需要进行(1)桥梁缺损状况检查评定(2)桥梁材质与状态参数检测评定(3)桥梁承载能力检算评定。
通过(1)、(2)及实际运营荷载状况调查,确定分项检算系数,根据得到的分项检算系数,对桥梁承载能力极限状态的抗力及正常使用极限状态的容许值进行修正,然后将计算作用效应值与修正抗力或容许值作对比,判断检算结果是否满足要求。
一般来说承载能力检算主要包括抗弯、正斜截面抗剪承载力检算、裂缝宽度检算、挠度检算、稳定性验算等。
1.2作用及抗力效应计算为得到检测桥梁在荷载作用下的计算效应值,可以通过midas Civil进行计算分析得到。
对于预应力混凝土及钢筋混凝土等配筋混凝土桥梁,为得到结构抗力效应值,可以结合PSC设计、RC设计验算得到相应抗力值。
前处理当中需要考虑自重、二期及其他恒载、预应力荷载、成桥时候的温度作用(整体升降温+梯度升降温)、移动荷载、支座沉降(根据实测得到的变位定义)等荷载作用;定义施工阶段分析,可设置包括一次成桥及服役时间长度的收缩徐变两个阶段。
midas GTS 铁道移动荷载分析(动力)
路床
加固路基 上部路基 下部路基
粉沙
风化土
软岩
GTS 2D 16铁道移动荷载分析(动力)
1
01 材料特性
网格组属性
属性名称(ID) 软岩 风化土 粉沙 下部路基 上部路基 加固路基 路床 类型 平面 平面 平面 平面 平面 平面 平面 材料名称 (ID) 软岩 风化土 粉沙 下部路基 上部路基 加固路基 路床 特性名称 (ID) -
5
7
选择特殊节点,在节点对 应的时间上确认变形图表
GTS 2D 16铁道移动荷载分析(动力)
18
2
1
对应节点中载入每个荷载 进行累计由工作表格输出。 列车移动方向被模拟为在 节点间隔为2.5m,速度为1 80km/h,列车移动方向被 定义为美0.05输出一次
GTS 2D 16铁道移动荷载分析(动力) 13
12
Step
分析>分析工况
1
MIDAS IT Co., Ltd.
操作过程
2
1)在主菜单里选择【分析】 >分析工况 2)【添加】 3)【名称】处输入“铁道 移动荷载分析”,【类型】 选择“时程分析(线性)” 4)点击“分析控制” 5)频率中输入“10” 6)点击“确定” 7)如图所示,将组数据中 的单元和荷载拖放到“激 活数据” 8)点击【确定】
Step
MIDAS IT Co., Ltd.
网格组名 称 阮岩层 风化土层 分沙层 下部路基 层 上部陆基 层 加固路基 路床
•确认“GTS 2D例题16.gtb”文件中地基材质特性和材料特性
GTS 2D 16铁道移动荷载分析(动力) 2
02
Step
文件>打开
操作过程
Midas fea钢箱梁桥动力时程分析(参考课件)
00
概要
▪ 三维动力时程分析 ▪ 模型
- 单位 : N, m - 各向同性弹性材料 - 板单元、实体单元 ▪ 荷载和边界条件 - 时程分析
:时间荷载函数 :时程荷载组 :地面加速度 - 约束 ▪ 荷载和边界条件 - 周期与振型 - 时程结果
钢箱梁桥
钢箱梁桥
Step
01 分析 > 分析控制 – 控制 表单
8
2 5
4 7
6 7
钢箱梁桥
Step
23 分析 > 求解…
操作步骤
1 不选 [Eigen] 2 点击[确认] 键
2 钢箱梁桥
Step
24 结果 > 时程分析 > 时程显示…
操作步骤
1 不选 [动态] 2 在时间步骤中选择[0.5] 3 在结果中选择[DXYZ] 4 点击[适用] 键 5 对其它时间步重复步骤[2~4]
3 4
8
2 5
6
7 钢箱梁桥
Step
14 分析 > 特性…
操作步骤
1 建立 [2D…] 2 选择[板] 表单 3 号 : “1” , 名称 : “Box” 4 厚度 : “0.05” m 5 在材料中选择“1: Box” 6 点击[确认] 键 7 建立 [3D…] 8 号 : “2”, 名称 : “Pier” 9 在材料中选择“2: Pier” 10 点击[确认] 键 11 点击[关闭] 键
(参见右图) 6 方向 : [X轴] 7 间距 “0.8”, 数量 “1” 8 点击[适用] 键
5
6 2 37
48
钢箱梁桥
Step
06 几何 > 转换 > 平移…
操作步骤
1 选择线 (参见右图) 2 方向 : [X轴] 3 间距 “2”, 数量 “1” 4 点击[确认] 键
MIDAS中关于荷载设置的常见问题解答
第五章“荷载〞中的常见问题 (2)5.1 为什么自重要定义为施工阶段荷载? (2)5.2 “支座沉降组〞与“支座强制位移〞的区别? (2)5.3 如何定义沿梁全长布置的梯形荷载? (3)5.4 如何对弯梁定义径向的荷载? (4)5.5 如何定义侧向水压力荷载? (5)5.6 如何定义作用在实体外表任意位置的平面荷载? (6)5.7 如何按照04公路标准定义温度梯度荷载? (7)5.8 定义“钢束布置形状〞时,直线、曲线、单元的区别? (8)5.9 如何考虑预应力结构的管道注浆? (8)5.10 为什么预应力钢束采用“2-D输入〞与“3-D输入〞的计算结果有差异? (9)5.11 “几何刚度初始荷载〞与“初始单元内力〞的区别? (10)5.12 定义索单元时输入的初拉力与预应力荷载里的初拉力的区别? (11)5.13 为什么定义“反响谱荷载工况〞时输入的周期折减系数对自振周期计算结果没有影响? (11)5.14 定义“反响谱函数〞时,最大值的含义? (11)5.15 为什么定义“节点动力荷载〞时找不到已定义的时程函数? (12)5.16 如何考虑移动荷载横向分布系数? (13)5.17 为什么按照04公路标准自定义人群荷载时,分布宽度不起作用? (14)5.18 在定义车道时,“桥梁跨度〞的含义? (15)5.19 如何定义曲线车道? (15)5.20 定义“移动荷载工况〞时,单独与组合的区别? (15)5.21 定义移动荷载子荷载工况时,“系数〞的含义? (16)5.22 为什么定义车道面时,提示“车道面数据错误〞? (16)5.23 “结构组激活材龄〞与“时间荷载〞的区别? (17)5.24 施工阶段定义时,边界组激活选择“变形前〞与“变形后〞的区别? (17)5.25 定义施工阶段联合截面时,截面位置参数“Cz〞和“Cy〞的含义? (17)第五章“荷载〞中的常见问题5.1为什么自重要定义为施工阶段荷载?具体问题一次落架桥梁,没有施工阶段划分,自重还需定义为施工阶段荷载吗?施工阶段荷载和其他荷载类型有什么区别?相关命令荷载〉静力荷载工况...问题解答如果不进行施工阶段分析,那么自重的荷载类型应选择“恒荷载〞。
midas时程分析
16. 时程分析概述对下面受移动荷载的简支梁运行时程分析。
➢材料弹性模量 : 2.4⨯1011 psi容重(γ) : 0.1 lbf/in3➢截面截面面积(Area) : 1.0 in2截面惯性矩(Iyy) : 0.083333 in4半径(radius) : 10.0 in厚度(thickness) : 2.0 in重力加速度(g) : 1.0 in/sec2速度容重整体坐标系原点(a)受移动荷载的简支梁(b)时程荷载函数图 16.1 分析模型模型是受600 in/sec速度的移动荷载的简支梁结构。
通过时程分析了解动力荷载下结构的反映,改变荷载周期来查看共振的影响。
设定基本环境打开新文件以‘时程分析 1.mgb’为名保存.文件 / 新文件文件 / 保存 ( 时程分析 1 )设定单位体系。
工具 / 单位体系长度 > in ; 力 > lbf图 16.2 设定单位体系设定结构类型为 X-Z 平面。
且为了特征值分析,设定自重自动转换为节点质量。
模型/ 结构类型结构类型 > X-Z 平面将结构的自重转换为质量> 转换到 X, Y, Z重力加速度( 1 )点格(关) 捕捉点(关)捕捉节点捕捉单元正面图 16.3 设定结构类型定义材料以及截面输入材料和截面,采用用户定义的类型和数值的类型输入数据。
模型/ 特性/ 材料一般> 名称( 材料) ; 类型> 用户定义用户定义 > 规范>无分析数据 > 弹性模量 ( 2.4E+11 )容重( 0.1 ) ↵模型/ 特性/ 截面数值名称( 截面) ; 截面形状> Pipe尺寸 > D ( 10 ) ; t w( 2 )截面特性值> 面积( 1 ) ; Iyy ( 0.083333 )↵图 16.4 定义材料图 16.5 定义截面建立节点和单元用建立节点功能建立节点, 用建立单元功能连接各节点来建立梁单元。
Midas fea钢箱梁桥动力时程分析
距离 “-1.5”, 数量 “4” 原网格 : [无]
特性 “2”
网格组 : [Pier] 点击[确认] 键
7
8 9
10
钢箱梁桥
Step
11
1
前处理工作目录树 :
操作步骤
几何
点击鼠标右键并选择
[全部隐藏]
1
钢箱梁桥
Step
12
1 2 3 4 5
分析 > 材料…
操作步骤
1 2 3 4 5 6
点击[建立] 键 选择[各向同性] 表单 号: “1”, 名称 : “Box” 弹性模量 : “2e11” N/m2 泊松比 : “0.3”
几何 > 曲线 > 交叉线…
操作步骤
几何 > 工作平面 > 移动…
选择[
]屏显对象
2 4 3
点击[适用] 键 点击[取消] 键 几何 > 工作平面 > [移动…] 点击[重设为GCS] 键
4
5 6
点击[取消] 键
5
“Ctrl+A”是“选择屏显”的快捷键.
6
钢箱梁桥
Step
08
1 2 3
7
钢箱梁桥
Step
20
1 2 3 4 5 6 7 8 9
分析 > 时程分析 > 时程荷载组…
操作步骤
1
点击[添加] 键 荷载组 名称 : “Earthquake” 在分析方法中选择[直接积分法] 结束时间 : “5” sec 时间增量 : “0.05” sec 12
输出的步数增量 : “10”
2 勾选 [根据振型阻尼计算] 在计算阻尼时勾选 [周期[sec]] 输入振型[1]和[2] 的周期 参考第18步骤的特征值结果. 3 4 6 5
midasCivil在桥梁承载能力检算及荷载试验中的应用以CivilV为例页
目录1桥梁承载能力检算评定 ..........................................................................................................1.1检算总述 ...........................................................................................................................1.2作用及抗力效应计算 .......................................................................................................2桥梁荷载试验 ..........................................................................................................................2.1静载试验 ...........................................................................................................................2.1.1确定试验荷载 ................................................................................................................2.1.2试验荷载理论计算 ........................................................................................................2.1.3试验及数据分析 ............................................................................................................2.1.4试验结果评定 ................................................................................................................2.2动载试验 ...........................................................................................................................2.2.1自振特性试验 ................................................................................................................2.2.2行车动力响应试验 ........................................................................................................移动荷载时程分析 .................................................................................................................动力荷载效率 .........................................................................................................................2.2.3试验数据分析及结构动力性能评价 ............................................................................参考文献 .....................................................................................................................................结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。
MIADS软件培训课件(2007年8月)
内容提要(续)
09桥梁移动荷载动力时程分析 10联合截面施工阶段分析方法 11拱桥屈曲问题 12钢管砼组合截面 13截面特征计算器 14纤维模型非线性时程分析 15PUSHOVER分析 16悬索桥 17斜拉桥 18分析结果的评判
Midas软件用户菜单系统
桥梁结构分析典型步骤-1
以“预应力混凝土连续T梁的分析与设计”为例
18分析结果的评判
问题 1:分析结果中位移特别大,分析无法继续运行 :分析结果中位移特别大, 可能原因: 可能原因: a.约束不够,可在分析信息中查看是否有奇异警告信息。 约束不够, 约束不够 可在分析信息中查看是否有奇异警告信息。 b.非线性分析时没有收敛,可在分析信息中查看收敛误差 非线性分析时没有收敛, 非线性分析时没有收敛 是否满足要求。 是否满足要求。 c.截面惯性矩输入错了 截面惯性矩输入错了(Iyy和 Izz 反了,或没有输入 。 反了,或没有输入)。 截面惯性矩输入错了 和 弹性模量输错了。 弹性模量输错了。 建议 a.对一定范围内节点施加弱约束 对一定范围内节点施加弱约束 b.通过模态分析找到刚度很小的自由度 通过模态分析找到刚度很小的自由度
• 结果验证 • 验证分析的结果,在任何有限元分析中无疑是最为重要 验证分析的结果, 的步骤. 的步骤 • 在开始任何分析以前,应该至少对分析的结果有粗略的 在开始任何分析以前, 估计(来自经验、试验、标准考题等) 估计(来自经验、试验、标准考题等). • 如果结果与预期的不一样,应该研究差别的原因. 如果结果与预期的不一样,应该研究差别的原因
18分析结果的评判
调试一个可疑的分析结果
千万不要忽略您没有理解的细节 ! —— 记住,如果您 记住,
对某些地方不能理解,很有可能有以下两种情况发生 对某些地方不能理解,很有可能有以下两种情况发生.
midas时程荷载工况中几个选项的说明
时程荷载工况中几个选项的说明动力方程式如下:在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。
另外,正如哲学家所言:运动是绝对的,静止是相对的。
静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。
0.几个概念自由振动: 指动力方程中P(t)=0的情况。
P(t)不为零时的振动为强迫振动。
无阻尼振动: 指[C]=0的情况。
无阻尼自由振动: 指[C]=0且P(t)=0的情况。
无阻尼自由振动方程就是特征值分析方程。
简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。
非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。
任意荷载: P(t)为随机荷载(无规律),如地震作用。
随机荷载作用下的振动为随机振动。
冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。
1.关于分析类型选项目前有线性和非线性两个选项。
该选项将直接影响分析过程中结构刚度矩阵的构成。
非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。
当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。
只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。
如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。
2.关于分析方法选项目前有振型叠加法、直接积分法、静力法三个选项。
这三个选项是指解动力方程的方法。
关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。
midas-gts-NX操作实例-移动列车荷载时程分析
三维移动列车荷载案例
三维移动列车荷载案例
第 1 部分
学习目的及概要
1.1 学习目的 列车振动是周期加载现象,这是由于火车车轮间隔性地与铁轨发生震动。 振动周期与铁轨间距及列车速度有关。 列车振动受到各种因素的影响,如车辆、轨道、支撑结构、地面、地下结 构等。这些因素是交互作用,激发和传播的,是比较复杂的振动现象。
• • • • •
根据上图,目标对象―边 S‖。 选择基准线―边 P,Q,R‖。 选择匹配方法―投影‖。 选择 预览按钮检查生成的种子,单击[适用]。 以同样的方式分配播种―T‖,―U‖。
•
*
:几何>顶点与曲线>交叉分割
交叉分割后可在线段交叉位置生成节点。
•
选择所有线,点击[确认]。
4.2 生成网格
*
• • • • ▶尺寸控制与分割数量 表
:网格>>控制>>尺寸控制
通过尺寸控可以得到高质量且网格数量较少的网格划分结果。 参考下表,选择―边线 B1,B2,D1,D2,E1,E2,G1,G2,K1,K2,N1,N2 的路堤。 方法选择―分割数量‖。输入―1‖。 选择 预览按钮检查生成的种子。单击[适用]。 请参考下表确定网格种子。
跟随例题
三维移动列车荷载案例
3.2 定义属性
属性体现网格的物理特性,在网格划分时将分配到网格组上。定义岩土 和结构属性时,首先定义要使用的材料。定义材料之后,确定结构类型和截面 形状(截面刚度)。
▶岩土属性表。
名称 软岩 类型 3D 材料 软岩
风化土 淤泥 3D 3D
底层路 层路 加固路 路面 基 基 基 3D 3D 3D 3D
22 0.5 排水
20 0.5 排水
midasCivil在桥梁承载能力检算及荷载试验中的应用(以Civil_V2012为例)
目录1桥梁承载能力检算评定 (2)1.1检算总述 (2)1.2作用及抗力效应计算 (2)2桥梁荷载试验 (7)2.1静载试验 (7)2.1.1确定试验荷载 (7)2.1.2试验荷载理论计算 (10)2.1.3试验及数据分析 (12)2.1.4试验结果评定 (16)2.2动载试验 (16)2.2.1自振特性试验 (17)2.2.2行车动力响应试验 (18)2.2.2.1移动荷载时程分析 (18)2.2.2.2动力荷载效率 (30)2.2.3试验数据分析及结构动力性能评价 (30)参考文献 (31)结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。
另外如果作用效应与抗力效应的比值在1.0—-1。
2之间时,尚需根据规范规定进行荷载试验评定承载能力。
下面将对midas Civil在桥梁承载能力检算评定及荷载试验中的应用详细叙述。
1桥梁承载能力检算评定1.1检算总述进行桥梁承载能力检测评定时需要进行(1)桥梁缺损状况检查评定(2)桥梁材质与状态参数检测评定(3)桥梁承载能力检算评定。
通过(1)、(2)及实际运营荷载状况调查,确定分项检算系数,根据得到的分项检算系数,对桥梁承载能力极限状态的抗力及正常使用极限状态的容许值进行修正,然后将计算作用效应值与修正抗力或容许值作对比,判断检算结果是否满足要求。
一般来说承载能力检算主要包括抗弯、正斜截面抗剪承载力检算、裂缝宽度检算、挠度检算、稳定性验算等。
1.2作用及抗力效应计算为得到检测桥梁在荷载作用下的计算效应值,可以通过midas Civil进行计算分析得到。
对于预应力混凝土及钢筋混凝土等配筋混凝土桥梁,为得到结构抗力效应值,可以结合PSC设计、RC设计验算得到相应抗力值。
前处理当中需要考虑自重、二期及其他恒载、预应力荷载、成桥时候的温度作用(整体升降温+梯度升降温)、移动荷载、支座沉降(根据实测得到的变位定义)等荷载作用;定义施工阶段分析,可设置包括一次成桥及服役时间长度的收缩徐变两个阶段。
midasCivil在桥梁承载能力检算及荷载试验中的应用(以Civil-V2012为例)
midasCivil在桥梁承载能力检算及荷载试验中的应用(以Civil-V2012为例)目录1桥梁承载能力检算评定 (3)1.1检算总述 (3)1.2作用及抗力效应计算 (3)2桥梁荷载试验 (8)2.1静载试验 (8)2.1.1确定试验荷载 (8)2.1.2试验荷载理论计算 (11)2.1.3试验及数据分析 (13)2.1.4试验结果评定 (17)2.2动载试验 (17)2.2.1自振特性试验 (17)2.2.2行车动力响应试验 (19)2.2.2.1移动荷载时程分析 (19)2.2.2.2动力荷载效率 (33)2.2.3试验数据分析及结构动力性能评价 (34)参考文献 (35)结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。
另外如果作用效应与抗力效应的比值在1.0——1.2之间时,尚需根据规范规定进行荷载试验评定承载能力。
下面将对midas Civil在桥梁承载能力检算评定及荷载试验中的应用详细叙述。
1桥梁承载能力检算评定1.1检算总述进行桥梁承载能力检测评定时需要进行(1)桥梁缺损状况检查评定(2)桥梁材质与状态参数检测评定(3)桥梁承载能力检算评定。
通过(1)、(2)及实际运营荷载状况调查,确定分项检算系数,根据得到的分项检算系数,对桥梁承载能力极限状态的抗力及正常使用极限状态的容许值进行修正,然后将计算作用效应值与修正抗力或容许值作对比,判断检算结果是否满足要求。
一般来说承载能力检算主要包括抗弯、正斜截面抗剪承载力检算、裂缝宽度检算、挠度检算、稳定性验算等。
1.2作用及抗力效应计算为得到检测桥梁在荷载作用下的计算效应值,可以通过midas Civil进行计算分析得到。
对于预应力混凝土及钢筋混凝土等配筋混凝土桥梁,为得到结构抗力效应值,可以结合PSC设计、RC设计验算得到相应抗力值。
前处理当中需要考虑自重、二期及其他恒载、预应力荷载、成桥时候的温度作用(整体升降温+梯度升降温)、移动荷载、支座沉降(根据实测得到的变位定义)等荷载作用;定义施工阶段分析,可设置包括一次成桥及服役时间长度的收缩徐变两个阶段。
midasCivil在桥梁承载能力检算及荷载试验中的应用以Civil V2012为例
目录1桥梁承载能力检算评定 (2)1.1检算总述 (2)1.2作用及抗力效应计算 (2)2桥梁荷载试验 (7)2.1静载试验 (7)2.1.1确定试验荷载 (7)2.1.2试验荷载理论计算 (9)2.1.3试验及数据分析 (10)2.1.4试验结果评定 (13)2.2动载试验 (13)2.2.1自振特性试验 (13)2.2.2行车动力响应试验 (15)2.2.2.1移动荷载时程分析 (15)2.2.2.2动力荷载效率 (24)2.2.3试验数据分析及结构动力性能评价 (24)参考文献 (25)结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。
另外如果作用效应与抗力效应的比值在1.0——1.2之间时,尚需根据规范规定进行荷载试验评定承载能力。
下面将对midas Civil在桥梁承载能力检算评定及荷载试验中的应用详细叙述。
1桥梁承载能力检算评定1.1检算总述进行桥梁承载能力检测评定时需要进行(1)桥梁缺损状况检查评定(2)桥梁材质与状态参数检测评定(3)桥梁承载能力检算评定。
通过(1)、(2)及实际运营荷载状况调查,确定分项检算系数,根据得到的分项检算系数,对桥梁承载能力极限状态的抗力及正常使用极限状态的容许值进行修正,然后将计算作用效应值与修正抗力或容许值作对比,判断检算结果是否满足要求。
一般来说承载能力检算主要包括抗弯、正斜截面抗剪承载力检算、裂缝宽度检算、挠度检算、稳定性验算等。
1.2作用及抗力效应计算为得到检测桥梁在荷载作用下的计算效应值,可以通过midas Civil进行计算分析得到。
对于预应力混凝土及钢筋混凝土等配筋混凝土桥梁,为得到结构抗力效应值,可以结合PSC设计、RC设计验算得到相应抗力值。
前处理当中需要考虑自重、二期及其他恒载、预应力荷载、成桥时候的温度作用(整体升降温+梯度升降温)、移动荷载、支座沉降(根据实测得到的变位定义)等荷载作用;定义施工阶段分析,可设置包括一次成桥及服役时间长度的收缩徐变两个阶段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.4 m 1m
截面
荷载 由于车辆荷载作用在节点时是个瞬间作用后随即消失的一种冲击荷载,所以在这里将其近
似地模拟为最大值为1kN的三角形荷载(具体到某种车辆时,可输入该车辆的总轴重,也可以在 定义节点动力荷载 时,调整其中的系数 ),其中时间t1和t2间的时间差由车辆的速度和所建模 型的节点间距来决定。
[位移 : mm, 弯矩 : kN⋅m]
时程分析
80 km/hr
120 km/hr
6.013
7.742
76.47
94.93
但所需的分析时间会很长 , 而且高阶模态对结构的动力反应的影响不是很大 , 所以我们对 这个模型考虑到第8个模态,之后查看其振型质量参与系数。
在主菜单选择分析 > 特征值分析控制,按图4所示输入相应数据。
图4. 特征值分析控制对话框 进行特征值分析
时程分析中所输入的分析时间步长对分析结果影响很大,一般将分析时间步长设为最 高阶振型周期的1/10比较合适。因此,尽管时程分析与特征值分析可以同时进行,但为了 查看最高阶振型的周期和振型参与系数,这里先进行特征值分析。 分析 > 运行分析
结果 > 周期与振型
图5. 模态8的振型和自振周期
下面查看自振周期和振型参与质量。如图6所示,到模态8为止的振型参与质量的合计为 96.42%,因此我们可以判断对于竖直方向的反应,所参与的质量已经足够可以获得结构动 力反应的主要特征了。
选择 结果 > 分析结果表格 > 振型和周期
图6. 自振周期和振型参与质量
对此模型进行特性值分析时只考虑竖直方向,所以选择“转换到Z”。 重力加速度
输入重力加速度,输入时需注意单位。
Tip !! 按均布荷载或节点荷载的形式输入铺装或护栏的荷载时,可使用“模型/将荷载转换成质量”的功能将
荷载转换成节点质量。
输入特征值分析数据 在特征值分析控制 对话框输入最大频率数量。增加频率数量可以提高结果的精确性,
本例题的模型是将车辆荷载近似模拟成了一个集中荷载的形式,因此与实际情况会有些 差异。
冲击系数 L =30m, 故计算可得 i = 0.1125 (公路桥梁-混凝土梁)
表1. 最大位移和最大弯矩比较
区分
静力分析 未考虑冲击系数 考虑冲击系数
位移
5.586
6.214
弯矩
75
83.44
10 km/hr 5.612 71.71
: 0.900 sec
最大位移发生时间 : 0.443 sec
(c) 车速为120km/hr时的位移变化 图21. 随车速变化的位移比较
静力分析与时程分析结果比较
表1是对静力分析结果和时程分析结果进行的比较。时程分析的结果说明由于车速的变 化,结构产生了动力效应。车速为120 km/hr时,时程分析的结果比考虑冲击系数后的静力 分析的结果弯矩大13.8%,位移大24.6%。
定义节点动力荷载
考虑车辆时程荷载到达各节点的时间,如图10所示定义节点动力荷载。
荷载 > 时程分析数据 > 节点动力荷载
函数名称 : 在函数名称 中选择定义的时程荷载函数 方向 : 选择荷载作用的方向 (整体坐标系) 到达时间 : 时程荷载作用于相应节点的时间
设定车辆荷载的作用从节点2开始。如图10所示,选择节点2,在到 达时间栏输入‘0’秒,点击 。节点间距为0.5m,车速为80km/hr,所 以对于节点3输入‘0.0225’秒。 系数 : 定义的时程荷载函数的作用方向为重力方向相同,所以输入‘-1’。
图11. 节点动力荷载表格
图12. 在Excel表格中生成剩余节点的动力荷载数据
图13. 完成输入后的节点动力荷载表格
图14. 输入节点动力荷载后状态 运行时程分析
所有数据输入完毕后,运行分析。 分析 > 运行分析
查看时程分析结果 利用结果 菜单里提供的各种后处理功能查看分析结果(图15、16)。程序将提供分析
使用
来输入前面将车辆荷载所近似模拟的三角形荷载。
荷载 > 时程分析数据 > 时程荷载函数
图7. 时程荷载函数对话框
点击
后,考虑模型中节点的间距和车速来输入1kN大小的车辆荷载。
若想定义成实际车辆荷载的大小,在定义节点动力荷载 时,调整其中的系数 即可。
图8. 添加时程函数对话框
输入时程荷载函数 时可使用以下三种方法。
根据分析结果,车速为10km/hr时跨中的最大位移为5.612mm,与静力分析的结果5.5 86mm很接近,但随着车速增加,动力反应逐渐明显,最大位移也逐渐加大了。
车速
: 10 km/hr
最大位移
: 5.612 mm
通过桥梁时间
: 10.80 sec
最大位移发生时间 : 5.124 sec
分析时间步长 时程分析的分析时间步长对结果 的精确度影响很大。分析时间步 长的大小与结构的高阶模态的周 期和荷载的周期有密切的关系。 车辆荷载作为一种冲击荷载,它 的周期很难确定,因此我们在这 里如前所述考虑结构的高阶模态 的周期来决定分析时间步长,输 入‘0.001’秒。
输出时间步长 确定时程分析结果的输出步骤 数,输入‘1’的话将输出所有步 骤的计算结果。
节点2
1
61
图10. 输入节点动力荷载
Tip !! 作用节点动力荷载 的节点,若被约束了加载方向上,程序将会出现错误。因此这里对两端Z方向被约束
的节点(节点1、节点61)不输入节点动力荷载。
对于所有节点都需根据不同的到达时间反复输入节点动力荷载,非常繁琐。此时可以先对 某个节点输入节点动力荷载后,利用节点动力荷载表格和Excel表格的互换功能,比较方便地输 入剩余节点的动力荷载。
利用表格输入节点动力荷载 的方法如下。 1. 在主菜单选择 荷载 > 荷载表格 > 节点动力荷载 2. 将如图11所示的已输入的一个节点的内容复制到Excel表格中 3. 如图12所示,在Excel表格中考虑节点和相应的到达时间来生成节点动力荷载数据 4. 将Excel表格中的结果复制到节点动力荷载表格 中(图13)
(a) 车速为10km/hr时的位移变化
车速
: 80 km/hr
最大位移
: 6.013 mm
通过桥梁时间
: 1.35 sec
最大位移发生时间 : 0.498 sec
(b) 车速为80km/hr时的位移变化
车速
: 120 km/hr
最大位移
: 7.742 mm
通过桥梁时间
下面通过对桥梁结构的移动荷载进行时程分析,来介绍使用MIDAS/Civil进行时程分析的方 法,其具体步骤如下。
1. 建立结构模型 2. 输入质量数据 3. 输入特征值分析数据 4. 进行特征值分析 5. 分析特征值分析结果 6. 输入时程分析数据 7. 进行时程分析 8. 查看时程分析结果
建立结果模型
桥梁移动荷载时程分析
时程分析(time history analysis)是对受动力荷载的结构通过动力方程式进行求解的过程, 即根据结构本身的特性和所受的荷载来分析在任意时刻结构的反应,如位移、内力等。时程分 析方法可分为直接积分法(direct Integration)和振型叠加法(modal superposition),MIDAS/ Civil中包含了这两种分析方法。
例题如图1所示,为一30m跨的单跨桥梁,所施加的车辆荷载可将其理想化为如图2所示的 三角形荷载。
模型的尺寸和荷载等数据如下。
V⋅t
P=1 kN , V=80 km/hrZ XLeabharlann 60@0.5 m=30 m
图1. 例题模型 特性值
单元类型 : 梁单元 材料
混 凝 土 : 30号混凝土 弹性模量 : E=3.0303x104 MPa 截面特性 惯 性 矩 : I = 3333333 cm4 截面面积 : A = 400 cm2
点击
来输入经常使用的时程分析荷载文件的方法
点击
输入数据库中内置的地震波数据的方法
用户直接输入的方法
关于时程荷载函数的详细说明请参考联机帮助。
定义时程荷载工况
按图9所示定义时程荷载工况。
荷载 > 时程荷载数据 > 时程荷载工况
分析时间总长 输入总的分析时间。例题中车辆 以80km/hr的时速通过30m跨径 的桥梁需要1.35秒,但为了了解 车辆通过后结构的动力效应,在 分析时间总长 栏中如图9所示输 入‘8’秒。
输入时程分析数据
输入时程分析数据的顺序如下。首先在荷载/时程分析数据/时程荷载函数 中定义动力 荷载;然后在时程荷载工况 中输入分析时间总长、分析时间步长、阻尼比等数据;最后在 节点动力荷载 中考虑车速来输入所定义的时程荷载函数和时程荷载工况到达相应节点的时 间(arrival time)。
定义时程荷载函数
图17. 时程图形对话框 如图18所示输入各项参数,以输出跨中(节点31、单元31)的位移和弯矩图形。
图18. 指定输出内容和输出的位置
图19和图20分别为位移和弯矩的时程分析图形。由于分析时间总长设为了8秒(图9),所以 尽管车辆已经通过了桥梁,但结构仍然存在动力反应。
图19. 跨中的位移时程曲线
时程类型 瞬态 : 时程荷载函数不反复作用 周期 : 时程荷载函数反复作用
振型的阻尼比 所有振型的阻尼比 : 输入对所有 振型使用的阻尼比。混凝土结构 的阻尼比为0.05~0.10,故这里 取0.05作为此结构的阻尼比。 各振型阻尼比 : 各振型的阻尼比 不同时,可分别输入不同的阻尼 比。
图9. 时程荷载工况对话框
单位 : mm
图20. 跨中的弯矩时程曲线
单位 : m
车速对动力反应的影响