火电厂脱硝技术

合集下载

火电厂脱硫脱硝工艺流程

火电厂脱硫脱硝工艺流程

火电厂脱硫脱硝工艺流程火电厂脱硫脱硝工艺流程一、工艺概述1、脱硫火电厂脱硫工艺主要是通过三种常用的技术来实现,分别是:石灰石吸收法、泡沫吸收法和氧化还原法。

1)石灰石吸收法:该方法是利用石灰石对烟气中的硫化物进行吸收,将硫从烟气中吸收,从而实现烟气的脱硫,其原理是将石灰石放入烟气中,当烟气经过石灰石后,硫化物就会与石灰石反应,形成溶解在水中的硫酸盐,最后经过脱除池的处理,将硫酸盐从水中脱除,从而实现对烟气的脱硫。

2)泡沫吸收法:该方法是利用泡沫的吸收作用,将烟气中的硫化物吸收,从而实现烟气的脱硫。

其原理是将特殊的泡沫浆料放入烟气中,当烟气经过泡沫浆料后,硫化物就会被泡沫吸收,最后经过处理,将硫从泡沫浆料中抽除出来,从而实现对烟气的脱硫。

3)氧化还原法:该方法是通过利用氧化剂和还原剂对烟气中的硫化物进行氧化还原,从而将硫从烟气中氧化成二氧化硫,然后通过脱除池脱除,从而实现对烟气的脱硫。

2、脱硝火电厂脱硝工艺主要是利用活性炭吸收法来实现,该方法是将活性炭放入烟气中,当烟气经过活性炭后,氮氧化物就会被活性炭吸收,最后经过处理,将氮氧化物从活性炭中抽除出来,从而实现对烟气的脱硝。

二、工艺流程1、烟气的处理火电厂脱硫脱硝工艺的起始就是烟气的处理,将烟气进行对流、分离、净化处理,以达到烟气含有的硫化物和氮氧化物的含量达到规定的要求。

2、石灰石吸收法将烟气和石灰石混合后进入吸收塔,当烟气经过石灰石后,硫化物就会与石灰石反应,形成溶解在水中的硫酸盐,最后经过脱除池的处理,将硫酸盐从水中脱除,从而实现对烟气的脱硫。

3、泡沫吸收法将特殊的泡沫浆料放入烟气中,当烟气经过泡沫浆料后,硫化物就会被泡沫吸收,最后经过处理,将硫从泡沫浆料中抽除出来,从而实现对烟气的脱硫。

4、氧化还原法将氧化剂和还原剂放入烟气中,当烟气经过氧化剂和还原剂后,硫化物就会被氧化成二氧化硫,然后通过脱除池脱除,从而实现对烟气的脱硫。

5、活性炭吸收法将活性炭放入烟气中,当烟气经过活性炭后,氮氧化物就会被活性炭吸收,最后经过处理,将氮氧化物从活性炭中抽除出来,从而实现对烟气的脱硝。

火电厂烟气脱硫脱硝技术应用与节能环保

火电厂烟气脱硫脱硝技术应用与节能环保

火电厂烟气脱硫脱硝技术应用与节能环保随着工业化进程的加快以及能源消费量的不断增加,燃煤火电厂作为我国主要的能源供应方式,占据着重要的地位。

燃煤火电厂在发电过程中产生的大量烟气中含有的二氧化硫和氮氧化物等有害物质给环境带来了严重的影响。

为了保护环境,减少空气污染,我国对火电厂烟气的净化技术提出了更高的要求,其中烟气脱硫脱硝技术应用成为了重点。

本文将从火电厂烟气脱硫脱硝技术的应用与节能环保方面进行探讨。

一、烟气脱硫脱硝技术概述1. 烟气脱硫技术烟气脱硫技术是指利用化学方法或物理方法降低烟气中二氧化硫的浓度,从而减少对大气环境的污染。

目前常见的烟气脱硫方法包括湿法石膏法、干法石灰石法和氨法等。

湿法石膏法是目前应用最为广泛的一种方法,其原理是将石膏与二氧化硫反应生成硫酸钙,从而达到脱除二氧化硫的目的。

烟气脱硝技术是指采用各种方法降低烟气中氮氧化物的浓度,从而减少对大气环境的污染。

常见的烟气脱硝方法包括选择性非催化还原(SNCR)、选择性催化还原(SCR)以及催化氧化法等。

SCR技术由于具有高脱硝效率、低能耗和低副产物生成等优点,被广泛应用于火电厂的烟气脱硝工程中。

目前,我国火电厂烟气脱硫脱硝技术应用已取得了显著的成效。

各地燃煤火电厂纷纷按照国家环保政策的要求,进行烟气脱硫脱硝改造,以减少大气污染物排放。

京能集团旗下的燕山热电厂采用了世界先进的湿法石膏法脱硫技术,将烟气中的二氧化硫大幅降低,达到国家排放标准。

与此该公司还引进了SCR脱硝技术,通过对烟气进行催化还原处理,有效降低了氮氧化物的排放浓度。

神华集团、华电集团等国内大型火电企业也在技术改造方面取得了积极成果,不断提高烟气脱硫脱硝技术的应用水平。

1. 节能作用烟气脱硫脱硝技术的应用在一定程度上有助于提高火电厂的能源利用率,达到节能减排的目的。

烟气脱硫过程中所需的吸收剂以及脱硝过程中的催化剂等均属于能源材料的消耗,但通过技术改造和优化设计,可以降低该消耗量,提高设备和反应效率,从而达到节能要求。

火电厂烟气脱硝技术规范

火电厂烟气脱硝技术规范

火电厂烟气脱硝技术规范
摘要:
本文档旨在制定火电厂烟气脱硝技术的规范,以确保火电厂运行期间
的烟气排放符合环境保护要求。

文档分为五个部分:引言、技术要求、设
备选择与设计、运行与维护、技术评估与改进。

每个部分包含详尽的内容,确保覆盖了从引言到技术评估与改进的每个关键环节。

一、引言
1.1目的
1.2适用范围
1.3规范参考
二、技术要求
2.1烟气脱硝原理
2.2烟气脱硝技术选择
2.3烟气脱硝效率要求
2.4脱硝设备性能指标
2.5烟气脱硝操作要求
三、设备选择与设计
3.1脱硝装置选型依据
3.2脱硝装置工艺流程
3.3脱硝装置基本设计要求
3.4脱硝设备运行参数监测与控制
3.5脱硝设备布置与安装
四、运行与维护
4.1脱硝设备调试与验收
4.2日常运行与维护管理要求
4.3脱硝装置异常情况处理
4.4脱硝设备维护保养计划
4.5脱硝设备故障排除和维修措施
五、技术评估与改进
5.1脱硝设备性能评估方法
5.2设备使用后的效果评估
5.3技术改进的方法与策略
结论
本文档覆盖了火电厂烟气脱硝技术的各个环节,包括技术要求、设备选择与设计、运行与维护、技术评估与改进等方面。

通过按照本规范执行烟气脱硝技术,火电厂能够更好地控制烟气排放,保障环境保护,同时提升设备运行效率和降低运行成本。

为了符合环保法规、提高火电厂运行效益和降低环境影响,建议火电厂根据本规范的要求进行烟气脱硝技术的选择和实施。

火电厂烟气脱硝技术规范

火电厂烟气脱硝技术规范

火电厂烟气脱硝技术规范随着环境保护意识的不断提高和公众对空气质量的努力探求,烟气脱硝技术已经成为当今火电厂必不可少的设备。

烟气脱硝技术能够有效地去除生成烟气中的氮氧化物,特别是氮氧化物对大气污染的影响,这对提高环保标准,削减空气的污染,保障人类健康的作用不言而喻。

本文将就火电厂烟气脱硝技术规范进行认真介绍。

一、火电厂烟气脱硝技术简介烟气脱硝技术是一项利用化学方法进行脱硝的技术。

重要是通过在烟气中引入还原剂,将氮氧化物还原成氮气而去除的一种技术。

传统的烟气脱硝技术重要采纳的是选择性催化还原(SCR)技术。

但是SCR技术的成本较高,在运行过程中还要把握良好的技术要求,降低其运行过程中的失效率,大大加添了其操作难度。

目前,新型的脱硝技术如SNCR --选择性非催化还原、D-HMN--分子筛式夹杂、DDS--氨水直接喷淋等技术应用越来越多。

二、火电厂烟气脱硝技术规范概述火电厂烟气脱硝技术的规范包括脱硝设备的设计、脱硝剂的选择、运行、维护等多个方面。

为了保证脱硝设备的正常运行,提高脱硝效率,削减二氧化硫的排放,规范的订立尤为紧要。

1. 设计方案:对于火电厂脱硝设备的设计,要充分考虑到该设备的排放标准、投资和运营成本、设备的稳定性和牢靠性等因素。

同时,还应考虑如何保证设备的合理化分布,削减设备显现故障的可能性,提高设备可操作性。

例如,对于设备的合理化分布,可以通过合理的设计方案来实现。

这种方案可以将净化后的烟气重新输送到燃烧区域,从而达到节能环保的目的。

2. 脱硝剂的选择:脱硝剂的选择是烟气脱硝技术中的紧要一个环节。

目前比较常用的脱硝剂有尿素、氨水等。

这些脱硝剂虽然在化学性质上不一样,但各有优缺点,需要依据实际情况选用。

例如,对于尿素作为脱硝剂,在脱硝率上跟氨水相差不大,但是尿素可以在常温下存放,安全性较好,不会像氨水一样对员工带来不安全。

但是尿素在储存和输运过程中占用的体积较大,需要相应的设备来进行储存和输送。

火电厂烟气脱硫脱硝技术应用与节能环保

火电厂烟气脱硫脱硝技术应用与节能环保

火电厂烟气脱硫脱硝技术应用与节能环保火电厂作为目前我国主要的发电方式之一,其排放的烟气中含有大量的有害气体,其中二氧化硫和氮氧化物是主要的污染物之一。

对火电厂烟气进行脱硫脱硝处理,不仅是国家大力推进的节能减排政策的要求,也是保护环境、减少污染物排放的重要举措。

本文将从火电厂烟气脱硫脱硝技术的应用以及其在节能环保方面的作用和意义进行探讨。

一、火电厂烟气脱硫脱硝技术的应用1. 烟气脱硫技术烟气脱硫技术主要是指对烟气中的二氧化硫进行处理,使其转化为硫酸盐或元素硫,达到减少硫氧化物排放的目的。

目前,常见的烟气脱硫技术包括湿法石膏法、干法石膏法、氨法和双碱法等。

湿法石膏法是目前使用最为广泛的一种脱硫技术,其原理是通过将石灰石和石膏与烟气进行接触,利用化学反应将二氧化硫转化为硫酸盐,并最终以石膏的形式进行固化和处理。

2. 烟气脱硝技术烟气脱硝技术主要是指对烟气中的氮氧化物进行处理,使其转化为氮气和水蒸气,从而减少氮氧化物的排放。

目前,常见的烟气脱硝技术包括选择性催化还原(SCR)和选择性非催化还原(SNCR)等。

SCR技术是通过将氨气与烟气中的氮氧化物进行催化还原反应,将其转化为氮气和水,从而实现脱硝目的。

SNCR技术则是通过在高温下直接喷射氨水或尿素溶液与烟气中的氮氧化物进行非催化还原反应,将其转化为氮气和水,达到脱硝的效果。

二、火电厂烟气脱硫脱硝技术的节能环保作用和意义1. 节能减排火电厂烟气脱硫脱硝技术的应用可以有效减少排放的二氧化硫和氮氧化物等有害气体,降低对大气环境的污染。

脱硫脱硝后的烟气中也不会再包含大量的二氧化硫和氮氧化物,可以减少对环境和人体的危害,保护生态环境和人们的健康。

2. 提高能源利用率烟气脱硫脱硝技术的应用可以提高火电厂的能源利用率。

传统的火电厂烟气中含有大量的二氧化硫和氮氧化物,这些物质既是污染物也是能源资源的浪费。

通过脱硫脱硝技术的应用,可以将烟气中的有害物质转化为固体产物进行处理,同时将废气中的能源回收利用,提高能源利用效率。

火电厂烟气脱硝原理

火电厂烟气脱硝原理

火电厂烟气脱硝原理
烟气脱硝是火电厂排放控制中的重要环节,它的原理是利用化学方法去除烟气中的氮氧化物(NOx)。

NOx是一种对环境和人体健康有害的气体,因此火电厂需要采取措施来减少其排放。

火电厂烟气脱硝的原理主要包括选择性催化还原(SCR)和非选择性催化还原(SNCR)两种方法。

其中SCR是目前应用最为广泛的一种技术。

SCR技术是通过在烟气中喷射氨水或尿素溶液,将NOx与氨发生反应,生成无害的氮气和水蒸气。

这种反应需要在催化剂的作用下进行,常用的催化剂包括钒、钛或钨等金属氧化物。

在SCR脱硝系统中,烟气经过预处理后,与氨水或尿素溶液在催化剂的作用下发生反应,从而达到脱硝的目的。

另一种脱硝方法是SNCR,它是通过在烟气中喷射氨水或尿素溶液,利用高温下的非选择性催化还原反应将NOx还原为氮气和水蒸气。

相比于SCR,SNCR技术更适用于低温烟气,但其脱硝效率相对较低。

无论是SCR还是SNCR,烟气脱硝技术都可以有效地减少火电厂排放的NOx,降低对环境和人体健康的影响。

然而,脱硝过程中也会产生一定量的氨气,因此需要对氨气进行后处理,以确保对环境的影响最小化。

总的来说,火电厂烟气脱硝技术是一项重要的环保措施,通过采用适当的脱硝方法,可以有效地减少NOx的排放,保护环境和人类健康。

随着技术的不断进步,相信烟气脱硝技术将会在未来得到更广泛的应用和发展。

火电厂脱硫脱硝工艺流程

火电厂脱硫脱硝工艺流程

火电厂脱硫脱硝工艺流程
《火电厂脱硫脱硝工艺流程》
火电厂作为重要的能源供应商,为保护环境和减少污染排放,需要进行脱硫脱硝处理。

脱硫脱硝工艺是采用化学方法或物理方法,将燃烧产生的二氧化硫和氮氧化物去除,以减少对大气环境的污染。

脱硫工艺通常通过喷射石灰石浆液或石膏浆液与燃烧产生的烟气接触,形成硫酸钙或硫酸钠,从而使二氧化硫转化成可溶性的盐类,然后通过除尘器分离,最终形成脱硫废水。

脱硝工艺则主要分为选择性催化还原法和氨法两种,其中选择性催化还原法是通过喷射氨水与燃烧产生的烟气接触,利用氨催化剂将氮氧化物还原成氮气和水蒸气,从而去除氮氧化物。

脱硫脱硝工艺流程的选择取决于火电厂的具体设备和排放要求。

脱硫脱硝系统需要合理设计,包括各种设备的选择、运行参数的优化、废水废气的处理等。

此外,工艺流程的操作和维护也至关重要,需要严格遵守操作规程,定期检查和维护设备。

通过脱硫脱硝工艺流程的实施,火电厂可以大幅减少二氧化硫和氮氧化物的排放,减少对环境的污染,提高空气质量,保护大气环境,符合绿色发展的理念。

因此,脱硫脱硝工艺的优化和完善对火电厂的可持续发展具有重要意义。

火电厂脱硫系统及脱硝技术介绍

火电厂脱硫系统及脱硝技术介绍
温度下限为225—250℃,采用铜、铬等催化剂时为350℃以下。
(1)脱硫工艺采用湿式石灰石—石膏湿法。 (2)脱硫装置采用一炉一塔, 每套脱硫装置的
烟气处理能力为一台锅炉100%BMCR工况时的烟 气量,石灰石浆液制备和石膏脱水为两套脱硫装 置公用。脱硫效率按不小于96%设计。 (3)吸收剂制浆方式采用厂外来石灰石块,在电 厂脱硫岛内吸收剂制备车间采用湿式磨机制成浆 液。
脱硫工艺流程图
脱硫系统构成
石灰石浆液制备系统 烟气系统 吸收系统
电气与监测控制系统
事故浆液及排放系统
废水处理系统 石膏脱水及储存系统
公用系统
石灰石浆液制备系统
制备并为吸收塔提供满足要求的石灰石浆液。 石灰石浆液制备系统的主要设备包括石灰石储 仓、球磨机、石灰石浆液罐、浆液泵等。
返回
烟气系统
为脱硫运行提供烟气通道,进行烟气脱硫装置 的投入和切除,降低吸收塔人口的烟温和提升 净化烟气的排烟温度。烟气系统的主要设备包 括烟道挡板、烟气换热器、脱硫(增压)风机等。
返回
SO2吸收系统
通过石灰石浆液吸收烟气中的SO2,生成亚硫 酸产物,氧化空气将其氧化,并以石膏的形式 结晶析出。同时,由除雾器将烟气中的液滴除 去。SO2吸收系统的主要设备包括吸收塔、石 灰石浆液循环泵、氧化风机、除雾器等。
为了适应电站锅炉的负荷变化而造成炉膛内烟气温度的变 化,需要在炉膛上部沿高度开设多层氨气喷射口,以使氨 气在不同的负荷工况下均能喷入所要求的温度范围的烟气 中。
该法的主要特点是无需采用催化反应器,系统简单。
-催化剂一般使用TiO2为载体的V2O5/WO3及 MoO3等金属氧化物。 -载体:TiO2 、活性炭或沸石等多孔介质。 -布置位置:除尘器前、除尘器后

火电厂脱硫脱硝技术应用

火电厂脱硫脱硝技术应用

火电厂脱硫脱硝技术应用火电厂是我国重要的能源供应单位,然而在发电的过程中会释放出大量的二氧化硫和氮氧化物等有害气体,这些气体不仅对环境造成污染,还对人类健康和生态系统产生严重影响。

火电厂脱硫脱硝技术的应用显得尤为重要。

本文将详细介绍火电厂脱硫脱硝技术的原理、应用和未来发展趋势。

一、火电厂脱硫脱硝技术原理1. 脱硫技术原理火电厂燃煤过程中会产生大量的二氧化硫,为了减少二氧化硫对环境的污染,脱硫技术应运而生。

目前常用的脱硫技术包括石灰石法、石膏法、氨法和碱液吸收法等。

石灰石法是最为常见的方法,其原理是使用石灰石(CaCO3)与二氧化硫反应生成硫酸钙(CaSO3),然后再氧化为石膏(CaSO4·2H2O),这样就完成了二氧化硫的脱除。

2. 脱硝技术原理火电厂燃煤过程中产生的氮氧化物对大气的污染也非常严重,因此脱硝技术也是十分重要的。

目前常用的脱硝技术包括选择性非催化还原(SNCR)和选择性催化还原(SCR)。

SCR技术是最为有效的方法,其原理是在一定的温度下,将氨气喷射到燃烧尾气中与氮氧化物发生反应,生成氮气和水,实现氮氧化物的脱除。

1. 技术成熟性目前,我国的火电厂脱硫脱硝技术已经相当成熟,采用的设备和工艺在国际上也较为先进。

大部分火电厂都已经实施了脱硫脱硝工程,并取得了较好的效果。

2. 应用效果火电厂脱硫脱硝技术的应用效果是显著的。

通过脱硫脱硝工程的实施,可以显著减少二氧化硫和氮氧化物排放量,有效改善了大气质量,减少了酸雨的形成,对环境保护作用明显。

3. 经济效益火电厂脱硫脱硝技术的应用还带来了明显的经济效益。

一方面,通过减少污染物排放,减少环境治理成本;废水处理和废渣处理等环保后续工序也为火电厂带来了一定的经济效益。

1. 技术升级未来,火电厂脱硫脱硝技术将继续进行技术升级和改进,以适应更加严格的环保标准和要求。

新材料、新工艺的引入将带来更高效、更节能的脱硫脱硝设备。

2. 系统完善未来,火电厂脱硫脱硝技术将更加注重整体系统的完善,包括废水处理、废渣处理、烟气脱除等,形成一个完整的环保系统,实现资源的最大化利用。

火电厂烟气脱硝技术规范

火电厂烟气脱硝技术规范

火电厂烟气脱硝技术规范概述烟气脱硝技术是保障环境质量和人民健康的重要技术手段之一。

尤其是在火电厂等大型工业领域,烟气脱硝技术的应用更是至关重要。

本文将针对火电厂烟气脱硝技术进行规范和说明,以确保其在生产运行中的稳定性、可靠性和安全性。

技术流程火电厂烟气脱硝技术一般采用SCR烟气脱硝技术,其技术流程主要包括前处理、反应器、结构件、前后级SCR、NH3系统、气象站、烟气系统、电气控制系统、进出口管路、排放管道等。

前处理环节前处理环节主要是通过烟气加湿处理,增加烟气的湿度,以满足SCR脱硝反应时的反应物要求,同时也可有效降低烟气中的氧等杂质,提高反应质量。

反应器反应器是整个系统的核心部分,由反应器壳体、反应器蜂窝体和催化剂三部分组成。

反应器壳体是由扁铁板制成,而反应器蜂窝体是由多孔铝酸盐制成,具有良好的耐高温、耐腐蚀性能。

催化剂是SCR烟气脱硝中比较重要的组成部分,其选择对整个系统的性能影响较大。

结构件主要由氧气气流分配器、喷嘴、观察窗、温度传感器等组成。

喷嘴的作用是将压缩空气和氨水混合后向反应器中喷射,以实现脱硝反应。

SCR系统SCR系统是整个脱硝系统中应用最广泛的,其主要作用是催化氨水和NOx生成反应产物N2、H2O等。

NH3系统NH3系统主要是由氨水仓、氨水泵和氨水喷嘴等三部分组成,为了使SCR系统正常工作,氨水系统必须具有干燥和稳定的特性。

气象站在SCR系统正常运行前,需要对现场环境进行监测和调整,而气象站就可以起到这个作用。

气象站主要是测量大气中的氨气和氧气等各项指标,以保证SCR系统的正常工作。

烟气系统烟气系统主要是采集烟气后经过前处理环节后输送到SCR系统中,最后由排放管道中排出。

电气控制系统电气控制系统主要是通过PLC控制器等进行控制和监控,确保各部件的正常工作和整个系统的稳定性和精度。

为了保障火电厂烟气脱硝技术的正常运行,在日常使用维护中,需要注意以下几点:1.氨水系统中氨水的配制和质量必须符合标准,以确保SCR系统的正常运行。

火电厂脱硫脱硝技术应用

火电厂脱硫脱硝技术应用

火电厂脱硫脱硝技术应用随着环保意识的增强和环保法规的不断加强,火电厂作为能源行业的重要组成部分,也面临着严峻的环保压力。

燃煤发电是我国主要的发电方式,而煤炭中所含的硫、氮等元素在燃烧过程中释放出的二氧化硫(SO2)和氮氧化物(NOx)等有害物质对大气环境造成了严重的污染。

为了减少大气污染物排放、改善环境质量,火电厂脱硫脱硝技术的应用显得尤为重要。

脱硫脱硝技术是通过对燃料进行燃烧过程控制、烟气处理等手段,将燃烧排放废气中的二氧化硫和氮氧化物等有害物质去除或转化,从而降低对环境的影响。

它是通过在火电厂烟气中喷射脱硫剂和脱硝剂,促使有害物质与这些剂发生化学反应,使其转化成无害的物质。

这种技术不仅可以有效减少大气污染物排放,改善环境质量,还可以提高燃煤发电的能源利用率,降低能耗,符合可持续发展的要求。

在火电厂脱硫脱硝技术的应用中,主要有湿法脱硫、干法脱硫、SCR脱硝和SNCR脱硝等几种常见的技术手段。

下面分别对这几种技术进行介绍:一、湿法脱硫技术湿法脱硫技术是利用化学吸收剂与烟气中的二氧化硫发生反应,将二氧化硫转化成硫酸盐的方式来进行脱硫。

在火电厂烟气处理过程中,先将烟气与脱硫剂(一般为石灰石浆液)进行接触,然后通过氧化和还原反应来去除烟气中的二氧化硫,使烟气中的硫含量得到有效降低。

湿法脱硫技术的优点是脱硫效率高,操作稳定,适用于高硫煤的脱硫处理。

但同时也存在着设备投资大、运行成本高和产生大量废水等问题,因此适用范围相对较窄。

二、干法脱硫技术干法脱硫技术是通过在燃烧过程中向燃料中加入含钙、镁等碱金属化合物,使含硫煤中的硫在燃烧时转化成硫酸盐,从而实现烟气中二氧化硫的减排。

干法脱硫技术的优点是工艺简单、设备投资低、需要的能耗低,废气排放中没有废水排放等优点。

三、SCR脱硝技术SCR脱硝技术是通过在燃烧过程中向燃料中加入氨水或尿素等脱硝剂,使烟气中的氮氧化物在催化剂的作用下与脱硝剂发生化学反应,将其转化成氮气和水,从而实现脱硝目的。

火电厂烟气脱硝技术导则参考

火电厂烟气脱硝技术导则参考

火电厂烟气脱硝技术导则参考一、引言随着环保意识的增强和环境污染问题的突出,火电厂烟气脱硝技术逐渐成为重要的环保措施。

本文旨在提供一些参考和指导,帮助火电厂选择最适合的烟气脱硝技术,以达到相应的排放标准。

二、技术介绍1.SCR技术:选择适合的催化剂,通过催化剂上的氨气与烟气中的氮氧化物(NOx)反应,将其转化为氮气和水。

SCR技术具有高脱硝效率、对烟气流量及温度波动适应性强等优点。

2.SNCR技术:通过直接注入氨气或尿素溶液,通过高温下氮氧化物的非催化还原,将其转化为氮气和水。

SNCR技术具有操作灵活、设备简单等优点,但脱硝效率相对较低。

3. LNB+OF技术:采用低氮燃烧(Low NOx Burner)与超低排放燃气再循环(Over Fire Air)相结合的技术,通过限制燃烧区域中的氧气和燃料混合,减少NOx的生成量。

LNB+OF技术具有操作简单、投资和运行成本较低等优点,适用于小型火电厂。

三、选择技术的考虑因素1.烟气排放标准:根据当地和国家的排放标准,选择适合的脱硝技术。

一般而言,SCR技术能够达到更严格的排放标准。

2.机组特性:考虑机组的额定容量、负荷率、烟气温度等因素,选择适合的脱硝技术。

对于大型机组,SCR技术是常用的选择;对于小型机组,LNB+OF技术可能更合适。

3.运行成本:考虑各种脱硝技术的投资和运行成本,包括设备采购费用、催化剂的更新周期、能耗等因素。

4.可行性研究:进行可行性研究,包括烟气成分分析、烟气温度分布、烟气流量波动等,以了解各种脱硝技术的适应性和效果。

四、技术实施过程1.技术选型:根据以上考虑因素,选择适合的脱硝技术。

2.设计方案:根据机组特性和烟气排放要求,设计相应的脱硝系统方案,包括催化剂选择、注射系统设计、变压器和配电系统设计等。

3.设备采购:根据设计方案,采购相应的脱硝设备,包括催化剂、注射系统、氨气输送系统等。

4.安装调试:根据设备供应商提供的安装和调试方案,按照要求进行设备安装和调试。

火电厂脱硝技术

火电厂脱硝技术

火电厂脱硝技术氮氧化物是造成大气污染的主要污染源之一。

通常所说的氮氧化物NO x有多种不同形式:N2O、NO、NO2、N2O3、N2O4和N2O5,其中NO和NO2是重要的大气污染物。

我国氮氧化物的排放量中70%来自于煤炭的直接燃烧,电力工业又是我国的燃煤大户,因此火力发电厂是NOx排放的主要来源之一。

研究表明,氮氧化物的生成途径有三种:(1)热力型NOx,指空气中的氮气在高温下氧化而生成NOx;(2)燃料型NOx,指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生成NOx;(3)快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成NOx。

在这三种形式中,快速型NOx所占比例不到5%;在温度低于1300℃时,几乎没有热力型NOx。

对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。

控制NOx排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOx生成量;二次措施是将已经生成的NOx通过技术手段从烟气中脱除。

1. 脱硝技术介绍降低NOx排放主要有两种措施。

一是控制燃烧过程中NOx的生成,即低NOx燃烧技术;二是对生成的NOx进行处理,即烟气脱硝技术。

1.1 低NOx燃烧技术为了控制燃烧过程中NOx的生成量所采取的措施原则为:(1)降低过量空气系数和氧气浓度,使煤粉在缺氧条件下燃烧;(2)降低燃烧温度,防止产生局部高温区;(3)缩短烟气在高温区的停留时间等。

低NOx燃烧技术主要包括如下方法。

1.1.1 空气分级燃烧燃烧区的氧浓度对各种类型的NOx生成都有很大影响。

当过量空气系数α<1,燃烧区处于“贫氧燃烧”状态时,对于抑制在该区中NOx的生成量有明显效果。

根据这一原理,把供给燃烧区的空气量减少到全部燃烧所需用空气量的70%左右,从而即降低了燃烧区的氧浓度也降低了燃烧区的温度水平。

因此,第一级燃烧区的主要作用就是抑制NOx的生成并将燃烧过程推迟。

火力发电厂脱硫脱硝工艺

火力发电厂脱硫脱硝工艺

CaC 3 sO KCP C2aC3 O 2
C3O 2HHC3O
H C O 3 H H 2 O C O 2 (a q ) C O 2(aq) C O 2(g)
在有氧气存在时,HSO3-的氧化:
HSO 31 2O 2 HSO 42
CaSO3和CaSO4的结晶:
HSO42 HSO4
C a2SO 32 K SP 1C aSO 31 2H 2O (s)
各国已经研究发展了许多燃煤电站锅炉控制SO2技术,并 应用于实际电站锅炉。这些技术可分为三大类:燃烧前脱硫、 燃烧中脱硫及燃烧后脱硫。
按脱硫的方式和产物的处理形式燃烧后脱硫一般可分为湿 法、半干法和干法三大类。
➢ (1)湿法烟气脱硫技术(WFGD技术) ➢ (2) 半干法烟气脱硫技术(SDFGD技术) ➢ (3)干法烟气脱硫技术(DFGD技术)
28
技术特点
(1)系统有吸收剂利用率高和脱硫效率高的“双高”特点, 其中石灰石的可利用率超过98%,脱硫率可达95%以上;
(2)整个系统的优化设计,降低了能耗。保证了整个脱硫 系统的耗电量小于电厂发电量的1.3%;
(3)系统采用高气体流速设计,改善了气液传质,降低了 成本;
(4)吸收塔尺寸的优化平衡了SO2脱除与压力降,使投资 和运行成本最优化;
19
主要设备
● 喷嘴 全部采用碳化硅的空心锥喷嘴,浆均匀,防磨防腐。
● 吸收塔搅拌 吸收塔浆池中的浆液为了保持悬浮状态而加以搅拌,多个侧进式的搅 拌器用于保证浆液的均匀混和。
● 除雾器 烟气向上穿过喷淋塔带走很多的小液滴。有效率的液滴分离是基本要 求,以阻止浆液被带走并且在吸收塔的下游烟沉积。在巴威的吸收塔 中,在垂直的或者水平的烟气流动方向雾气被两层V形除雾器脱除。

火电机组深度调峰下的宽负荷脱硝

火电机组深度调峰下的宽负荷脱硝

火电机组深度调峰下的宽负荷脱硝随着我国经济的快速发展和人民生活水平的提高,对电力的需求也越来越大。

为了满足日益增长的电力需求,火电厂通常需要在高峰期进行深度调峰,以确保电力供应的稳定。

而在火电机组深度调峰的过程中,脱硝技术则显得尤为重要。

本文将着重介绍火电机组深度调峰下的宽负荷脱硝技术。

一、宽负荷脱硝概述宽负荷脱硝是指在火电机组深度调峰的情况下,利用烟气余氧率较低、烟气温度较高等特点,通过合理的工艺控制和设备调节,实现脱硝设备在不同负荷下的稳定运行。

它是对传统脱硝技术的一种扩展和完善,能够更好地适应火电机组深度调峰的需求,并提高脱硝设备的运行效率和稳定性。

二、宽负荷脱硝的关键技术1. 高效脱硝催化剂的选择在宽负荷脱硝过程中,选择合适的高效脱硝催化剂是至关重要的。

高效脱硝催化剂需要具有良好的稳定性和耐高温性能,能够在不同负荷下实现高效的硝化还原反应。

催化剂的选择还需要考虑其对其他气体组分的影响,以确保脱硝系统的稳定运行。

2. 脱硝系统的运行控制宽负荷脱硝需要对脱硝系统进行精细的运行控制,以确保在不同负荷下实现稳定的脱硝效果。

对于SCR(Selective Catalytic Reduction)系统而言,需要根据火电机组的实际负荷情况,控制氨气喷射量和催化剂的温度,保证脱硝反应的最佳条件。

而对于SNCR (Selective Non-Catalytic Reduction)系统而言,需要根据烟气的特性和温度分布,调整尿素喷射位置和喷射量,实现脱硝反应的最佳效果。

3. 脱硝系统的热力集成在火电机组深度调峰的情况下,热态对脱硝系统的影响尤为重要。

为了确保脱硝装置在不同负荷下的稳定运行,需要对脱硝系统进行热力集成,最大限度地利用烟气中的热能。

通过合理的热力集成设计,可以提高脱硝催化剂的温度、促进脱硝反应的进行,同时降低脱硝系统的能耗。

三、实际案例分析某火电厂采用宽负荷脱硝技术进行深度调峰后,取得了显著的成果。

火电厂烟气脱硝技术规范

火电厂烟气脱硝技术规范

火电厂烟气脱硝技术规范前言烟气脱硝是指在火力发电厂锅炉燃烧高硫煤产生的汽车尾气中,通过脱硝装置将氮氧化物(NOX)转化成氮气和水蒸气,从而达到减少持续性空气污染物排放的目的。

本文关注烟气脱硝的技术规范,力求提高燃煤电站的环保效益。

技术要求适用范围烟气脱硝技术适用于燃煤发电厂、燃气发电厂以及其他工业领域需要控制NOX排放的场合。

设备分类根据实际情况和要求,烟气脱硝设备可以分为选择性非催化还原脱硝(SNCR)、选择性催化还原脱硝(SCR)和氨水喷射脱硝技术。

其中,SNCR适用于燃料不稳定或含硫燃料的情况,SCR适用于NOX排放浓度高的燃料,氨水喷射脱硝技术适用于烟气中既有NOX又有SOX的情况。

设备选型根据具体情况,选择合适的脱硝设备。

比如,为了保证高效、稳定的脱硝效果,应选用经过试验认证、效果显著的催化剂,如V2O5-WO3/ TiO2、γ-Al2O3/CeO2/ZrO2等。

设备设计根据出口烟气重量、排放浓度、温度、氧含量、燃料特性及设备运行要求,设计催化剂反应器、高温反应器等设备参数。

催化剂反应器中,严格控制催化助剂添加量,考虑高温条件下毒物的影响。

高温反应器中,应按照排放要求选取适当权威高效的反应器结构。

设备安装烟气脱硝设备安装位置应考虑到烟气流量、烟气温度、烟气压力、苯等有害物分布情况等因素。

设备安装时应遵循相关的技术标准,确保安装的稳定性和安全性。

设备运行在烟气脱硝设备运行期间,严格按照相关操作规程进行检验、维护、清洗以及更换催化剂、吸附剂等。

防止催化剂超负荷,因产生二次污染。

保证设备顺利运行,并达到高效、稳定、安全的烟气净化效果。

结语烟气脱硝技术已经成为现代工业污染治理的重要技术手段,已广泛应用于各类燃煤、燃气等大型工业领域中,是推动绿色发展的必要措施。

本文介绍了烟气脱硝的技术规范,以期提供参考,确保设备的高效、稳定、安全地运行,设计构建更高效、更环保的燃煤电站。

火电厂脱硝工艺流程图

火电厂脱硝工艺流程图

火电厂脱硝工艺流程图火电厂脱硝工艺流程图火电厂是指以燃煤、燃油或其他燃料为能源的发电厂,发电过程中会产生大量的氮氧化物,其中主要包括一氧化氮(NO)和二氧化氮(NO2)。

这些氮氧化物是大气污染的主要来源之一,对环境和人体健康都会造成很大的危害。

为减少这些氮氧化物的排放量,火电厂需要进行脱硝处理。

火电厂脱硝工艺通常采用SCR(选择性催化还原)技术。

下面是一个火电厂脱硝工艺流程图的简要描述:1. 烟气进入烟气净化系统:烟气通常是通过锅炉燃烧产生的,首先需要进入烟气净化系统进行处理。

这个处理过程主要是去除烟气中的颗粒物和硫化物等。

2. 烟气进入脱硝装置:经过烟气净化系统的处理,清洁的烟气进入脱硝装置。

3. 入口煤粉喷射:在脱硝装置的入口,喷射煤粉使其与烟气充分混合。

4. 污染物分解:煤粉中的氮氧化物会在高温下分解成一氧化氮和氨。

5. 催化剂注入:催化剂(通常是钒钛催化剂)通过注入的方式加入脱硝装置中,形成催化层。

6. 进一步反应:一氧化氮和氨在催化剂层上发生反应,生成氮和水。

7. 烟气出口处理:经过脱硝装置的处理,烟气中的氮氧化物被高效地去除,减少了对环境的污染。

处理后的烟气通过烟囱排放出去。

8. 催化剂再生:催化剂在反应中会逐渐失活,需要定期进行再生。

催化剂再生通常是利用高温脱硝气体进行。

9. 催化剂循环:再生后的催化剂通过循环系统再次注入脱硝装置,进行下一轮反应。

以上是火电厂脱硝工艺流程图的简要描述,脱硝工艺主要是通过SCR技术实现的,能够高效地去除烟气中的氮氧化物,从而减少对环境的污染。

脱硝工艺的实施对于火电厂的可持续发展和环境保护具有重要意义。

火电厂脱硫脱硝技术应用

火电厂脱硫脱硝技术应用

火电厂脱硫脱硝技术应用火电厂脱硫脱硝技术是为了降低火电厂排放的二氧化硫和氮氧化物含量而采取的措施。

二氧化硫和氮氧化物是火力发电过程中排放的主要污染物之一,具有强烈的刺激性气味和对环境和人体健康的不良影响。

火电厂需要采取相应的脱硫脱硝技术来减少这些有害物质的排放量。

火电厂脱硫技术主要有石灰石-石膏法、海水法、碱液吸收法、氧化吸收法等。

石灰石-石膏法是目前应用广泛的一种脱硫技术。

该方法通过引进石灰石和水,与燃烧产生的二氧化硫反应生成石膏,达到去除二氧化硫的目的。

该方法具有成本低、处理效果好、生成副产物可利用等优点。

海水法是一种相对简单的脱硫技术,该方法利用海水中的碱性物质与二氧化硫反应生成硫酸盐,达到脱硫的效果。

火电厂脱硝技术主要有选择性非催化还原法、选择性催化还原法和氨法等。

选择性非催化还原法是一种通过添加选择性催化还原剂(如氨)来还原氮氧化物的技术。

氨进入尾气中与氮氧化物反应生成氨基化合物,然后通过后续处理将其转化为氮气。

该方法具有高效、低成本的优点。

选择性催化还原法是一种结合了催化剂的选择性还原技术,通过在催化剂的作用下将氨与氮氧化物还原生成氮气。

氨法是一种传统的脱硝技术,通过直接注入氨气或氨水来还原氮氧化物成氮气,然后通过后续处理将氮气排放到大气中。

氨法具有简单、可靠、成本低等优点,但氨的使用会产生新的环境问题,如氨的挥发会导致气味问题和对生态环境的影响。

火电厂脱硫脱硝技术的应用可以显著降低火电厂的污染物排放,降低环境和人体健康的风险。

脱硫脱硝技术也存在一些问题和挑战。

脱硫脱硝技术需要投入大量的资金和资源,对火电厂经济效益和可持续发展提出了挑战。

脱硫脱硝技术会产生大量的副产物,如石膏和废水,对环境造成了一定的影响和负担。

脱硫脱硝技术的运行和维护也需要一定的人力和技术支持,对火电厂的管理和运营提出了要求。

火电厂脱硫脱硝技术的应用对于减少二氧化硫和氮氧化物的排放、改善环境和人体健康具有重要意义。

火电厂尿素脱硝原理及工艺

火电厂尿素脱硝原理及工艺

火电厂尿素脱硝原理及工艺嘿,朋友们!今天咱来聊聊火电厂尿素脱硝这档子事儿。

你说这火电厂啊,就像一个大巨人,不停地工作,给我们带来光明和温暖。

可它也会产生一些不太好的东西,就比如氮氧化物。

这氮氧化物就像是大巨人身上的小毛病,得想办法给它治好咯。

那怎么治呢?这就得靠尿素脱硝啦!就好像我们感冒了要吃药一样。

尿素就像是一味神奇的药,能把氮氧化物这个小病魔给赶跑。

想象一下,火电厂里燃烧煤炭什么的时候,氮氧化物就跑出来啦。

这时候,我们把尿素溶液喷进去,就好像派出了一群小战士。

这些小战士和氮氧化物一见面,就噼里啪啦地打起来啦!经过一番战斗,氮氧化物就被打败啦,变成了无害的氮气和水。

这尿素脱硝的工艺啊,可讲究着呢!得把尿素溶液调配得恰到好处,不能多也不能少。

就跟做菜放盐一样,放多了太咸,放少了没味。

而且喷尿素溶液的位置和时机也很重要,得找准了,不然效果可就大打折扣啦。

你说这火电厂尿素脱硝是不是很神奇?它就像一个默默工作的卫士,守护着我们的环境。

让我们在享受电力带来便利的同时,也不用担心那些讨厌的污染物。

它真的很重要啊!要是没有它,那火电厂排放的氮氧化物得多可怕呀!我们的天空可能就没那么蓝啦,空气也没那么清新啦。

所以说,这尿素脱硝工艺可真是功不可没呀!咱再回过头来想想,科技真是了不起呀!能想出这么好的办法来解决问题。

让火电厂既能好好工作,又不会对环境造成太大的伤害。

这就像是给大巨人戴上了一副矫正眼镜,让它看得更清楚,走得更稳当。

所以呀,我们得好好感谢那些研究出火电厂尿素脱硝技术的科学家和工程师们。

是他们的智慧和努力,让我们的生活变得更美好。

朋友们,让我们一起为火电厂尿素脱硝点赞吧!希望这项技术能越来越先进,让我们的环境越来越好!这就是我对火电厂尿素脱硝原理及工艺的理解,你们觉得怎么样呢?是不是很有意思呀!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上;热力型NOx的生成和燃烧温度的关系很大,
在温度足够高时,热力型NOx的生成量可占到
NOx总量的20%;快速型NOx在煤燃烧过程中的
生成量很小。因此,控制和减少煤燃烧产生的 NOx主要是控制燃料型NOx的生成,其次是热力 型NOx 。
1.热力型NOx

温度对热力型NOx的生成量影响十分明显,如图所示。随着温 度的升高,NOx的生成量急剧升高。在实际燃烧过程中,由于 燃烧室内的温度分布是不均匀的,如果有局部的高温区,则在 这些区域会生成较多的NOx,它可能会对整个燃烧室内的 NOx生成起关键性的作用。因此,在实际过程中应尽量避免产 生局部高温区。
过剩空气系数对热力型NOx生成的影响也十分明显,热力型 NOx生成量与氧浓度的平方根成正比,即氧浓度增大,在较高 的温度下会使氧分子分解所得的氧原子浓度增加,使热力型 NOx的生成量也增加。实际操作中过剩空气系数增加,一方面 增加了氧浓度,另一方面会使火焰温度降低。从总的趋势来看, 随着过剩空气系数的增加,NOx生成量先增加,到一个极值后 会下降。图21-3示出了NOx生成量随过剩空气系数的变化规律。
第二节 低氮氧化物燃烧技术


从热力型、燃料型和快速型三种NOx生成机理可以得出抑制 NOx生成和促使破坏NOx的途径,图中还原气氛箭头所指即 抑制和促使NOx破坏的途径
二、煤燃烧生成的NOx的控制
控制氮氧化物排放的方法有十余种,这些方
法大体上可以分为两大类:
一气脱硝技术
火电厂脱硝技术
第一节 氮氧化物控制技术概述 第二节 低氮氧化物燃烧技术 第三节 选择性催化还原脱硝技术 第四节 其他脱硝技术
第一节 氮氧化物控制技术概述
氮氧化物(NOx)的定义和组成:
NOx≈NO+NO2+N2O 还包括N2O2 、N2O3 、N2O 4 、N2O5等 燃烧源中NO+NO2占90%以上,流化床锅炉及应用 SNCR除外 煤粉锅炉排出的烟气中:NO>90%; NO2 =5~10%, N2O≈1%
子,生成CN类化合物,再进一步被氧化生成NO)
煤粉炉正常燃烧条件下,煤中有机氮转化为燃料型NOx的转化率为 25~40%。在煤粉燃烧生成NOx产物中占60~80%。
NOx 类 型 与 温 度 关 系
由图可见,煤粉燃烧所生成的NOx中,燃料型NOx 是最主要的,它占NOx总生成量的60%~80%以
一、燃烧过程中NOx的生成机理
(1)热力型NOx,它是空气中的氮气在高温下氧化而生成的NOx
(2)燃料型NOx,它是燃料中含有的氮化合物在燃烧过程中热分 解而又接着氧化而生成的NOx; (3)快速型NOx,它是燃烧时空气中的氮和燃料中的碳氢原子团 如CH等反应生成的NOx(先通过燃料产生的CH原子团撞击N2分
(3) 挥发分N中最主要的氮化合物是HCN和NH3,在挥发 分N中HCN和NH3所占的比例不仅取决于煤种及其挥发 分的性质,而且与氮和煤的碳氢化合物的结合状态等化学 性质有关,同时还与燃烧条件如温度等有关。 (4) 挥发分N中HCN被氧化的主要反应途径如下:挥发分 N中的HCN氧化成NCO后,可能有两条反应,取决于 NCO进一步所遇到的反应条件。在氧化性气氛中,NCO 会进一步氧化成NO,成为NO的生成源。同时,又能与 已生成的NO进行还原反应,使NO还原成N2,成为NO的 还原剂。 (5) 挥发分N中NH3被氧化的主要反应途径如下:NH3可 能作为NO的生成源,也可能成为NO的还原剂。

(2) 燃料型NOx的生成途径不是非常依赖于温
度,但却非常依赖于空气/燃料比。燃料型
NOx的生成量和过量空气系数的关系很大, 其转换率随过量空气系数的增加而增加。在 过量空气系数α<l时,其转换率会显著降低; 当α=0.7时,其转换率接近于零。
热力型NOx/挥发分NOx/焦炭NOx与过剩空气

挥发份N/焦炭N的比例与热解温度、加热速率、煤种有关。

事实上由于挥发份析出处在煤粉燃烧的前期,通常处于局部 富燃的还原气氛,加上先进的低NOx燃烧技术的应用,更加 强了挥发份燃烧阶段的还原性气氛,使挥发份N转化成NO的 比例降到很低的水平;而对于焦炭氮,由于燃烧后期焦炭燃尽 的需要,二次空气的补充使焦炭氮的析出基本处于氧化性的 气氛下,所以从前的研究者一般都认为焦炭氮几乎100%转化 成NO。KiP1nine总结说,煤粉燃烧时,焦炭氮转化成NO的 比例在20%到80%之间,而且转化比例主要是由煤种决定的, 而与燃烧的过量空气系数和燃烧温度的关系相对比较小。 Jones等从低NOx燃烧器中焦炭NOx占总的NOx生成的比例分 析,焦炭NOx占总的NOx排放的60%以上。Willimas也认为, 煤粉燃烧器产生的NOx大约80%是来自焦炭氮,在现代的低 NOx燃烧器技术应用条件下,焦炭NOx是主要的NOx来源。


气体在高温区的停留时间对NOx生成也将产生 较大影响。从图中可以看出,在停留时间较短 时,NOx浓度随着停留时间的延长而增大;但 当停留时间达到一定值后,停留时间的增加对 NOx浓度不再产生影响。
1-t=0.01s; 2-t=0.1s; 3-t=1s; 4-t=10s; 5-t=100s
2.快速型NOx 快速型NOx在CHx类原子团较多、氧气浓度相对较低的富燃 料燃烧时产生,多发生在内燃机的燃烧过程中。快速型NOx 的生成对温度的依赖性很弱。对于燃煤锅炉,快速型NOx与 燃料型及热力型NOx相比,其生成量要少得多,一般占总 NOx的5%以下。通常情况下,在不含氮的碳氢燃料低温燃烧 时,才重点考虑快速型NOx。 3.燃料型NOx 燃料型NOx的生成机理非常复杂,大致有以下规律: (1)在一般燃烧条件下,燃料中的氮有机化合物首先被热分解 成氰(HCN)、氨(NH3)、CN或热解焦油等中间产物,它们随 挥发分一起从燃料中析出,称为挥发分N,其生成的NOx占 燃料型NO的60%~80%。挥发分N析出后仍残留在焦炭中的 氮化合物,称为焦炭N。
相关文档
最新文档