纯电动汽车驱动桥设计【毕业论文】
驱动桥设计毕业设计
毕业设计任务书设计题目:比亚迪速锐驱动桥设计专业:交通10-1学号: ********* *名:***指导教师:***毕业设计开题报告目录摘要 (1)Abstract (1)第一章绪论 (2)1.1 本设计的目的与意义 (2)1.2 驱动桥国内外发展现状 (3)1.3 本设计的主要内容 (3)1.4 本次设计的其他数据 (3)第二章驱动桥的选型 (4)2.1 驱动桥的选型 (4)2.1.1 方案(一):非断开式驱动桥 (5)2.1.2 方案(二):断开式驱动桥 (6)2.1.3 方案(三):多桥驱动的布置 (7)第三章驱动半轴的设计 (9)3.1 半轴的结构形式分析 (9)3.2 半轴的强度计算 (10)半浮式半轴计算载荷的确定 (11)a 半轴在纵向力最大时 (11)b 半轴在侧向力最大时 (11)c 半轴在垂向力最大时 (13)3.3 半轴的强度计算 (13)a 纵向力最大时, (13)b 侧向力最大时 (14)c 垂向力最大时 (14)3.4 半轴花键的设计 (14)3.5 半轴的材料及热处理半轴的材料及热处理 (16)3.5.1 半轴的工作条件和性能要求 (16)3.5.2 处理技术要求 (16)3.5.3 选择用钢 (16)3.5.4 半轴的工艺路线 (17)3.5.5 热处理工艺分析 (17)第四章驱动桥壳的设计 (18)4.1 驱动桥壳结构方案选择 (18)a 可分式桥壳 (18)b 整体式桥壳 (18)c 组合式桥壳 (19)4.2 驱动桥壳强度计算 (20)4.2.1 桥壳的静弯曲应力计算 (20)4.2.2 在不平路面冲击载荷作用下的桥壳强度计算 (21)4.2.3 汽车以最大牵引力行驶时的桥壳强度计算 (22)4.2.4 紧急制动时的桥壳强度计算 (23)4.2.5 汽车受最大侧向力时的桥壳强度计算 (24)第五章轮胎的选取 (26)5.1 轮胎与车轮应满足的基本要求 (26)5.2 轮胎的特点与选用 (26)5.3 轮胎的选型及尺寸参数 (26)第六章CAD进行建模装配 (28)6.1 CAD的介绍 (28)6.2 CAD建模过程 (28)6.2.1 车桥的建模 (28)6.2.2 半轴的建模 (31)6.2.3 轴承和螺栓的建模 (31)6.2.4 车轮的建模 (33)6.3实体装配 (34)总结 .............................................................................................................................. 错误!未定义书签。
纯电动汽车一体化驱动后桥结构设计及优化分析
交通科技与管理93技术与应用0 引言本篇文章以市面上某款电动汽车的驱动桥为研究对象,使用ANSYS workbench 对其进行有限元模型分析,证实其强度刚度等都可满足使用标准,在此基础上采取直接优化方法,制定目标函数和输入参数后实施优化,从而获得更加可靠的数据,达到了轻量化的目标。
1 有限元分析1.1 构建车架模型及网格划分在建立驱动桥壳的模型时,需要抹去不影响整体性能的小孔与圆角,如此可降低网格划分难度。
选用的桥壳材料为45Cr 合金钢,屈服应力为450 MPa,总质量为28.15 kg,对各部件材料属性设置完成后,采取网格划分,使用的是六面体网格,网格数量为27 620,节点数为119 725。
1.2 极限工况仿真分析汽车在道路中行驶时会受到不同方向和大小的力,不过大都可以概括为四类工况,在进行计算时选用了这四类工况下的极限数值,对驱动桥桥壳进行仿真计算,获得了四类极限工况下桥壳的应力、位移分布规律。
最终的结论表明,一体化驱动桥桥壳在最大垂直力工况下桥壳中心处应力较大,为438.63 MPa;最大单位变形量是0.904 mm/m,都远低于国家标准值,所以此次研发的后桥结构满足极限工况中的应用要求,在极限状态下不会出现损伤。
1.3 疲劳寿命分析根据汽车规定标准QCT533-1999中对驱动桥壳疲劳试验的要求,测试负载最大按照满载时的2.5倍加载,为36 kN;最小按照满载时的0.25倍加载,为3.6 kN。
所得结果为在满载轴荷作用下驱动桥桥壳的最低寿命为52万次,与国家规定的最低次数50万次相比略高,所以驱动桥壳在该极限工况中的疲劳寿命仿真计算中是满足要求的。
2 优化设计2.1 目标函数设定经过上面的计算可以了解到,桥壳的最大应力为438.63 MPa,最大位移为1.529 2,远小于材料极限值,所以驱动桥在强度及刚度方面远超过车辆的使用要求。
考虑到生产成本及耗油量等问题,在确保安全基础下可采取轻量化设计,此处可对其尺寸进行优化设计。
驱动桥设计_毕业设计论文
驱动桥设计摘要现代工程车辆技术追求高效节能、高舒适性和高安全性等目标。
前一项目标与环境保护密切相关,是当代全球性热门话题,后两项目标是车辆朝着高性能化方向发展必须研究和解决的重要课题。
转向系统的高性能化是指其能够根据车辆的运行状况和驾驶员的要求实行多目标控制,以获得良好的转向轻便性、较好的路感和较快的响应性。
汽车转向系统是影响汽车操纵稳定性、行驶安全性和驾驶舒适性的关键部分。
在追求高效节能\高舒适性和高安全性的今天,电控液压助力转向系统作为一种新的汽车动力转向系统,以其节能、环保、更佳的操纵特性和转向路感,成为动力转向技术研究的焦点。
本文通过查阅相关的文献,介绍了EHPS系统的结构组成和工作原理,在参考现有车型的结构数据的基础上,设计计算转向系的主要参数,确定转向器的结构参数和动力转向部分结构参数,在分析其助力特性的基础上,设计合理的助力特性曲线,并通过MATLAB作出助力特性图,同时提出一种基于车速和转向盘转动角速度的控制策略,根据EHPS系统的特点,通过AMESim和Simulink建立整个系统的模型。
通过联合仿真可以得出EHPS系统比HPS系统能提供更好的助力特性和转向路感。
关键词:EHPS;助力特性;结构设计;AMESim与Simulink建模ABSTRACTHigh effective energy saving,high comfort performance and high security are thegoals of contemporary.The first goal closely concerns with environment protecting,is also the popular topic around the world.The last two goals are the important subjects must be researched and solved in making automobile high performance.To make the steering system high performance is that the system can carry out mufti-goals control according to the vehicle states and drive requirements to acquire the steering handiness,better road feeling,better anti-interfering performance and faster response.The motor turing system is the essential part which affects the automobile operation stability,the travel security and the driving comfortablet.Nowadays we pursue highly effective energy conservation,the high comforrtableness and high secure.The electrically hydraulic power steering (EHPS) taking as one kind of new automobile power steering system,it takes the power steering engineering research the focal point by its energy conservation,the environmental protection,the better handling characteristic and changes the road feeling.According to consult relevant literature, this paper introduces the structure and the principle of EHPS, bases the further study of EHPS on the structural parameter date of a certain type of the light lorry, calculates the main parameters of steering system and power steering and devises the hydraulic circuit of EHPS.On the basis of the analysis of EHPS, this paper designs a reasonable EHPS power curve, including plotting the curve with the technique of MATLAB. Taking into account the steady steering and emergency steering, it advances the control strategy plan based on speed, steering wheel angle velocity, the steering wheel torque. Based on the structural characteristics of EHPS, this paper proposed AMESIM and SIMULINK joint simulation of the entire EHPS system. Accord to the result we can know that EHPS can offer more secure handle, more saving energy and way feeling.Key words:EHPS;Characteristics of power; Structure design; AMESim and Simulink Modeling目录摘要Abstract第一章绪言1.1课题的研究目的1.2电控液压助力转向系统1.2.1EHPS 结构及工作原理1.2.2EHPS 的特点1.2.3EHPS 现状与发展趋势1.3课题的研究内容和方法1.4论文的主要组织结构第二章EHPS 系统方案设计2.1 轻型载货汽车整体参数选择2.2 EHPS 系统方案的选择计算2.2.1 转向系主要参数的确定2.2.2 转向器结构设计计算2.2.3 动力转向结构方案的确定2.2.4 动力缸的计算2.2.5 电动泵的选择2.3 EHPS 系统液压回路的设计2.3.1 传统转向液压系统工作原理2.3.2 EHPS系统设计及工作原理2.3.3 技术经济性分析2.4 本章小结第三章EHPS 系统助力特性分析3.1 转向轻便性和转向路感3.2 EHPS 助力特性曲线设计3.2.1 EHPS与HPS助力特性比较3.2.2 理想助力特性分析3.2.3 助力特性曲线设计3.3 本章小结第四章EHPS 系统控制策略分析4.1 电机转速曲线的设计4.2 控制算法4.3 本章小结第五章EHPS 系统建模5.1 EHPS系统AMESim与Simulink联合建模简介5.2 EHPS系统液压部分的建模5.2.1 液压泵动力学模型5.2.2 转阀动力学模型5.3 EHPS系统机械部分的建模5.3.1 转向盘和扭杆AMESim模型5.3.2 齿轮齿条转向器和轮胎AMESim模型5.3.3 电机的AMESim模型5.4 EHPS系统控制部分的建模5.5 EHPS系统AMESim和Simulink联合仿真5.5.1 联合仿真设置5.5.2 联合仿真实现5.5.3 仿真计算与结果分析5.6 本章小结第六章全文总结与展望6.1 全文总结6.2 工作展望1绪言1.1课题的研究目的转向系统是影响汽车操纵稳定性、舒适性和行驶安全性的关键系统之一,在转向系统的设计中,存在着转向轻便性和转向灵敏性之间的矛盾。
纯电动汽车电动驱动桥设计与试验
三、试验
1、台架试验
台架试验是在实验室环境下对电动驱动桥进行模拟测试的一种方法。通过台 架试验,可以模拟不同工况下的车辆性能表现,例如加速、制动、爬坡和涉水等。 同时,台架试验还可以对电动驱动桥的各个部件进行性能检测,例如电动机的扭 矩、转速和效率等。
2、实车试验
实车试验是在实际道路环境下对电动驱动桥进行测试的一种方法。通过实车 试验,可以全面评估车辆在实际使用中的性能表现,例如续航里程、驾驶稳定性、 舒适性和可靠性等。同时,实车试验还可以对车辆的安全性能进行检测,例如制 动性能、避障能力等。
一体化驱动桥在纯电动汽车中的应用非常广泛。以某款纯电动轿车为例,其 采用的是三合一电动驱动桥,将电机、减速器和差速器集成为一个整体。这种设 计使得动力传输更加直接,提高了车辆的加速性能和操控稳定性。此外,在一些 轻型商用车中,一体化驱动桥也被广泛应用于电动货车和客车等领域。
尽管一体化驱动桥在纯电动汽车中已经得到了广泛应用,但是其未来发展仍 然具有广阔的前景。一方面,随着技术的不断进步,一体化驱动桥的效率和性能 还有待进一步提高。例如,新的材料和工艺的应用,将有助于减轻驱动桥的重量 和提高其效率。另一方面,随着自动驾驶技术的不断发展,一体化驱动桥将会集 成更多的功能,如电动助力转向、制动能量回收等,从而进一步提升纯电动汽车 的性能和智能化水平。
感谢观看
纯电动汽车电动驱动桥设计与 试验
01 一、引言
03 三、试验 05 五、结论
目录
02 二、设计 04 四、结果与分析 06 参考内容
随着全球能源危机的不断加剧,电动汽车作为一种清洁、高效的交通工具, 逐渐获得了广泛。作为电动汽车的关键组成部分,电动驱动桥的设计与试验直接 关系到车辆的性能、安全和可靠性。本次演示将介绍纯电动汽车电动驱动桥的设 计方案与试验方法,并分析试验结果。
毕业设计汽车驱动桥设计
YC1090货车驱动桥的设计目录中文摘要英文摘要1 前言2 总体方案的布置3 驱动桥零部件的设计3.1 主减速器设计3.2 差速器设计3.3 半轴的设计3.4 驱动桥壳设计4 CRUISE软件的分析5 优化设计6 结论参考文献附件清单致谢盐城工学院本科生毕业设计说明书20071 前言本设计课题是改进CA7204型汽车驱动桥的设计。
故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式、设计计算及性能分析作一一介绍。
汽车驱动桥位于传动系的末端,其基本功用是增大由传动轴或直接从变速器传来的转矩,将转矩合理的分配给左、右驱动车轮具有汽车行驶运动学所要求的差速功能。
驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式、设计计算方法与性能分析。
汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。
汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。
另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。
例如,驱动桥包含主减速器、差速器、半轴、桥壳和各种齿轮。
由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。
因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。
他有以下两大难题,一是将发动机输出扭矩通过变速箱将动力传递到差速器上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。
二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。
毕业设计--纯电动汽车驱动桥设计
目录第一章绪论1.1纯电动汽车概述1.1.1 电动汽车的分类1.2驱动桥的概述1.2.1驱动桥的功能1.2.2驱动桥的分类1.2.3驱动桥的组成1.2.4驱动桥的设计1.3电动车出现的背景、意义及国内外纯电动车驱动桥发展现状第二章传动系统工作原理2.1 轿车采用的传动方案2.2 主减速器的确定2.2.1 电动轿车动力性能要求2.2.2 电机参数和减速器传动比的选择2.2.3 匹配结果2.3 主减速器的结构形式2.3.1 主减速器结构方案分析2.3.2 圆柱齿轮传动的主要参数2.3.3 锥齿轮传动的主要参数2.4 差速器的确定2.4.1 差速器的工能原理2.4.2 差速器的选择2.4.3 差速器主要参数的计算2.5 相关轴及轴承设计2.5.1减速器输入轴2.5.2齿轮中间传动轴2.5.3相关轴承的选择2.5.4键的选择和校核2.5.5轴承的强度校核第三章毕业设计总结与感想第1章绪论1.1纯电动汽车概述1.1.1电动汽车的分类电动汽车在广义上可分为3 类,即纯电动汽车(BEV) 、混合动力电动汽车(HEV) 和燃料电池电动汽车(FCEV)。
纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池)提供动力的汽车。
目前,这三种汽车都处于不同的研究阶段。
由于一次石化能源的日趋缺乏,纯电动汽车被认为是汽车工业的未来。
但是车用电池的许多关键技术还在突破,因此,纯电动汽车多用于低速短距离的运输。
混合动力车的开发是从燃油汽车到未来纯电动汽车的一种过渡阶段,它既能够满足用户的需求,有具有低油耗、低排放的特点,在目前的技术水平下是最切合市场的,但是混合动力车有两个动力源,在造价和如何匹配控制上还需要继续努力。
燃料电池电动汽车才有燃料电池作为能源。
燃料电池就是利用氢气和氧气(或空气)在催化剂的作用下直接经电化学反应产生电能的装置,具有无污染,只有水作为排放物的优点。
但现阶段,燃料电池的许多关键技术还处于研发试验阶段。
福田欧曼ETX驱动桥的设计
第1章绪论1.1 选题背景目的及意义从目前我国载货车销售的结构上看,由于国家基础设施建设以及市政建设的投入日益加大,重型自卸车的销量猛增;又由于货物运输向专用化、大型化发展,传统意义的重型载货车较之上年有不同程度的下挫。
对于国内卡车市场而言,虽然最近群雄并起,各种资本纷纷进入,竞争异常残酷激烈,但目前大的格局基本已定:解放、东风、重汽、陕汽、欧曼将跻身第一集团;上汽依维柯红岩、江淮、北奔、华菱做为第二集团,将向第一集团的地位不断发起冲击;而广汽、集瑞、长安、大运等后起之秀或许会后来居上、有所作为,有待市场考验。
自卸车市场,占据较大数量的是东风EQ3208系列,占市场的70%多。
该系列采用康明斯180至210马力发动机,超大的车厢以及经济型的配置使得该车在自卸车市场具有绝对的优势。
牵引车市场受追捧的是陕汽、重汽的S35和S29,良好的性价比以及大马力、大吨位的特点使得该系列产品拥有极佳的口碑。
260至360马力发动机、富勒变速箱、斯太尔加强桥使该车的配置光彩夺目。
货运车(包括仓栅车)竞争极为激烈,可用群雄纷争来形容,一汽的CA1200系列、东风的EQ1208系列、红岩的CQ19系列等都是畅销产品。
重型专用车批量小、难度高,一直不为国内企业所重视,高档专用车为进口品牌所垄断,沃尔沃、曼等品牌参与国内竞争主要以专用车为主。
国外卡车的发展趋势各国商用车制造厂家目前正采用令人惊叹的高新技术来最大限度地保障安全,提高效率。
重型车的发展趋势对安全、可靠、舒适的人性化设计等方面提出更高的要求。
在安全性方面,国际潮流是安装制动防抱死系统(ABS)、翻车警告系统、电子控制制动系统(EBS)、红外线夜视系统以及其它的驾驶室安全性措施。
在欧洲,多数重型车驾驶室都要经受严格的加载、撞击与扭振试验,完全合格后方可投入批量生产。
其目的是在发生翻车事故后,驾驶室不会被压扁,保证驾驶员的生存空间,车门不会自行打开,人员不会抛出车外。
《电动汽车毕业设计》word版
毕业设计论文新能源汽车电动汽车动力及控制技术设计摘要随着世界环境的污染、全球石油危机日益严重而带动的石油价格不断上涨给汽车工业带来了不可忽视的冲击,也增强了人们开发新能源的意识,而新能源汽车更是人们关注的一大焦点。
目前电瓶式纯电动汽车以噪音小、耗能低、无污染、成本低、结构简单而成为新能源汽车发展的主流,世界很多国家都投入了大量的人力、财力去开发电动汽车。
本文主要围绕电动汽车的电动机以及目前普遍使用的电动车控制系统主要参数作出分析,例如转速与转矩的关系、转速与功率的关系、功率与转矩的关系以及传动比、蓄电池的比能量等,设计出合理的电动车动力系统和控制系统。
本文主要采用的技术有:1、电动机的转矩、转速、功率。
2、电动机的主要调速方式。
关键词:电动机、发动机、转矩、变频调速、交流电动机、EV目录第一章前言 (1)第二章电动汽车构造与原理 (2)第一节电动车的种类 (2)第二节蓄电池电动车 (4)第三节燃料电池电动车 (10)第三章电动车动力及控制设计 (12)第一节电动车驱动电机种类 (12)第二节直流驱动电动机 (14)第三节交流驱动电动机 (18)第四节直流电动机的控制 (21)第五节三项交流电动机的控制 (24)第四章我国电动汽车的缺陷 (27)第五章电动汽车的发展趋势 (29)致谢 (31)附录一 (32)附录二 (33)参考文献 (39)第一章前言汽车工业的告诉发展,汽车带来的环境污染、能源短缺、资源枯竭和安全等方面的问题越来越突出。
为了保持国民经济的可持续发展,保护人类居住环境和能源供给,各国政府不惜巨资,投入大量人力、物力,寻求解决这些问题的各种途径。
我国面临的形式也十分严峻,国内的石油储藏量和开采量相当有限,随着汽车保有量的增加,石油需求越来越多,目前已不能自给,不足部分主要通过进口来满足,而且每年成递增趋势。
由于电动汽车具有突出的环保方面的优势,使得电动汽车的开发和研究成为各国开发绿色汽车的主流。
某车型汽车驱动桥设计文献综述(毕业设计)
毕业设计(论文)文献综述题目某车型汽车驱动桥设计专业机械设计制造及其自动化班级学生指导教师x x x x x x x x大学2016摘要驱动桥作为汽车的四大总成之一位于汽车传动系统末端,一般由主减速器、车轮传动装置、差速器和驱动桥壳等组成。
驱动桥在整车系统的功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,实现汽车行驶运动中所要求的左、右驱动轮的差速功能。
它的性能的好坏直接影响着汽车整车性能的好坏,所以驱动桥对于汽车非常重要。
同时汽车在行驶的过程中面临的道路环境多种多样,这样就使得驱动桥的工作环境变得极其恶劣,要承受来自路面和车体的各种振动、冲击和作用力。
而汽车在运行过程中的平顺性、舒适性、耐久性、通过性、振动噪声、传动效率都与驱动桥密切相关[1]。
本文主要介绍汽车驱动桥的研发现状、发展前景、应用现状、内部主要零件的组成、传动方案等。
关键词:汽车驱动桥,模块化设计,开发模式,整体性能,车桥市场前言随着我国经济的不断发展,目前我国已经成为世界第二大经济体,在经济发展的同时我国的汽车工业也迅猛的发展壮大,汽车工业随之带动了个汽车领域的零部件相关的产业链的发展。
驱动桥作为汽车四大总成之一,也跟随着汽车工业的发展而得到了相应的发展,国内的零部件厂家已经在研发生产过程中逐步形成了专业化、系列化、批量化生产的局面。
驱动桥位于汽车动力传动系的末端,其主要部分为:主减速器(轮边减速器)、差速器、车轮传动装置和驱动桥壳等,驱动桥的基本功能是传递扭矩、增大扭矩,同时合理的将扭矩分配给左、右驱动轮并实现差速功能,还需要承受各种复杂的力的作用。
驱动桥还对整车的机械性、可靠性、经济性等起着至关重要的作用。
虽然目前我国汽车工业已经得到了一定的发展,但就汽车驱动桥方面而言,我国仍旧存在诸多需要继续提升的地方,例如我们自主的研发能力还是有一定的局限性,现代先进的电子技术运用在产品的研发生产上的不够全面,现代产品设计分析方法没有得到充分的运用,生产自动化、智能化不够明显等。
(毕业设计)驱动桥
摘要变速器用来改变发动机传到驱动轮上的转矩和转速,目的是在原地起步、爬坡、转弯、加速等各种行驶工况下,使汽车获得不同的牵引力和速度,同时使发动机在最有利的工况范围内工作。
所以变速器的结构设计的合理性直接影响到汽车动力性和经济性。
设计要求达到换挡迅速、省力、方便、有较高的工作效率、工作噪声低。
因此变速器在汽车中得到广泛应用。
本次设计的是五个前进档加一个倒档的中型专用车的变速器。
为了使该变速器应用范围更加的广泛,应用到不同工程上,使得本变速器带有取力器。
变速器采用中间轴式,换档形式采用的是同步器和滑移齿轮换档,使的换档方便,可靠。
操纵机构设有自锁和互锁装置。
先利用已知参数确定各挡传动比,再后确定齿轮的模数、压力角、齿宽等参数。
由中心矩确定箱体的长度、高度和中间轴及二轴的轴径,然后对中间轴和各挡齿轮进行校核。
在设计过程中,利用CAXA绘图,运用MATALAB软件编程。
最后绘制装配图及零件图。
通过本次设计,使所设计的变速器工作可靠,传动效率更高。
关键词:变速器,同步器,齿轮,取力器AbstractTo change the engine used to spread transmission of torque and wheel speed, the aim of starting in place, climb, turn and accelerate a variety of driving conditions, different vehicle traction and speed, while the engine in the most favorable range conditions.Therefore, the reasonability of the structure design of a transmission gearbox directly affects the vehicle's dynamic performance. It is usually required shifting gears rapidly and conveniently, saving force, and having a higher working efficiency and low working noises.The design of the five forward file plus a reverse of the transmission medium-sized special vehicle. In order to make the transmission more broad range of applications, application to a different project, make a check of the power transmission device. Transmission use of the middle axis, shifting the form of using the synchronizer gear shift and sliding to make the shift easy and reliable. Manipulation of institutions with self-locking and interlocking devices.Using the given basic parameters, it was firstly determined the transmission ratio of each shift, the shaft center distances, the gear modulus, the gear pressing angles and widths, and so on. And then the general dimension of the gearbox, including its length, width and height , and then on the intermediate shaft and the block to check gear. During the design process, using CAXA mapping, the use of software programming MATALAB. The final assembly drawing and components drawing Fig.Through this design, so that the design of the transmission of reliable, efficient transmission.Key words:Transmission,,Synchronizer,Gear,Take out of power目录第一章前言 (1)第二章变速器结构概述 (2)第三章变速器各主要参数的设计计算 (3)3.1变速器传动比的确定 (3)3.2中心距的初步确定 (4)3.3轴的直径的初步确定 (4)3.4齿轮模数的确定 (5)3.5齿轮压力角的选择 (5)3.6各档齿轮齿数的分配 (6)3.7变位系数的选择 (7)3.8齿轮齿宽的设计计算 (8)3.9变速器同步器的设计计算 (8)第四章变速器中间轴的校核 (11)4.1中间轴常啮合齿轮处进行校核 (12)4.2对中间轴四挡齿轮处进行校核 (13)4.3对中间轴三挡齿轮进行校核 (14)4.4对中间轴二挡齿轮处进行校核 (15)4.5对中间轴一档挡齿轮处进行校核 (15)第五章变速器各档齿轮强度的校核 (17)5.1齿轮弯曲应力计算 (17)5.1.1二轴一挡直齿轮校核 (17)5.1.2倒挡直齿轮校核 (17)5.1.3二轴二挡斜齿轮校核 (18)5.1.4二轴三挡斜齿轮校核 (18)5.1.5二轴四挡斜齿轮校核 (18)5.1.6二轴常啮合斜齿轮校核 (19)5.1.7中间轴一档齿轮校核 (19)5.1.8中间轴二档齿轮校核 (19)5.1.9中间轴三档齿轮校核 (20)5.1.1.0中间轴四档齿轮校核 (20)5.1.1.1中间轴常啮合齿轮校核 (20)5.2齿轮接触应力计算 (20)5.2.1 二轴一挡直齿轮校核 (21)5.2.2二轴二挡斜齿轮校核 (22)校核 (22)5.2.3 二轴三挡斜齿轮Z7校核 (23)5.2.4二轴四挡斜齿轮Z5校核 (23)5.2.5二轴常啮合斜齿轮Z35.2.6中间轴一档齿轮校核 (24)5.2.7中间轴二档齿轮校核 (24)5.2.8中间轴三档齿轮校核 (24)5.2.9中间轴四档齿轮校核 (25)5.2.1.0中间轴常啮合齿轮校核 (25)5.2.1.1倒档齿轮校核 (25)第六章变速器操纵机构的设计 (27)第七章变速器轴承的选择 (28)第八章取力器的设计与计算 (29)8.1取力器的布置 (29)8.2取力器齿轮、轴和轴承的参数选择和强度计算 (29)第九章结论 (33)参考文献 (34)致谢 (35)附录一 (36)外文翻译 (36)附录二 (45)第一章前言变速器是传动系的重要部件,它的任务就是充分发挥发动机的性能,使发动机发出的动力有效而经济地传到驱动轮,以满足汽车行驶上的各项要求。
纯电动汽车两档式驱动桥设计
纯电动汽车两档式驱动桥设计纯电动汽车的发展日益受到关注,设计一种高效的驱动系统对于提升电动车辆的性能和续航能力具有重要意义。
在驱动系统中,驱动桥起着连接电动机和车轮的作用,其设计对于车辆的驱动性和稳定性有关键影响。
目前市场上的纯电动汽车往往采用单一的驱动桥设计,即电动机直接驱动车轮。
然而,单一驱动桥存在一些不足,如低速启动时的效率低、高速巡航时电动机转速过高等问题。
因此,设计一种能够在不同工况下自动切换驱动档位的两档式驱动桥具有重要意义。
两档式驱动桥设计可以根据驾驶工况自动切换驱动档位,从而实现在低速启动时提供足够的扭矩和加速性能,并在高速巡航时降低电动机的转速,提高能效。
这不仅可以提升电动汽车的驾驶性能和舒适性,还能延长驱动系统的使用寿命。
综上所述,纯电动汽车两档式驱动桥设计在提高电动车辆性能和续航能力方面具有重要的研究意义。
解释纯电动汽车两档式驱动桥的工作原理和基本构成纯电动汽车的两档式驱动桥是一种特殊的传动系统,它的设计旨在提供两种不同的传动比例,以满足不同行驶模式的需求。
该驱动桥的基本构成包括电动机、减速器、差速器和两个半轴。
在驱动过程中,电动机提供动力,通过减速器将电动机的高速转速降低到合适的输出转速。
差速器将输出转速分配给两个半轴,并根据需要提供不同的传动比例。
两档式驱动桥的工作原理是通过改变两个半轴的转速比例来实现不同的传动比例。
在普通模式下,两个半轴的转速比例相同,实现了正常的行驶状态。
而在运动模式下,驱动桥会调整半轴的转速比例,使一根半轴的转速更高,从而提供更高的加速性能。
这种设计的优点是可以在不同行驶模式下平衡动力和节能要求。
通过调整传动比例,可以在普通行驶和运动行驶之间找到最佳平衡点,既满足了正常行驶的需求,又提供了更激烈的加速性能。
总之,纯电动汽车的两档式驱动桥在提供多种行驶模式选择的同时,也平衡了动力和节能要求。
它的工作原理简单有效,可以为不同驾驶需求提供合适的驱动性能。
毕业设计--纯电动汽车驱动桥设计
目录第一章绪论1.1纯电动汽车概述1.1.1 电动汽车的分类1.2驱动桥的概述1.2.1驱动桥的功能1.2.2驱动桥的分类1.2.3驱动桥的组成1.2.4驱动桥的设计1.3电动车出现的背景、意义及国内外纯电动车驱动桥发展现状第二章传动系统工作原理2.1 轿车采用的传动方案2.2 主减速器的确定2.2.1 电动轿车动力性能要求2.2.2 电机参数和减速器传动比的选择2.2.3 匹配结果2.3 主减速器的结构形式2.3.1 主减速器结构方案分析2.3.2 圆柱齿轮传动的主要参数2.3.3 锥齿轮传动的主要参数2.4 差速器的确定2.4.1 差速器的工能原理2.4.2 差速器的选择2.4.3 差速器主要参数的计算2.5 相关轴及轴承设计2.5.1减速器输入轴2.5.2齿轮中间传动轴2.5.3相关轴承的选择2.5.4键的选择和校核2.5.5轴承的强度校核第三章毕业设计总结与感想第1章绪论1.1纯电动汽车概述1.1.1电动汽车的分类电动汽车在广义上可分为3 类,即纯电动汽车(BEV) 、混合动力电动汽车(HEV) 和燃料电池电动汽车(FCEV)。
纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池)提供动力的汽车。
目前,这三种汽车都处于不同的研究阶段。
由于一次石化能源的日趋缺乏,纯电动汽车被认为是汽车工业的未来。
但是车用电池的许多关键技术还在突破,因此,纯电动汽车多用于低速短距离的运输。
混合动力车的开发是从燃油汽车到未来纯电动汽车的一种过渡阶段,它既能够满足用户的需求,有具有低油耗、低排放的特点,在目前的技术水平下是最切合市场的,但是混合动力车有两个动力源,在造价和如何匹配控制上还需要继续努力。
燃料电池电动汽车才有燃料电池作为能源。
燃料电池就是利用氢气和氧气(或空气)在催化剂的作用下直接经电化学反应产生电能的装置,具有无污染,只有水作为排放物的优点。
但现阶段,燃料电池的许多关键技术还处于研发试验阶段。
新能源车用电驱动桥的设计分析
新能源车用电驱动桥的设计分析摘要:随着人们生活水平的不断提高,对能源的消耗也在不断上涨,因此能源危机已经成为全球性的问题。
新能源技术的应用,对能源的消耗危机有了很大的改善,新能源不仅对环境不会造成污染,同时也将汽车的发展带到新型的领域。
电动汽车采用一种新型驱动系统,尤其是驱动桥的设计质量,直接会关系到新能源电动汽车的正常使用。
因此要加强电动汽车驱动桥的设计与研究,提升桥驱动桥设计能力,从而保障新能源车辆的正常使用。
关键词:新能源车;用电驱动桥;设计与分析为了满足群众对节能、少排的需求,新能源汽车正在逐步加快发展。
同时新能源汽车成本较低,能量消耗较少,在使用方面还有诸多的优点。
新能源汽车在驱动桥设计方面,摒弃了传统的发动装置,利用电驱动桥进行取代。
但是电驱动桥在使设计过程中也会遇到诸多问题,因此要提高电驱动桥的设计水平,从而保证产品的高效率、高寿命。
不仅可以提高整个车辆的使用寿命,同时也保证人们的生命安全。
一、新能源车用电驱动桥设计背景我国于2012年便提出了与新能源汽车有关的战略方针,对于新能源汽车的推广给予了各种支持,同时也对新能源汽车的各种零部件生产给予了各种经济扶持。
并且在2013年也在后续提出了各种相对的政策,对购买新能源汽车广大人群给予一定的经济补偿。
2017年又出台了各种关于新能源汽车使用的相关政策,以新能源为主题,也召开了诸多相关的会议,国家对于新能源汽车的广泛使用,给予了极大的重视。
能源汽车的广泛使用,不仅可以为国家节省更多的不可再生资源,同时也为消费者减少了油耗的消费。
另外,新能源电动车的推广,减少了各种尾气排放,在一定程度上保护了自然生态环境。
因此新能源汽车具有较高的发展前景,也会将我国的汽车行业带领到一个新的发展领域。
二、新能源车用电驱动桥介绍(一)前置驱动桥新能源车采用前置驱动桥,车体的整体舒适度会增加,同时车体的散热性能也会更好。
因此目前我国大部分的新能源电等汽车,多数都为前置驱动桥设计。
新能源车用电驱动桥的设计
图4 承载与承扭分离型电驱动桥
从目前各整车厂及车桥企业的研究方向看,第二 代以及第三代电驱动桥可减轻电动机质量,降低整车 成本,提升整车续驶里程。其中第二代电驱动桥因其 前期投入低、技术易实现及性价比高,而备受市场青 睐,本文将以实例着重介绍。
众所周知,全浮式驱动桥较半浮式驱动桥有着更 好的刚度和更高的承载能力,轴承失效和油封漏油的 故障率更低。电驱动桥相较传统驱动桥的簧下质量和 设计载荷均有所增加,对驱动桥的各项性能要求也更 为严格。故在此摒弃半浮式驱动桥而优选全浮式第二 代电驱动桥进行设计。
轴承额定动载荷Cr/kN 轴承理论寿命(S10≥50万)/km
4100 2400 345.6 1720 1049 345.6 40.8 105 62.8
表11 刚性桥壳计算结果
电驱动桥满载负荷/kg 驱动轮滚动半径/mm 电动机最大输出转矩/N·m
减速比 后备系数 轮距B/mm 板簧中心距S/mm 满载时的质心高度hg/mm 桥管截面规格Dt/mm×mm 桥壳本体的总长L/mm 板簧表面到桥中心距h/mm 半轴套管危险断面外径D/mm 半轴套管危险断面内径d/mm 桥壳静弯曲应力(σ≤150)/MPa
汽车技术 | Auto Technology
黄苏刚1,徐雁超2,邹兵凤1
随着新能源汽车电动化步伐的加快,且电驱动桥具备高集成度、低成本、高传动效率和轻量化等诸多优 点,传统汽车上的发动机、传动系统将逐渐被电驱动桥取代[1]。本文先后介绍新能源汽车用电驱动桥的种类和 设计开发 [2],同时列举实例对设计过程加以说明,为汽车相关从业人员提供借鉴。
平行轴式结构是采用电动机取代燃油车的发动 机、变速器和传动轴,将电动机集成为电驱动桥的一 个子零件,并与电驱动桥的输出半轴呈平行布置,这
毕业设计驱动桥文献综述(可编辑修改word版)
驱动桥综述张勤辉(重庆工学院汽车学院 104040501 班)摘要:本文阐述了汽车驱动桥的作用和重要性,总结了国内外驱动桥的主要零部件技术现状及其发展趋势。
同时,指出了我国驱动桥设计开发中存在的问题,提及到驱动桥设计的先进开发模式。
并从众多车桥厂生产的产品中总结、分析了未来驱动桥的发展方向。
关键词: 重要性现状设计新方法发展趋势Abstract: This paper provides an overview of the driving axles’role and importance, Technology Status and trends of drive axles’main Components in home and abroad has being summed up. Meanwhile, the national R&D of drive axle existing problems was analyzed. And from numerous Axles plants' products it Summarize and Analysis the future development of driving axles.K e y W o r d s:Importance;Status;New Design Method;Development trend1、引言近十几年来,我国汽车工业发展迅猛。
汽车工业的发展带动了零部件及相关产业的发展,作为汽车关键零部件之一的汽车驱动桥也得到相应的发展,各生产厂家在研发和生产过程中基本上形成了专业化、系列化、批量化的局面[1]。
汽车驱动桥是汽车的重要总成之一,驱动桥处于动力传动系的末端,主要由主减速器、差速器、车轮传动装置和驱动桥壳等组成,其基本功能是增大由传动轴或变速器传递的转矩,并将转矩合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力、纵向力和横向力[2]。
轿车驱动桥毕业设计
研究目的
通过对轿车驱动桥的设计和研究,提高驱动桥的性能,满足现代汽车的高性能要求。
研究意义
本课题的研究不仅可以提高轿车驱动桥的性能,还可以推动汽车传动系统技术的发展,为汽车工业的发展做出贡献。同时,本课题的研究还可以培养学生的创新能力和实践能力,提高学生的综合素质。
02
CHAPTER
轿车驱动桥概述
动力传递
桥壳作为驱动桥的支撑和保护部件,承受和传递路面作用于车轮的各种力和力矩,保证驱动桥的稳定性和安全性。同时,半轴也承受着车轮的反作用力,并将这些力传递给车身。
承载与传力
03
CHAPTER
轿车驱动桥设计
确保驱动桥能够提供足够的驱动力和制动力,保证轿车在不同路况下的行驶稳定性和安全性。
满足轿车行驶性能要求
轿车驱动桥是连接车轮与车身的重要部件,负责将发动机的动力传递给车轮,同时承受和传递路面作用于车轮的各种力和力矩。
定义
驱动桥在轿车行驶过程中发挥着至关重要的作用,它直接影响轿车的动力性、经济性、行驶稳定性和安全性。
作用
桥壳
支撑和保护主减速器、差速器等部件,承受和传递各种力和力矩。
半轴
将差速器的动力传递给车轮,同时承受车轮的反作用力。
机械加工
对铸造出的毛坯进行机械加工,包括车削、铣削、钻孔等,以达到设计要求的尺寸精度和表面质量。
热处理工艺
对机械加工后的零件进行热处理,如淬火、回火等,以提高材料的力学性能和耐磨性。
质量管理体系
建立完善的质量管理体系,包括原材料检验、过程控制、成品检验等环节,确保产品质量符合设计要求。
检测手段
采用先进的检测设备和手段,如三坐标测量机、硬度计、金相显微镜等,对零件的尺寸精度、表面质量、材料性能等进行全面检测。
车辆工程毕业设计140汽车驱动桥设计 (2)
摘要驱动桥作为汽车的重要组成部分,它的性能的好坏直接影响整车性能。
其一般由主减速器、差速器、半轴及桥壳四部分组成,基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。
此次设计先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用圆锥行星齿轮差速器,半轴采用全浮式型式,桥壳采用铸造整体式桥壳。
此次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、全浮式半轴的设计和桥壳的校核及材料选取等工作。
关键字:驱动桥、双级主减速器、弧齿锥齿轮、ABSTRACTDriving axle assembly is one of the important vehicle carrying pieces and can directly impact on the whole vehicle's performance and its effective life. Driving Axle is consisted of Main Decelerator, Differential Mechanism, Half Shaft and Axle Housing. The basic function of Driving Axle is to increase the torque transmitted by Drive Shaft or directly transmitted by Gearbox, then distributes it to left and right wheel, and make these two wheels have the differential function which is required in Automobile Driving Kinematics; besides, the Driving Axle must also stand the lead hangs down strength, the longitudinal force and the transverse force acted on the road surface, the frame or the compartment lead.The configuration of the Driving Axle is introduced in the thesis at first. On the basis of the analysis of the structure and the developing process of Driving Axle, the design adopted the Integral Driving Axle, Double Reduction Gear for Main Decelerator’s deceleration form, Spiral Bevel Gear for Main Decelerator’s gear, Full Floating for Axle and Casting Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Double Reduction Gear, tapered Planetary Gear Differential Mechanism, Full Floating Axle, the checking of Axle Housing and the election of the material and so on.Key words: Driving Axle;Double Main Decelerator;Single Reduction Final Drive目录摘要 (I)ABSTRACT (II)目录 (III)第1章绪论 (1)1.1选题的目的和意义 (1)1.2研究现状 (1)1.2.1国内现状 (1)1.2.2国外现状 (2)第2章驱动桥结构方案分析 (4)第3章主减速器设计 (5)3.1 主减速器的结构形式 (5)3.1.1 主减速器的齿轮类型 (5)3.1.2 主减速器的减速形式 (5)3.1.3 主减速器主,从动锥齿轮的支承形式 (5)3.2主减速器的基本参数选择与设计计算 (6)3.2.1 主减速器计算载荷的确定 (6)3.2.2 主减速器基本参数的选择 (8)3.2.3主减速器圆弧锥齿轮的几何尺寸计算 (10)3.2.4 主减速器圆弧锥齿轮的强度计算 (10)3.2.5 主减速器齿轮的材料及热处理 (14)3.2.6 主减速器轴承的计算 (15)第4章差速器设计 (22)4.1对称式圆锥行星齿轮差速器的差速原理 (22)4.2对称式圆锥行星齿轮差速器的结构 (23)4.3对称式圆锥行星齿轮差速器的设计 (24)4.3.1 差速器齿轮的基本参数的选择 (24)4.3.2 差速器齿轮的几何计算 (26)4.3.3 差速器齿轮的强度计算 (26)第5章驱动半轴的设计 (28)5.1 全浮式半轴计算载荷的确定 (28)5.2全浮式半轴的杆部直径的初选 (29)5.3全浮式半轴的强度计算 (29)5.4半轴花键的强度计算 (30)第6章驱动桥壳的设计 (31)6.1铸造整体式桥壳的结构 (31)6.2桥壳的受力分析与强度计算 (32)6.2.1 桥壳的静弯曲应力计算 (32)6.2.2 在不平路面冲击载荷作用下的桥壳强度计算 (34)6.2.3 汽车以最大牵引力行驶时的桥壳强度计算 (35)结论 (38)致谢 (39)参考文献 (40)附录 (41)第1章绪论1.1选题的目的和意义驱动桥作为汽车传动系统中的主要部件,实现着减速增扭,改变传动方向,实现差速的作用;驱动桥设计的知识比较广,有利于锻炼学生的能力。
驱动桥毕业设计
驱动桥毕业设计第1章绪论1.1概述1.1.1驱动桥总成概述随着汽车工业的发展及汽车技术的提高,驱动桥的设计,制造工艺都在日益完善。
驱动桥也和其他汽车总成一样,除了广泛采用新技术外,在机构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产组织的专业化目标前进[1]。
汽车驱动桥位于传动系的末端,一般由主减速器,差速器,车轮传动装置和桥壳组成。
其基本功用是增扭、降速和改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。
根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型[2]。
其中,转向桥和支持桥都属于从动桥,一般越野车多以前桥为转向桥,而后桥为驱动桥。
驱动桥的结构型式与驱动车轮的悬挂型式密切相关。
当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,都是采用非断开式驱动桥;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。
1.1.2 驱动桥设计的要求设计驱动桥时应当满足如下基本要求:1、选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。
外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。
2、齿轮及其它传动件工作平稳,噪声小。
在各种载荷和转速工况下有较高的传动效率。
3、具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。
与悬架导向机构运动协调。
4、结构简单,加工工艺性好,制造容易,维修,调整方便。
1.2驱动桥设计方案的确定1.2.1 主减速器结构方案的确定1、主减速器齿轮的类型螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。
本次设计采用螺旋锥齿轮。