直流降压斩波电路的仿真

合集下载

直流斩波电路建模仿真实训报告新颖完整

直流斩波电路建模仿真实训报告新颖完整

直流斩波电路建模仿真实训报告新颖完整直流斩波电路是一种常用的电路拓扑,可用于将直流电转换为可调节的脉冲电压输出。

其在电力电子领域有着广泛的应用,例如交流电压变换、电流控制等。

本文将对直流斩波电路进行建模仿真,并详细介绍其原理和性能特点。

一、直流斩波电路的原理直流斩波电路主要由稳压电源、开关器件(如功率MOS管)、电流传感器、电感、电容、负载等组成。

稳压电源提供稳定的直流电压作为输入,开关器件通过控制开关时间和频率来调节输出波形。

电流传感器用于感应电流变化并反馈给控制电路,使控制电路能够根据需要来调整开关器件的导通时间,以达到输出波形的调节目的。

电感和电容则用来平滑输出波形。

直流斩波电路的工作原理是通过开关器件的周期性导通和截止来实现对直流电压的切割,进而产生脉冲电压输出。

当开关器件导通时,输入电压被加到负载上,电流开始增加;而当开关器件截止时,负载上的电流被切断,负载上的电压下降,电流开始减小。

通过改变开关器件的导通和截止时间,可以改变输出脉冲的宽度和频率。

二、直流斩波电路的性能特点1.可调节输出:直流斩波电路能够灵活地调节输出脉冲的宽度和频率,从而实现对输出脉冲电压的精确控制。

2.高效能转换:直流斩波电路能够将输入直流电转换为高频脉冲电压输出,具有高效的能量转换特性,可以提高系统的能量利用率。

3.电压稳定性好:直流斩波电路通过电感和电容来平滑输出波形,从而提高输出电压的稳定性,在脉动和噪声方面有较好的表现。

4.小型化设计:直流斩波电路由于结构简单,元件少,可以实现小型化设计,满足电子设备对体积的要求。

三、直流斩波电路的建模仿真首先,在LTspice中绘制直流斩波电路的原理图,包括稳压电源、开关器件、电流传感器、电感、电容、负载等。

然后,设置元件的参数,例如输入电压、负载电阻、开关器件的导通时间和截止时间等。

接下来,设置仿真的条件,例如仿真时间、步长等。

进行仿真分析时,可以观察直流斩波电路的输出波形,例如输出脉冲的宽度、频率、占空比等。

实验二、基于Simulink的直流斩波电路的仿真实验报告

实验二、基于Simulink的直流斩波电路的仿真实验报告

自动化(院、系)自动化专业112 班组电力电子技术课实验二、基于Simuilink的直流斩波电路仿真实验一、实验目的(1)加深理解直流斩波电路的工作原理。

(2)学会应用Matlab的可视化仿真工具Simulink以及元器件的参数设置。

二、实验内容2.1理论分析2.1.1直流降压斩波电路直流降压斩波电路原理图如图1(a)所示。

图中用理想开关S代表实际的电力电子开关器件;R为纯阻性负载。

当开关S在ton时间接通时,加到负载电阻上的电压Uo等于直流电源Ud。

当开关S在toff时间断开时,输出电压为零,直流变换波形如图1(b)所示。

输出电压平均值为:Uo=ton/Ts*Ud= D*Ud(1)式中:ton为斩波开关S在一个周期内的导通时间;toff为斩波开关S在一个周期内的关断时间;Ts为斩波周期,Ts= ton+toff;D为占空比,D = ton/Ts。

由此可见,改变导通占空比D,就能够控制斩波电路输出电压Uo的大小。

由于D是在0~1之间变化的系数,因此输出电压Uo总小于输入电压Ud,即为降压输出。

(院、系)专业班组课2.1.2直流升降压斩波电路升降压斩波电路输出电压平均值为:Uo=-ton/toff*Ud=-D/(1-D)*Ud 式中:负号表示输出电压与输入电压反相。

当D =0.5时,Uo=Ud;当D>0.5时,Uo>Ud,为升压变换;当D<0.5时,Uo<Ud,为降压变换。

2.2仿真设计2.2.1直流降压斩波电路图2为由IGBT组成的Buck直流变换器仿真模型,IGBT按默认参数设置,并取消缓冲电路即RS=5Ω;CS=0;电压源参数取US=200 V,E=80 V;负载参数取R=10Ω,L=5 mH。

打开仿真参数窗口,选择ode23tb算法,相对误差设置为1e -03,开始仿真时间设置为0,停止仿真时间设置为0.01 s,控制脉冲周期设置为0.001 s(频率为1 000 Hz),控制脉冲占空比。

直流降压斩波电路仿真报告

直流降压斩波电路仿真报告

直流降压斩波电路仿真报告
一、实验目的和要求
1.熟悉降压斩波电路的工作原理;
2.学会分析和解决实验中出现的问题;
3.熟悉降压斩波电路的组成与其工作特点。

二、实验模型和参数设置
1.
总模型图:
2.参数设置
IGBT:Ron=1e-3,Lon=10e-4,Vf=1,Rs=1e5, Cs=inf.
电源:E=100v.
脉冲发生器:Amplitude=5, period=0.001, Duty cycle=50or80. 负载:R=1Ω
电感:L=10mH,C=10pF
情况一:Duty cycle=50;
情况二:Duty cycle=80;
三、波形记录和实验结果分析
(1)Duty cycle=50时的波形图:
(2)Duty cycle=80时的波形图:
通过图像可以看出来,刚开通时流过功率开关的电流为零,由于电感的阻碍,电流逐渐上升,当IGBT关闭时,流过其电流为零,其两端电压为电源电压。

此时负载依靠电感上的电能继续有电流通过。

但是电流降低,降低程度与负载和电感特性决定。

当IGBT继续导通时,给电感充电,此时电流上升。

直到充电与放点达到一个平衡之后就是使整个电流的平均值保持稳定。

另外,对比占空比为50和占空比为80时的波形图,我们发现输出电压虽然不像理
论上正好为50v,80v,但是大体与理论保持一致,因为IGBT上其实是有电压降的。

实训六 降压斩波电路仿真实训

实训六  降压斩波电路仿真实训

实训六降压斩波电路仿真实训
一、降压斩波电路原理图
降压斩波电路如图3-49所示。

图3-49 降压斩波电路原理图
二、建立仿真模型
1.建立一个仿真模型的新文件。

在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。

2.提取电路元器件模块。

在仿真模型窗口的菜单上点击图标调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

3.将电路元器件模块按降压斩波电路原理图连接起来组成仿真电路。

如图3-50所示。

图3-50 降压斩波电路仿真模型
三、设置模型参数
双击模块图标弹出参数设置对话框,然后按框中提示输入,若有不清楚的地方可以借助help帮助。

仿真参数的设置与前相同。

四、模型仿真
在参数设置完毕后即可以开始仿真。

在菜单Simulation下选择Start,立即开始仿真,若要中途停止仿真可以选择Stop。

在仿真计算完成后即可以通过示波器来观察仿真的结果。

在需要观察的点上放置示波器,双击示波器图标,即弹出示波器窗口显示输出波形。

得到如图3-51、图3-52、图3
-53所示波形。

图3-51占空比0.2时电压和电流波形
图3-52 占空比0.5时电压和电流波形
图3-51占空比0.8时电压和电流波形。

直流降压斩波电路仿真报告

直流降压斩波电路仿真报告

直流降压斩波电路仿真报告
本文主要介绍直流降压斩波电路的仿真报告。

由于直流降压斩波可以提供稳定的输出电压,所以它在电力系统中十分重要。

直流降压斩波电路成绩在电力系统中得到了普遍的引用,在涉及电压的应用场合也广泛应用。

本文的目的是研究直流降压斩波电路的输出特性曲线,以及在不同参数设置下的得到的结果。

为了达到这一目的,我们采用了模拟仿真的方法,建立的仿真模型,通过有限元仿真软件进行仿真,并采取相关的保护措施,最终得到仿真结果。

进行仿真实验前,我们根据直流降压斩波电路的工作原理,建立了相应的仿真模型,该仿真模型有助于更准确地了解电路的工作原理,也有助于设计直流降压斩波电路的各种设计参数,满足不同的应用要求。

仿真结果表明,当负载变化时,斩波电路具有良好的动态响应。

与功率型线性稳压器相比,斩波型稳压电路更能充分发挥节能优势,从而满足不同应用的要求。

同时,仿真结果也表明,当前节电能力比线性稳压电路还要高,输出响应因果也更加可靠,可以在负载状态有所变化时,有效抑制输出电压的抖动,保证了输出信号的稳定性和可靠性。

本文通过仿真实验研究表明,直流降压斩波电路具有良好的输出特性和可靠性,能够满足各种应用需求。

同时,意义重大,仿真实验结果可为直流降压斩波电路的更好运用和开发提供重要的参考。

直流斩波电路建模仿真

直流斩波电路建模仿真

项目一 降压式直流斩波电路建模仿真实训一、 降压式直流斩波电路(buck )(1)原理图用IGBT 作为电路的控制开关,用上一个二极管起续流作用,在加上L-C 低通滤波电路组成Buck 电路 。

如图1-1。

+-U0E图1-1(2)建立仿真模型根据原理图用matalb 软件画出正确的仿真电路图,如图1-2。

图1-2仿真参数,算法(solver )ode15s ,相对误差(relativetolerance )1e-3,开始时间0结束时间0.05s ,如图1-3。

图1-3脉冲参数,振幅1V,周期0.002,初始占空比为10% 如图1-4图1-4电源参数,电压100v 如图1-5所示。

图1-5 IGBT参数,如图1-6所示。

图1-6电感参数设为0.1H,如图1-7所示图1-7电感参数设为0.1H,如图1-8所示图1-8(3)仿真参数设置设置触发脉冲的占空比分别为30%、50%、60%、90%。

与其产生的相应波形分别如图1-9、图1-10、图1-11、图1-12。

在波形图中第一列波形为流过二级管的电流波形,第二列波形为流过IBGT的电流波形,第三列波形为IGBT的电压波形,第四列波形为负载电流波形,第五列波形为负载的电压波形。

图1-9图1-10图1-11图1-12(4)小结当输入电压E不变时,输出电压随占空比D的线性变化而线性变化,而与电路其他参数无关。

输出电压U0=DE,即占空比越大,输出电压越大,最大等于E。

项目二升压式直流斩波电路建模仿真实训二、 升压式直流斩波电路(boost )(1)原理图升压式直流斩波电路与降压式直流斩波电路最大的不同,控制开关IGBT 与负载R 呈并联形式连接。

如图2-1。

-U0E图2-1(2)建立仿真模型根据原理图用matalb 软件画出正确的仿真电路图,如图2-2。

图2-2仿真参数,算法(solver )ode15s ,相对误差(relativetolerance )1e-3,开始时间0结束时间0.05s ,如图2-3。

电力电子技术实验报告--直流斩波电路的仿真

电力电子技术实验报告--直流斩波电路的仿真

实验报告(理工类)
通过本实验,加深对直流斩波电路工作原理的理解,并学习采用仿真软件来研究电力电子技术及相关控制方法。

二、实验原理
V L/R
¥GVD u 。

图2.1直流降压电路原理图
直流降压变流器用于降低直流电源的电压,使负载侧电压低于电源电压,其原理电路如图2.1所示。

U 。

=
&E=『E=aE (2-1) 4>n+^off /
式(2-1)中,T 为V 开关周期,%为导通时间,为占空比。

在本实验中,采用保持开关周期T 不变,调节开关导通时间&I 的脉冲宽度调制方式来实验对输出电压的控制。

仿真的模型线路如下图所示。

开课学院及实验室:
实验时间:年月日 一、实验目的
图2.2降压斩波电路仿真模型
在模型中采用了IGBT,IGBT的驱动信号由脉冲发生器产生,设定脉冲发生器的脉冲周期和脉冲宽度可以调节脉冲占空比。

模型中连接多个示波器,用于观察线路中各部分电压和电流波形,并通过傅立叶分析来检测输出电压的直流分量和谐波。

三、实验设备、仪器及材料
PC机一台、MATLAB软件
四、实验步骤(按照实际操作过程)
1.打开MATLAB,点击上方的SimUlink图标,进入SimUIinkLibraryBroWSer模式O
2.新建model文件,从SimulinkLibraryBrowser选择元器件,分别从sinks和SimPowerSystems 中选择,powergui单元直接搜索选取
3.根据电路电路模型正确连线
五、实验过程记录(数据、图表、计算等)
六、实验结果分析及问题讨论。

直流斩波电路的仿真分析与实现设计方案

直流斩波电路的仿真分析与实现设计方案

直流斩波电路的仿真分析与实现设计方案Ⅰ.课程设计任务书Ⅱ.课程设计指导书Buck电路与Boost电路的仿真分析与设计一、降压斩波电路设计1.设计要求与方案1.1设计要求利用MOSFET设计一降压变流器。

输入电压E42V,输出电压Ud12V,输出电流为3A,最大输出纹波电压为50mV,工作频率f=100Hz。

负载电阻为10Ω电感2mH。

1.2设计方案电力电子器件在实际应用中一般是由控制电路、驱动电路、保护电路及以电力电子器件为核心的主电路组成一个系统。

由信息电子电路组成的控制电路按照系统的工作要求形成控制信号通过驱动电路去控制主电路中电路电子器件的导通或者关断来完成整个系统的功能。

根据MOSFET降压斩波电路设计任务要求设计主电路、控制电路、驱动电路及保护电路其结构框图如图1-1所示。

在图1-1结构框图中控制电路用来产生MOSFET降压斩波电路的控制信号控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在MOSFET 控制端与公共端之间可以使其开通或关断的信号。

通过控制MOSFET的开通和关断来控制MOSFET降压斩波电路工作。

控制电路中保护电路是用来保护电路防止电路产生过电流、过电压现象而损坏电路设备。

2 降压斩波主电路设计2.1 电力MOSFET降压斩波主电路在电力系统中直接承担电能的变换或控制任务的电路称为主电路。

MOSFET 降压斩波电路的主电路图如下图2-1所示。

该电路使用一个全控型器件—电力MOSFET,且为了给负载中的电感电流提供通道设置有续流二极管VD。

电路通过在电力MOSFET管的控制端输入控制信号以得到所需要的输出电压,实现降压。

2.2 电路原理分析直流降压斩波电路使用一个全控型的电压驱动器件MOSFET,用控制电路和驱动电路来控制MOSFET 的导通或关断。

当t0时,MOSFET 管被激励导通,电源E 向负载供电,负载电压为Ud=E ,负载电流io 按指数曲线上升;当t=t1时,控制MOSFET 关断,负载电流经二极管VD 续流,负载电压Ud 近似为零负载,电流呈指数曲线下降。

直流斩波电路的建模与仿真

 直流斩波电路的建模与仿真

基于MATLAB 的升压-降压式变换器的仿真一、摘要直流斩波电路就是将直流电压变换成固定的或可调的直流电压,也称DC/VC 变换.使用直流斩波技术,不仅可以实现调压功能,而且还可以达到改善网侧谐波和提高功率因素的目的。

直流斩波技术主要应用于已具有直流电源需要调节直流电压的场合。

直流斩波包括降压斩波电路、升压斩波电路和升降压斩波电路.而利用升压--降压变换器,既可以实现升压,也可以实现降压。

二、设计目的通过对升压—降压(Boost —Buck )式变换器电路理论的分析,建立基于Simulink 的升压-降压式变换器的仿真模型,运用绝缘栅双极晶体管(IGBT )对升压-降压进行控制,并对工作情况进行仿真分析与研究。

通过仿真分析也验证所建模型的正确性。

三、设计原理升压-降压式变换器电路图如右图所示。

设电路中电感L 值很大,电容C 值也很大,使电感电流L i 和电容电压0u 基本为恒值。

设计原理是:当可控开关V 出于通态时,电源经V 向电感L 供电使其贮存能量,此时电流为1i ,方向如图1—1中所示。

同时,电容C 维持输出电压基本恒定并向负载R 供电。

此后,使V 关断,电感L 中贮存的能量向负载释放,电流为2i ,方向如图1—1中所示。

可见,负载电压极性为上负下正,与电源电压极性相反,因此该电路也称作反极性斩波电路.稳定时,一个周期T 内电感L 两端电压L u 对时间的积分为零则 : 00=⎰dt u T L当V 处于通态期间时,E u L =;而当V 处于端态期间时,=L u 0u -。

于是,=on Et off t U 0,所以输出电压为:E E t t U off on βα==其中β=1—α,若改变导通比α,则输出电压既可以比电源电压高,也可以比电源电压低。

当0〈α<0。

5时为降压,当0.5<α〈1时为升压,如此可以实现升压—降压的变换,该电路称作升降压斩波电路即升降压变换器。

图中给出了电源电流1i 和负载电流2i 的波形,设两者的平均值分别为1I 和2I , 当电流脉动足够小时,有=21I I offon t t 可得如下11002I I t t I n ff αβ== 如果V 、VD 为没有损耗的理想开关时,则: =1EI 20I U , 其输出功率和输入功率相等,可将其看作直流变压器。

直流斩波电路的MATLAB仿真实验

直流斩波电路的MATLAB仿真实验

直流斩波电路的MATLAB仿真实验降压式直流斩波电路
一、实验内容
降压斩波原理:
式中
为V处于通态的时间;
为V处于断态的时间;T为开关周期;
为导通占空比,简称占空比火导通比。

根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式:(1)保持开关周期T不变,调节开关导通时间
不变,称为PWM。

(2)保持开关导通时间
不变,改变开关周期T,称为频率调制或调频型。

(3)
和T都可调,使占空比改变,称为混合型。

图1 降压斩波电路原理图
2
二、实验原理
(1)t=0时刻驱动V导通,电源E向负载供电,负载电压uo=E,负载电流io 按指数曲线上升
(2)t=t1时刻控制V关断,负载电流经二极管VD续流,负载电压uo近似为零,负载电流呈指数曲线下降。

为了使负载电流连续且脉动小通常使串接的电感L 值较大
三、实验过程
1、仿真电路图
图2 降压斩波的MATLAB电路的模型2、仿真模型使用模板的参数设置IGBT参数的设置如图
图3
Diode参数的设置如图
图4
脉冲信号发生器Pulse Generator的设置如图
图3
示波器的设置如图
直流电源
为200V,电感L为2mH,电容
为10μs,电阻
为5Ω
四、仿真结果
图3
=0.2时的仿真结果
图4
=0.4时的仿真结果
图5
=0.6时的仿真结果
仿真结果分析
由公式
可得:

时,
=44
=0.4时,
=88。

=0.6时,
=132。

DCDC直流斩波电路地仿真

DCDC直流斩波电路地仿真

电力电子电路建模与仿真实验实验二DC/DC直流斩波电路的仿真姓名:所在院系:班级:学号:一、实验目的1 进一步掌握PSIM软件的使用方法。

2 学习常用直流斩波电路的建模与仿真方法。

3 加深理解各斩波电路的工作原理和不同变换特性。

二、实验内容、步骤与结果1 降压斩波电路(1)、按图2-1设计仿真电路,设置电路参数,使其工作在连续模式,记录开关电压,输出电压与电流的波形及相应的仿真参数。

图2-1(电路原理图)连续电路参数:L =1H ;R =100欧;F=50HZ;E=100V;占空比:0.8;仿真时间t=0.1s。

仿真波形:图2-1-1(连续模式)(2)、改变电路参数,使其工作在非连续模式,在记录开关电压、输出电压与电流的波形及相应得的真参数。

非连续电路参数:L =0.1H ;R =100欧;F=50HZ;E=200V;占空比:0.6;仿真时间t=1s。

仿真波形:图2-1-2(非连续电路续模式)(3)、测量输出电压的直流分量,分析它与占控比的关系,并与理论值进行对比。

电压的直流分量与波形:80V实验结果分析:(1)电压的直流分量计算公式:U o=t ont on+t off E=t onTE=αE其中a=0.8,且E=100故理论计算值U0=80实际测量值U0=80可见直流电压分量与占空比成正比。

实际测量值与理论计算值相差无几,极为接近。

说明仿真是很准确的,结果真实可信。

2 升压斩波电路(1)、按图2-2设计仿真电路,设置电路参数,使其工作在连续模式,记录开关电压,输出电压与电流的波形及相应的仿真参数。

图2-2(电路原理图及改进电路)连续电路参数L =20mH ;R =20欧姆;C=220uF;F=1000HZ;E=100V;占空比:0.5 ;仿真时间t=50ms。

图2-2-1(连续模式)(2)、改变电路参数,使其工作在非连续模式,在记录开关电压、输出电压与电流的波形及相应得的真参数。

断续电路参数:L =1H ;R =500欧;C=100u;F=1000HZ;E=100V;占空比:0.8;仿真时间t=0.1S。

直流降压斩波电路的仿真

直流降压斩波电路的仿真

用MATLAB进行直流降压斩波电路仿真专业:自动化班级: 09自动化姓名:学号:0937036指导老师:傅思瑶实验日期: 2012-07-28用MATLAB进行直流降压斩波电路仿真1 实验目的设计一个直流降压斩波电路,并用MATLAB仿真软件进行检验。

2 实验要求(1)将24V直流电压降压输出并且平均电压可调,范围为0-24V。

(2)利用Simulink对降压斩波电路和升降压斩波的仿真结果进行详细分析,与采用常规电路分析方法所得到的输出电压波形进行比较,进一步验证了仿真结果的正确性。

3 实验原理(1)降压斩波电路原理降压斩波电路的原理图以及工作波形如图1.1所示。

该电路使用一个全控型器件V,图中为IGBT。

为在V关断时给负载中电感电流提供通道,设置了续流二极管VD。

斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。

图1.1 降压斩波电路原理图如图1.2中V的栅极电压u GE波形所示,在t=0时刻驱动V导通,电源E向负载供电,负载电压u o=E,负载电流i o按指数上升。

当t=t1时刻,控制V关断,负载电流经二极管VD续流,负载电压u o近似为零负载电流呈指数曲线下降。

为了使负载电流连续且脉动小,通常是串联的电感L值较大。

至一个周期T结束,在驱动V导通,重复上一周期的过程。

当工作处于稳态时,负载电流在一个周期的初值和终值相等,如图1.2所示。

负载电压平均值为E E TE U α==+=on off on on tt t t o 式1.1式中,t on 为V 处于通态的时间;t off 为V 处于断态的时间;T 为开关周期;α为导通占空比。

由式1.1可知,输出到负载的电压平均值U o 最大为E ,减小占空比α,U o 随之减小。

因此将该电路称为降压斩波电路。

也称buck 变换器。

负载电流平均值为RE U I mo o -=图1.2 降压斩波电路的工作波形(2)设计降压斩波电路 1 ) IGBT 驱动电路的设计IGBT 的驱动是矩形波,所以我选择了由比较器LM358产生矩形波。

直流降压斩波电路仿真原理

直流降压斩波电路仿真原理

直流降压斩波电路仿真原理直流降压斩波电路,是一种用电容和二极管构成的电路,被广泛应用于电子设备的电源供给和其他领域。

在该电路中,通过将直流电源与电容器串联,形成一个电压共享点,利用二极管的单向导电性质,使得电容器能够在一定时间内对直流电源进行充电,然后,在电容器充电到一定程度后,通过二极管的导通作用,将电容器内的电子释放到负载电路中,实现一个脉冲电流输出。

这样,就实现了对直流电源电压的降低,同时也消除了信号中的高频干扰。

斩波电路的概念是指将输入的信号转换为另一种形式的信号,并通过转换完成对电路信号的调制。

直流降压斩波电路的仿真原理,是利用数学模型来模拟电路的操作,以验证电路的设计和性能,并帮助设计者在电路实际制造之前进行各种模拟和测试。

仿真可以通过软件进行,这些软件通常提供电路的建模和仿真功能,包括参数设置、调试和性能评估等。

直流降压斩波电路的仿真通常需要考虑的因素包括:1. 电容和二极管的参数:电容的容量和漏电电阻以及二极管的导通电压和承受电流等参数。

2. 输入电压:直流电源的电压值和波形。

3. 负载电路的参数:负载电阻、电感、电容等参数。

4. 斩波电路的拓扑结构:斩波电路不同的连接方式会影响电路的性能,需要进行详细的仿真和分析。

具体的仿真步骤如下:1. 选择合适的仿真软件和建立仿真模型。

2. 设定电路元器件参数,输入电压和负载电路参数等。

3. 运行仿真程序,观察电路输出的波形,用数据分析工具对电路进行评估和分析。

4. 如有需要,通过更改参数或修改电路拓扑结构等方式,进行更加准确的仿真和设计。

5. 根据仿真结果,对电路进行优化和优化,最终设计出符合实际需求的电路。

直流降压斩波电路的仿真原理,是实现电路设计和性能测试的重要方法。

通过仿真分析,可以有效地优化电路性能,提高其可靠性和稳定性,为电子产品的生产和使用提供可靠保障。

直流降压斩波电路在电子产品中被广泛应用,主要用于将高压直流电转换为较小的直流电。

【精品】电力电子直流斩波电路建模仿真

【精品】电力电子直流斩波电路建模仿真

(一)降压式直流斩波电路工作原理该电路使用全控型器件V,若为晶闸管,须设置使晶闸管关断的辅助电路,为在V关断时给负载中的电感电流提供通道,设置了续流二极管VD, 斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种情况下负载中均会出现反电动势,如图中EM所示,若负载中无反电动势时,只需另其为0,以下的分析及表达式均可适用.(1)t=0时刻驱动V导通,电源E向负载供电,负载电压U0=E,负载电流i按指数曲线上升。

(2)t=t1时控制V关断,二极管VD续流,负载电压U近似为零,负载电流呈指数曲线下降。

通常串接较大电感L使负载电流连续且脉动小。

图2—1降压斩波电路原理图图2-2 电流连续时工作波形图2—3电流断续时的工作波形电流连续时负载侧输出电压平均值和电流平均值分别为:上式中t on 为开通时间,t off 为关断时间,T 为开关周期,α为导通占空比.U 0最大为E ,减小占空比,U 0将减小,因此称为降压斩波电路。

(二)升压式直流斩波电路工作原理图2-4升压式直流斩波电路原理图该电路也是使用一个全控型器件,以下来分析电路的工作原理:首先假设电路中的电感L 值很大,电容C 值也很大,V 处于通态时,电源E 向电感L 充电,电流I1恒定,电容C 向负载R 供电,输出电压U 0恒定。

V 处于断态时,电源E 和电感L 同时向电容C 充电,并向负载提供能量。

其工作的原理波形图如下所示设V 通态的时间为t on ,此阶段L 上积蓄的能量为t on Ei 1 设V 断态的时间为t off ,则此期间电感L 释放能量为(u 0-E )i 1t off ,稳态时,一个周期T 中L 积蓄能量与释放能量相等,即:(式3)化简得:其中所以输出电压为:(式5) (式4)(式6)三、升压斩波电路之所以能使输出电压高于电源电压,关键有两个原因:一是L储能之后具有使电压泵升的作用,二是电容C可将输出电压保持住。

在以上分析中,认为V处于通态期间因电容C的作用使得输出电压U不变,但实际上C 值不可能为无穷大,在此阶段其向负载放电,输出电压必然会有所下降,故实际输出电压会略低,不过在电容C足够大时,误差很小,基本可以忽略.实验步骤(一)在matlab环境下选择主电路元器件根据直流斩波电路在matlab环境下连接电路图如下图所示:图3-1降压斩波电路搭建电路图(三)图3—2升压斩波电路搭建电路图参数设置3.1降压斩波电路参数设置(1)电源参数及Em设置:电源幅值为200V,Em为80V (2)IGBT参数设置如下:ResistanceRon(Ohms):0。

仿真实验1 降压斩波电路

仿真实验1  降压斩波电路

仿真实验1 直流降压斩波电路1. 实验目的完成如下降压斩波电路的计算,然后通过仿真实验检验设计结果,并在此基础上,研究降压斩波电路的工作特点。

设计题图1.1所示的Buck变换器。

电源电压Vs=220V,额定负载电流11A,最小负载电流1.1A,开关频率20KHz。

要求输出电压V o=110V;要求最小负载时电感电流不断流,且输出电压纹波小于1%。

计算输出滤波电感L和电容C的最小取值。

(与第3章习题(1)中计算题2相同)图1.12. 实验步骤1)打开文件“EXP1_buck.mdl”,自动进入simulink仿真界面,在编辑器窗口中显示如图1.2 所示的降压斩波电路的模型。

图1.2 降压斩波电路的模型2)根据上述题目中给出的电路参数及计算得出的滤波电感L和电容C的值配置图1.2电路模型中各元件的参数:电源:U=220V脉冲发生器(pulse):周期(period,s)=50e-6 ;占空比(duty cycle,%)=50电感L: 电感量(inductance,H)= 1.25e-3电容C: 电容量(capacitance,F)=1.25e-5电阻R:电阻值(resistance,ohms)=10记录此条件下的波形,在波形图上估算此时输出电压的纹波系数。

更改电阻参数,使负载电流为1.1A,记录此时的波形,并说明电感电流的特点。

在实验基础上,说明电感L和电容C取值的正确性。

3)观察占空比变化对输出电压的影响。

将电阻值恢复为10。

更改脉冲发生器中的周期参数,在占空比为20%,40%,60%,80%时,观察波形,估计输出电压的值,并计算在不同占空比下的输出\输入电压比,说明占空比与变压比的关系。

4)观察开关频率和滤波参数变化对输出电压纹波的影响。

占空比恢复为50%。

将脉冲发生器输出驱动信号的频率改为原来的一半(10KHz)和二倍(40KHz),观测并估计两种条件下电压纹波的大小。

将脉冲发生器输出驱动信号的频率恢复为20KHz,将滤波电容值改为原来的一般和二倍,观测并估计两种条件下电压纹波的大小。

升、降压直流斩波电路及matlab仿真

升、降压直流斩波电路及matlab仿真

目录绪论 (3)一.降压斩波电路 (6)二.直流斩波电路工作原理及输出输入关系 (12)三.D c/D C变换器的设计 (18)四.测试结果 (19)五.直流斩波电路的建模与仿真 (29)六.课设体会与总结 (30)七.参考文献 (31)绪论1. 电力电子技术的内容电力电子学,又称功率电子学(Power Electronics)。

它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。

它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。

电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。

电有直流(DC)和交流(AC)两大类。

前者有电压幅值和极性的不同,后者除电压幅值和极性外,还有频率和相位的差别。

实际应用中,常常需要在两种电能之间,或对同种电能的一个或多个参数(如电压,电流,频率和功率因数等)进行变换。

变换器共有四种类型:交流-直流(AC-DC)变换:将交流电转换为直流电。

直流-交流(DC-AC)变换:将直流电转换为交流电。

这是与整流相反的变换,也称为逆变。

当输出接电网时,称之为有源逆变;当输出接负载时,称之为无源逆变。

交-交(AC-AC)变换,将交流电能的参数(幅值或频率)加以变换。

其中:改变交流电压有效值称为交流调压;将工频交流电直接转换成其他频率的交流电,称为交-交变频。

直流-直流(DC-DC)变换,将恒定直流变成断续脉冲输出,以改变其平均值。

2. 电力电子技术的发展在有电力电子器件以前,电能转换是依靠旋转机组来实现的。

与这些旋转式的交流机组比较,利用电力电子器件组成的静止的电能变换器,具有体积小、重量轻、无机械噪声和磨损、效率高、易于控制、响应快及使用方便等优点。

1957年第一只晶闸管—也称可控硅(SCR)问世后,因此,自20世纪60年代开始进入了晶闸管时代。

基于Simulink的直流斩波电路的仿真与研究

基于Simulink的直流斩波电路的仿真与研究

基于Simulink的直流斩波电路的仿真与研究学号分号密级本科毕业论文题目基于Simulink的直流斩波电路的仿真与研究 (中、英文) Simulation and Research of DC Chopper CircuitBased on SimulinkI摘要直流斩波电路(DC Chopper)在工业自动化领域应用非常广泛。

其功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩[2]波电路一般应用于各种开关电源及直流电动机电源。

本文对常用的三种直流斩波电路:降压斩波电路、升压斩波电路,升降压斩波电路的工作原理及特性进行了较深入研究,并借助Simulink仿真软件对具体电路进行建模仿真。

通过研究与仿真实验,将对直流斩波电路有一个细致的了解,对实际工业技术应用中直流[9]斩波电路的参数选取提供一些理论依据。

关键词:直流斩波;降压斩波电路;升压斩波电路;升降压斩波电路; Simulink仿真软件AbstractDC Chopper circuit in the field of automatic Industry is widely used. Its function is to Change the direct current into a fixed or adjustableDC, also be known as DC - DC converter (DC / DC Converter), DC chopper circuit generally applied to all kinds of switching power supply and DC motor power, the paper will Introduce three basic DC chopper circuit: Buck chopper circuit, Boost chopper circuit, And the paper will give the working principles and Characteristics, at the same time I will use the Simulink software for specific circuit simulation. Through research and simulation experiments, you will have a detailed understanding of the Simulink software get more skill of the actual application of industrial technology in the DC Circuit chopper to set of parameters.Key words: DC Chopper; Buck chopper circuit; Boost chopper circuit; Boost-buck choppercircuit; Simulink softwareIII目录1绪论 ..................................................................... . (1)2 斩波电路的工作原理及电路特性分析 ..................................................................... (1)IGBT的结构和工作原理 ..................................................................... ............................ 2 2.12.2直流降压斩波电路(BUCKCHOPPER) ............................................................... ............ 3 2.3直流升压斩波电路(BOOSTCHOPPER) ............................................................... ........... 5 2.4升降压斩波电路(BOOST-BUCK CHOPPER)................................................................ .. 62.5直流斩波电路共性问题 ..................................................................... .............................. 8 3 SIMULINK的介绍 ..................................................................... ............................................ 8 4基于SIMULINK的斩波电路的仿真 ..................................................................... .............. 10 4.1 直流降压斩波电路的仿真 ..................................................................... ........................ 10 4.2 直流升压斩波器的仿真 ..................................................................... ............................ 12 4.3升降压斩波电路的仿真 ..................................................................... . (15)5 结论 ..................................................................... . (17)参考文献 ..................................................................... (19)谢辞 ..................................................................... (20)咸阳师范学院2011届本科毕业论文1绪论在电力电子电路如变流装置的设计过程中,需要对设计出来的初步方案(电路)及有关元件参数选择是否合理,效果如何让进行验证。

降压式斩波电路的仿真

降压式斩波电路的仿真
实训名称降压式斩波电路的仿真实训日期
占空比D=80%的仿真波形
在降压式斩波电路中,在开关S导通期间,二极管VD反向偏置,输入提供的能量加到负载和电感电容上。在开关S断开期间,电感与二极管构成电流通路,并将电感中存储的能量传送给负载。
在一个周期内,当开关S导通时,电感L上的电压为正值时,电路中的电流在增加;当开关S断开时,电感L上的电压为负值时,电路中的电流在减小。如此往复,可知,开关S导通和关断的时间的大小会影响输出电压的大小,开关S导通和关断的时间的大小又关系到占空比D的大小,可知,开关占空比D的大小会影响输出电压的大小,即U0=D*Dd,这也刚好验证了了上两幅图。
3、设置仿真参数。
本例中我们设置仿真的终止时间为10s,算法ode23tb。
四、仿真模型
第1页共3页指导教师签名
苏州市职业大学实训报告
院系电子信息工程学院班级姓名学号
实训名称降压式斩波电路的仿真实训日期
五、实验结果
占空比D=40%的仿真波形
第2页共3页指导教师签名
苏州市职业大学实训报告
院系电子信息工程学院班级姓名学号
苏州市职业大学实训报告
院系电子信息工程学院班级姓名学号
实训名称降压式斩波电路的仿真实训日期
一、实验目的
1、了解MATLAB的工作环境,并能熟练地运用Simulink中的各种模块组合建立仿真模型,设置各种模块参数及仿真参数,运行和结果分析。
2、了解占空比D与输出电压U0之间的数量关系。
3、通过仿真,进一步了解降压式斩波电路的工作原理。
从理论上分析,负载两端的电压应该是一条平直的直线,而从仿真结果来看,却是一条波动的曲线,这也验证了理论结果不可能与仿真结果完全一致的说法。
第3页共3页指导教师签名

实验三 直流降压斩波电路仿真

实验三 直流降压斩波电路仿真

实验三直流降压斩波电路仿真一实验的电路图如下:二参数设置1 直流电压电源电压为100V2 电阻,电容的参数设置:Ω10001.03RmhFLC100,=⨯=,=-13 脉冲发生模块的参数设置:在本实验中脉冲的振幅设置为1V,周期设置为0.05S(即频率为20hz),脉冲的宽度为80%,50%和30%。

3 打开仿真/参数窗,选择ode23tb算法,将误差设置为1e-3,开始仿真时间设置为.三波形的记录下图中,第一行为电源电压和电感L端电压,第二行为流过负载电流与二极管两端的电压,第三行为触发信号,第四行为负载电压。

1 实验中脉冲宽度为80%,则占空比D=0.8,此时的波形如下:占空比D=0.5,此时的波形如下:2 当D=0.3时,此时的波形如下:四.实验结果分析:通过本实验的波形图像可以得出,刚开通的一段时间内流过IGBT 的电流为零,由于电感未储存能量,电流刚开始为零,然后逐渐上升。

当IGBT 关闭时,流过其电流为零,其两端电压为电源电压。

此时负载依靠电感上的电能继续有电流通过此时电流降低。

降低快慢与负载的参数和电感大小有关。

当IGBT 继续导通时,给电感充电,此时电流上升。

直到充电与放点达到一个平衡之后就是使整个电流的平均值保持稳定。

其中负载电压的平均值E E t t t U offon on d α=+=由上图可以看出,当D=80%时,理论上负载的电压应为80V,从上图中可以看出负载电压波形稳定后,在80V上下波动,由此可以得出负载电压的平均值约为80V。

同理,当D=50%和D=30%时,也与相应的理论值接近。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用MATLAB进行直流降压斩波电路仿真
专业:自动化
班级: 09自动化

学号:0937036
指导老师:傅思瑶
实验日期: 2012-07-28
用MATLAB进行直流降压斩波电路仿真
1 实验目的
设计一个直流降压斩波电路,并用MATLAB仿真软件进行检验。

2 实验要求
(1)将24V直流电压降压输出并且平均电压可调,围为0-24V。

(2)利用Simulink对降压斩波电路和升降压斩波的仿真结果进行详细分析,与采用常规电路分析方法所得到的输出电压波形进行比较,进一步验证了仿真结果的正确性。

3 实验原理
(1)降压斩波电路原理
降压斩波电路的原理图以及工作波形如图1.1所示。

该电路使用一个全控型器件V,图中为IGBT。

为在V关断时给负载中电感电流提供通道,设置了续流二极管VD。

斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。

图1.1 降压斩波电路原理图
如图1.2中V的栅极电压u GE波形所示,在t=0时刻驱动V导通,电源E向负载供电,负载电压u o=E,负载电流i o按指数上升。

当t=t1时刻,控制V关断,负载电流经二极管VD续流,负载电压u o近似为零负载电流呈指数曲线下降。

为了使负载电流连续且脉动小,通常是串联的电感L值较大。

至一个周期T结束,在驱动V导通,重复上一周期的过程。

当工作处于稳态时,负载电流在一个周期的初值和终值相等,如图1.2所示。

负载电压平均值

E E T
E U α==+=
on off on on t
t t t o 式1.1
式中,t on 为V 处于通态的时间;t off 为V 处于断态的时间;T 为开关周期;
α为导通占空比。

由式1.1可知,输出到负载的电压平均值U o 最大为E ,减小占空比α,U o 随之减小。

因此将该电路称为降压斩波电路。

也称buck 变换器。

负载电流平均值为
R
E U I m
o o -=
图1.2 降压斩波电路的工作波形
(2)设计降压斩波电路 1 ) IGBT 驱动电路的设计
IGBT 的驱动是矩形波,所以我选择了由比较器LM358产生矩形波。

图2.1 LM358的引脚图
LM358简介:LM358 部包括有两个独立的、高增益、部频率补偿的双运算放大器,适合于电源电压围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。

它的使用围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。

图2.2 比较器产生方波电路图
其中2、3口是输入口4、6接直流电源电压1为输出口。

(3)电路各元件的参数设定及元件型号选择
1)各元件的参数设定
1. IGBT的参数设定
图3.1 IGBT的简化等效电路以及电气图形符号
图3.2 降压斩波电路电路图
图3.3 降压斩波总电路图
由图3.2所示此次设计的电源电压为220V,当二极管VD导通时V的C和E两端承受的电压为电源电压,因此U CE=220V。

图3.4 IGBT 的转移特性和输出特性
U GE(th)随温度的升高略有下降,温度每升高1°C ,其值下降5mV 左右。

在+25°C 时,U GE(th)的值一般为2-6V 。

参考电力电子技术课本可得:
R E m e e R E R E e e I m T t )11()11(//min
1---=---=ρσρττ 式 3.1
R E
m e
e R E R E e e I m T t )11()11(//max
1---=---=----ρ
σρττ 式 3.2 式中,τρ/T =;E E m m /=;αρτ
τ==
T
T t t 11/。

若取R 为10Ω,则:
A R I 22/220max ==
2. 续流二极管VD 的参数设定
VD 所承受的最大反向电压是当IGBT 导通是的电源电压100V 。

所承受的最大电流是当IGBT 关断瞬间电感L 作用在VD 上的电流,此电流为A I 22max =。

3. 电感的参数设定
由于电感L 要尽量大一些否则会出现负载电流断续的情况,所以选择L 的值为1mH 。

2) 元件型号选择
考虑其安全裕度则IGBT 的额定电压可以为2-3倍峰值电压,所以额定电压可为440V -660V .额定电流33A -44A ,二极管VD 与其类似,VD 的最大反向电压为220V 。

选择IGBT 的型号为IRG4PC40U 其额定电压为600V ,额定电流为40A 。

选择续流二极管的型号为HFA25TB60,其而定电压为600V ,额定电流为25A 。

4系统仿真及结论
1)仿真电路及其仿真结果
1.仿真电路图
图4.1 降压斩波的MATLAB电路的模型2 )MATLAB的.仿真结果如下:
图4.2 =0.2时的仿真结果
图4.3 α=0.4时的仿真结果
图4.4 α=0.6时的仿真结果
图4.5 α=0.8时的仿真结果
图4.6 α=0.99时的仿真结果
3) 仿真结果分析
由公式E E T
t
E t t t Uo on off on on α==+=
可得:
当2.0=α时,O U =44V
α=0.4时,O U =88V 。

α=0.6时,
U=132V。

O
α=0.8时,
U=176V。

O
α=0.99时,
U=217.8。

O
上面的数据与理论值相同,由于使用的是仿真软件所以没有误差。

5心得体会
经过不懈的努力我终于顺利的完成了此次直流降压斩波电路的仿真,其中遇到了许多的问题和困难但是也学到了很多的知识。

遇到的问题和困难:
(1)由于事先理论知识预习的不够充分,所以很多计算问题困难重重,再次
花费大量时间去研究,造成实验进度大大减速,效率降低。

(2)选取实验元器件时,由于缺乏实际操作经验,常常出现用错元器件,造
成实验数据误差很大,重复实验多次。

(3)在用MATLAB软件仿真是遇到了许多操作上的问题,致使仿真花费的
很多时间才达到有效效果。

学到的知识:
(1)通过这次课程设计我夯实了电力电子的基础知识。

(2)对直流斩波有了更深层次的理解。

(3)对MATLAB软件和电路原理图的设计有了初步了解。

相关文档
最新文档