高考数学一轮复习 第五章 数列 5.2 等差数列及其前n项和(理)

合集下载

高三理科数学第一轮复习§5.2:等差数列及其前n项和

高三理科数学第一轮复习§5.2:等差数列及其前n项和

解析
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
第五章:数列 §5.2:等差数列及其前n项和
解析
第五章:数列 §5.2:等差数列及其前n项和

2012届高三一轮复习 人教A版第五章第二节等差数列及其前n项和

2012届高三一轮复习 人教A版第五章第二节等差数列及其前n项和

5
考点一 等差数列的基本运算
【解析】 (1)设公差为 d,则 解析】 设公差为 , 等差数列的性质得- 等差数列的性质得 - 3d(a4+ a3)=d(a4 + a3),因为 = , d≠0,所以 a4+a3=0,即 2a1+5d=0,① ≠ , , = , 7×6 × d=7,即 a1+3d=1,② 又由 S7=7 得 7a1+ = , = , 2 ①②联立 联立, =-5, = ,所以数列{a 的 ①②联立,解得 a1=- ,d=2,所以数列 n}的 - , 通项公式 an=2n-7,前 n 项和 Sn=n2-6n.
22
5
等差数列创新题基本类型及求解策略专题
a n −1 2a n −1 + 1 = (1)当 n ≥ 2 时,由 ,得 解: an 1 − 2a n a n −1 − a n = 4a n −1 a n ,两边同除以 1 1 1 1 a n −1 a n ,得 − = 4 ,即 − = 4对 a n a n −1 a n a n −1 1 1 ∗ n > 1, n ∈ N 时成立,所以 { } 是以 = 5 为首项,以 d an a1
13
考点二 等差数列的判定
1 =-2S . 当 n≥2 时,an=- n·Sn-1=- ≥ 2n(n-1) ( - ) 1 不适合上式, 又∵a1=2,不适合上式, 1 (n=1), = ) 2 故 an= 1 ≥ ) -2n(n-1)(n≥2). ( - )
14
考点二 等差数列的判定 【拓展提升】1.等差数列的判定通常有两种方法 拓展提升】 等差数列的判定通常有两种方法 : 常数)(n≥2,n∈N*); (1)利用定义,an-an-1=d(常数 利用定义, 利用定义 常数 , ∈ ; - (2)利用等差中项,即2an=an+1+an-1(n≥2, 利用等差中项, 利用等差中项 , + - n∈N*). ∈ . 2.解选择题、填空题时,亦可用通项或前 项和 .解选择题、填空题时,亦可用通项或前n项和 直接判断. 直接判断. (1)通项法:若数列 n}的通项公式为 的一次函数 通项法: 的通项公式为n的一次函数 通项法 若数列{a 的通项公式为 是等差数列. ,即an=An+B,则{an}是等差数列. + , 是等差数列 的前n项和 (2)前n项和法:若数列{an}的前 项和Sn是An2+Bn 前 项和法:若数列 项和法 的前 项和 的形式(A, 是常数 是常数), 为等差数列. 的形式 ,B是常数 ,则{an}为等差数列. 为等差数列

【金版教程】2021届高考数学大一轮总温习 5-2(2)等差数列及其前n项和限时标准训练 理(1)

【金版教程】2021届高考数学大一轮总温习 5-2(2)等差数列及其前n项和限时标准训练 理(1)

05限时标准特训A 级 基础达标1.假设等差数列的第一、二、三项依次是1x +1、56x 、1x ,那么数列的公差d 是( ) A.112 B.16 C.14D.12解析:依题意得2×56x =1x +1+1x ,解得x =2,因此d =512-13=112.选A.答案:A2.在等差数列{a n }中,已知a 4=7,a 3+a 6=16,a n =31,那么n 为( ) A .13 B .14 C .15D .16解析:由已知可得a 4+a 5=7+a 5=a 3+a 6=16,得a 5=16-7=9,故公差d =a 5-a 4=9-7=2,同时解得a 1=1,由1+(n -1)×2=31,解得n =16,选D.答案:D3.[2021·安庆模拟]已知等差数列{a n }的前n 项和为S n ,假设2a 6=a 8+6,那么S 7=( ) A .49 B .42 C .35D .28解析:2a 6=a 8+6⇒a 1+3d =6⇒a 4=6,故S 7=7a 1+a 72=7a 4=42,应选B.答案:B4.[2021·湖南四市联考]数列{a n }中,a 2=2,a 6=0且数列{1a n +1}是等差数列,那么a 4=( )A.12B.13C.14D.16解析:设数列{1a n +1}的公差为d ,那么4d =1a 6+1-1a 2+1得d =16,∴1a 4+1=12+1+2×16,解得a 4=12. 答案:A5.[2021·金版]在各项均不为零的等差数列{a n }中,假设a 2n -a n +1=a n -1(n ≥2,n ∈N *),那么S 2021的值为( )A .2021B .2021C .4026D .4028解析:由a 2n -a n +1=a n -1(n ≥2,n ∈N *)可得a 2n =a n +1+a n -1=2a n ,因为a n ≠0,因此a n =2,故S 2021=2×2021=4028.选D.答案:D6.等差数列{a n }的前n 项和是S n ,且a 1=10,a 5=6,那么以下不等式中不成立的是( ) A .a 10+a 11>0 B .S 21<0C .a 11+a 12<0D .当n =10时,S n 最大解析:设等差数列{a n }的公差为d ,由a 1=10,a 5=6,得6=10+4d ,即d =-1,因此a n =11-n .a 10+a 11=1+0>0,A 成立;a 11+a 12=-1<0,C 成立;S n =-12n 2+212n =-12(n -212)2+4418,故当n =10时,S n 最大,D 成立;S 21=-12×212+21×212=0,故B 不成立. 答案:B7.[2021·漳州模拟]已知正项数列{a n }的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ≥2),那么数列{a n }的通项公式为a n =( )A .n -1B .nC .2n -1D .2n解析:由已知可得S n -S n -1=S n +S n -1(n ≥2),又S n +S n -1>0,故S n -S n -1=1,因此数列{S n }是等差数列,其公差为1,首项S 1=1,故S n =n ,即S n =n 2,当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1时也适合上式,故数列{a n }的通项公式为a n =2n -1,选C.答案:C8.[2021·黄山模拟]设等差数列{a n }的前n 项和为S n ,假设S 4=8,S 8=20,那么a 11+a 12+a 13+a 14=________.解析:由⎩⎪⎨⎪⎧S 44=2S 88=52,即⎩⎪⎨⎪⎧a 1+32d =2a 1+72d =52,解得d =14,a 1=138,∴a 11+a 12+a 13+a 14=4a 1+46d =18. 答案:189.[2021·天津模考]已知数列{a n }为等差数列,假设a 7a 6<-1,且它们的前n 项和S n 有最大值,那么使S n >0的n 的最大值为________.解析:∵a 7a 6<-1,且S n 有最大值,∴a 6>0,a 7<0且a 6+a 7<0,∴S 11=11a 1+a 112=11a 6>0,S 12=12a 1+a 122=6(a 6+a 7)<0,∴使S n >0的n 的最大值为11.答案:1110.[2021·衡水月考]已知数列{a n }的各项均为正数,前n 项和为S n ,且知足2S n =a 2n +n -4. (1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解:(1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,那么a n +a n -1=1, 而a 1=3,因此a 2=-2,这与数列{a n }的各项均为正数相矛盾, 因此a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,因此数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2. 11.[2021·河北统考]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解:(1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n 20-2n +222=(21-n )n ; 当n >11时,S n =S 11+2+4+…+(2n -22)=110+n -112+2n -222=n 2-21n +220.综上所述,S n =⎩⎪⎨⎪⎧21-n n ,n ≤11n 2-21n +220,n >11.12.[2021·金华调研]已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项别离为等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n },{b n }的通项公式; (2)设数列{c n }对n ∈N *,均有c 1b 1+c 2b 2+…+c nb n=a n +1成立,求c 1+c 2+c 3+…+c 2021的值.解:(1)∵a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ),解得d =2(∵d >0). 则a n =1+(n -1)×2=2n -1. 又b 2=a 2=3,b 3=a 5=9, ∴等比数列{b n }的公比q =b 3b 2=93=3.∴b n =b 2q n -2=3×3n -2=3n -1. (2)由c 1b 1+c 2b 2+…+c nb n=a n +1得当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n ,两式相减,得c nb n=a n +1-a n =2,∴c n =2b n =2×3n -1(n ≥2). 而当n =1时,c 1b 1=a 2,∴c 1=3.∴c n =⎩⎪⎨⎪⎧3,n =1,2×3n -1,n ≥2.∴c 1+c 2+c 3+…+c 2021=3+2×31+2×32+…+2×32021 =3+6-6×320131-3=3-3+32021 =32021.B 级 知能提升1.已知数列{a n },{b n }都是公差为1的等差数列,其首项别离为a 1,b 1,且a 1+b 1=5,a 1,b 1∈N *.设c n =ab n (n ∈N *),那么数列{c n }的前10项和等于( )A .55B .70C .85D .100解析:由题知a 1+b 1=5,a 1,b 1∈N *.设c n =ab n (n ∈N *),那么数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+...+ab 1+9,ab 1=a 1+(b 1-1)=4,∴ab 1+ab 1+1+...+ab 1+9=4+5+6+ (13)85,选C.答案:C2.等差数列{a n }、{b n }的前n 项和别离为S n 、T n ,且S n T n=4n +7n,那么使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:a n b n =2a n2b n =a 1+a 2n -1b 1+b 2n -1=a 1+a 2n -1×2n -12b 1+b 2n -1×2n -12=S 2n -1T 2n -1=4×2n -1+72n -1=4+72n -1,可得a 1b 1=11,a 4b 4=5,有2个正整数值,选A.答案:A3.[2021·云南师大附中模拟]已知数列{a n }中a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,那么S 15=________.解析:由S n +1+S n -1=2(S n +S 1)得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),数列{a n }从第二项起组成等差数列,S 15=1+2+4+6+8+…+28=211.答案:2114.[2021·南昌模拟]在数列{a n }中,a n +1+a n =2n -44(n ∈N *),a 1=-23. (1)求a n ;(2)设S n 为{a n }的前n 项和,求S n 的最小值.解:(1)∵a n +1+a n =2n -44,a n +2+a n +1=2(n +1)-44,∴a n +2-a n =2.∴a 2+a 1=-42,a 1=-23,∴a 2=-19. 同理得a 3=-21,a 4=-17,故a 1,a 3,a 5,…是以a 1为首项、2为公差的等差数列,a 2,a 4,a 6,…是以a 2为首项、2为公差的等差数列,从而a n =⎩⎪⎨⎪⎧n -24,n 为奇数n -21,n 为偶数.(2)当n 为偶数时,S n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=(2×1-44)+(2×3-44)+(2×5-44)+…+[2×(n -1)-44]=2[1+3+…+(n -1)]-n 2·44=n 22-22n ,故当n =22时,S n 取得最小值-242.当n 为奇数时,S n =a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=a 1+(2×2-44)+(2×4-44)+…+[2×(n -1)-44]=a 1+2[2+4+…+(n -1)]+n -12·(-44)=-23+n +1n -12-22(n -1)=n 22-22n -32,故当n =21或n =23时,S n 取得最小值-243. 综上所述,S n 的最小值为-243.。

高考数学一轮复习课件5.2等差数列

高考数学一轮复习课件5.2等差数列
一个小题或在解答题中出现,在解题时,应 熟练掌握通项公式与前n项和公式,规范答题 避免不必要的失分.
• (1)(2012·辽宁高考)在等差数列{an}中, 已知a4+a8=16,则该数列前11项和S11= ()
•A.58 D.176
B.88
C.143
•(2)设等差数列{an}的前n项和为Sn,已知前6 项和为36,最后6项的和为180,Sn=324(n >6),则a9+a10=
【尝试解答】 (1)S11=11(a12+a11)=11(a42+a8)= 88.
法二 同法一得d=-53.
又由S10=S15,得a11+a12+a13+a14+a15=0. ∴5a13=0,即a13=0. ∴当n=12或13时,Sn有最大值, 且最大值为S12=S13=130.
求等差数列前n项和的最值常用的方法
(1)先求an,再利用
an≥0
aห้องสมุดไป่ตู้+1≤0

an≤0
an+1≥
0
求出其正负转折
•【思路点拨】 (1)由S2=a3求{an}的公差d, 进而代入求a2与Sn; •(2)易求d=-2,从而可求an;求出Sn后,根 据方程Sk=-35,求k值.
【尝试解答】 (1)由 S2=a3,得 a1+a2=a3,
∴d=a3-a2=a1=12,
因此 a2=a1+d=1,Sn=n42+n4.
【答案】
【解析】 设自上第一节竹子容量为a1,则第9节 容量为a9,且数列{an}为等差数列.
则aa71++aa82++aa93=+3aa4=1+42a11+d=6d4=. 3,
解之得a1=1232,d=676,故a5=a1+4d=6676.
【答案】
67 66

数学一轮复习第五章数列第2讲等差数列及其前n项和学案含解析

数学一轮复习第五章数列第2讲等差数列及其前n项和学案含解析

第2讲等差数列及其前n项和[考纲解读]1。

理解等差数列的概念及等差数列与一次函数的关系.(重点)2.掌握等差数列的通项公式与前n项和公式,并熟练掌握其推导方法,能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.(重点、难点)[考向预测]从近三年高考情况来看,本讲一直是高考的热点.预测2021年高考将会以等差数列的通项公式及其性质、等差数列的前n项和为考查重点,也可能将等差数列的通项、前n项和及性质综合考查,题型以客观题或解答题的形式呈现,试题难度一般不大,属中档题型.1.等差数列的有关概念(1)定义:一般地,如果一个数列从错误!第2项起,每一项与它前一项的错误!差都等于错误!同一个常数,那么这个数列就叫做等错误!公差,通常用字母d表示.数学语言表示为错误!a n+1-a n=d(n∈N*),d为常数.(2)等差中项:若a,A,b成等差数列,则A叫做a和b的等差中项,且A=错误!错误!.2.等差数列的通项公式与前n项和公式(1)若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=错误!a1+(n-1)d,可推广为a n=a m+错误!(n-m)d(n,m∈N*).(2)等差数列的前n项和公式S n=n a1+a n2=错误!na1+错误!d(其中n∈N*).3.等差数列的相关性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)等差数列{a n}中,当m+n=p+q时,错误!a m+a n=a p+a q (m,n,p,q∈N*).特别地,若m+n=2p,则错误!2a p=a m+a n(m,n,p∈N*).(2)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为错误!md(k,m∈N*).(3)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为错误!n2d。

(4)错误!也成等差数列,其首项与{a n}首项相同,公差为错误!错误! d。

高考北师大版数学(理)一轮复习课件:第五章 第二节 等差数列及其前n项和

高考北师大版数学(理)一轮复习课件:第五章 第二节 等差数列及其前n项和

(2)由(1)得 a1=-4d,故 an=(n-5)d, Sn=n(n-2 9)d. 由 a1>0 知 d<0,故 Sn≥an 等价于 n2-11n+10≤0,解得 1≤n≤10.所以 n 的取值范围是{n|1≤n≤10,n∈N}.
等差数列运算中方程思想的应用 (1)等差数列运算问题的一般求法是设出首项a1和公差d,然后由通项公 式或前n项和公式转化为方程(组)求解. (2)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n, Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.
等差数列的判定与证明方法 (1)定义法:对于任意自然数 n(n≥2),an-an-1(n≥2,n∈N+)为同一常数 ⇔{an}是等差数列. (2)等差中项法:2an-1=an+an-2(n≥3,n∈N+)成立⇔{an}是等差数列. (3)通项公式法:an=pn+q(p,q 为常数)对任意的正整数 n 都成立⇔{an} 是等差数列. (4)前 n 项和公式法:验证 Sn=An2+Bn(A,B 是常数)对任意的正整数 n 都成立⇔{an}是等差数列.
(2)等差数列的前 n 项和公式 Sn=n(a12+an)=__n_a_1_+__n_(__n_- 2__1_)__d__(其中 n∈N+,a1 为首项,d 为公差,
an 为第 n 项).
要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从 第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不 是等差数列.
等差数列的公差 d 的取值范围是( D )
A.d>785
B.d<235
C.785<d<235
D.785<d≤235
解析:由题意可得aa190≤>11,,即221155++98dd>≤11,,解得785<d≤235.

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理
第十页,共四十三页。
考点(kǎo di等ǎn)差1数列的基本(jīběn)运算 例 1:(1)(2017 年新课标Ⅰ)记 Sn为等差数列(děnɡ chā shù liè){an}的前n项 和.若a4+a5=24,S6=48,则{an}的公差为( )
第十一页,共四十三页。
解析:方法一,设公差为 d,a4+a5=a1+3d+a1+4d=2a1 +7d=列{an}的前 n 项和为 Sn,a1=15,且满足2ann-+13=
2na-n 5+1,已知 n,m∈N*,n>m,则 Sn-Sm 的最小值为(
第2讲 等差数列(děnɡ chā shù liè)
第一页,共四十三页。
1.理解(lǐjiě)等差数列的概念.
2.掌握等差数列的通项公式与前n项和公式. 3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解
决相应的问题.
4.了解等差数列与一次函数的关系.
第二页,共四十三页。
1.等差数列的定义
7.等差数列的最值
在等差数列{an}中,若a1>0,d<0,则Sn存在最大值;若
a1<0,d>0,则Sn存在(cúnzài)最_小_____值.
第六页,共四十三页。
1.(2015 年重庆(zhònɡ qìnɡ))在等差数列{an}中,若a2=4,a4=2,则a6 =( B )
A.-1
第七页,共四十三页。
第十六页,共四十三页。
考点(kǎo diǎ等n) 差2 数列的基本性质(xìngzhì)及应用 例2:(1)已知等差数列{an}的前n项和为Sn,若S10=1,S30=5,则S40 =( ) A. 思路点拨:思路1,设等差数列{an}的首项为a1,公差为d,根据 (gēnjù)题意列方程组求得a1,d,进而可用等差数列前n项和公式求S40; 思路2,设{an}的前n项和Sn=An2+Bn,由题意列出方程组求得A, B,从而得Sn,进而得S40;

2023年新教材高考数学一轮复习第五章数列第二节等差数列课件

2023年新教材高考数学一轮复习第五章数列第二节等差数列课件

[提速度]
1.(2022·枣庄质检)已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,
所有偶数项之和为290,则该数列的中间项为
()
A.28
B.29
C.30
D.31
解析:由结论(8),设项数为奇数2n-1,S奇-S偶=an=319-290=29, 故选B.
答案:B
2.已知Sn是等差数列{an}的前n项和,若a1=-2 020,2S2002200 -2S2001144 =6,则S2 023=
b1+2 b5=192+ 2 64=128.故选C.
答案:C
2.已知等差数列{an}满足a4+a6=22,a1·a9=57,则该等差数列的公差为 ( )
A.1或-1
B.2
C.-2
D.2或-2
解析:由a1+a9=a4+a6=22,a1·a9=57,所以a1,a9是方程x2-22x+57=0的两 实数根,解得aa19= =31,9 或aa19= =13,9, 所以公差d=a9-8 a1=2或-2.故选D. 答案:D
第二节 等差数列
(1)理解等差数列的概念和通项公式的意义;(2)探索并掌握等差数列的前n项 和公式,理解等差数列的通项公式与前n项和公式的关系;(3)体会等差数列与一 元一次函数的关系.
目录
CONTENTS
1
知识 逐点夯实
2
考点 分类突破
3
课时过关检测
01 知识 逐点夯实 课前自修
重点准 逐点清 结论要牢记
等差数列的判定与证明方法 方法
解读
适合题型
定义法 对于数列{an},an-an-1(n≥2,n∈N *)为同一常
数⇔{an}是等差数列
解答题中的

2020版高考数学第五章数列第2节等差数列及其前n项和讲义理(含解析)新人教A版

2020版高考数学第五章数列第2节等差数列及其前n项和讲义理(含解析)新人教A版

第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.体会等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(必修5P46A2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(必修5P68A8改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( ) A.-3B.-52C.-2D.-4解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎪⎨⎪⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4. 答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中, ∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0,∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5. 答案 S 5考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8(2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( ) A.9B.10C.11D.15解析 (1)法一 设等差数列{a n }的公差为d , 依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7, ∴a m =a 1+(m -1)d =7m -40=30,∴m =10. 答案 (1)C (2)B规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( ) A.3 B.4 C.log 318 D.log 324(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2, 解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318, ∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d , 由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)A (2)30考点二 等差数列的判定与证明 典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列. 【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23.=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3, ∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质, ∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8. ∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A 考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0, 因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2). 所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2nλ. (2)当a 1>0,λ=100时,由(1)知,a n =2n100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n=2-n lg 2,所以数列{b n }是单调递减的等差数列,公差为-lg 2, 所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值. ①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn=na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110[思维升华]1.证明等差数列可利用定义或等差中项的性质,另外还常用前n 项和S n =An 2+Bn 及通项a n =pn +q 来判断一个数列是否为等差数列. 2.等差数列基本量思想(1)在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. (2)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.(3)灵活使用等差数列的性质,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组 (建议用时:40分钟)一、选择题1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100B.99C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧9a 1+36d =27,a 1+9d =8,所以⎩⎪⎨⎪⎧a 1=-1,d =1, 所以a 100=a 1+99d =-1+99=98. 答案 C2.(2019·淄博调研)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A.1B.-1C.2D.12 解析 由于S 11S 9=11a 69a 5=119×911=1. 答案 A 3.(2019·中原名校联考)若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A.10B.20C.30D.40解析 依题意,11x n +1-11x n=x n +1-x n =d , ∴{x n }是等差数列.又x 1+x 2+…+x 20=20(x 1+x 20)2=200. ∴x 1+x 20=20,从而x 5+x 16=x 1+x 20=20.答案 B4.(2019·北京海淀区质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解之得a 1=65. ∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤.答案 B5.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( ) A.4 B.5 C.6 D.4或5 解析 由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4, 即d =-2,由于a 1=9,所以a n =-2n +11,令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5.答案 B二、填空题6.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为________.解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.答案 107.已知数列{a n }满足a 1=1,a n -a n +1=2a n a n +1,则a 6=________. 解析 将a n -a n +1=2a n a n +1两边同时除以a n a n +1,1a n +1-1a n =2. 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,2为公差的等差数列, 所以1a 6=1+5×2=11,即a 6=111. 答案 1118.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析 依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200. 答案 200三、解答题9.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n ,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解 设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k , 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明 由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2.能力提升题组(建议用时:20分钟)11.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269. 答案 B12.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( ) A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1),所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A13.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 13014.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81,∴⎩⎪⎨⎪⎧2a 7=26,9a 5=81,解得⎩⎪⎨⎪⎧a 7=13,a 5=9, ∴d =a 7-a 57-5=13-92=2,∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.新高考创新预测15.(多填题)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=________,公差d =________.解析 由{a n }为等差数列,得数列⎩⎨⎧⎭⎬⎫S n n 是首项为a 1,公差为d 2的等差数列,∵S 55-S 44=2,∴d 2=2⇒d =4,又S 2=S 6⇒2a 1+4=6a 1+6×52×4⇒a 1=-14. 答案 -14 4。

高考数学总复习 第5章 第2讲 等差数列及其前n项和课件 理 新人教A版

高考数学总复习 第5章 第2讲 等差数列及其前n项和课件 理 新人教A版
3 个必知问题 1. 知三求二:已知 a1、d、n、an、Sn 中的任意三个,即可求 得其余两个,这体现了方程思想. 2. Sn=d2n2+(a1-d2)n=An2+Bn⇒d=2A.
第五页,共53页。
3. 利用Sn的图象(túxiànɡ)确定其最值时,最高点不一定是最 大值,最低点不一定是最小值.
[解析] (1)本题考查等差数列的基础量运算. 设{an}的公差为 d,由 S2=a3 可得 d=a1=12,故 a2=a1 +d=1,Sn=na1+nn-2 1d=14n(n+1). (2)设等差数列的公差为 d,由于数列是递增数列,所以 d>0,a3=a1+2d=1+2d,a2=a1+d=1+d,代入已知条件: a3=a22-4 得:1+2d=(1+d)2-4,解得 d2=4,所以 d=2(d =-2 舍去),所以 an=1+(n-1)×2=2n-1. [答案] (1)1 14n(n+1) (2)2n-1
第十二页,共53页。
(3)d>0⇔{an}是递增数列,Sn 有最小值;d<0⇔{an}是递 减数列,Sn 有最大值;d=0⇔{an}是常数数列.
(4)am,am+k,am+2k,am+3k,…仍是等差数列,公差为 kd. (5)数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列. (6)S2n-1=(2n-1)an. (7)若 n 为偶数,则 S 偶-S 奇=n2d. 若 n 为奇数,则 S 奇-S 偶=a 中(中间项).
常数. [解]
证明:由题设知 an+1= aan+2n+bbnn2=
1+bann = 1+bann2
bn+1 ,所以bn+1=
1+abnn2
an+1
1+bann2,从而abnn++112-bann2=1(n

2015高考数学(理)一轮复习考点突破课件:5.2等差数列及其前n项和

2015高考数学(理)一轮复习考点突破课件:5.2等差数列及其前n项和
a1-d an d+ ,当 a1-d>0 时, n 递减,p3 不正确;an+3nd=4nd n
md
(4)数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列. (5)S2n-1=(2n-1)an. nd (6)若 n 为偶数,则 S 偶-S 奇= ; 2 若 n 为奇数,则 S 奇-S 偶=a 中(中间项).

• • • • • •
• 对点演练 已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32,若 am=8,则m为 • ( ) A.12 B. 8 C.6 D.4 解析:∵a3+a13=2a8,a6+a10=2a8, ∴a3+a6+a10+a13=4a8=32,∴a8=8, ∴m=8. 答案:B
针对训练 3.(1)(2013· 重庆)若 2,a,b,c,9 成等差数列, 则 c-a=________. (2)(2013· 辽宁)下面是关于公差 d>0 的等差数列{an}的四个命 题: p1:数列{an}是递增数列; p2:数列{nan}是递增数列;
an p3:数列 n 是递增数列;
5 5 65 ∴an=20+(n-1)× -3 =-3n+ 3 .
∴a13=0,即当 n≤12 时,an>0,n≥14 时,an<0, 12×11 5 + 2 ×-3=130.

∴当 n=12 或 13 时, Sn 取得最大值, 且最大值为 S13=S12=12×20
-3n+7,n=1,2, 故|an|=|3n-7|= 3n-7,n≥3.
记数列{|an|}的前 n 项和为 Sn.
当 n=1 时,S1=|a1|=4;当 n=2 时,S2=|a1|+|a2|=5; 当 n≥3 时,Sn=S2+|a3|+|a4|+…+|an| =5+(3×3-7)+(3×4-7)+…+(3n-7) n-2[2+3n-7] 3 2 11 =5+ = n - n+10. 2 2 2 当 n=2 时,满足此式. 4,n=1, 综上,Sn=3 2 11 n - 2 n+10,n≥2. 2

【高考聚焦】2015届高考数学(理)一轮复习题库(梳理自测+重点突破+能力提升):5.2等差数列及其前n项和]

【高考聚焦】2015届高考数学(理)一轮复习题库(梳理自测+重点突破+能力提升):5.2等差数列及其前n项和]

第2课时等差数列及其前n项和1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.[对应学生用书P83]【梳理自测】一、等差数列的概念1.在等差数列{a n}中,已知a1=1,a2+a3=14,则a4+a5+a6等于( )A.40 B.51C.43 D.452.在等差数列{a n}中,a1+a2=4,a7+a8=28,则数列的通项公式a n为( )A.2n B.2n+1C.2n-1 D.2n+23.设{a n}为等差数列,公差d=-2,S n为其前n项和,若S10=S11,则a1=( ) A.18 B.20C.22 D.244.若等差数列{a n}的前三项依次为a,2a+1,4a+2,则它的第五项为________.答案:1.B 2.C 3.B 4.4◆以上题目主要考查了以下内容:(1)等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义的表达式为a n+1-a n =d . (2)等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项且A =a +b2.(3)通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么通项公式为a n =a 1+(n -1)d ,n ∈N *. (4)前n 项和公式:S n =na 1+n (n -1)d 2=(a 1+a n )n2.二、等差数列的性质1.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( )A .14B .21C .28D .352.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案:1.C 2.60◆以上题目主要考查了以下内容:(1)通项公式的推广:a n =a m +(n -m)d(n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.【指点迷津】1.一个常数a n -a n -1=d(n≥2且n∈N *)恒成立,d 为常数即公差. 2.一个中项任何两个数a 与b 有且只有一个等差中项A =a +b2.3.二个函数a n =dn +(a 1-d)(d≠0)是关于n 的一次函数.S n =d 2n 2+(a 1-d 2)n(d≠0)是关于n 的二次函数.(n∈N *).4.两种设法①定义法:a ,a +d ,a +2d ,…;②对称法:…,a -d ,a ,a +d ,…或…,a -3d ,a -d ,a +d ,a +3d ,…. 5.4种方法——等差数列的判断方法①定义法;②等差中项法;③通项公式法;④前n 项和公式法.[对应学生用书P 83]考向一 等差数列基本量的计算(1)(2014·郑州市高三质检)等差数列{a n }的前7项和等于前2项和,若a 1=1,a k +a 4=0,则k =________.(2)(2014·石家庄市高三质检)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n=100,则n 的值为( )A .8B .9C .10D .11【审题视点】 在等差数列{a n }的a n ,S n ,a 1,d ,n 的五个量中,知其三,求其二. 【典例精讲】 (1)设数列{a n }的公差为d ,依题意得7×1+7×62d =2+d ,解得d =-14,则a k +a 4=2+(k +2)×(-14)=0,由此解得k =6. (2)由S n -S n -3=51得,a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10,选择C .【答案】 (1)6 (2)C【类题通法】 ①此类问题的通法是把条件转化为a 1与d 的方程(组),进而可求其它问题.②结合性质求解,可简化计算.1.(2014·荆州市高三调研)公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,且S 10=60,则S 20=( )A .80B .160C .320D .640解析:选C .设数列{a n }的公差为d ,d ≠0,则a 24=a 3a 7=(a 4-d)(a 4+3d),d =2a 43=23(a 1+3d),∴d =-23a 1,∵S 10=10(a 1+a 10)2=5(2a 1+9d)=10a 1+45(-23a 1)=-20a 1=60,∴a 1=-3,d =2,∴S 20=320.考向二 等差数列的判定或证明(2014·江南十校联考)若数列{a n }满足:a 1=23,a 2=2,3(a n +1-2a n +a n -1)=2.(1)证明:数列{a n +1-a n }是等差数列;(2)求使1a 1+1a 2+1a 3+…+1a n >52成立的最小的正整数n.【审题视点】 由题设条件构造(a n +1-a n )-(a n -a n -1)的值,并累加求和. 【典例精讲】 (1)证明:由3(a n +1-2a n +a n -1)=2可得 a n +1-2a n +a n -1=23,即(a n +1-a n )-(a n -a n -1)=23,∴数列{a n +1-a n }是以a 2-a 1=43为首项,23为公差的等差数列.(2)由(1)知a n +1-a n =43+23(n -1)=23(n +1),于是累加求和得:a n =a 1+23(2+3+…+n)=13n(n +1),∴1a 1+1a 2+…+1a n= 3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =3·⎝ ⎛⎭⎪⎫1-1n +1>52∴n >5 n 的最小值为6.【类题通法】 等差数列的判断方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.2.已知S n 为等差数列{a n }的前n 项和,b n =S n n (n∈N *).求证:数列{b n }是等差数列.证明:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d ,∴b n =S n n =a 1+12(n -1)d .法一:b n +1-b n =a 1+12nd -a 1-12(n -1)d =d2(常数),∴数列{b n }是等差数列.法二:b n +1=a 1+12nd ,b n +2=a 1+12(n +1)d ,∴b n +2+b n =a 1+12(n +1)d +a 1+12(n -1)d=2a 1+nd =2b n +1. ∴数列{b n }是等差数列.考向三 等差数列的性质及应用(1)(2014·辽宁省五校联考)设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 013(a 4-1)=1,(a 2 010-1)3+2 013(a 2 010-1)=-1,则下列结论中正确的是( )A .S 2 013=2 013,a 2 010<a 4B .S 2 013=2 013,a 2 010>a 4C .S 2 013=2 012,a 2 010≤a 4D .S 2 013=2 012,a 2 010≥a 4(2)(2014·武汉市高三联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .21【审题视点】 (1)S 2 013=2 013×(a 1+a 2 013)2=2 013×(a 4+a 2 010)2.(2)求S n 为n 的二次函数,求最值.【典例精讲】 (1)设f (x )=x 3+2 013x ,显然f (x )为奇函数和增函数,由已知得f (a 4-1)=-f (a 2 010-1),所以f (a 4-1)=f (-a 2 010+1),a 4-1=-a 2 010+1,a 4+a 2 010=2,S 2 013=2 013(a 1+a 2 013)2=2 013,显然1>-1,即f (a 4-1)>f (a 2 010-1),又f (x )为增函数,故a 4-1>a 2 010-1,即a 4>a 2 010.(2)a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.【答案】 (1)A (2)C【类题通法】 (1)本题的解题关键是将性质m +n =p +q ⇒a m +a n =a p +a q 与前n 项和公式S n =n (a 1+a n )2结合在一起,采用整体思想,简化解题过程.(2)等差数列的最值的处理方法:①利用S n =an 2+bn 转化为二次函数最值时要注意n 的取值. ②若{a n }是等差数列,求其前n 项和的最值时, (ⅰ)若a 1>0,d <0,且满足⎩⎪⎨⎪⎧a n ≥0,a n +1<0,前n 项和S n 最大.(ⅱ)若a 1<0,d >0,且满足⎩⎪⎨⎪⎧a n ≤0a n +1>0,前n 项和S n 最小.3.(2014·深圳市高三调研)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:选C .∵⎩⎪⎨⎪⎧a 4+a 7=a 5+a 6<0a 5>0,∴⎩⎪⎨⎪⎧a 5>0a 6<0,∴S n 的最大值为S 5.[对应学生用书P 85]有关等差数列的规范答题(2013·高考浙江卷)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【审题视点】 (1)用a 1,d 把a 2,a 3表示出来,利用a 1,2a 2+2,5a 3成等比数列列方程即可解出d ,进而根据等差数列的通项公式写出a n .(2)根据(1)及d <0确定数列的通项公式,确定a n 的符号,以去掉绝对值符号,这需要对n 的取值范围进行分类讨论.【思维流程】由等差数列建立关于d 的方程,求d.当n ≤11时,a n ≥0,是原等差数列求和.当n ≥12时,是两个等差数列求和总结S n 公式.【规范解答】 (1)由题意得,a 1·5a 3=(2a 2+2)2,由a 1=10,{a n }为公差为d 的等差数列得,d 2-3d -4=0,2分解得d =-1或d =4.所以a n =-n +11(n∈N *)或a n =4n +6(n ∈N *).4分 (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11, 所以当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n=-12n 2+212n ;8分当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.12分综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧-12n 2+212n , n ≤11,12n 2-212n +110,n ≥12.14分【规范建议】 (1)不能盲目认为|a 1|,|a 2|,…|a n |是等差数列,要分段研究. (2)当n ≤11时,是求S n ,而不是求S 11. (3)讨论n ≤11和n ≥12后,要有总结结论.1.(2013·高考安徽卷)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .2解析:选A .借助等差数列前n 项和公式及通项公式的性质,计算数列的公差,进而得到a 9的值.由等差数列性质及前n 项和公式,得S 8=8(a 1+a 8)2=4(a 3+a 6)=4a 3,所以a 6=0.又a 7=-2,所以公差d =-2,所以a 9=a 7+2d =-6.2.(2013·高考全国新课标卷)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C .可以先求出首项和公差,再利用等差数列的求和公式和通项公式求解. ∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.3.(2013·高考广东卷)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 解析:可以利用通项公式,把a 3+a 8,3a 5+a 7都用a 1,d 表示出来,进行整体代换;也可以利用a n =a m +(n -m)d 把a 3+a 8,3a 5+a 7都用a 3,d 表示出来,进行整体代换.方法一:a 3+a 8=2a 1+9d =10,3a 5+a 7=4a 1+18d =2(2a 1+9d)=2×10=20.方法二:a 3+a 8=2a 3+5d =10,3a 5+a 7=4a 3+10d =2(2a 3+5d)=2×10=20. 答案:204.(2013·高考全国大纲卷)等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解析:设{a n }的公差为d.由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得,S 22=S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d)2=(a 2-d)(4a 2+2d).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d)2=(3-d)(12+2d),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.。

2013届高考数学一轮复习课时检测 第五章 第二节 等差数列及其前n项和 理

2013届高考数学一轮复习课时检测 第五章 第二节 等差数列及其前n项和 理

第五章 第二节 等差数列及其前n 项和一、选择题1.设等差数列{a n }的前 n 项和为S n ,若S 3=9,S 5=20,则a 7+a 8+a 9=( ) A .63 B .45 C .36D .27解析:由S 3=9,S 5=20,得d =1,a 1=2,∴a 7+a 8+a 9=3a 8=3(a 1+7d )=3×9=27. 答案:D2.(2012·西南大学附中模拟)设等差数列{a n }的前n 项和为S n ,若a 2+a 8=15-a 5,则S 9等于( )A .18B .36C .45D .60解析:∵{a n }为等差数列,a 2+a 8=15-a 5 ∴3a 5=15,即a 5=5. ∴S 9=9a 1+a 929a 5=45.答案:C3.在等差数列{a n }中,a n <0,a 23+a 28+2a 3a 8=9,那么S 10等于( )A .-9B .-11C .-13D .-15解析:由a 23+a 28+2a 3a 8=9,得(a 3+a 8)2=9,∵a n <0, ∴a 3+a 8=-3,∴S 10=10a 1+a 102=5(a 3+a 8)=5×(-3)=-15.答案:D4.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差为( )A .-2B .-3C .-4D .-6解析:a n =23+(n -1)d ,由题意知,⎩⎪⎨⎪⎧a 6>0a 7<0,即⎩⎪⎨⎪⎧23+5d >023+6d <0,解得-235<d <-236,又d 为整数,所以d =-4. 答案:C5.(2011·大纲全国卷)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( )A .8B .7C .6D .5解析:依题意得S k +2-S k =a k +1+a k +2=2a 1+(2k +1)d =2(2k +1)+2=24,解得k =5. 答案:D6.(2011·四川高考)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12--210-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8,所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.答案:B 二、填空题7.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74. 答案:748.(2011·广东高考)等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.解析:设{a n }的公差为d ,由S 9=S 4及a 1=1, 得9×1+9×82d =4×1+4×32d , 所以d =-16.又a k +a 4=0,所以[1+(k -1)×(-16)]+[1+(4-1)×(-16)]=0.即k =10. 答案:109.在等差数列{a n }中,a 1=2,a 2+a 5=13,则a 5+a 6+a 7=________. 解析:由a 1+a 6=a 2+a 5得a 6=11. 则a 5+a 6+a 7=3a 6=33.答案:33 三、解答题10.已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70. (1)求数列{a n }的通项公式;(2)设b n =2S n +48n{b n }的最小项是第几项?并求出该项的值.解:(1)设公差为d ,则有⎩⎪⎨⎪⎧2a 1+4d =147a 1+21d =70,即⎩⎪⎨⎪⎧a 1+2d =7,a 1+3d =10.解得⎩⎪⎨⎪⎧a 1=1,d =3..所以a n =3n -2.(2)S n =n2[1+(3n -2)]=3n 2-n2所以b n =3n 2-n +48n =3n +48n-1≥23n ·48n-1=23.当且仅当3n =48n,即n =4时取等号,故数列{b n }的最小项是第4项,该项的值为23.11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.解:(1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5.所以a 6=-3-5=-8, 所以⎩⎪⎨⎪⎧5a 1+10d =5a 1+5d =-8,解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9a 1d +10d 2+1=0.两边同乘以8,得16a 21+72a 1d +80d 2+8=0,化简得(4a 1+9d )2=d 2-8. 所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2.12.已知S n 是数列{a n }的前n 项和,S n 满足关系式2S n =S n -1-(12)n -1+2(n ≥2,n 为正整数),a 1=12.(1)令b n =2n a n ,求证数列{b n }是等差数列,并求数列{a n }的通项公式; (2)在(1)的条件下,求S n 的取值范围.解:(1)由2S n =S n -1-(12)n -1+2,得2S n +1=S n -(12)n +2,两式相减得2a n +1=a n +(12)n,上式两边同乘以2n 得2n +1a n +1=2n a n +1,即b n +1=b n +1,所以b n +1-b n =1,故数列{b n }是等差数列,且公差为1,又因为b 1=2a 1=1,所以b n =1+(n -1)×1=n ,因此2n a n =n ,从而a n =n ·(12)n .(2)由于2S n =S n -1-(12)n -1+2,所以2S n -S n -1=2-(12n -1,即S n +a n =2-(12)n -1,S n =2-(12)n -1-a n ,而a n =n ·(12)n ,所以S n =2-(12)n -1-n ·(12)n =2-(n +2)·(12)n . 所以S n +1=2-(n +3)·(12)n +1,且S n +1-S n =n +12n +1>0,所以S n ≥S 1=12,又因为在S n =2-(n +2)·(12)n 中,(n +2)·(12)n >0,故S n <2,即S n 的取值范围是[12,2)。

山东专用2021版高考数学一轮复习第五章数列第二讲等差数列及其前n项和学案含解析

山东专用2021版高考数学一轮复习第五章数列第二讲等差数列及其前n项和学案含解析

第二讲等差数列及其前n项和ZHI SHI SHU LI SHUANG JI ZI CE知识梳理·双基自测错误!错误!错误!错误!知识点一等差数列的有关概念(1)等差数列的定义如果一个数列从第__2__项起,每一项与它的前一项的差等于__同一个常数__,那么这个数列就叫做等差数列,这个常数叫做等差数列的__公差__,通常用字母__d__表示,定义的表达式为__a n+1-a n=d__(n≥2).(2)等差中项如果a,A,b成等差数列,那么__A__叫做a与b的等差中项且__A=错误!__。

(3)通项公式如果等差数列{a n}的首项为a1,公差为d,那么通项公式为a n =__a1+(n-1)d__=a m+(n-m)d(n,m∈N*).(4)前n项和公式:S n=__na1+错误!d__=__错误!__.知识点二等差数列的性质已知数列{a n}是等差数列,S n是其前n项和.(1)若m 1+m 2+…+m k =n 1+n 2+…+n k ,则am 1+am 2+…+am k =an 1+an 2+…+an k .特别地,若m +n =p +q ,则a m +a n =__a p +a q __。

(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为__kd __.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(4){错误!}为等差数列.(5)n 为奇数时,S n =na 中,S 奇=__错误!__a 中, S 偶=__错误!__a 中,∴S 奇-S 偶=__a 中__.n 为偶数时,S 偶-S 奇=nd 2. (6)数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.错误!错误!错误!错误!1.等差数列前n 项和公式的推证方法__倒序相加法__。

高考理科数学总复习第五章 第二节 等差数列及其前n项和

高考理科数学总复习第五章  第二节 等差数列及其前n项和

的项数m使得Sn取得最
即时应用
1.已知在等差数列{an}中,a4+a5+a6=15,则 a1+a2+a3+… +a9=___4_5____.
因为{an}为等差数列,a4+a5+a6=15,所以3a5=15,解得a5= 5,a1+a2+a3+…+a9=a1+2a9×9=2a52×9=9a5=9×5=45.
主干知识 自主排查
1.等差数列的概念 (1)如果一个数列从第 2 项起,每一项与它的前一项的差等 于 同一个常数 ,那么这个数列就叫做等差数列,这个常数叫 做等差数列的 公差 ,公差通常用字母 d 表示. 数学语言表达式:an+1-an=d(n∈N*,d 为常数),或 an-an-1 =d(n≥2,d 为常数). (2)若 a,Aa,+bb成等差数列,则 A 叫做 a,b 的等差中项, 且 A= 2 .
4.等差数列的前 n 项和公式与函数的关系
Sn=d2n2+a1-d2n. 数列{an}是等差数列⇔Sn=An2+Bn(A,B 为常数). 5.等差数列的前 n 项和的最值 在等差数列{an}中,a1>0,d<0,则 Sn 存在最 大 值;若 a1<0, d>0,则 Sn 存在最 小 值.
方法技巧
等差数列的判定与证明方法
即时应用
1.设数列{an}的通项公式为 an=2n-10(n∈N*),则|a1|+|a2|+… +|a15|=__1_3_0____.
由 an=2n-10(n∈N*)知{an}是以-8 为首项,2 为公差的等差 数列,又由 an=2n-10≥0,得 n≥5,∴当 n≤5 时,an≤0, 当 n>5 时,an>0,∴|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4) +(a5+a6+…+a15)=20+110=130.

专题5.2 等差数列及其前n项和-2020届高考数学一轮复习学霸提分秘籍(原卷版)

专题5.2 等差数列及其前n项和-2020届高考数学一轮复习学霸提分秘籍(原卷版)

第五篇 数列及其应用专题5.02 等差数列及其前n 项和【考试要求】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.体会等差数列与一次函数的关系.【知识梳理】1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2. 2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 【微点提醒】1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n}是等差数列⇔S n=An2+Bn(A,B为常数).【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.()(2)等差数列{a n}的单调性是由公差d决定的.()(3)数列{a n}为等差数列的充要条件是其通项公式为n的一次函数.()(4)等差数列的前n项和公式是常数项为0的二次函数.()【教材衍化】2.(必修5P46A2改编)设数列{a n}是等差数列,其前n项和为S n,若a6=2且S5=30,则S8等于()A.31B.32C.33D.343.(必修5P68A8改编)在等差数列{a n}中,若a3+a4+a5+a6+a7=450,则a2+a8=________.【真题体验】4.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.125.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-46.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.【考点聚焦】考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8 (2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A.9B.10C.11D.15【规律方法】1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( )A.3B.4C.log 318D.log 324(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________.考点二 等差数列的判定与证明【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12. (1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由.【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.【规律方法】1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立.2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q(p ,q 为常数)⇔{an}是等差数列.(2)前n 项和公式:Sn =An 2+Bn(A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】(2017·全国Ⅰ卷)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.考点三等差数列的性质及应用角度1等差数列项的性质【例3-1】(2019·临沂一模)在等差数列{a n}中,a1+3a8+a15=120,则a2+a14的值为() A.6 B.12 C.24 D.48角度2等差数列和的性质【例3-2】设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9等于() A.63 B.45 C.36 D.27【规律方法】1.项的性质:在等差数列{a n}中,若m+n=p+q(m,n,p,q∈N*),则a m+a n=a p+a q.2.和的性质:在等差数列{a n}中,S n为其前n项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________. (2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.1914C.3929D.43考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?【规律方法】 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值); ②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值). 【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( ) A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.【反思与感悟】1.证明等差数列可利用定义或等差中项的性质,另外还常用前n项和S n=An2+Bn及通项a n=pn+q来判断一个数列是否为等差数列.2.等差数列基本量思想(1)在解有关等差数列的基本量问题时,可通过列关于a1,d的方程组进行求解.(2)若奇数个数成等差数列,可设中间三项为a-d,a,a+d.若偶数个数成等差数列,可设中间两项为a-d,a+d,其余各项再依据等差数列的定义进行对称设元. (3)灵活使用等差数列的性质,可以大大减少运算量.【易错防范】1.用定义法证明等差数列应注意“从第2项起”,如证明了a n+1-a n=d(n≥2)时,应注意验证a2-a1是否等于d,若a2-a1≠d,则数列{a n}不为等差数列.2.利用二次函数性质求等差数列前n项和最值时,一定要注意自变量n是正整数.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.972.(2019·淄博调研)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( ) A.1B.-1C.2D.123.(2019·中原名校联考)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( ) A.10B.20C.30D.404.(2019·北京海淀区质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤5.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( ) A.4B.5C.6D.4或5二、填空题6.已知等差数列{a n}的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为________.7.已知数列{a n}满足a1=1,a n-a n+1=2a n a n+1,则a6=________.8.设S n是等差数列{a n}的前n项和,S10=16,S100-S90=24,则S100=________.三、解答题9.等差数列{a n}中,a3+a4=4,a5+a7=6.(1)求{a n}的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n .【能力提升题组】(建议用时:20分钟)11.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.28912.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( )A.154B.158C.237D.313.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.14.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.【新高考创新预测】15.(多填题)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=________,公差d =________.。

人教A版2020版新一线高考理科数学一轮复习教学案:第5章第2节等差数列及其前n项和含答案

人教A版2020版新一线高考理科数学一轮复习教学案:第5章第2节等差数列及其前n项和含答案

第二节等差数列及其前n项和[考纲传真]1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.数学语言表示为a n+1-a n=d(n∈N*),d为常数.(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.(3)等差数列的通项公式:a n=a1+(n-1)d,可推广为a n=a m+(n-m)d.(4)等差数列的前n项和公式:S n=n(a1+a n)2=na1+n(n-1)2d.2.等差数列的通项公式及前n项和公式与函数的关系(1)a n=a1+(n-1)d可化为a n=dn+a1-d的形式.当d≠0时,a n是关于n的一次函数;当d>0时,数列为递增数列;当d<0时,数列为递减数列.(2)数列{a n}是等差数列,且公差不为0⇔S n=An2+Bn(A,B为常数).[常用结论]1.已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列,且公差为p.2.若数列{a n}与{b n}均为等差数列,且前n项和分别是S n和T n,则S2m-1T2m-1=a mb m.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.()(2)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.()(3)数列{a n}为等差数列的充要条件是其通项公式为n的一次函数.()(4)等差数列的前n项和公式是常数项为0的二次函数.()[答案](1)×(2)√(3)×(4)×2.等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d 等于( ) A .14 B .12 C .2 D .-12A [∵a 4+a 8=2a 6=10,∴a 6=5, 又a 10=6,∴公差d =a 10-a 610-6=6-54=14.故选A .]3.(教材改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31B .32C .33D .34B [设数列{a n }的公差为d , 法一:由S 5=5a 3=30得a 3=6,又a 6=2,∴S 8=8(a 1+a 8)2=8(a 3+a 6)2=8(6+2)2=32.法二:由⎩⎪⎨⎪⎧a 1+5d =2,5a 1+5×42d =30,得⎩⎪⎨⎪⎧a 1=263,d =-43.∴S 8=8a 1+8×72d =8×263-28×43=32.]4.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.⎝ ⎛⎭⎪⎫-1,-78 [由题意可知⎩⎨⎧ a 8>0,a 9<0.即⎩⎨⎧7+7d >0,7+8d <0解得-1<d <-78.] 5.(教材改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 180 [∵{a n }为等差数列,∴a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90, ∴a 2+a 8=2a 5=180.]等差数列基本量的运算1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14 D .15B [由题意得S 5=5(a 1+a 5)2=5a 3=25,a 3=5,公差d =a 3-a 2=2,a 7=a 2+5d =3+5×2=13.故选B .]2.已知在等差数列{a }中,a =20,a =54,S =3 700,则数列的公差d ,项数n 分别为( )A .d =0.34,n =100B .d =0.34,n =99C .d =3499,n =100D .d =3499,n =99C [由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ,S n =na 1+n (n -1)d2,得⎩⎪⎨⎪⎧54=20+(n -1)d ,3 700=20n +n (n -1)d 2,解得⎩⎪⎨⎪⎧d =3499,n =100.故选C .]3.(2018·宁德二模)已知等差数列{a n }满足a 3+a 5=14,a 2a 6=33,则a 1a 7=( ) A .33B .16C .13D .12C [由⎩⎨⎧ a 3+a 5=14,a 2·a 6=33,得⎩⎨⎧a 1+3d =7,(a 1+d )(a 1+5d )=33,解得⎩⎨⎧ a 1=1,d =2,或⎩⎨⎧a 1=13,d =-2.当a 1=1,d =2时,a 7=1+6×2=13,∴a 1a 7=13; 当a 1=13,d =-2时,a 7=13+6×(-2)=1,∴a 1a 7=13. 综上可知a 1a 7=13.故选C .]4.(2018·西宁一模)我国古代数学名著《九章算术·均输》中记载了这样一个问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位).这个问题中,等差数列的通项公式为( ) A .-16n +76(n ∈N *,n ≤5)B .16n +32(n ∈N *,n ≤5) C .16n +76(n ∈N *,n ≤5) D .-16n +32(n ∈N *,n ≤5)D [由题意可设五人所得依次对应等差数列中的a 1,a 2,a 3,a 4,a 5,公差为d ,则⎩⎨⎧S 5=5,a 1+a 2=a 3+a 4+a 5,∴⎩⎪⎨⎪⎧5a 1+5×42d =5,2a 1+d =3a 1+9d ,∴⎩⎪⎨⎪⎧a 1=43,d =-16,∴通项公式为a n =43+(n -1)×⎝ ⎛⎭⎪⎫-16=32-16n (n ∈N *,n ≤5),故选D .]等差数列的判定与证明【例1】 数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.[解] (1)证明:∵a n +1=a n2a n +1, ∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n ,即1a n +1-1a n=2, 故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.(2)由(1)知1a n=2n -1,所以S n =n (1+2n -1)2=n 2. 证明:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.n 1n +1n (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[解] (1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15. (2)由已知na n +1-(n +1)a n =2n (n +1), 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a n n=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n . 等差数列的性质及应用【例2】 (1)设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37(2)(2019·商洛模拟)等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值是( ) A .20 B .22 C .24 D .8 (3)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63B .45C .36D .27(1)C (2)C (3)B [(1)设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n+1-a n )+(b n +1-b n )=d 1+d 2,所以{a n +b n }为等差数列.又a 1+b 1=a 2+b 2=100,所以{a n +b n }为常数列,所以a 37+b 37=100. (2)因为a 1+3a 8+a 15=5a 8=120,所以a 8=24,所以2a 9-a 10=a 10+a 8-a 10=a 8=24.(3)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45.]n n m -1m +1m S 2m -1=39,则m 等于( ) A .39B .20C .19D .10(2)设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有S n T n =2n -34n -3,则a 2b 3+b 13+a 14b 5+b 11的值为( ) A .2945 B .1329 C .919 D .1930(1)B (2)C [(1)数列{a n }为等差数列,则a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1.又S 2m -1=(2m -1)a m =39,则m =20.故选B . (2)由题意可知b 3+b 13=b 5+b 11=b 1+b 15=2b 8,∴a 2b 3+b 13+a 14b 5+b 11=a 2+a 142b 8=a 8b 8=S 15T 15=2×15-34×15-3=2757=919.故选C .]等差数列前n 项和的最值问题【例3】 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. [解] ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.法一:由a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0, 当n ≥14时,a n <0.∴当n =12或n =13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.法二:S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n =-56⎝ ⎛⎭⎪⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130. 法三:由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.n n 61则S n 取最大值时,n 的值为( ) A .5 B .6 C .5或6 D .11(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. (1)C (2)110 [(1)由题意得S 6=6a 1+15d =5a 1+10d ,化简得a 1=-5d ,所以a 6=0,故当n =5或6时,S n 最大.(2)因为等差数列{a n }的首项a 1=20,公差d =-2, S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12B [设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3⎝ ⎛⎭⎪⎫3a 1+3×22d =2a 1+d +4a 1+4×32d ,解得d =-32a 1,∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10.故选B .]2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A .-24 B .-3 C .3D .8A [由已知条件可得a 1=1,d ≠0,由a 23=a 2a 6可得(1+2d )2=(1+d )(1+5d ),解得d =-2.所以S 6=6×1+6×5×(-2)2=-24. 故选A .]3.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97C [∵{a n }是等差数列,设其公差为d ,∴S 9=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎨⎧ a 1+4d =3,a 1+9d =8,∴⎩⎨⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C .]4.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.[解] (1)设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.。

2022届高考数学一轮复习第五章第二节等差数列及

2022届高考数学一轮复习第五章第二节等差数列及

2022届高考数学一轮复习第五章第二节等差数列及第二节等差数列及其前n项和[全盘巩固]1.已知等差数列{an}的前n项和为Sn,a4=15,S5=55,则数列{an}的公差是()1A.B.4C.-4D.-34解析:选B∵{an}是等差数列,a4=15,S5=55,∴a1+a5=22,∴2a3=22,a3=11,∴公差d=a4-a3=4.2.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.27S3=3a1+3d=9,解析:选B设等差数列{an}的公差为d,依题意得6某5S=36,6=6a1+2=1,d=2,则a7+a8+a9=3a8=3(a1+7d)=45.3.(2022·辽宁高考)下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;anp3:数列是递增数列;np4:数列{an+3nd}是递增数列.解得a1其中的真命题为()A.p1,p2B.p3,p4C.p2,p3D.p1,p4解析:选D∵{an}是等差数列,∴设an=a1+(n-1)d.∵d>0,∴{an}是递增数列,故a1-da1-d3p1是真命题;nan=dn2+(a1-d)n的对称轴方程为n=-当-时,由二次函数2d2d2anana1-d的对称性知a1>2a2,{nan}不是递增数列,p2=d+,当a1-d>0时,是nnn递减数列,p3是假命题;an+3nd=4nd+a1-d,4d>0,{an+3nd}是递增数列,p4是真命题.故p1,p4是真命题.4.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99.用Sn表示{an}的前n项和,则使得Sn达到最大值的n是()A.21B.20C.19D.18解析:选B∵a1+a3+a5=105,a2+a4+a6=99,∴3a3=105,3a4=99,即a3=35,a4=33.∴a1=39,d=-2,得an=41-2n.某令an≥0且an+1≤0,n∈N,则有n=20.5.已知Sn为等差数列{an}的前n项和,若S1=1=4,则的值为()935 A.B..4423解析:选A由等差数列的性质可知S2,S4-S2,S6-S44,得S4S2S6S4S4S2S4-S2S2S69=3,则S6-S4=5S2,所以S4=4S2,S6=9S2,=.S44某6.数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N).若b3=-2,b10=12,则a8=()A.0B.3C.8D.11解析:选B因为{bn}是等差数列,且b3=-2,b10=12,12--某故公差d==2.于是b1=-6,且bn=2n-8(n∈N),即an+1-an=2n-8.10-3所以a8=a7+6=a6+4+6=a5+2+4+6=…=a1+(-6)+(-4)+(-2)+0+2+4+6=3.7.在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k=________.-d解析:a1+a2+…+a7=7a1+=21d,2而ak=a1+(k-1)d=(k-1)d,所以(k-1)d=21d,d≠0,故k=22.答案:228.在等差数列{an}中,an>0,且a1+a2+…+a10=30,则a5·a6的最大值为________.解析:∵a1+a2+…+a10=30,a1+a10即30,a1+a10=6,∴a5+a6=6,2a5+a62=9.∴a5·a6≤2答案:929.已知等差数列{an}中,an≠0,若n>1且an-1+an+1-an=0,S2n-1=38,则n=________.2解析:∵2an=an-1+an+1,an-1+an+1-an=0,2∴2an-an=0,即an(2-an)=0.∵an≠0,∴an=2.∴S2n-1=2(2n-1)=38,解得n=10.答案:10 1213某10.设Sn是数列{an}的前n项和且n∈N,所有项an>0,且Snn+an -.424(1)证明:{an}是等差数列;(2)求数列{an}的通项公式.1213解:(1)证明:当n=1时,a1=S1=a11-,424解得a1=3或a1=-1(舍去).当n≥2时,112an=Sn-Sn-1(a2n+2an-3)an-1+2an-1-3).4422∴4an=an-an-1+2an-2an-1.即(an+an-1)(an-an-1-2)=0.∵an+an-1>0,∴an-an-1=2(n≥2).∴数列{an}是以3为首项,2为公差的等差数列.(2)由(1)知an=3+2(n-1)=2n+1.11.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3·a4=117,a2+a5=22.(1)求通项公式an;(2)求Sn的最小值;(3)若数列{bn}是等差数列,且bn=,求非零常数c.n+c解:(1)∵数列{an}为等差数列,∴a3+a4=a2+a5=22.又a3·a4=117,2∴a3,a4是方程某-22某+117=0的两实根,又公差d>0,∴a3<a4,∴a3=9,a4=13,Sna1+2d=9,∴a1+3d=13,a1=1,∴d=4.∴通项公式an=4n-3.(2)由(1)知a1=1,d=4,nn-1212∴Sn=na1+d=2n-n=2n-,248∴当n=1时,Sn最小,最小值为S1=a1=1.2Sn2n-n2(3)由(2)知Sn=2n-n,∴bn=n+cn+c1615∴b1=b2=b3.1+c2+c3+c∵数列{bn}是等差数列,∴2b2=b1+b3,61152即2c+c=0,2+c1+c3+c11∴c=-或c=0(舍去),故c=-222212.已知数列{an}是等差数列,bn=an-an+1.(1)证明:数列{bn}是等差数列;(2)若a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k(k为常数),求数列{bn}的通项公式;(3)在(2)的条件下,若数列{bn}的前n项和为Sn,是否存在实数k,使Sn当且仅当n=12时取得最大值?若存在,求出k的取值范围;若不存在,请说明理由.22222解:(1)证明:设{an}的公差为d,则bn+1-bn=(an+1-an+2)-(an-an+1)=2an+1-(an+1222-d)-(an+1+d)=-2d,2(2)∵a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k,∴13d=13-13k,∴d=1-k,-又13a1+某2d=130,∴a1=-2+12k,2∴an=a1+(n-1)d=(-2+12k)+(n-1)(1-k)=(1-k)n+13k-3,2222∴bn=an-an+1=(an+an+1)(an-an+1)=-2(1-k)n+25k-30k+5.(3)存在满足题意的实数k.由题意可知,当且仅当n=12时Sn最大,则b12>0,b13<0,22-k+25k-30k+5>0,-即22--k+25k-30k+5<0,k+18k-19>0,∴2k-22k+21>0,2解得k<-19或k>21.故k的取值范围为(-∞,-19)∪(21,+∞).[冲击名校]a11a12a13a32a33等差数列,若a22=8,则这9个数的和为()A.16B.32C.36D.72解析:选D依题意得a11+a12+a13+a21+a22+a23+a31+a32+a33=3a12+3a22+3a32=9a22=72.2.(2022·新课标全国卷Ⅱ)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________.311.已知数阵aa21a22a23中,每行的3个数依次成等差数列,每列的3个数也依次成10a1+45d=0,,得15a1+105d=25,解析:由Sn=na1nn-22解得a1=-3,d=,3nn-212则Sn=-3n+n-10n),233132所以nSn=(n-10n),3132令f(某)=(某-10某),320222则f′(某)=某-=某某,3320当某∈1,时,f(某)单调递减;320当某∈时,f(某)单调递增,320又,f(6)=-48,f(7)=-49,3所以nSn的最小值为-49.答案:-49[高频滚动]21.已知数列{an}的前n项和Sn=-n+3n,若an+1an+2=80,则n的值为()A.5B.4C.3D.22解析:选A由Sn=-n+3n,可得an=4-2n,因此an+1·an+2=[4-2(n+1)][4-2(n+2)]=80,即n(n-1)=20,解得n=-4(舍去)或n=5.2n2.已知数列{an},{bn}满足a1=1,且an,an+1是函数f(某)=某-bn某+2的两个零点,则b10=________.nn+1解析:∵an+an+1=bn,an·an+1=2,∴an+1·an+2=2,∴an +2=2an.nn-1某又∵a1=1,a1·a2=2,∴a2=2,∴a2n=2,a2n-1=2(n∈N),∴b10=a10+a11=64.答案:64。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又因为a1+an=a2+an-1=a3+an-2,
所以3(a1+an)=180,从而a1+an=60.
Sn=
5.(2015·安徽高考)已知数列{an}中,a1=1,an=an-1+ 1
(n≥2),则数列{an}的前9项和等于________.
2
【解析】当n≥2时,an=an-1+ 1 ,
所以{an}是首项为1,公差为 2 的等差数列,
ቤተ መጻሕፍቲ ባይዱ
所以S9=9×1+
答案:27
98 1 22
1
=9+18=27.
2
考向一 等差数列的性质及基本量的计算
8a1+28=16a1+224,所以a1= ,则a10=a1+(10-1)d= 1
2 1 9 19 . 22
(2)选B.设等差数列{an}的公差为d,由题意可得
a5 a1 4d 8, 解得 =3Sa31+23a41d=34d8. 6,
a d
1
2
0, ,
则S10-S7=a8+a9+a10
【规律方法】等差数列运算的思想方法 (1)方程思想:设出首项a1和公差d,然后将通项公式或 前n项和公式转化为方程(组)求解. (2)整体思想:当所给条件只有一个时,可将已知和所求 结果都用a1,d表示,寻求两者联系,整体代换即可求解.
(3)利用性质:运用等差数列性质,可以化繁为简、优化 解题过程. 易错提醒:要注意性质运用的条件,如m+n=p+q,则 am+an=ap+aq(m,n,p,q∈N*),只有当序号之和相等、项 数相同时才成立.
【变式训练】(2016·成都模拟)等差数列{an}的前n项 和为Sn,若S15为一确定常数,下列各式也为确定常数的 是( )
d)n是关于n的二次函数且常数项为0. 2
【小题快练】 链接教材 练一练 1.(必修5P38例1(1)改编)已知等差数列-8,-3,2,7,…, 则该数列的第100项为________.
【解析】依题意得,该数列的首项为-8,公差为5,所以 a100=-8+99×5=487. 答案:487
2.(必修5P46习题2.3A组T5改编)在100以内的正整数中 有______个能被6整除的数.
第二节 等差数列及其前n项和
【知识梳理】
1.等差数列的有关概念
(1)定义:
①文字语言:从______起,每一项与它的前一项的___
第2项

都等于___一个常数.
②符号语同言:________(n∈N*,d为常数).
an+1-an=d
(2)等差中项:数列a,A,b成等差数列的充要条件是A=
a
b,
【特别提醒】 等差数列与函数的关系
(1)通项公式:当公差d≠0时,等差数列的通项公式 an=a1+(n-1)d=dn+a1-d是关于n的一次函数,且斜率为公 差d.若公差d>0,则为递增数列,若公差d<0,则为递减数 列.
(2)前n项和:当公差d≠0时,Sn=
nn1
na1 2 d
dn2 2
(a1
【典例1】(1)(2015·全国卷Ⅰ)已知{an}
是公差为1的等差数列,Sn为{an}的前n项和,
若S8=4S4,则a10=( )
A.
B.
C.10
D.12
17
19
2
2
(2)(2016·沧州七校联考)等差数列{an}的前n项和为
Sn,已知a5=8,S3=6,则S10-S7的值是 ( )
A.24
B.48
C.60
D.72
【解题导引】(1)由S8=4S4求出首项,再由a10=a1+ (10-1)d求出a10的值. (2)列出关于a1,d的方程组求解.
【规范解答】(1)选B.设等差数列的首项为a1,则
S8=8a1+ 88 11 =8a1+28,
S4=4a1+
2
44 11
=4a1+6,因为S8=4S4,即
a1+a8+a15= 为定值.
S 15 5
【加固训练】
1.若一个等差数列前3项的和为34,最后3项的和为146,
且所有项的和为390,则这个数列的项数为 ( )
A.13
B.12
C.11
D.10
【解析】选A.因为a1+a2+a3=34,an-2+an-1+an=146,
a1+a2+a3+an-2+an-1+an=34+146=180,
A.5
B.7
C.9
D.11
【解析】选A.a1+a3+a5=3a3=3⇒a3=1,S5=
=5a3=5.
5a1 a5
2
4.(2015·广东高考)在等差数列{an}中,若a3+a4+a5 +a6+a7=25,则a2+a8=____________. 【解析】因为{an}是等差数列, 所以a3+a7=a4+a6=a2+a8=2a5,a3+a4+a5+a6+a7=5a5=25, 解得a5=5,所以a2+a8=2a5=10. 答案:10
A.a2+a13 C.a1+a8+a15
B.a2a13 D.a1a8a15
【解析】选C.等差数列中,S15=15,a8=15(a1+7d),
a2+a13=2a1+13d,a2a13=(a1+d)(a1+12d),a1+a8+a15=
3(a1+7d),a1a8a15=a1(a1+7d)(a1+14d),其中只有
其中__叫做a,b的等差中项. A
2.2等差数列的有关公式
(1)通项公式:an=_________. a1+(n-1)d
(2)前n项和公式:Sn=__n_a_1 __n__n2 __1__d__n __a_12 __a_n__.
3.等差数列的性质
(1)通项公式的推广:an=am+_(_n_-_m_)_d_(n,m∈N*).
(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则
__________. ak+al=am+an
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,… (k,m∈N*)是公差为___的等差数列.
md (4)若Sn为等差数列{an}的前n项和,则数列Sm,S2m-Sm, S3m-S2m,…也是等差数列.
【解析】由题意知,能被6整除的数构成一个等差数
列{an}, 则a1=6,d=6,得an=6+(n-1)6=6n. 由an=6n≤100,即n≤ 则在100以内有16个能1被6 646整16除32 ,的数. 答案:16
感悟考题 试一试
3.(2015·全国卷Ⅱ)设Sn是等差数列{an}的前n项和,
若a1+a3+a5=3,则S5= ( )
相关文档
最新文档