组合数公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合数公式

编辑锁定

组合数公式是指从m个不同元素中,任取n(n≤m)个元素并成一组,叫做从m个不同元素中取出n个元素的一个组合;从m个不同元素中取出n(n≤m)个元素的所有组合的个数,叫做从m个不同元素中取出n个元素的组合数。用符号c(m,n) 表示。

中文名

组合数公式

公式写法

c(m,n)=p(m,n)/n!

递推公式

c(m,n)=c(m-1,n-1)+c(m-1,n)

应用领域

数学等

目录

1. 1 公式

2. 2 性质

3. 3 递推公式

4. 4 算法举例

组合数公式公式

编辑

有时候也表示成:

(在旧版本里,排列数的字母写作P)

组合公式的推导是由排列公式去掉重复的部分而来的,排列公式是建立一个模型,从n 个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择,以此类推第m个位置可以有n-m+1个选择,则排列数为

,而组合公式对应另一个模型,取出m个成为一组(无序),由于m个元素组成的一组可以有m!种不同的排列(全排列

),组合的总数就是

组合数公式性质

编辑

组合数公式递推公式

编辑

c(m,n)=c(m-1,n-1)+c(m-1,n)

等式左边表示从m个元素中选取n个元素,而等式右边表示这一个过程的另一种实现方法:任意选择m中的某个备选元素为特殊元素,从m中选n个元素可以由此特殊元素的被包含与否分成两类情况,即n个被选择元素包含了特殊元素和n个被选择元素不包含该特殊元素。前者相当于从m-1个元素中选出n-1个元素的组合,即c(m-1,n-1);后者相当于从m-1个元素中选出n个元素的组合,即c(m-1,n)。

组合数公式算法举例

编辑

1、设15000件产品中有1000件次品,从中拿出150件,求得到次品数的期望和方差?

2、设某射手对同一目标射击,直到射中R次为止,记X为使用的射击次数,已知命中率为P,求E(X)、D(X)。

这两题都要用到一些技巧。我先列出几个重要公式,证明过程中提供变换技巧,然后把这两个题目作为例题。

先定义一个符号,用S(K=1,N)F(K)表示函数F(K)从K=1到K=N求和。

公式1:

C(M-1,N-1)+C(M-1,N)=C(M,N)

公式1 证明:

方法1、可直接利用组合数的公式证明。

方法2、(更重要的思路)。

从M个元素中任意指定一个元素。则选出N个的方法中,包含这一个元素的有C(M-1,N-1)种组合,不包含这一个元素的有C(M-1,N)种组合。

因此,C(M-1,N-1)+C(M-1,N)=C(M,N)

公式2:

S(K=N,M)C(K-1,N-1)=C(M,N)(M》=N)

证明:C(M,N)是从M个物品中任选N个的方法。

从M个物品中任意指定M-N个,并按次序编号为第1到第M-N号,而其余的还有N 个。

则选出N个的方法可分类为:

包含1号的有C(M-1,N-1)种;

不包含1号,但包含2号的有C(M-2,N-1)种;

。。。。。。

不包含1到M-K号,但包含M-K+1号的有C(K-1,N-1)种

。。。。。。

不包含1到M-N-1号,但包含M-N号的有C(N,N-1)种不包含1到M-N号的有C (N,N)种,而C(N,N)=C(N-1,N-1)

由于两种思路都是从M个物品中任选N个的方法,因此

S(K=N,M)C(K-1,N-1)=C(M,N)

公式3:

S(K=0,N)C(P,K)*C(Q,N-K)=C(P+Q,N)(P,Q)=N)

证明:一批产品包含P件正品和Q件次品,则从这批产品中任选N件的选法为C(P+Q,N)。而公式里面的K表示选法中正品数量,

C(P,K)*C(Q,N-K)表示N件产品中有K件正品,N-K件次品的选法。K从0到N变化时,就包含了所有不同正品、次品数的组合。

因此,S(K=0,N)C(P,K)*C(Q,N-K)=C(P+Q,N)

公式4(一种变换技巧):

S(K=0,N)K*C(M,K)=S(K=0,N-1)M*C(M-1,K)

证明:

S(K=0,N)K*C(M,K)

=S(K=1,N)K*C(M,K)

=S(K=1,N)K*M!/K!/(M-K)!

=S(K=1,N)M*(M-1)!/(K-1)!/(M-K)!

=S(K=1,N)M*C(M-1,K-1)

=S(K=0,N-1)M*C(M-1,K)

公式5(公式4的同种)

S(K=0,N)K*(K-1)*C(M,K)

=S(K=0,N-2)M*(M-1)*C(M-2,K)

证明:(类似上式)

S(K=0,N)K*(K-1)*C(M,K)

=S(K=2,N)K*(K-1)*M!/K!/(M-K)!

=S(K=2,N)M*(M-1)*(M-2)!/(K-2)!/(M-K)!

=S(K=2,N)M*(M-1)*C(M-2,K-2)

=S(K=0,N-2)M*(M-1)*C(M-2,K)

公式4用于求数学期望,公式4、公式5结合起来可用于求方差。

例1、设15000件产品中有1000件次品,从中拿出150件,求得到次品数的期望和方差?

解:(本题利用公式3、4、5)

相关文档
最新文档