数控机床的发展趋势

合集下载

数控机床的发展历史及其技术的发展趋势

数控机床的发展历史及其技术的发展趋势

3、在关键技术的应用方面,伺服驱动技术、数控系统技术和机械结构技术 都在不断发展,其中伺服驱动技术和数控系统技术的数字化、高频化、集成化, 以及机械结构技术的高刚度、高精度、高可靠性都是当前发展的主要方向。
综上所述,数控机床的关键技术和发展趋势对制造业的发展至关重要。未来, 随着科学技术的不断进步和创新,我们有理由相信,数控机床的关键技术和发展 趋势将会有更大的突破和创新。
2、虚拟现实/增强现实技术在数 控机床上的应用
虚拟现实(VR)和增强现实(AR)技术的引入,为数控机床的操作和维护提 供了全新的视角。通过VR技术,可以将加工过程进行模拟仿真,帮助操作人员提 前发现潜在的错误和问题,提高实际加工过程中的安全性。而AR技术则可以将加 工信息实时叠加到实际场景中,使操作人员能够更加直观地了解设备状态和加工 进度,提高生产效率。
高速化指的是数控机床的加工速度不断提高,高精度化则是指数控机床的加 工精度不断提高。复合化是指数控机床具备多种加工功能,能够实现一机多能。 智能化则是指数控机床具备智能化的加工能力和自我诊断修复功能。
三、数控机床关键技术分析
1、伺服驱动技术:伺服驱动技术是数控机床的重要组成部分,其性能直接 影响到数控机床的加工精度和速度。目前,伺服驱动技术正朝着数字化、高频化、 集成化方向发展,其中数字化伺服驱动技术通过提高脉冲频率和采样率,能够大 幅度提高伺服系统的性能。
四、结论
数控机床作为现代制造业的核心设备,其性能和使用寿命直接影响到生产效 率和产品质量。本次演示通过对数控机床的关键技术和发展趋势进行分析,得出 以下结论:
1、数控机床的关键技术包括伺服驱动技术、数控系统技术、机械结构技术 等,这些技术的发展程度直接决定了数控机床的性能和使用寿命。

简述数控机床的发展趋势

简述数控机床的发展趋势

简述数控机床的发展趋势
随着科技的不断发展,数控机床呈现出以下几个发展趋势:
1.高速化。

随着机床控制系统和驱动系统的配套提高,数控机床的加工速度将不断提高,可以满足更高精度和更高效率的生产需求。

2.智能化。

数控机床将向智能化方向发展,实现自动化作业和在线监控。

其系统将集成多种智能技术,如CAD/CAM、人工智能等,提高加工质量和效率。

3.精度提高。

随着制造行业对精度和稳定性的要求越来越高,数控机床将不断提高加工精度,满足高精度零部件的生产需求。

4.节能环保。

数控机床对能源的需求不断增加,环保和节能已经成为制造企业的重要任务。

因此,未来数控机床将偏向发展节能环保的技术和策略。

数控加工技术的发展趋势

数控加工技术的发展趋势

数控加工技术的发展趋势随着科技的不断进步和制造业的发展,数控加工技术在工业制造中的地位日益重要。

数控加工技术以其高效、精准和灵活的特点,在各个领域得到广泛应用。

本文将探讨数控加工技术的发展趋势,并对未来的发展方向进行展望。

1. 精度提升数控加工技术在过去几十年中取得了显著进步,加工精度大幅提高。

然而,随着科技的进步,人们对产品质量要求的提高,数控加工技术的精度也需要不断提升。

未来,通过新材料的研发、新技术的应用以及控制系统的优化,数控加工技术的精度将进一步提高,满足更高层次的加工需求。

2. 复合加工传统的数控加工通常只能完成单一的加工操作,如铣削、车削等。

而复合加工则是在同一台数控机床上进行多种加工操作,如铣削、钻孔、攻丝等。

复合加工的出现将大大提高生产效率,减少设备投资和占地面积。

未来,复合加工技术将得到更广泛的应用,并在自动化生产中发挥重要作用。

3. 智能化随着人工智能技术的发展,数控加工技术也在向智能化方向发展。

智能化的数控加工设备可以通过学习和优化算法实现自主决策、自动调节和在线监测。

未来,智能化的数控加工设备将更加灵活、智能和自适应,能够根据加工任务的需求进行自动化调整,提高生产效率和产品质量。

4. 高速加工随着制造业对产品加工效率的要求越来越高,高速加工技术应运而生。

高速加工技术通过提高切削速度和进给速度,实现对工件的快速、高效加工。

未来,随着材料科学和切削工具技术的不断进步,高速加工技术将成为数控加工的重要发展方向,进一步提升加工效率。

5. 加工复杂曲面在传统的数控加工中,对于复杂曲面的加工通常需要进行多次刀具的更换和人工的干预。

而随着数控机床的发展和刀具技术的进步,加工复杂曲面将变得更加容易。

未来,数控加工技术将可以更加高效、精确地完成对复杂曲面的加工,拓宽了数控加工技术的应用领域。

综上所述,数控加工技术的发展趋势包括精度提升、复合加工、智能化、高速加工和加工复杂曲面。

这些趋势将推动数控加工技术在制造业中的应用不断拓展,提高生产效率和产品质量。

谈谈数控技术的发展趋势

谈谈数控技术的发展趋势

谈谈数控技术的发展趋势1数控技术发展趋势1.1性能发展方向(1)高速高精高效化。

速度、精度和效率是机械制造技术的关键性能指标。

由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。

(2)柔性化。

包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。

(3)工艺复合性和多轴化。

以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。

数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。

数控技术轴,西门子880系统控制轴数可达24轴。

(4)实时智能化。

人工智能则试图用计算模型实现人类的各种智能行为。

人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。

在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。

1.2 功能发展方向(1)用户界面图形化。

用户界面是数控系统与使用者之间的对话接口。

由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。

当前INTERNET、虚拟现实、科学计算可视化及多媒体等技术也对用户界面提出了更高要求。

图形用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。

数控技术现状及发展趋势

数控技术现状及发展趋势

数控技术现状及发展趋势数控技术是指利用数学模型和计算机编程控制机械设备进行加工和制造的技术,它是先进制造技术的重要组成部分。

随着工业自动化和制造业智能化的加速发展,数控技术在现代制造业中的应用越来越广泛,成为了推动中国制造向高端、智能化方向转型升级的重要手段之一。

一、数控技术现状数控技术已广泛应用于航空航天、机械制造、汽车、电子、医疗器械等领域。

目前,中国数控机床行业生产的数控机床制造技术和设备水平已经进入世界先进行列,除了满足国内消费者的需求之外,还在国际市场上有着强大的竞争力。

随着工业自动化和制造业智能化的不断推进,数控技术已经成为现代制造业中不可或缺的一部分。

从国内数控机床产业的发展来看,数控机床制造企业数量、产品种类和数量、市场份额及技术水平都在稳步提高,许多企业已经在产业链上形成了具备核心竞争力的业务模式。

二、数控技术的发展趋势1.数字化、智能化、网络化随着人工智能、物联网、云计算技术的迅速发展,数控机床也在数字化、智能化和网络化方向上快速前行。

数控机床不再是单纯的机械设备,它们开始拥有更多的智能功能,例如自适应、自诊断、自巡检等,以及通过互联网可以实现远程监控、远程诊断、远程维保等。

2.多元化、柔性化随着市场需求的多元化和个性化,数控机床的多元化、柔性化需求也越来越大。

目前制造企业需要更加灵活、高效、定制化的生产设备来满足不断变化的市场需求,这为数控机床的多元化和柔性化提供了更多的发展机会。

3.智能化制造在智能化制造方面,数控机床已经开始与其他智能制造设备进行集成,形成完整的智能制造生产线,例如数字化车间、智能装备等。

它们不仅能够自适应生产,还能够自主维护和管理,使整个生产过程更加高效和协调。

4.绿色制造随着环保意识的不断提高,绿色制造成为了制造业发展的重要趋势。

在数控机床行业中,绿色制造主要体现在节能、降耗和依靠可再生能源上。

未来数控机床制造企业需要更加注重绿色生产,减少对环境的影响,保证可持续发展。

数控车床技术发展现状及趋势

数控车床技术发展现状及趋势

数控车床技术发展现状及趋势一、本文概述数控车床,作为现代制造业的核心设备之一,其技术发展水平直接关系到加工精度、生产效率和产品质量。

随着科技的日新月异,数控车床技术也在持续进步,不断满足复杂多变的制造需求。

本文旨在探讨数控车床技术的当前发展现状,分析其内在的技术特点与优势,并展望未来的发展趋势。

通过深入研究数控车床的控制系统、驱动技术、加工工艺等关键领域,本文期望为相关行业的从业者和技术人员提供有价值的参考信息,推动数控车床技术的进一步创新和应用。

二、数控车床技术发展现状数控车床技术作为现代制造业的核心组成部分,经历了从简单的数控编程到高度集成化和智能化的变革。

目前,数控车床技术的发展现状主要体现在以下几个方面:数控系统智能化:随着人工智能和大数据技术的不断融入,数控车床的控制系统日趋智能化。

现代数控系统能够自动识别材料类型、厚度和硬度,并自动调整切削参数以达到最优的加工效果。

高精度与高效率:随着超精密加工技术和新型切削工具的应用,数控车床的加工精度得到了显著提升。

同时,通过优化数控算法和机床结构,提高了加工效率,减少了非生产时间。

复合加工能力:现代数控车床不仅具备车削、铣削、钻孔等基本功能,还能实现磨削、激光加工等多种加工方式的复合,从而在一台机床上完成复杂零件的多工序加工。

模块化与标准化:数控车床的设计制造越来越倾向于模块化和标准化,这不仅简化了生产流程,降低了制造成本,还有利于机床的维护和升级。

网络安全与远程监控:随着工业0和物联网技术的发展,数控车床的网络安全和远程监控成为新的关注点。

现代数控系统配备了完善的安全防护措施,并通过云平台实现远程故障诊断和监控,大大提高了设备的运行可靠性和维护效率。

绿色环保与节能减排:数控车床在设计和制造过程中越来越注重绿色环保和节能减排。

通过优化机床结构、减少空载时间和使用环保切削液等措施,有效降低了能耗和污染排放。

数控车床技术在高精度、高效率、复合加工、智能化和网络化等方面取得了显著进展,为现代制造业的转型升级提供了有力支撑。

数控技术的现状发展趋势

数控技术的现状发展趋势

数控技术的现状发展趋势
一、数控技术的现状
数控技术是将计算机技术和机械技术有机结合起来的一种技术,被广
泛应用于机床的自动化控制,以提高机床的加工精度和生产效率。

近年来,在精密加工、自动化制造等领域的发展,数控技术发挥了重要作用。

随着数控技术已经取得的重大进步,如今主要使用的数控技术有数控
加工中心、数控车床、数控刨削机、数控火花机等等。

这些设备具有自动
化操作、加工精度高、操作安全性好、节省能源、制造效率高等特点。

数控技术在特种机床、智能机床等方面也得到广泛的应用,在气动控制、电动控制、传动控制等多方面的发展,促进了数控机床的精确操作,
在计算机技术、机器人技术、伺服控制技术等方面也取得了很大的进步,
使得数控加工的技术更加成熟可靠。

二、数控技术的发展趋势
(一)智能化加工方面
数控技术在加工过程中,将会朝着更高级,更自动化,更智能化的方
向发展,精度、准确性更高,技术更成熟。

此外,智能化对加工质量的控制,将会发展成多层次的监控,如:传
感器采集参数,在计算机端进行实时监控,直接控制机床端的机器人,准
确控制加工参数,改变机床加工的运行轨迹。

数控系统发展简史及趋势

数控系统发展简史及趋势

数控系统发展简史及趋势数控系统是指利用计算机和数字化控制技术来实现机床自动化加工的一种控制方式。

自数控系统问世以来,它对传统机床行业的发展产生了深刻影响,也为制造业的发展提供了可靠保障。

本文将从数控系统的起源、发展历程、技术进步和未来趋势等方面进行阐述。

一、数控系统的起源1952年,美国MIT(麻省理工学院)的工程师JohnT.Parsons发明了一种数控机床,这个发明被视为数控技术的开端。

随着计算机技术的发展,数控系统的应用范围和功能不断提升。

20世纪70年代中期,计算机在工业企业中的广泛应用,为数控系统的大规模应用和普及奠定了基础。

二、数控系统的发展历程1、数控技术从单轴到多轴数控技术最初只能控制机床的一条轴线,即只能实现二维切削。

随着技术的不断发展,数控机床可以控制多轴,实现更加复杂的三维切削。

2、数控技术从线性插补到圆弧插补线性插补只能做直线运动,无法实现曲线运动。

圆弧插补技术的引入,实现了机床刀具在曲线轨迹上的运动,使机床切削更加精确。

3、数控技术从手动编程到自动编程最初的数控机床是由计算机控制的,由于计算机的高昂成本,编程需要手工完成。

手工编程容易出错且速度较慢。

自动编程技术的问世,极大地提高了编程效率和准确性。

4、数控技术从毛坯到定位最初的数控机床需要通过感应头或机械手动装夹工件。

现在的数控机床一般都配备有自动定位系统,可直接从机器库中提取工件,省去了人工操作。

5、数控技术从加工到修磨最初的数控技术只能加工,无法进行修磨等后续工序。

现在的数控机床可以实现自动修磨等后续工序,使加工效率和精度得到了进一步提高。

三、数控系统技术进步1、高速化高速化是当前数控技术研究的热点之一。

数控机床高速化可以使加工效率更高,缩短加工时间,提高机床使用寿命。

2、智能化智能化是指数控机床的自动控制功能更完善化,机床能够自主判断工件状态,并调整加工参数,以最大限度地提高加工质量和效率。

3、柔性化柔性化是指数控机床的生产能力更加具有弹性,能满足多品种、小批量的生产需求,提高企业应对市场的能力。

专科作业《数控机床》作业答案

专科作业《数控机床》作业答案

读书破万卷下笔如有神《数控机床》作业答案数控机床作业1第1章一、1. 控制介质、数控系统、伺服系统、机床本体、反馈装置2.数字控制3.并联4.自适应控制二、1.A 2.D 3.A 4.D 5.B三、1. ×2. √3.×4.√5.√四、1. 数控机床的发展趋势(1)高速度与高精度化(2)多功能化(3)智能化(4)高的可靠性2. 数控机床一般由控制介质、数控系统、伺服系统、机床本体、反馈装置和各类辅助装置组成。

1、控制介质:信息载体2、数控系统:控制核心3、伺服系统:电传动联系环节4、反馈装置:反馈环节5、辅助装置:包括ATC、APC、工件夹紧放松机构、液压控制机构等6、机床本体:结构实体3. 数控机床的主要工作过程:(1)根据工件加工图样进行工艺分析,确定加工方案、工艺参数和位移数据。

(2)用规定的程序代码和格式编写零件加工程序单;或用自动编程软件进行CAD/CAM工作,直接生成零件的加工程序文件。

(3)程序的输入或输出。

(4)将输入到数控单元的加工程序进行试运行、刀具路径模拟等。

(5)通过对机床的正确操作,运行程序,完成零件的加工。

数控机床作业2第2章一、1. 进给传动系统 2. 电主轴 3.制动 4.消除间隙 5.卸载 6.焊接7.直接驱动的回转工作台8.位置检测9.顺序选刀10.柔性制造单元FMC二、1.C 2.C 3.C4.A 5.C 6.A 7. B三、1. ×2. √3. √4.√5.×6.√7.×四、1. 数控机床机械结构的主要特点(1) 高的静、动刚度及良好的抗振性能(2)良好的热稳定性(3)高的灵敏度(4)高效化装置、高人性化操作2. 数控机床主传动系统的变速方式、特点及应用场合1. 带有变速齿轮的主传动特点:通过少数几对齿轮降速,扩大输出扭矩,以满足主轴低速时对输出扭矩特性的要求。

应用:大、中型数控机床采用这种变速方式。

2. 通过带传动的主传动特点:电动机本身的调速就能够满足要求,不用齿轮变速,可以避免齿轮传动引起的振动与噪声。

简述数控技术的发展趋势

简述数控技术的发展趋势

简述数控技术的发展趋势《简述数控技术的发展趋势》篇一数控技术,那可真是个神奇的玩意儿。

在我看来,它就像是一个隐藏在制造业背后的超级魔法师,悄悄地改变着这个世界的模样。

先说说过去的数控技术吧。

那时候的数控设备就像是个刚刚学会走路的小孩,虽然能完成一些基本的任务,但总是有点笨笨的。

我曾经在一个小工厂里看到过一台老的数控车床,那操作界面看起来就像老古董一样,全是密密麻麻的按钮和小屏幕,工人师傅操作起来可费劲了,得一边看着说明书,一边小心翼翼地输入指令,就像在跟一个脾气古怪的家伙打交道似的。

但是,现在可不一样啦!数控技术就像搭上了火箭一样,飞速发展。

我觉得,智能化可能是它最大的发展趋势之一。

现在的数控设备就像是有了自己的小脑袋一样,能自己判断加工过程中的各种情况。

比如说,在加工一个复杂的零件时,如果刀具磨损了,它也许就能自己检测出来,然后自动调整加工参数,或者提醒工人该换刀具了。

这就好比一个聪明的小助手,不再需要工人时刻盯着,可省事儿多了。

还有就是高精度化。

数控技术现在追求的精度简直高得吓人。

就像在制造那些超精密的航空航天零件一样,误差可能只能有几微米甚至更小。

这精度就像用一根头发丝去分割一粒沙子,简直是难以想象。

我想,这对于一些高端制造业来说,简直就是如鱼得水啊。

网络化也是个不可忽视的趋势。

你想啊,现在啥都讲究个联网,数控设备当然也不能落后。

把数控设备都连接到网络上,就像是组建了一个超级制造战队。

工厂的管理人员可以在办公室里,像个指挥官一样,通过网络监控所有设备的运行情况。

哪里出了问题,立马就能知道,就像有一双无形的眼睛在盯着一样。

这不仅提高了生产效率,还能方便对设备进行维护和管理。

不过呢,数控技术的发展也不是一帆风顺的。

就拿智能化来说,虽然设备变得更聪明了,但有时候也会出现一些小毛病。

我听说有的智能数控设备会出现误判的情况,就像一个聪明过头的小孩,偶尔也会犯错。

而且,高精度化也面临着成本的挑战。

要达到那么高的精度,设备的制造和维护成本肯定不低,这对于一些小型企业来说,可能就有点吃不消了。

数控产业的背景和发展趋势

数控产业的背景和发展趋势

数控产业的背景和发展趋势数控产业的背景和发展趋势一、引言数控(Computer Numerical Control)是一种通过计算机指令控制工具或设备运行的技术,它在工业制造领域中扮演着重要角色。

数控技术的出现不仅提高了工作效率,同时也提高了产品质量和生产灵活性。

数控产业是现代制造业的重要组成部分,对提升产业竞争力,推动经济发展起着至关重要的作用。

本文将从数控产业的背景和发展趋势两方面进行探讨。

二、背景1. 数控产业的历史数控产业起源于20世纪50年代的美国,当时美国在战争中取得的科技成果促使了数控技术的发展。

随着计算机技术和电子技术的迅猛发展,数控机床的出现引领了制造业的技术革新。

从那时起,世界各国纷纷开始投入研发和推广数控技术。

2. 数控产业的发展和应用数控技术的发展和应用,对制造业提供了更高的生产效率和质量控制能力。

在航空航天、汽车制造、机床制造、模具制造等诸多领域,数控技术发挥了重要的作用。

通过数控技术,制造商可以更加精确地控制加工过程,提高产品的一致性和精度。

三、数控产业的发展趋势1. 智能化随着人工智能技术的快速发展,数控产业正逐渐向智能化方向发展。

智能化数控系统能够自动识别加工工件,进行适应性调整,从而提高生产效率和品质。

同时,智能化数控设备在操作和维护方面也更加便捷,减少了人工操作的复杂性和难度。

2. 自动化自动化是数控产业的另一个重要趋势。

自动化数控设备能够实现工作的自动化,减少了人工干预的需求。

通过传感器和控制系统的整合,自动化数控设备可以根据实时数据进行智能调整,实现高效率和高精度的加工。

3. 网络化随着物联网技术的成熟,数控产业正逐渐实现网络化发展。

通过网络连接,数控设备可以与其他设备进行实时通信和数据交换,实现生产线的协同运作。

同时,通过物联网技术,制造商可以远程监控和管理数控设备,提高维护效率和故障排除速度。

4. 精密化数控产业正朝着更高精度的方向发展。

制造业对产品精度的要求越来越高,尤其是在航空航天、半导体和汽车等领域。

浅析数控机床的发展进程及趋势

浅析数控机床的发展进程及趋势

浅析数控机床的发展进程及趋势前言数控机床是指以数字控制系统为基础,能够实现自动化加工的机床。

数控机床具有自动化程度高、精度高、柔性加工性强等特点,已经成为现代制造业中不可或缺的重要设备。

本文将浅析数控机床的发展进程及趋势。

发展历程第一阶段:数控机床的出现20世纪50年代,随着电子技术和计算机技术的发展,数控机床开始出现。

当时的数控系统采用的是电子抗扰技术,具有一定的抗干扰能力,但适用范围有限。

第二阶段:数控机床的成熟60年代中期到70年代,数控机床开始进入成熟期。

数控系统的控制方式逐渐由单点控制向多轴控制转变,控制精度和加工精度有了较大提高。

同时,数控机床的加工范围也得到了扩展,不仅可以加工传统的平面及曲面零件,还能加工螺旋线、球面等复杂曲面零件。

第三阶段:数控机床的智能化80年代中期至90年代,数控机床进入智能化阶段。

计算机技术和网络技术的不断发展,使得数控系统的性能有了大幅提高。

此时的数控机床已经具备良好的人机界面和编程方式,能够实现更加智能化的加工操作。

发展趋势高速化随着各行业对产品精度的要求不断提高,数控机床的高速化已经成为行业发展的趋势。

同时,高速化也能够提高生产效率,为制造业带来更多的竞争力。

智能化智能化是数控机床的重要发展趋势之一。

智能化的数控机床具有自主调整、自动诊断、自动维护的功能,能够实现更加高效、精确的加工。

网络化随着物联网技术的发展,数控机床也开始向网络化方向发展。

通过与其他设备的联网,数控机床能够实现自动诊断和在线维护,同时也能够实现生产信息的共享和传递。

精密化精密化也是数控机床的重要发展趋势之一。

通过采用更加先进的传感技术和控制策略,数控机床的加工精度和精密度能够得到进一步提升,实现更加精准的加工。

总结数控机床作为现代制造业的重要装备,在其发展过程中经历了从出现、成熟到智能化的阶段。

未来,数控机床将继续向高速化、智能化、网络化和精密化方向发展,为制造业的发展提供更加强劲的支撑。

数控机床的发展趋势

数控机床的发展趋势

数控机床的发展趋势一. 引言数控技术和数控装备是各个国家工业现代化的重要基础。

我国数控技术与世界先进国家相比还有一定的差距,因此了解数控技术国内外的发展状况对我国数控领域的发展有非常重要的意义。

数控技术(简称NC即Numerical Contro1)应用于生产中已有二十多年的历史了,它使传统的制造业发生了质的变化,尤其是近年来.微电子技术和计算机技术的发展给NC技术带来了新的活力。

数控机床是现代制造业的主流设备,是体现现代机床技术水平、现代机械制造业工艺水平的重要标志,是关系国计民生、国防尖端建设的战略物资。

因此世界上各工业发达国家均采取重大措施来发展自己的数控技术及其产业。

二.数控机床的发展趋势1.高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。

a.主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;b. 进给率:在分辨率为0.01µm时,最大进给率达到240m/min且可获得复杂型的精确加工;c. 运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。

由于运算速度的极大提高,使得当分辨率为0.1µm、0.01µm时仍能获得高达24~240m/min的进给速度;d. 换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。

德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。

2. 高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。

a. 提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01µm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;b. 采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。

国内外数控技术的发展现状与趋势

国内外数控技术的发展现状与趋势

国内外数控技术的发展现状与趋势一、本文概述数控技术,即数控加工编程技术,是现代制造业的核心技术之一,它涉及到计算机编程、机械设计、自动控制等多个领域。

随着科技的飞速发展,数控技术在国内外都取得了显著的进步,广泛应用于航空航天、汽车制造、模具加工等各个行业。

本文将对国内外数控技术的发展现状与趋势进行深入探讨,以期了解数控技术的最新发展动态,为相关领域的从业者提供有益的参考。

本文将回顾数控技术的起源与发展历程,从最初的简单数控系统到现在的高度智能化、网络化数控系统,阐述数控技术在国内外的发展历程和主要成就。

接着,本文将重点分析国内外数控技术的现状,包括数控系统、数控机床、数控编程软件等方面的发展情况,以及数控技术在各个行业的应用现状。

同时,本文还将探讨数控技术发展中的关键问题,如精度与效率、智能化与自动化、开放性与标准化等。

在趋势分析方面,本文将关注数控技术的前沿动态,探讨数控技术的未来发展方向。

随着、大数据、云计算等新一代信息技术的快速发展,数控技术将如何实现与这些技术的深度融合,提高加工精度、效率和智能化水平,将是本文关注的重点。

本文还将分析数控技术在绿色制造、智能制造等领域的应用前景,以及国内外数控技术市场竞争格局的变化趋势。

本文旨在全面梳理国内外数控技术的发展现状与趋势,为相关领域的从业者提供有价值的参考信息,推动数控技术的持续创新与发展。

二、数控技术的历史回顾数控技术,即数字控制技术,其发展历程可以追溯到20世纪40年代末。

初期的数控技术主要应用于军事工业,例如美国为了制造飞机叶片而研发的数控铣床。

随着计算机技术的飞速发展和普及,数控技术也逐步实现了电子化、信息化和智能化。

20世纪50年代,数控技术开始进入商业应用领域,主要用于机床加工和自动化生产线。

此时,数控系统多为硬件连线式,编程复杂,灵活性差。

进入60年代,随着计算机软件技术的发展,数控系统开始采用软件编程,大大提高了编程的灵活性和效率。

浅谈数控技术的发展趋势

浅谈数控技术的发展趋势

浅谈数控技术的发展趋势
一、简介
数控技术是一种自动化的机械工艺,它利用计算机软件来控制负责加
工的工作中心,如车床、铣床、攻丝机、切削拉床等。

数控技术能实现自
动加工,从而大大提高了零件的精度和产量。

它被广泛应用于航空航天、
汽车制造、机械制造、石油化工、电力设备制造等行业,从而促进了全球
制造业的发展。

二、数控技术发展的主要方向
1、智能制造和微机控制
随着数字化、智能化、网络化的发展,数控技术已经向数控智能制造
和微机控制方向发展。

微机控制技术使数控加工更智能化、智能化和可视化,开始将计算机技术和机械加工技术结合在一起。

人们不再需要在控制
系统中输入一系列的指令,而是改用直接输入图形,让控制器直接识别并
运行,精确控制加工形状和流程。

2、智能设备和智能系统
为了提高生产效率和节省能源,科学家和工程师正在设计和建造智能
设备和智能系统。

智能设备可以根据工件和加工要求,自动调整加工参数,以获得最佳的加工结果;智能系统则可以自动进行状态监测、参数调整、
报警等控制功能,以保证加工的安全和精确度。

3、智能机器人与自动加工
智能机器人的出现。

数控技术的发展现状与趋势

数控技术的发展现状与趋势

数控技术的发展现状与趋势
一、数控技术发展现状
数控技术是指将计算机系统应用于机械的控制,并与机械匹配使用的
技术。

它具有很高的灵活性和可靠性,具有自动操作,智能化,精确度高,多种加工方式,能够实现大批量生产的特点。

数控技术在过去60多年里取得了巨大的发展,在很多领域都得到广
泛应用,比如汽车制造、航空航天、数字化印刷、数字化印刷、数控机床
制造、模具制造、管理和控制等。

现在,数控技术已经发展成为制造业发
展过程中重要的技术平台。

数控技术在推动工业4.0的发展中发挥着关键作用。

现在,数控设备
正在被全面应用于制造工厂,并改变着传统的专业制造模式,它为快速反
应需求提供了可能性,降低了产品开发时间,提高了与市场的配合程度。

二、数控技术发展趋势
1、可编程逻辑控制(PLC)及其应用的普及
PLC是一种可以灵活操作的控制系统,具有良好的性能,可靠性,安
全性,容易操作和使用,可编程逻辑控制器在控制系统自动化、智能化和
信息化过程中发挥了至关重要的作用,未来将成为控制系统的核心技术。

2、自动化软件的发展
数控技术离不开自动化软件的支持。

数控机床的发展及应用简述

数控机床的发展及应用简述

数控机床的发展及应用简述一、数控机床的定义与发展概况1. 数控机床的概念数控机床是指通过程序控制工件加工过程的机床。

与传统机床相比,数控机床具有自动化程度高、精度高、生产效率高等特点。

其核心是数控系统,通过预先编写工艺程序,实现对工件的精确加工。

2. 数控机床的发展历程数控机床的发展可追溯到20世纪50年代,最早应用于航空航天和国防工业领域。

经过几十年的发展,数控机床技术逐渐成熟,并逐渐应用于汽车制造、船舶制造、模具制造等各个行业。

二、数控机床的应用领域1. 汽车制造在汽车制造领域,数控机床主要应用于汽车车身、发动机零部件、底盘等零部件的加工。

通过数控机床的高精度和高效率加工,可以提高汽车零部件的质量和生产效率。

2. 船舶制造在船舶制造领域,数控机床主要应用于船体结构、船舶零部件和船舶配套设备的加工。

数控机床可以实现对复杂形状的加工,提高船舶的结构强度和航行性能。

3. 模具制造在模具制造领域,数控机床主要应用于高精度、高复杂度的模具制造。

通过数控机床可以实现对各种复杂形状的加工,提高模具的精度和加工效率。

4. 刻字雕刻在刻字雕刻领域,数控机床可以实现对各种材料的刻字和雕刻。

通过数控机床的高精度和高速度加工,可以实现对精细字体和复杂图案的加工。

5. 其他领域除了以上应用领域外,数控机床还广泛应用于航空航天、电子、仪器仪表、医疗器械等领域。

通过数控机床的应用,可以提高产品的质量和生产效率,推动产业的升级。

三、数控机床的发展趋势1. 高速化随着工业自动化的发展,对数控机床加工速度的要求越来越高。

未来数控机床将继续提高加工速度,实现更高的生产效率。

2. 智能化智能化是数控机床发展的重要方向。

未来数控机床将实现自动化调整工艺参数、自动切换加工工具等功能,提高机床的智能化水平。

3. 网络化通过网络连接,数控机床可以实现远程监控和远程操作。

未来数控机床将实现远程故障诊断、远程维护等功能,提高机床的可靠性和可维护性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控机床发展的趋势引言从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了革命性的变化。

数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。

数控机床是一种高度机电一体化的产品,适用于加工多品种小批量零件、结构较复杂、精度要求较高的零件、需要频繁改型的零件、价格昂贵不允许报废的关键零件、要求精密复制的零件、需要缩短生产周期的急需零件以及要求100%检验的零件。

数控机床的特点及其应用范围使其成为国民经济和国防建设发展的重要装备。

进入21世纪,我国经济与国际全面接轨,进入了一个蓬勃发展的新时期。

机床制造业既面临着机械制造业需求水平提升而引发的制造装备发展的良机,也遭遇到加入世界贸易组织后激烈的国际市场竞争的压力,加速推进数控机床的发展是解决机床制造业持续发展的一个关键。

随着制造业对数控机床的大量需求以及计算机技术和现代设计技术的飞速进步,数控机床的应用范围还在不断扩大,并且不断发展以更适应生产加工的需要。

本文简要分析了数控机床高速化、高精度化、复合化、智能化、开放化、网络化、多轴化、绿色化等发展趋势,并提出了我国数控机床发展中存在的一些问题。

2.数控机床的发展趋势2.1 高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。

(1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;(2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工;(3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。

由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min的进给速度;(4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。

德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。

2.2 高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。

(1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC 控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;(2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。

研究结果表明,综合误差补偿技术的应用可将加工误差减少60%~80%;(3)采用网格解码器检查和提高加工中心的运动轨迹精度,并通过仿真预测机床的加工精度,以保证机床的定位精度和重复定位精度,使其性能长期稳定,能够在不同运行条件下完成多种加工任务,并保证零件的加工质量。

2.3 功能复合化复合机床的含义是指在一台机床上实现或尽可能完成从毛坯至成品的多种要素加工。

根据其结构特点可分为工艺复合型和工序复合型两类。

工艺复合型机床如镗铣钻复合——加工中心、车铣复合——车削中心、铣镗钻车复合——复合加工中心等;工序复合型机床如多面多轴联动加工的复合机床和双主轴车削中心等。

采用复合机床进行加工,减少了工件装卸、更换和调整刀具的辅助时间以及中间过程中产生的误差,提高了零件加工精度,缩短了产品制造周期,提高了生产效率和制造商的市场反应能力,相对于传统的工序分散的生产方法具有明显的优势。

加工过程的复合化也导致了机床向模块化、多轴化发展。

德国Index公司最新推出的车削加工中心是模块化结构,该加工中心能够完成车削、铣削、钻削、滚齿、磨削、激光热处理等多种工序,可完成复杂零件的全部加工。

随着现代机械加工要求的不断提高,大量的多轴联动数控机床越来越受到各大企业的欢迎。

在2005年中国国际机床展览会(CIMT2005)上,国内外制造商展出了形式各异的多轴加工机床(包括双主轴、双刀架、9轴控制等)以及可实现4~5轴联动的五轴高速门式加工中心、五轴联动高速铣削中心等。

2.4 控制智能化随着人工智能技术的发展,为了满足制造业生产柔性化、制造自动化的发展需求,数控机床的智能化程度在不断提高。

具体体现在以下几个方面:(1)加工过程自适应控制技术:通过监测加工过程中的切削力、主轴和进给电机的功率、电流、电压等信息,利用传统的或现代的算法进行识别,以辩识出刀具的受力、磨损、破损状态及机床加工的稳定性状态,并根据这些状态实时调整加工参数(主轴转速、进给速度)和加工指令,使设备处于最佳运行状态,以提高加工精度、降低加工表面粗糙度并提高设备运行的安全性;(2)加工参数的智能优化与选择:将工艺专家或技师的经验、零件加工的一般与特殊规律,用现代智能方法,构造基于专家系统或基于模型的“加工参数的智能优化与选择器”,利用它获得优化的加工参数,从而达到提高编程效率和加工工艺水平、缩短生产准备时间的目的;(3)智能故障自诊断与自修复技术:根据已有的故障信息,应用现代智能方法实现故障的快速准确定位;(4)智能故障回放和故障仿真技术:能够完整记录系统的各种信息,对数控机床发生的各种错误和事故进行回放和仿真,用以确定错误引起的原因,找出解决问题的办法,积累生产经验;(5)智能化交流伺服驱动装置:能自动识别负载,并自动调整参数的智能化伺服系统,包括智能主轴交流驱动装置和智能化进给伺服装置。

这种驱动装置能自动识别电机及负载的转动惯量,并自动对控制系统参数进行优化和调整,使驱动系统获得最佳运行;(6)智能4M数控系统:在制造过程中,加工、检测一体化是实现快速制造、快速检测和快速响应的有效途径,将测量(Measurement)、建模(Modelling)、加工(Manufacturing)、机器操作(Manipulator)四者(即4M)融合在一个系统中,实现信息共享,促进测量、建模、加工、装夹、操作的一体化。

2.5 体系开放化(1)向未来技术开放:由于软硬件接口都遵循公认的标准协议,只需少量的重新设计和调整,新一代的通用软硬件资源就可能被现有系统所采纳、吸收和兼容,这就意味着系统的开发费用将大大降低而系统性能与可靠性将不断改善并处于长生命周期;(2)向用户特殊要求开放:更新产品、扩充功能、提供硬软件产品的各种组合以满足特殊应用要求;(3)数控标准的建立:国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),以提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程乃至各个工业领域产品信息的标准化。

标准化的编程语言,既方便用户使用,又降低了和操作效率直接有关的劳动消耗。

2.6 驱动并联化并联运动机床克服了传统机床串联机构移动部件质量大、系统刚度低、刀具只能沿固定导轨进给、作业自由度偏低、设备加工灵活性和机动性不够等固有缺陷,在机床主轴(一般为动平台)与机座(一般为静平台)之间采用多杆并联联接机构驱动,通过控制杆系中杆的长度使杆系支撑的平台获得相应自由度的运动,可实现多坐标联动数控加工、装配和测量多种功能,更能满足复杂特种零件的加工,具有现代机器人的模块化程度高、重量轻和速度快等优点。

并联机床作为一种新型的加工设备,已成为当前机床技术的一个重要研究方向,受到了国际机床行业的高度重视,被认为是“自发明数控技术以来在机床行业中最有意义的进步”和“21世纪新一代数控加工设备”。

2.7 极端化(大型化和微型化)国防、航空、航天事业的发展和能源等基础产业装备的大型化需要大型且性能良好的数控机床的支撑。

而超精密加工技术和微纳米技术是21世纪的战略技术,需发展能适应微小型尺寸和微纳米加工精度的新型制造工艺和装备,所以微型机床包括微切削加工(车、铣、磨)机床、微电加工机床、微激光加工机床和微型压力机等的需求量正在逐渐增大。

2.8 信息交互网络化对于面临激烈竞争的企业来说,使数控机床具有双向、高速的联网通讯功能,以保证信息流在车间各个部门间畅通无阻是非常重要的。

既可以实现网络资源共享,又能实现数控机床的远程监视、控制、培训、教学、管理,还可实现数控装备的数字化服务(数控机床故障的远程诊断、维护等)。

例如,日本Mazak公司推出新一代的加工中心配备了一个称为信息塔(e-T ower)的外部设备,包括计算机、手机、机外和机内摄像头等,能够实现语音、图形、视像和文本的通信故障报警显示、在线帮助排除故障等功能,是独立的、自主管理的制造单元。

2.9 新型功能部件为了提高数控机床各方面的性能,具有高精度和高可靠性的新型功能部件的应用成为必然。

具有代表性的新型功能部件包括:(1)高频电主轴:高频电主轴是高频电动机与主轴部件的集成,具有体积小、转速高、可无级调速等一系列优点,在各种新型数控机床中已经获得广泛的应用;(2)直线电动机:近年来,直线电动机的应用日益广泛,虽然其价格高于传统的伺服系统,但由于负载变化扰动、热变形补偿、隔磁和防护等关键技术的应用,机械传动结构得到简化,机床的动态性能有了提高。

如:西门子公司生产的1FN1系列三相交流永磁式同步直线电动机已开始广泛应用于高速铣床、加工中心、磨床、并联机床以及动态性能和运动精度要求高的机床等;德国EX-CELL-O公司的XHC卧式加工中心三向驱动均采用两个直线电动机;(3)电滚珠丝杆:电滚珠丝杆是伺服电动机与滚珠丝杆的集成,可以大大简化数控机床的结构,具有传动环节少、结构紧凑等一系列优点。

2.10 高可靠性数控机床与传统机床相比,增加了数控系统和相应的监控装置等,应用了大量的电气、液压和机电装置,易于导致出现失效的概率增大;工业电网电压的波动和干扰对数控机床的可靠性极为不利,而数控机床加工的零件型面较为复杂,加工周期长,要求平均无故障时间在2万小时以上。

为了保证数控机床有高的可靠性,就要精心设计系统、严格制造和明确可靠性目标以及通过维修分析故障模式并找出薄弱环节。

国外数控系统平均无故障时间在7~10万小时以上,国产数控系统平均无故障时间仅为10000小时左右,国外整机平均无故障工作时间达800小时以上,而国内最高只有300小时。

2.11 加工过程绿色化随着日趋严格的环境与资源约束,制造加工的绿色化越来越重要,而中国的资源、环境问题尤为突出。

因此,近年来不用或少用冷却液、实现干切削、半干切削节能环保的机床不断出现,并在不断发展当中。

相关文档
最新文档