第五章 CMOS集成电路版图设计

合集下载

《微电子与集成电路设计导论》第五章 集成电路基础

《微电子与集成电路设计导论》第五章 集成电路基础

图5.2.10 与非门电路
图5.2.11-5.2.14 电路图
图5.2.15 与非门输出响应
当A、B取不同组合的 逻辑电平时,与非门 电路的输出响应如图 5.2.15所示。
2. 或非门电路
A=0,B=0
A=0,B=1
A=1,B=0
A=1,B=1
图5.2.16 或非门电路
图5.2.17-5.2.20 A=0,B=0时的电路图
性能指标:除增益和速度外,功耗、电源电压、线性度、噪声和最大 电压摆幅等也是放大器的重要指标。此外,放大器的输入输出阻抗将 决定其应如何与前级和后级电路进行相互配合。在实际中,这些参数 几乎都会相互牵制,一般称为“八边形法则”,茹右下图所示。
➢ 增益:输出量Xout与输入量Xin的比值
➢ 带宽:指放大器的小信号带宽。
特性参数相同,当电压翻转上升时,漏极电流
ID
Kn
W L
Vin
VTN
2
0
I
Imax
即一周期的平均电流
Imean
1 6
Kn
W L
1 VDD
VDD VTN
3
Tclk
综上,短路功耗最终为
Psc VDDImean
CMOS逻辑门电路
1.与非门电路
A=0,B=0
A=0,B=1
A=1,B=0
A=1,B=1
许的临界电平和理想逻辑电平之间的范围为 CMOS电路的直流噪声容限,定义为
VNH VOH VIH
VNL VIL VOL
图5.2.6 极限输出电平定义的噪声容限
(2)极限输出电平定义的噪声容限 根据实际工作确定所允许的最低的输出
高电平VOHmin,它所对应的输入电平定义为 关门电平VOFF;给定允许的最高的输出低电 平VOLmax,它所对应的输入电平定义为开门 电平VON。开门电平和关门电平与CMOS电 路的理想输入逻辑电平之间的范围就是 CMOS电路的噪声容限。如左图所示是反相 器的噪声容限 输入高电平噪声容限:

制造工艺-CMOS集成电路原理图及版图

制造工艺-CMOS集成电路原理图及版图

硅芯片上的电子世界—晶体管
• 三级管:pnp,npn • 硅芯片上的三极管:
2012年春季
P+ …N…+. P+
N阱
P型衬底
28中北大学
三极管的设计
CMOS工艺下可以做双极晶体管。 以N阱工艺为例说明PNP, NPN如何形成。
PNP
注:
薄氧
由于P衬底接最低电位vss/gnd
因此,VPNP集电极也必须接
C
N+
N–-epi
钝化层
SiO2
P+
P-Sub
2012年春季
N+埋层
P P(G- ND)
N+
Sub
EB C
N+ P
N+
P+
N–-epi
60
60中北大学
版图设计
• 电子设计 + 绘图艺术 • 仔细设计,确保质量
2012年春季
61中北大学
MOS管的版图设计
沟道宽
沟道长
当多晶硅穿过有源区时,就形成了一个管子。在图中当 多晶硅穿过N型有源区时,形成NMOS,当多晶硅穿过P型有 源区时,形成PMOS。
MIM 上电级
第n-1层金属
电容区的下方不要走线;
2012年春季
20中北大学
多层金属制作的平板电容和侧壁电容
多层平板电容(MIM) •增加单位面积电容; •精度高,匹配性好;
2012年春季
侧壁电容: •单位面积电容值可比左边的大; •精度较高,匹配性较好;
21中北大学
MOS电容
CGS
累积区
强反型
vss/gnd 。
C
B

CMOS集成电路版图TannerL-Edit设计入门

CMOS集成电路版图TannerL-Edit设计入门

2019/12/3
(三)本课程所用规则的设计-4
铝引线孔距多晶硅最小距离5um Metal1 Contact to Poly spacing =5um
多晶硅对引线孔的最小覆盖2.5um Poly surround Metal Contact = 2.5um
压焊点100*100um*um,压焊点距电路 30um
2019/12/3
L-Edit画版图的详细步骤
1、将屏幕改为256色,打开L-Edit程序,系统自动将 工作文件命名为L ayout1.sdb; 2、选择save as命令,将文件另存为新文件名; 3、 取代设定:选择Replace setup命令,进行设计规 则取代(如果用其他设计规则,可以输入设计规则); 4、编辑组件,进行环境设定:选择setup—design命 令对单位格点等进行设定; 5、选取图层;
2019/12/3
(二)例外情况的忽略(ignore)
采用此来设置一些可以忽略的情况,对于特定的规则设置才有用。
Coincidences 边界一致的可以被忽略. Intersections 物体之间交叉的 、If layer 2 completely encloses layer 1
Surround . Surround
2019/12/3
集成电路版图设计入门
钟福如 邮箱:zfr02s03tom 电子科技大学成都学院
主要内容:
2019/12/3
版图设计概念; 版图设计流程及在IC设计中的位置; Tanner版图流程举例(反相器等)。
版图设计概念
2019/12/3
定义:版图设计是创建工程制图(网表)的精确 的物理描述过程,而这一物理描述遵守有制造 工艺、设计流程以及通过仿真显示为可行的性 能要求所带来的一系列约束。

集成电路原理-MOS集成电路的版图设计

集成电路原理-MOS集成电路的版图设计
整理课件
(9)反刻Al 除去其余的光刻胶,在整个硅片上 蒸发或淀积一层Al(约1m厚), 用反刻Al的掩模版反刻、腐蚀出需 要的Al连接图形。
(10)刻钝化孔 生长一层钝化层(如PSG),对器 件/电路进行平坦化和保护。通过钝 化版刻出钝化孔(压焊孔)。
图5-6 硅栅NMOS工艺流程示意图
整Hale Waihona Puke 课件若要形成耗尽型NMOS器件,只需在第(5)、(6)步之间加 一道掩模版,进行沟道区离子注入。
NMOS工艺流程的实质性概括: P型掺杂的单晶硅片上生长一层厚SiO2。 MK1—刻出有源区或其他扩散区(薄氧化版/扩散版)。 MK2—形成耗尽型器件时,刻出离子注入区。 MK3—刻多晶硅图形(栅、多晶硅连线)。
当L0,有:
r
c
dV dt
2V x2
(5-3)
近似处理,求解得:
(V ou ) t rc( L )2[N (N 21 )] (5-4)
整理课件
若 N L ,则有: L
(Vout)
r
c 2
L2
(5-5)
注意:
此时,若按集总模型处理:即将整个长连线等效为一总的
R总、C总,则;
图5-2 集总模型等效电路
整理课件
(7)刻多晶硅,自对准扩散 用多晶硅版刻出多晶硅图形,再用 有源区版刻掉有源区上的氧化层, 高温下以n型杂质对有源区进行扩散 (1000℃左右)。此时耐高温的多 晶硅和下面的氧化层起掩蔽作用 ——自对准工艺
(8)刻接触孔 在 硅 片 上 再 生 长 一 层 SiO2, 用 接 触 孔版刻出接触孔。
整理课件
(V o) u tR 总 C 总 dW L otx o L x W rcL 2 (5-6)

集成电路课程设计--cmos反相器的电路设计及版图设计

集成电路课程设计--cmos反相器的电路设计及版图设计

目录摘要 (3)绪论 (5)1软件介绍及电路原理 (6)1.1软件介绍 (6)1.2电路原理 (6)2原理图绘制 (8)3电路仿真 (10)3.1瞬态仿真 (10)3.2直流仿真 (11)4版图设计及验证 (12)4.1绘制反相器版图的前期设置 (12)4.2绘制反相器版图 (13)4.3 DRC验证 (15)结束语 (17)参考文献 (18)摘要CMOS技术自身的巨大发展潜力是IC高速持续发展的基础。

集成电路制造水平发展到深亚微米工艺阶段,CMOS的低功耗、高速度和高集成度得到了充分的体现。

本文将简单的介绍基于ORCAD和L-EDIT的CMOS反相器的电路仿真和版图设计,通过CMOS反相器的电路设计及版图设计过程,我们将了解并熟悉集成电路CAD的一种基本方法和操作过程。

关键词:CMOS反相器ORCAD L-EDIT版图设计AbstractThe huge development potential of CMOS technology itself is the foundation of sustainable development of IC high speed. The manufacturing level of development of the integrated circuit to the deep sub micron technology, CMOS low power consumption, high speed and high integration have been fully reflected. In this paper, the circuit simulation and layout design of ORCAD and L-EDIT CMOS inverter based on simple introduction, through the circuit design and layout design process of CMOS inverter, we will understand and a basic method and operation process, familiar with IC CAD.Keywords: CMOS inverter layout ORCAD L-EDIT绪论20世纪是IC迅速发展的时代。

集成电路版图设计基础第五章:匹配

集成电路版图设计基础第五章:匹配

school of phye
basics of ic layout design
19
匹配方法 之三:虚设器件 dummy device
• 当这些电阻被刻蚀的时候,位于中间的器件所处的环境肯定与两边 的不同,位于两边的器件所受的腐蚀会比中间的器件多一些,这一 点点的区别也许会对匹配产生非常不可预知的结果。 • 为了使上述电阻在加工上面也保持一致,最简单的办法就是在两边 分别放臵一个 “虚拟电阻”(“dummy resistor ”),而实际上它 们在电路连线上没有与其它任何器件连接,它们只是提供了一些所 谓的“靠垫”, 以避免在两端过度刻蚀。这就是虚拟器件, 保证所 有器件刻蚀一致。 dummy etch
real resistors
school of phye
basics of ic layout design
20
匹配方法 之三:虚设器件 dummy device
• Ending elements have different boundary conditions than the inner elements => use dummy
• 之十三:掩模设计者不会心灵感应。
mask designer are not phychic.
• 之十四:注意临近的器件。
watch the neighbors.
school of phye
basics of ic layout design
6
简单匹配 - matching single transistor
school of phye
basics of ic layout design
16
匹配方法 之二:交叉法 interdigitating device

CMOS集成电路制造工艺及版图设计

CMOS集成电路制造工艺及版图设计

叠放metal1层:
叠放metal2层:
●侧视图显示叠放顺序 ●绝缘层将两金属层分隔开
每层的图形由顶视图表 示,SiO2是透明玻璃
7.2 互连线电阻和电容
互连线电阻和电容使传播延时增加 互连线电阻会消耗功率 互连线电容会偶合进额外的噪声,影响电 路可靠性
不同金属材料电阻率
连线的寄生电容(与衬底或连线之间)
5、氮化硅SiN4淀积
• 用于表面覆盖,对大多数物质原 子有阻挡作用,防污染。 • 介电常数较大:7 0 • 绝缘,可用于在电气上隔离相邻 场效应管。 • 同SiO2一样,能被化学漂洗掉。
6、化学机械抛光CMP
7、刻蚀
• 先将掩模(mask)图案转移到涂上光刻胶的硅片上。 • mask 或 reticle:玻璃上覆盖铬图案。
电路)
• 5.CSP(Chip Size Package)芯片尺寸封装 (引脚多,面积小,频率高)
引线键合封装(wire-bonding)
Substrate Die Pad Lead Frame
倒装片封装(Flip-chip)
优点:压焊块可在芯片上任何位置, 具有非常好的电气性能。
Die
Solder bumps
• CPU的封装发展史:
• 1.DIP(Dual.In-line Package)双列直插式封装 (适合PCB板,pin少,面积比大) • 2.PQFP(Plastic Quad Flat Package)塑料方型扁平式封装和PFP(Plastic Flat Package)塑料扁平组件式封装 (密集,面积比小,适合高频电路) • 3. PGA(Pin Grid Array Package)插针网格阵列封装 (拔插方便,适合高频 电路) • 4.BGA(Ball Grid Array Package)球栅阵列封装 (引脚多,但是间距大,适合更高频率

北大集成电路版图设计课件_第5章 电容和电感精选全文

北大集成电路版图设计课件_第5章 电容和电感精选全文

一. 电 容
3. 金属-多晶硅电容
如果利用多晶硅作为电容的下极板,金属作为电容的上极板,
就可形成金属-多晶硅电容。如图5.9所示,金属-多晶硅电容
与多晶硅-多晶硅电容相似,只不过上极板是金属而不是多晶
硅。
多晶硅
金属
C1
C2
C1
衬底
场氧化层
图 5.9 金属-多晶硅电容示意图
一. 电 容
4. 金属-金属电容 如果电容的上下极板都用金属来构成,就会形成金属-金属电
一. 电 容
Bad
Good
电容匹配规则
一. 电 容
3. 匹配电容的大小要适当。 电容的随机失配与电容面积的平方根成反比,但并不是
面积远大匹配就越好。总是存在一个最佳电容尺寸,超过 这个尺寸,梯度效应就会非常明显,从而影响匹配。
某些CMOS集成电路工艺中,正方形电容的尺寸应该介 于20μm×20μm至50μm×50μm之间。超过该尺寸的电 容应该被划分成多个单位电容,利用适当的交叉耦合减小 梯度影响,改善电容整体的匹配性。 4. 匹配电容要邻近摆放。
一. 电 容
多晶硅-多晶硅电容通常制作在场区处,由场氧化层把电容 和衬底隔开。由于场氧化层较厚,所以多晶硅-多晶硅电容的 寄生参数小,而且无横向扩散影响。通过精确控制两层多晶 硅的面积以及两层多晶硅之间的氧化层的厚度,可得到精确 的电容值。
由于多晶硅-多晶硅电容制作在场氧化层上,所以电容结构 的下方不能有氧化层台阶,因为台阶会引起电容下极板的表 面不规则,将造成介质层局部减薄和电场集中,从而破坏电 容的完整性。
金属2
(厚)电介质
金属1
一. 电 容
为了减小金属-金属电容所占用的面积,在多层金属互连系统中 可以制备叠层金属电容。多层金属平板垂直地堆叠在一起,从 上至下,每两层金属之间都存在电容。通过将奇数层金属连接 在一起作为一个电极,而将偶数层金属连接在一起作为另一个 电极。从剖面图来看,金属-金属电容是梳状交叉结构。

毕业设计(论文)-cmos运算放大电路的版图设计[管理资料]

毕业设计(论文)-cmos运算放大电路的版图设计[管理资料]

目录摘要 (3)第一章引言 (3)§ (3)§ CMOS 电路的发展和特点 (5)第二章CMOS运算放大器电路图 (8)§Pspice软件介绍 (8)Pspice运行环境 (12)Pspice功能简介 (12)§CMOS运算放大器电路图的制作 (14)§小结 (20)第三章版图设计 (20)§L-EDIT软件介绍 (20)§设计规则 (21)§集成电路版图设计 (24)PMOS版图设计 (24)NMOS版图设计 (27)CMOS运算放大器版图设计 (27)优化设计 (32)第四章仿真 (40)§DRC仿真 (41)§LVS 对照 (42)第五章总结 (48)附录 (50)参考文献 (52)致谢 (53)摘要介绍了CMOS运算放大电路的版图设计。

并对PMOS、NMOS、CMOS运算放大器版图、设计规则做了详细的分析。

通过设计规则检查(DRC)和版图与原理图对照(LVS)表明,此方案已基本达到了集成电路工艺的要求。

关键词:CMOS 放大器 NMOS PMOS 设计规则检查版图与原理图的对照AbstractThe layout desigen of CMOS operation amplifer is presented in this the layouts and design rules of PMOS,NMOS, and CMOS operation amplifer. The results of design rule check(DRC)and layout verification schmatic(LVS) shown that the project have already met to the needs of IC fabricated processing. Keywords: CMOS Amplifer NMOS PMOS DRC LVS第一章引言1.1 集成电路版图设计的发展现状和趋势集成电路的出现与飞速发展彻底改变了人类文明和人们日常生活的面目。

CMOS模拟集成电路版图设计课程大纲

CMOS模拟集成电路版图设计课程大纲

CMOS模拟集成电路版图设计课程大纲第一讲CMOS模拟集成电路版图基础⏹CMOS模拟版图概述⏹CMOS模拟集成电路版图的定义⏹CMOS模拟集成电路版图设计流程❑版图规划❑版图设计实现❑版图验证❑版图完成⏹CMOS模拟集成电路版图设计工具第二讲模拟集成电路版图器件与互连⏹概述⏹器件❑MOS管❑电阻❑电容❑电感❑三极管⏹互连❑金属(第一层金属,第二层金属……)❑通孔第三讲寄生参数⏹概述⏹寄生电容⏹线电阻压降(IR drop)⏹寄生电感⏹连线寄生模型⏹MOS管寄生效应第四讲器件匹配⏹概述⏹指状交叉法线⏹共质心法⏹虚拟器件⏹MOS晶体管匹配⏹电阻匹配⏹电容匹配⏹差分线布线⏹器件匹配总则第五讲设计规则⏹概述⏹工艺库中各类器件的层信息⏹设计规则细则⏹工业标准的基本数据格式第六讲验证⏹设计规则检查(DRC)Design Rule Check⏹版图与电路图的对照(LVS)Layout Versus Schematic⏹电气规则检查(ERC)Electrical Rule Check⏹天线规则检查(ANT)⏹静电放电检查(ESD)第七讲可靠性设计⏹天线效应⏹闩锁效应⏹静电放电保护(Electro-Static Discharge ,ESD)⏹数模混合集成电路版图设计第八讲工艺设计工具包(PDK)⏹ 1.PDK名称的涵义⏹ 2.PDK中包含的内容● 2.1 IO lib2.1.1 GDS文件的导入操作2.1.2 网表导入2.1.3 IO使用文档介绍● 2.2 SMIC_13_PDK_v2.6_20142.2.1 Smic13mmrf_1233文件夹2.2.2 model 文件夹2.2.3 Calibre 文件夹● 2.3 SMIC_13_TF_LG_LIST_2014122.3.1 Standard cell Timing lib2.3.2 Calview.cellmap2.3.3 Standard cell netlist及网表导入操作2.3.4 Ant rule (天线规则)第九讲Cadence spectre概述与操作界面⏹Cadence spectre 概述⏹Cadence spectre的特点⏹Cadence spectre的仿真设计方法⏹Cadence spectre与其他EDA软件的连接⏹Cadence spectre的基本操作第十讲Spectre窗口和库元件⏹模拟设计环境(Analog Design Environment)⏹波形显示窗口(Waveform)⏹波形计算器(Waveform Calculator)⏹Spectre库中的基本器件第十讲Cadence Virtuoso版图设计工具⏹Cadence Virtuoso概述⏹Virtuoso 界面介绍⏹Virtuoso 基本操作第十一讲Mentor Calibre版图验证工具⏹Mentor Calibre版图验证工具概述⏹Mentor Calibre版图验证工具调用⏹Mentor Calibre DRC验证⏹Mentor Calibre LVS验证⏹Mentor Calibre寄生参数提取(PEX)第十二讲版图设计与验证流程实例⏹设计环境准备⏹反相器链电路的建立和前仿真⏹反相器链版图设计⏹反相器链版图验证与参数提取⏹反相器链电路后仿真⏹输入输出单元环设计⏹主体电路版图与输入输出单元环的连接⏹导出GDSII文件。

集成电路版图基础CMOS版图篇

集成电路版图基础CMOS版图篇

“混合棒状图”法:
矩形代表有源区(宽度不限); 实线代表金属; 虚线代表多晶硅; “×”代表引线孔。其它层次不画,
通常靠近电源vdd的是P管,靠近地线gnd 的是N管。
集成电路版图基础CMOS版图篇
反相器棒状图
集成电路版图基础CMOS版图篇
电路图-棒状图-版图
集成电路版图基础CMOS版图篇
(2)MOS管并联(并联是指它们的源和源连 接,漏和漏连接,各自的栅还是独立的。)
栅极水平放置
电路图
版图
集成电路版图基础CMOS版图篇
栅极竖直方向排列 电路图
版图
集成电路版图基础CMOS版图篇
三个或三个以上MOS管并联。 类似大尺寸MOS管的拆分连接
源和漏的并联都用金属连接(叉指型)
集成电路版图基础CMOS版图篇
20/5
集成电路版图基础CMOS版图篇
3、图形绘制
集成电路版图基础CMOS版图篇
英特尔65纳米双核处理器的扫描电镜(SEM)截面图
集成电路版图基础CMOS版图篇
常用图层
版图图层名称 Nwell Active Pselect Nselect Poly cc Metal1 Metal2 Via
含义 N阱 有源扩散区 P型注入掩膜 N型注入掩膜 多晶硅 引线孔 第一层金属 第二层金属 通孔
衬底半导体材料要与电极接触,同样需要 引线孔(CC);
集成电路版图基础CMOS版图篇
P管衬底为N阱 (N型材料),接 电源;衬底连接 版图由NSELETC、 ACTIVE、CC、 METAL1组成
集成电路版图基础CMOS版图篇
N管衬底为基片(P型材料),接地;衬底 连接版图由PSELETC、ACTIVE、CC、 METAL1组成

版图技术——CMOS集成电路的版图设计

版图技术——CMOS集成电路的版图设计
版图设计规则一般都包含以下四种规则: (1) 最小宽度 例如,金属、多晶、有源区或阱都必须保持最小宽度。
(2)最小间距 例如,金属、多晶、有源区或阱都必须保持最小间距。 (3)最小包围 例如,N阱、N+离子注入和P+离子注入包围有源区应该有足够的余量;多晶硅、 有源区和金属对接触孔四周要保持一定的覆盖。
⑤ 完整的MOS管版版图必须包含两个部分:a)由源、栅和漏组成的器件;b) 衬底连接。
(a)PMOS管
(b)NMOS管 完整的MOS管版图图形
5.1.2 MOS管阵列的版图实现
1.MOS管串联
(1) 两个MOS管的串联。 N1的源、漏区为X和Y,N0的源、漏区为Y和Z。Y是它们的公共区域,如 果把公共区域合并,得到图5.7(d)所示的两个MOS管串联连接的版图。 从电流的方向可以决定,当MOS管串联时,它们的电极按S-D-S-D-S-D方 式连接。
① MOS管的四种布局图
② 直线形排列的NMOS管
结构图 立体结构和俯视图
③ 源区、沟道区和漏区合称为MOS管的有源区(Active),而有源区之外的区域 定义为场区(Fox)。有源区和场区之和就是整个芯片表面。 Fox + Active = Surface
芯片表面包含有源区和场区两部分
④ N阱CMOS集成电路使用P型衬底,NMOS管直接制作在P型衬底上,PMOS 管做在N阱内。
第5章 CMOS集成电路的版图 设计
主要内容 5.1 MOS 场效应管的版图实现 5.2 版图设计规则 5.3 版图系统的设置 5.4 版图的建立 5.5 版图的编辑 5.6 棍棒图 5.7 版图设计方法概述
5.1 MOS 场效应管的版图实现
5.1.1 单个MOS管的版图实现

cmos集成电路版图课程设计

cmos集成电路版图课程设计

cmos集成电路版图课程设计一、课程目标知识目标:1. 让学生掌握CMOS集成电路版图的基本概念,包括版图设计原理、构成要素及其相互关系。

2. 使学生了解CMOS工艺流程,理解不同工艺对版图设计的影响。

3. 帮助学生掌握版图设计中的关键参数,如线宽、间距、面积等,并能运用这些参数进行版图优化。

技能目标:1. 培养学生运用EDA工具进行CMOS集成电路版图设计的能力。

2. 培养学生分析和解决版图设计过程中遇到的问题,提高版图设计的实际操作能力。

3. 培养学生具备团队协作和沟通能力,能够在项目中与他人共同完成版图设计任务。

情感态度价值观目标:1. 培养学生对CMOS集成电路版图设计的兴趣,激发学习热情。

2. 培养学生严谨、细致的学习态度,养成精益求精的工作习惯。

3. 使学生认识到版图设计在集成电路领域的重要性,增强学生的责任感和使命感。

本课程针对高年级电子科学与技术专业学生,结合课程性质、学生特点和教学要求,将课程目标分解为具体的学习成果。

通过本课程的学习,学生将能够掌握CMOS集成电路版图设计的基本知识和技能,为今后的专业发展和就业奠定坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. CMOS集成电路版图基本原理:介绍版图设计的基本概念、构成要素及其相互关系,包括晶体管、连线、电源地网络等。

2. CMOS工艺流程:讲解CMOS工艺的基本流程,分析不同工艺对版图设计的影响,如光刻、刻蚀、离子注入等。

3. 版图设计方法:教授版图设计的基本方法,包括版图布局、布线、封装等,以及版图优化技巧。

4. EDA工具应用:介绍版图设计自动化工具,如Cadence、Mentor Graphics等,指导学生运用这些工具进行版图设计。

5. 版图设计实例分析:分析实际项目中CMOS集成电路版图设计案例,使学生了解版图设计在实际应用中的关键问题。

教学内容安排如下:第1周:版图基本原理及构成要素第2周:CMOS工艺流程及其对版图设计的影响第3-4周:版图设计方法及技巧第5-6周:EDA工具应用及版图设计实践第7周:版图设计实例分析及讨论教材章节对应内容如下:第1章:CMOS集成电路版图基本原理第2章:CMOS工艺流程第3章:版图设计方法第4章:EDA工具应用第5章:版图设计实例分析三、教学方法为确保教学效果,充分激发学生的学习兴趣和主动性,本课程将采用以下多样化的教学方法:1. 讲授法:通过系统讲解CMOS集成电路版图的基本原理、工艺流程和设计方法,为学生奠定扎实的理论基础。

第五章CMOS集成电路版图设计.

第五章CMOS集成电路版图设计.

VDD MP Vo MN
(2) 根据负载CL情况和速度 要求(tr和tf) 确定等效的 PMOS管和NMOS管的最小 W/L 。
2018/10/18 韩 良 6
o增大 Vi
0
V*
VDD
5.1.1 MOS管宽长比(W/L)的确定 2. CMOS逻辑门电路(续)
(3) 根据上述结果最终确定等效的 PMOS管和NMOS管的最小W/L。 (4) 根据电路结构和等 效的W/L确定每个管 的W/L 。 无比电路VOL与o无关 nor2
2018/10/18 韩 良 7
VDD MP Vi
VDD
Vo MN
A B F
5.1.1 MOS管宽长比(W/L)的确定 3. 传输门电路 (1)MOS的W/L直接影响传输门的导通电阻,
因而影响传输速度。因此,根据传输速
度的要求(考虑负载情况和前级驱动情
况)来确定MOS管的W/L.
(2) 对于CMOS传输门,一般应当考虑NMOS 管和PMOS管特性的对称性。
OUT OUT D A B C
A
D
B
C
OUT
OUT
GND
2018/10/18 韩 良 20
GND
5.2.3 优化设计 3. 宽沟器件的优化设计 (1)宽沟器件可以由 多个器件合成,方便 布局布线,减小栅极 电阻。 (2)宽沟器件源漏区 开孔要充分,提高沟 道特性的一致性(尤 其是模拟电路)。
2018/10/18 韩 良 21
MOS管的源漏区具 有可互换性。
2018/10/18 韩 良 11
§5-2 版图的布局布线
2018/10/18
韩 良
12
思考题
1. 布局布线的策略是什么? 2. 复用单元设计有什么好处?

第五章 MOS集成电路的版图设计-2.

第五章 MOS集成电路的版图设计-2.

Vin (Polysilicon)
vdd N WELL
Pimp
Nimp
Nimp
Vout Pimp
CMOS 的反相器的橫截面圖與佈局(layout)圖
p管薄氧化区与n管薄氧化区的间距p阱cmos工艺版图设计规则图形设计规则及内容规则m原因阱区阱区阱的最小宽度9保证光刻精度和器件尺寸阱间的最小距离20防止不同电位阱间干扰有源区有源区最小宽度6保证器件尺寸减小窄沟效应最小间距6减小寄生效应阱内n有源区与阱最小间距9保证光刻精度和场区尺寸阱内p有源区与阱最小间距6保证形成良好的阱接触阱外n有源区与阱最小间距6保证阱和衬底间pn结的特性阱外p有源区与阱最小间距9抑制latchup多晶硅多晶硅最小线宽3保证器件特性和多晶硅电导保证器件特性和多晶硅电导最小间距3防止多晶硅联条硅栅在有源区外的最小露头4保证形成完整的mosfet硅栅与有源区最小内间距4保证电流在硅栅内的均匀流动保证电流在硅栅内的均匀流动多晶硅与有源区最小外间距2保证沟道区尺寸防短路注入注入对有源区最小覆盖3保证源漏区能完整地注入对外部有源区最小间距6防止p区n区互相影响注入区最小宽度6保证足够的接触区注入区最小间距3防止互相影响引线孔引线孔引线孔最小面积33保证孔的形成和良好接触孔间最小间距3保证良好接触孔距硅栅的最小间距3防止源漏与栅短路有源区多晶硅对孔的最小覆盖多晶硅对孔的最小覆盖2防止漏电和短路多晶硅接触孔与有源区的最小间距多晶硅接触孔与有源区的最小间距3防止漏电和短路金属金属金属引线的最小线宽3保证金属线的形成和良好导电保证金属线的形成和良好导电宽引线最小间距线宽10m线宽线宽10m36防止金属联条对引线孔的最小覆盖2保证接触和防止断路压焊点面积1102可靠接触压焊点间距90可靠接触钝化钝化金属对钝化孔的最小覆盖6可靠接触版图数据交换格式?通用格式

CMOS模拟集成电路设计_ch18版图

CMOS模拟集成电路设计_ch18版图

N+ poly P+ poly N+ diff P+ diff N-well
30 30 70 100 1000
50 50 500 500 20000
50 50 -500 -500 30000
V V V V 1 2 1 2 R R 1 T ( T 25 ) V ( V V ) B ( V ) O C C 1 2 C B I 2
2019/2/14
19
衬底耦合
• 减小衬底耦合效应的措施
地反射 由于电路的瞬间大电流,造成相对于“外部地”的衬底电压反射
因此,衬底与芯片内部的“地”连接到一起连接到外部,并且模 拟与数字分开
2019/2/14
20
衬底耦合
• 减小衬底耦合效应的措施
地反射(续) 衬底应与那个“地”相连?
2019/2/14
• 2.2 对称性
2019/2/14
5
模拟电路的版图技术
• 2.2 对称性(续)
2019/2/14
6
模拟电路的版图技术
• 2.2 对称性(续)
2019/2/14
7
模拟电路的版图技术
• 2.3 参考源的分布
2019/2/14
8
模拟电路的版图技术
• 2.3 参考源的分布(续)
减小失配
2019/2/14
与瞬态电流以及LA、LD的大小决定。
21
衬底耦合
• 减小衬底耦合效应的措施
地反射(续) 由于地反射,单端输入的参考电位会受到 严重影响。可采用差动的工作方式。
2019/2/14
22
小结
小结
• 版图技术:

chapter 5 CMOS版图设计基础

chapter 5 CMOS版图设计基础

5.1 版图设计入门
版图设计的目标
满足电路功能、性能指标、质量要求 尽可能节省面积,以提高集成度,降低成 本 尽可能缩短连线,以减少复杂度,缩短延 时、改善可靠性
5.1 版图设计入门
版图编辑
EDA工具的作用 工具的作用
规定各个工艺层上图形的形状、尺寸、位置(Layout Editor)
规则检验
版图与电路图一致性检验(LVS,Layout Versus Schematic) 设计规则检验(DRC,Design Rule Checker) 电气规则检验(ERC,Electrical Rule Checker)
2010-12-25
23
实验所采用的设计规则
表 : 接 触 孔 规 则 规则 5.1 5.2a 5.2b 5.3 6.1 6.2 6.3 6.4 描述 Poly Contact Exact Size FieldPoly Overlap of PolyCnt Not-Exists: PolyCnt_not_on_Poly PolyContact to PolyContact Spacing Active Contact Exact Size FieldActive Overlap of ActCnt ActCnt to ActCnt Spacing Active Contact to Gate Spacing 规则类型 Exact width Surround Not exist Spacing Exact width Surround Spacing Spacing 2 2 1.5 2 2 lambda 2 1.5 5
截面图
有源区图形 有源区最小宽度 相邻有源区边与边 之间的最小间距
5.3 基本工艺层版图
掺杂硅区:n+ 掺杂硅区
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/12/6 韩 良 17
5.2.2 布线 2. 布线示例
2018/12/6
韩 良
18
5.2.3 优化设计 1. 源漏区面积优化
相邻同型MOS 管源漏区相连接时 采用有源区直接连 接可以减小源漏区 面积,减小寄生电 容和漏电,也减小 了芯片面积。
2018/12/6 韩 良 19
1
2
5.2.3 优化设计 2. 器件排序优化 通过排序优化可以提高速度,减小漏电。
2018/12/6 韩 良 5
VDD ML Vi MI Vo
VDD
V DD F
B C
MD ME Vo
Vi
5.1.1 MOS管宽长比(W/L)的确定 2. CMOS逻辑门电路 (1) 根据抗干扰能力(噪声容限、 输入转折电压V*)确定0范围。 V* =
VDD+ VTP +VTN o 1 + o VDD VO Vi
(1)根据已确定的W/L 和L的值来确定W的值。
(2)对于长沟器件,应根据工艺水平先考虑确 定沟道宽度W,然后再根据已确定W/L的值 来确定L的值。 L W
2018/12/6
韩 良
10
5.1.4 MOS管源漏区尺寸的确定
一般是根据MOS管的沟道宽度W和相 关的设计规则来确定源漏区最小尺寸。源 漏区尺寸越小,寄生电容以及漏电就越小。 对于W/L较大的器件一般采用叉指状 图形。
MOS管的源漏区具 有可互换性。
2018/12/6 韩 良 11
§5-2 版图的布局布线
2018/12/6
韩 良
12
思考题
1. 布局布线的策略是什么? 2. 复用单元设计有什么好处?
2018/12/6
韩 良
13
5.2.1 布局 1.布局的基本原则 芯片的布局设计是要解决电路图或逻辑 图中的每个元件、功能单元在版图中的位置 摆布、压焊点分布、电源线和地线以及主要 信号线的走向等。 首先确定电路中主要单元(元件)的位 置,再以主要单元为中心安置次主要单元和 次要单元。 相关单元(包括压点)要尽量靠近,以 主要单元为主调整单元(器件)的形状和位 置,方便布线,缩短布线。
OUT OUT D A B C
A
D
B
C
OUT
OUT
GND
2018/12/6 韩 良 20
GND
5.2.3 优化设计 3. 宽沟器件的优化设计 (1)宽沟器件可以由 多个器件合成,方便 布局布线,减小栅极 电阻。 (2)宽沟器件源漏区 开孔要充分,提高沟 道特性的一致性(尤 其是模拟电路)。
2018/12/6 韩 良 21
5.2.3 优化设计 4. 复用单元的设计 将常用结构的 组合图形(包括电 路单元)按设计规 则要求设计为可复 用的单元,供设计 过程中调用, 减少设计错 误,并便于 修改。
第五章 MOS电路版图设计
2018/12/6
韩 良
1
§5-1 MOS管图形尺寸的设计
2018/12/6
韩 良
2
思考题
1. MOS管沟道的宽长比(W/L)如何确定?
2. MOS管沟道的宽度(W)和长度(L)如何确 定? 3. MOS管源漏区尺寸如何确定?
2018/12/6
韩 良
3
5.1.1 MOS管宽长比(W/L)的确定 VDD 1. NMOS逻辑门电路 (1)NMOS逻辑门电路是有比电路, ML 根据VOL的要求,确定最小R 。 Vi Vo 2 MI (VDD VTL ) VOL E/E 饱和负载 2R(VOHVTI) 2 VTD (W/L) K I I V DD V其中: OL = = E/D 2RR (VOH L VTE)(W/L)L K MD (2) 根据负载CL情况和速度要求(tr Vo 和tf) 确定负载管和等效输入管的 ME Vi 最小W/L 。
2018/12/6 韩 良 4
5.1.1 MOS管宽长比(W/L)的确定 1. NMOS逻辑门电路(续) (3) 根据静态功耗的要求 来确定负载管最大的W/L 。
(4) 根据上述结果最终 确定负载管和等效输 入管的W/L 。 (5) 根据输入结构和 等效输入管的W/L确 A 定每个输入管的W/L 。
2018/12/6 韩 良 7
VDD MP Vi
VDD
Vo MN
A B F
5.1.1 MOS管宽长比(W/L)的确定 3. 传输门电路 (1)MOS的W/L直接影响传输门的导通电阻,
因而影响传输速度。因此,根据传输速
度的要求(考虑负载情况和前级驱动情
况)来确定MOS管的W/L.
(2) 对于CMOS传输门,一般应当考虑NMOS 管和PMOS管特性的对称性。
2018/12/6 韩 良 14
5.2.1 布局 2.布局示例1 电子表芯片
液晶显示译
分频电路 振荡器
报 时 驱 动
调节控制电路
2018/12/6
韩 良
15
5.2.1 布局 2.布局示例2 存储器模块
读写 控制
输入输出
地址 译码
SRAM存储矩阵
2018/12/6
韩 良
16
5.2.2 布线 1. 布线基本原则
最常用的布线层有金属、多晶硅和扩 散区,其寄生电阻和寄生电容有所不同。 电源线、地线选择金属层布线,线宽要 考虑电流容量(一般1mA/m)。 长信号线一般选择金属层布线,应尽量 避免长距离平行走线。 多晶硅布线和扩散区布线不能交叉而 且要短。必须用多晶硅走长线时,应同时 用金属线在一定长度内进行短接。
2018/12/6
韩 良
8
5.1.2 MOS管沟道长度(L)的确定 (1)要考虑MOS管的耐压能力, 一般MOS管的击穿电压由源 漏穿通电压决定: W L
BVDSP=qNBL /2osi
(2)要考虑工艺水平。 (3)要考虑沟道长度调制效应对特性的影响。
2018/12/6 韩 良 9
2
5.1.3 MOS管沟道宽度(W)的确定
VDD MP Vo MN
(2) 根据负载CL情况和速度 要求(tr和tf) 确定等效的 PMOS管和NMOS管的最小 W/L 。
2018/12/6 韩 良 6
o增大 Vi
0
V*
VDD
5.1.1 MOS管宽长比(W/L)的确定 2. CMOS逻辑门电路(续)
(3) 根据上述结果最终确定等效的 PMOS管和NMOS管的最小W/L。 (4) 根据电路结构和等 效的W/L确定每个管 的W/L 。 无比电路VOL与o无关 nor2
相关文档
最新文档