(完整版)抛物线的几个常见结论及其用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 3

抛物线的几个常见结论及其应用

抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。 结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),

且11(,)A x y ,22(,)B x y ,则:2

124

p x x =,212y y p =-。

例:已知直线AB 是过抛物线22(0)y px p =>焦点F , 求证:

11AF BF

+为定值。

结论二:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,

22sin P

AB α

=

(α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线

对称轴的弦)最短。

例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。AB 倾斜角为3

π

。 结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。

(2)过抛物线焦点弦的两端点向准线作垂线, 以两垂足为直径端点的圆与焦点弦相切。

例:已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。

(2)分别过A 、B 做准线的垂线,

垂足为M 、N ,求证:以MN

与直线AB 相切。

2 /

3 2401793515.doc

结论四:若抛物线方程为22(0)y px p =>,过(2p ,0)的直线与之交于A 、B 两点,则OA ⊥OB 。反之也成立。

结论五:对于抛物线22(0)x py p =>,其参数方程为2

22x pt y pt =⎧⎨

=⎩,

设抛物线22x py =上动

点P 坐标为2

(22)pt pt ,

,O 为抛物线的顶点,显然2

22OP pt k t pt

==,即t 的几何意义为过抛物线顶点O 的动弦OP 的斜率.

例 直线2y x =与抛物线22(0)y px p =>相交于原点和A 点,B 为抛物线上一点,OB 和OA 垂直,且线段AB

长为,求P 的值.

解析:设点A B ,分别为22(22)(22)A A B B pt pt pt pt ,

,,, 则11

2

A OA t k =

=,1

2B OA OB

t k k =

=-=-. A B ,的坐标分别为

2p p ⎛ ⎝,

2p =. 1.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P Q ,两点, 若线段PF 与FQ 的长分别是p q ,,则11p

q

+= 故114a p

q

+=】

2.设抛物线22(0)y px p =>的焦点为F ,经过点F 的直线交抛物线 于A B ,两点.点C 在抛物线的准线上,且BC x ∥轴. 证明直线AC 经过原点O .

【证明:抛物线焦点为02

p F ⎛⎫ ⎪⎝⎭

.设直线AB 的方程为2

p

x my =+, 代入抛物线方程,得2220y pmy p --=.若设1122()()A x y B x y ,,,, 则212y y p =-.

BC x ∵∥轴,且点C 在准线1

2CO p

k y =

; 又由2112y px =,得11

1

2AO y p k x y ==, 故CO AO k k =,即直线AC 经过原点O .】

3/3

3.已知抛物线的焦点是(11)

F,,准线方程是20

x y

++=,求抛物线的方程以及顶点坐标和对称轴方程.

【解:设()

P x y

,是抛物线上的任意一点,由抛物线的定义

得=.

整理,得222880

x y xy x y

+---=,此即为所求抛物线的方程.

抛物线的对称轴应是过焦点(11)

F,且与准线20

x y

++=垂直的直线,因此有对称轴方程y x=.

设对称轴与准线的交点为M,可求得(11)

M--,,于是线段MF的中点就是抛物线的顶点,坐标是(00),】

1.抛物线的顶点坐标是(10)

A,,准线l的方程是220

x y

--=,试求该抛物线的焦点坐标和方程.

解:依题意,抛物线的对称轴方程为220

x y

+-=.

设对称轴和准线的交点是M,可以求得62

55

M

⎛⎫

-

⎝⎭

,.设焦点为F,则FM的中

点是A,故得焦点坐标为42

55

F

⎛⎫

⎝⎭

,.再设()

P x y

,是抛物线上的任一点,根据

22

444120

x y xy x y

++--=,即为所求抛物线的方程.

例2已知A B

,为抛物线24

x y

=上两点,且OA OB

⊥,

求线段AB中点的轨迹方程.

相关文档
最新文档