苏州新区一中必修第一册第一单元《集合与常用逻辑用语》测试卷(含答案解析)
最新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试卷(含答案解析)
![最新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试卷(含答案解析)](https://img.taocdn.com/s3/m/9d033355a0116c175e0e48b4.png)
一、选择题1.若a 、b 是两个单位向量,其夹角是θ,则“32ππθ<<”是“1a b ->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分又不必有3.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a 的取值范围是( ) A .a < 0或a ≥3B .a ≤0或a ≥3C .a < 0或a >3D .0<a <35.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥6.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<<D .2a <-或1a >7.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞9.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.已知ξ服从正态分布()21,N σ,a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式321()ax x +的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件D .充要条件12.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}二、填空题13.已知条件:21p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.14.已知集合{}3A x x =≤,{}2B x x =<,则RA B =__________.15.方程2210ax x 至少有一个正实数根的充要条件是________;16.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则M N =__________.17.设集合{1,2,3,4}I =,选择I 的两个非空子集A 和B ,使得A 中最大的数不大于B 中最小的数,则可组成不同的子集对(,)A B __________个. 18.已知命题p :∀x ∈R,2x >0,则p ⌝为__________.19.某学校举办运动会时,高一(1)班共有26名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,则同时参加球类比赛和田径比赛的学生有__人.参考答案20.对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i >,则称p i 与q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.若各数互不相等的正数数组()1234567,,,,,,a a a a a a a 的“逆序数”是4,则()7654321,,,,,,a a a a a a a 的“逆序数”是______.三、解答题21.解关于x 的不等式ax 2-2(a +1)x +4>0.22.设命题0:p x R ∃∈,2020x -=;命题:q 函数22sin y x =在,62ππ⎛⎫-⎪⎝⎭上先增后减. (1)判断p ,q 的真假,并说明理由; (2)判断p q ∨,p q ∧,()p q ∧⌝的真假.23.已知命题p :实数x 满足()225400x ax a a -+<>;命题q :实数x 满足2560x x -+<.(1)当1a =时,若P 和q 都为真,求x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 24.若集合A={x|x 2+5x ﹣6=0},B={x|x 2+2(m+1)x+m 2﹣3=0}. (1)若m=0,写出A ∪B 的子集; (2)若A∩B=B ,求实数m 的取值范围.25.已知命题p :2320x x -+≤,命题q :()222100x x m m -+-≤>(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若4m =,p q ∨为真命题,p q ∧为假命题,求实数x 的取值范围. 26.已知非空集合(){}2230A x x a a x a =-++<,集合211xB xx ⎧⎫=<⎨⎬-⎩⎭,命题:p x A ∈.命题:q x B ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)当实数a 为何值时,p 是q 的充要条件.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】求出1a b ->时θ的范围,然后由充分必要条件的定义判断. 【详解】由题意222()222cos a b a b a a b b -=-=-⋅+=-1>,则1cos 2θ<,∴,3πθπ⎛⎤∈ ⎥⎝⎦, 因此32ππθ<<时,满足,3πθπ⎛⎤∈⎥⎝⎦,但,3πθπ⎛⎤∈ ⎥⎝⎦时不一定满足32ππθ<<.应为充分不必要条件. 故选:A . 【点睛】本题考查充分必要条件的判断,实际上可以根据充分必要条件与集合包含之间的关系判断.命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.2.B解析:B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:3x y +≠时,则1x ≠或2y ≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若1x =且2y =,则有3x y +=,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选:B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.3.A解析:A 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A.4.A解析:A 【分析】根据题意得出命题“x R ∃∈,2230ax ax -+≤”是真命题,然后对a 分情况讨论,根据题意得出关于a 的不等式,即可得出实数a 的取值范围. 【详解】命题“2230ax ax -+>恒成立”是假命题,即命题“x R ∃∈,2230ax ax -+≤”是真命题. 当0a =时,2230ax ax -+≤不成立; 当0a <时,合乎题意;当0a >时,则24120a a ∆=-≥,解得3a ≥. 综上所述,实数a 的取值范围是0a <或3a ≥. 故选:A. 【点睛】本题考查由全称命题的真假求参数,考查计算能力,属于中等题.5.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x <->或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.6.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.7.B解析:B【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.8.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.9.B解析:B 【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件.10.B解析:B 【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.11.A解析:A 【解析】试题分析:由,知1a =.因为二项式321()ax x +展开式的通项公式为31321()()r r rr T C ax x-+==3333r r r a C x --,令330r -=,得1r =,所以其常数项为212333a C a ==,解得1a =±,所以“”是“关于x 的二项式321()ax x +的展开式的常数项为3”的充分不必要条件,故选A .考点:1、正态分布;2、二项式定理;3、充分条件与必要条件.12.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.二、填空题13.【分析】根据得出由是的充分不必要条件得出根据包含关系得出的范围【详解】由题设得或设或由得设因为是的充分不必要条件所以因此故答案为:【点睛】本题主要考查了由充分不必要条件求参数范围属于中档题解析:(],2-∞-【分析】根据p ⌝,q ⌝得出,p q ,由q 是p 的充分不必要条件,得出Q P ,根据包含关系得出a 的范围. 【详解】由题设:21p x ⌝-<<,得:1p x ≥或2x -≤,设{|1P x x =≥或}2x ≤- 由:q x a ⌝>,得:q xa ,设{}|Q x x a =≤因为q 是p 的充分不必要条件,所以Q P ,因此2a ≤-. 故答案为:(],2-∞- 【点睛】本题主要考查了由充分不必要条件求参数范围,属于中档题.14.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.15.【分析】讨论和三种情况计算得到答案【详解】当时方程为满足条件当时方程恒有两个解且两根一正一负满足条件当时即此时两根均为正数满足条件综上所述:故答案为:【点睛】本题考查了充要条件分类讨论是一个常用的方 解析:[)1,a ∈-+∞【分析】讨论0a =,0a >和0a <三种情况,计算得到答案. 【详解】当0a =时,方程为1210,2x x -==满足条件. 当0a >时,2210,440axx a 方程恒有两个解,且1210x x a=-<,两根一正一负,满足条件 当0a <时,2210,4401axx a a ,即01a ,此时,1210x x a=->, 1220x x a+=->,两根均为正数,满足条件 综上所述:1a ≥- 故答案为:[)1,a ∈-+∞ 【点睛】本题考查了充要条件,分类讨论是一个常用的方法,需要同学们熟练掌握.16.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运 解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解. 【详解】由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭,所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.17.49【解析】分析:根据题意进行列举即可得出结果详解:①若则可以表示为共种若则可以表示为共种若则可以表示为共种若则可以表示为共种计种②若则可以表示为共种若则可以表示为共种则可以表示为共种则有种则有种则解析:49 【解析】分析:根据题意进行列举,即可得出结果详解:①若{}1A =,则B 可以表示为{}1,{}12,,{}13,,{}14,,{}123,,,{}124,,,{}134,,,{}1234,,,,{}2,{}23,,{}24,,{}234,,, {}3,{}34,,{}4,共15种 若{}2A =,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种 若{}3A =,则B 可以表示为{}3,{}34,,{}4,共3种 若{}4A =,则B 可以表示为{}4,共1种计1573126+++=种②若{}12A =,,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种若{}13A =,,则B 可以表示为{}3,{}34,,{}4,共3种 {}14A =,,则B 可以表示为{}4,共1种{}23A =,,则B 有3种 {}24A =,,则B 有1种{}34A =,,则B 有1种计73131116+++++=种③{}123A =,,,则B 有3种 {}124A =,,,则B 有1种 {}134A =,,,则B 有1种 {}234A =,,,则B 有1种计31116+++=种④若{}1234A =,,,,则B 有1种 综上所述,共有26166149+++=种 故答案为49种点睛:本题主要考查的知识点是排列组合的实际应用,本题解题的关键是理解题意,能够看懂A 中最大的数不大于B 中最小的数的意义,本题是一个难题也是一个易错题,需要认真解答18.【详解】根据全称命题的否定的概念可知p 为解析:00R,20xx ∃∈≤【详解】根据全称命题的否定的概念,可知⌝p 为00R,20x x ∃∈≤.19.5【解析】【分析】根据15人参加游泳比赛有8人参加田径比赛同时参加游泳和田径的有3人同时参加游泳和球类比赛的有3人可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数【详解解析:5 【解析】 【分析】根据15人参加游泳比赛,有8人参加田径比赛,同时参加游泳和田径的有3人,同时参加游泳和球类比赛的有3人,可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数. 【详解】解:有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,这三项累加时,比全班人数多算了三部分,即同时参加游泳比赛和田径比赛的、同时参加游泳比赛和球类比赛的和同时参加田径比赛和球类比赛的重复算了两次所以15+8+14﹣3﹣3﹣26=5,就是同时参加田径比赛和球类比赛的人数, 所以同时参加田径比赛和球类比赛的有5人. 故答案为5. 【点睛】本题主要考查集合之间的元素关系,注意每两种比赛的公共部分,属于中档题.20.17【分析】用减去4即得【详解】由题意知正数数组的逆序数与的逆序数和为所以的逆序数为故答案为:17【点睛】本题考查新定义问题考查排列组合的应用解题关键是理解认识到数组与中逆序数的和为解析:17【分析】用27C 减去4即得.【详解】由题意知正数数组()1234567,,,,,,a a a a a a a 的“逆序数”与()7654321,,,,,,a a a a a a a 的“逆序数”和为27C ,所以()7654321,,,,,,a a a a a a a 的“逆序数”为27417C -=. 故答案为:17.【点睛】本题考查新定义问题,考查排列组合的应用.解题关键是理解认识到数组()12,,,n i i i ⋅⋅⋅与()11,,,n n i i i -⋅⋅⋅中逆序数的和为2n C .三、解答题21.答案见解析.【分析】二次项含参,先对a 分0,0,0a a a =><三类讨论,当0a =时,直接代入化简得到解集;当0a >时,不等式可化为(ax -2)(x -2)>0,其对方程两个根为2,2a,需比较两根大小,再分01a <<,1a =,1a >三类求出解集;当0a <时,原不等式可化为(-ax +2)(x -2)<0,直接判断两根大小,得到解集,最后综合,求得答案.【详解】解:(1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a ,x 2=2. ①当0<a <1时,2a >2,所以原不等式的解集为2{|x x a >或2}x <; ②当a =1时,2a =2,所以原不等式的解集为{x |x ≠2}; ③当a >1时,2a <2,所以原不等式的解集为2{|x x a<或2}x >. (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2, 则2a <2,所以原不等式的解集为2{|2}x x a<<.综上,a <0时,原不等式的解集为2{|2}x x a <<; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为2{|x x a >或2}x <; 当a >1时,原不等式的解集为2{|x x a<或2}x >. 【点睛】 本题考查了含参一元二次不等式的解法,对二次项系数分类讨论,在需要时对两根大小分类讨论,属于中档题.22.(1)p 为真,q 为假,理由见解析;(2)p q ∨为真,p q ∧为假,()p q ∧⌝为真.【分析】(1)由22x =有解知命题p 为真命题,22sin 1cos 2y x x ==-,在(,)62ππ-上先减后增.即命题q 为假命题;(2)由p 为真q 为假,结合复合命题的真假可得.【详解】(1)易知0x R ∃=,故p 为真.∵22sin 1cos2y x x ==-,且23x ππ⎛⎫∈-⎪⎝⎭,, ∴1cos2y x =-在,62ππ⎛⎫-⎪⎝⎭上先减后增,故q 为假. (2)∵p 真q 假,∴p q ∨为真,p q ∧为假,()p q ∧⌝为真.【点睛】本题考查了三角函数的单调性及复合命题的真假,属中档题.23.(1)()2,3:(2)324a ≤≤. 【分析】(1)先化简命题,p q ,再求集合的交集得解; (2)先求出p ⌝和q ⌝,再解不等式组243a a ≤⎧⎨≥⎩,即得解. 【详解】(1)命题p :实数x 满足()225400x ax a a -+<>, 所以4a x a <<,设{}4A x a x a =<<,命题q :实数x 满足2560x x -+<,解得23x <<,设{}23B x x =<<,1a =时,若p q ∧为真,则{}23A B x x ⋂=<<. 故x 的取值范围为()2,3;(2)(][):,4,p a a ⌝-∞⋃+∞,(][):,23,q ⌝-∞⋃+∞,若p ⌝是q ⌝的充分不必要条件,可得243a a ≤⎧⎨≥⎩,解得324a ≤≤, 故实数a 的取值范围为324a ≤≤. 【点睛】方法点睛:利用集合法分析判断充分必要条件,首先分清条件和结论;然后化简每一个命题,建立命题p q 、和集合A B 、的对应关系.:{|()p A x p x =成立},:{|()q B x q x =成立};最后利用下面的结论判断:(1)若A B ⊆,则p 是q 的充分条件,若A B ⊂,则p 是q 的充分非必要条件;(2)若B A ⊆,则p 是q 的必要条件,若B A ⊂,则p 是q 的必要非充分条件;(3)若A B ⊆且B A ⊆,即A B =时,则p 是q 的充要条件.24.(1)A ∪B 的子集:Φ,{﹣6},{﹣3},{1},{﹣6,﹣3},{﹣6,1},{﹣3,1},{﹣6,﹣3,1}(2)m 的取值范围是(﹣∞,﹣2].【分析】(1)由x 2+5x ﹣6=0得6,1x x =-=或,所以{1-6}A =,,当0m =时,化简{}1,3B =-,求出A ∪B {}6,3,1=--,写出子集即可(2)由A B B ⋂=知B A ⊆,对判别式进行分类讨论即可.【详解】(1)根据题意,m=0时,B={1,﹣3},A ∪B={﹣6,﹣3,1};∴A ∪B 的子集:Φ,{﹣6},{﹣3},{1},{﹣6,﹣3},{﹣6,1},{﹣3,1},{﹣6,﹣3,1},(2)由已知B ⊆A , •①m <﹣2时,B=Φ,成立‚②m=﹣2时,B={1}⊆A ,成立ƒ③m >﹣2时,若B ⊆A ,则B={﹣6,1};∴⇒m 无解,综上所述:m 的取值范围是(﹣∞,﹣2].【点睛】本题主要考查了集合的并集运算,子集的概念,分类讨论的思想,属于中档题. 25.(1)1m ≥;(2)[)(]3,12,5-⋃.【分析】(1)先解不等式,再根据充分条件得集合之间包含关系,最后解不等式得结果;(2)根据p q ∨为真命题,p q ∧为假命题,得,p q 一真一假,再分别求对应x 的取值范围.【详解】(1)p :232012x x x -+≤∴≤≤,q :()22210011x x m m m x m -+-≤>∴-≤≤+因为p 是q 的充分条件,所以11112m p q m m -≤⎧⊆∴∴≥⎨+≥⎩; (2)4m =时,q :35x -≤≤因为p q ∨为真命题,p q ∧为假命题,所以,p q 一真一假,1253x x x ≤≤⎧∴⎨><-⎩或或3521x x x -≤≤⎧⎨><⎩或 x ∴∈∅或31x -≤<或25x <≤实数x 的取值范围为[)(]3,12,5-⋃【点睛】本题考查根据充分条件求参数、根据复合命题真假求参数,考查基本分析求解能力,属中档题.26.(1)1001-⋃(,)(,);(2)1a =-. 【分析】(1)解出集合B ,由题意得出A B ,可得出关于实数a 的不等式组,即可求得实数a 的取值范围;(2)由题意可知A B =,进而可得出1-和1是方程()2230x a a x a -++=的两根,利用韦达定理可求得实数a 的值.【详解】(1)解不等式211x x <-,即101x x +<-,解得11x -<<,则{}11B x x =-<<. 由于p 是q 的充分不必要条件,则A B ,()(){}20A x x a x a=--<, ①当2a a =时,即当0a =或1a =时,A =∅,不合题意;②当2a a <时,即当0a <或1a >时,{}2A x a x a =<<, A B ,则211a a ≥-⎧⎨≤⎩,解得10a -≤<, 又当1a =-,{}11A x x B =-<<=,不合乎题意.所以10a -<<;③当2a a <时,即当01a <<时,A B ,则211a a ⎧≥-⎨≤⎩,此时01a <<.综上所述,实数a 的取值范围是1001-⋃(,)(,); (2)由于p 是q 的充要条件,则()1,1A B ==-, 所以,1-和1是方程()2230x a a x a -++=的两根, 由韦达定理得2301a a a ⎧+=⎨=-⎩,解得1a =-. 【点睛】本题考查利用充分不必要条件、充要条件求参数,考查运算求解能力,属于中等题.。
高一数学集合与常用逻辑用语试题答案及解析
![高一数学集合与常用逻辑用语试题答案及解析](https://img.taocdn.com/s3/m/a61a34d2b8f3f90f76c66137ee06eff9aef84970.png)
高一数学集合与常用逻辑用语试题答案及解析1.集合的元素个数是().A.59B.31C.30D.29【答案】C【解析】由2n-1<60,得n<,又∵n∈N*,∴满足不等式n<的正整数一共有30个.即集合M中一共有30个元素,可列为1,3,5,7,9,…,59,组成一个以a1=1,a30=59,n=30的等差数列.集合M中一共有30个元素。
【考点】集合问题2.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5}B.{1,2,3,4,5,6}C.{1,3,5}D.{3,5,6}【答案】A【解析】所求是两个集合的公共元素组成的集合,所以.【考点】集合的运算3.(本题满分12分)计算:(1)集合集合求和(2)【答案】(1);(2)【解析】(1)由集合的运算性质可得;(2)利用对数与指数的运算性质,以及公式化简可得试题解析:(1)(2)【考点】1.集合的运算性质;2.对数与指数的运算性质4.(本题满分12分)已知全集,,,(1)求;(2)若,求实数的取值范围.【答案】(1),(2)【解析】(1)首先求解集合A中函数的定义域得到集合A,A,B两集合的交集是由两集合的相同元素构成的集合,A,B并集是由两集合的所有元素构成的集合;(2)由已知得两集合的子集关系,从而得到两集合边界值的大小关系,解不等式求解的取值范围.试题解析:(1)(2)∵∴∴得∴实数的取值范围为【考点】1.集合的交并集运算;2.集合的子集关系5.含有三个实数的集合既可表示成,又可表示成,.【答案】-1【解析】由两集合相等可得【考点】集合相等与集合元素特征6.满足的集合A的个数是_______个.【答案】7【解析】符合条件的集合A可以为,,,,,,,共7个.【考点】集合间的关系.7.设全集集合则.【答案】【解析】集合M表示的是直线除去点(2,3)的所有点;集合P表示的是不在直线上的所有点,显然表示的是平面内除去点(2,3)的所有点,故.【考点】集合运算.8.(本小题满分14分)已知集合,.(1)求:,;(2)已知,若,求实数的取值集合【答案】(1);(2).【解析】(1)画数轴先求,再求.(2)画数轴分析可得关于关于的不等式,从而可求得的范围.试题解析:解:(1)(2)【考点】集合的运算.9.在①;②;③;④上述四个关系中,错误的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】,所以①错;,所以②错;③④正确.【考点】1.元素与集合的关系;2.集合与集合的关系.10.已知集合,,则A.或B.C.D.【答案】B【解析】由交集的定义可知,,故选B.【考点】集合的运算及表示.【易错点睛】本题主要考查集合的运算与集合的表示方法,属容易题.集合A中的代表元素用的字母为,集合B中的代表元素用的字母为,学生会误认为是两个不同类型的集合,选D,即对两个集合均为数集的含义不清楚导致错误.11.设全集是实数集.,.(1)当时,求和;(2)若,求实数的取值范围.【答案】(1);(2)【解析】(1)由题意,求出集合,然后将代入就交集和并集即可;(2)若分和求出的取值范围,周求并集即可试题解析:(1)根据题意,由于,当时,,而,所以,,(2),若,则,若,则,,综上,【考点】集合的运算,子集12.(10分)已知,。
高中数学必修一第一章集合与常用逻辑用语专项训练题(带答案)
![高中数学必修一第一章集合与常用逻辑用语专项训练题(带答案)](https://img.taocdn.com/s3/m/35611bbb0875f46527d3240c844769eae109a31d.png)
高中数学必修一第一章集合与常用逻辑用语专项训练题单选题1、设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4答案:B分析:由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 求解二次不等式x 2−4≤0可得:A ={x|−2≤x ≤2},求解一次不等式2x +a ≤0可得:B ={x|x ≤−a 2}. 由于A ∩B ={x|−2≤x ≤1},故:−a 2=1,解得:a =−2. 故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.2、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2] 答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C3、设全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2}, B ={−3,0,2,3},则A ∩(∁U B )=( )A .{−3,3}B .{0,2}C .{−1,1}D .{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B={−2,−1,1},则A∩(∁U B)={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.4、下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为()A.3B.2C.1D.0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x2=2时,只能得到x为±√2,由此可判断;对于③,方程x2+1=0无实数解;对于④,作差可判断.解:x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.5、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.6、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A7、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.8、已知集合满足{1,2}⊆A⊆{1,2,3},则集合A可以是()A.{3}B.{1,3}C.{2,3}D.{1,2}答案:D分析:由题可得集合A可以是{1,2},{1,2,3}.∵{1,2}⊆A⊆{1,2,3},∴集合A可以是{1,2},{1,2,3}.故选:D.多选题9、下列存在量词命题中真命题是()A.∃x∈R,x≤0B.至少有一个整数,它既不是合数,也不是素数C.∃x∈{x|x是无理数},x2是无理数D.∃x0∈Z,1<5x0<3答案:ABC分析:结合例子,逐项判断即可得解.对于A,∃x=0∈R,使得x≤0,故A为真命题.对于B,整数1既不是合数,也不是素数,故B为真命题;对于C,若x=π,则x∈{x|x是无理数},x2是无理数,故C为真命题.对于D,∵1<5x0<3,∴15<x0<35,∴∃x0∈Z,1<5x0<3为假命题.故选:ABC.10、对任意实数a、b、c,给出下列命题,其中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件答案:CD分析:利用特殊值法以及充分条件、必要条件的定义可判断A、B选项的正误;利用必要条件的定义可判断C 选项的正误;利用充要条件的定义可判断D选项的正误.对于A,因为“a=b”时ac=bc成立,ac=bc且c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错;对于B,a=−1,b=−2,a>b时,a2<b2;a=−2,b=1,a2>b2时,a<b.所以“a>b”是“a2>b2”的既不充分也不必要条件,故B错;对于C,因为“a<3”时一定有“a<5”成立,所以“a<3”是“a<5”的必要条件,C正确;对于D“a+5是无理数”是“a是无理数”的充要条件,D正确.故选:CD.小提示:本题考查充分条件、必要条件的判断,考查了充分条件和必要条件定义的应用,考查推理能力,属于基础题.11、非空集合A具有下列性质:①若x,y∈A,则xy∈A;②若x,y∈A,则x+y∈A.下列选项正确的是()A.−1∉A B.20202021∉AC.若x,y∈A,则xy∈A D.若x,y∈A,则x−y∉A答案:AC分析:若−1∈A,利用条件可得当x=−1∈A,y=0∈A时,不满足xy∈A,可判断A,利用条件可得若x≠0且x∈A,进而得2020∈A,2021∈A,可判断B,利用题设可得若x,y∈A,则xy∈A,x−y=1∈A可判断CD.对于A,若−1∈A,则−1−1=1∈A,此时−1+1=0∈A,而当x=−1∈A,y=0∈A时,−1显然无意义,不满足xy∈A,所以−1∉A,故A正确;对于B,若x≠0且x∈A,则1=xx∈A,所以2=1+1∈A,3=2+1∈A,以此类推,得对任意的n∈N∗,有n∈A,所以2020∈A,2021∈A,所以20202021∈A,故B错误;对于C,若x,y∈A,则x≠0且y≠0,又1∈A,所以1y ∈A,所以xy=x1y=∈A,故C正确;对于D,取x=2,y=1,则x−y=1∈A,故D错误.故选:AC.填空题12、设集合A={1,2,a},B={2,3}.若B⊆A,则a=_______.答案:3分析:由题意可知集合B是集合A的子集,进而求出答案.由B⊆A知集合B是集合A的子集,所以3∈A⇒a=3,所以答案是:3.13、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k= 0,1,2,3,4;给出下列四个结论:①2015∈[0];②−3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.答案:3分析:根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明④的真假.①由2015÷5=403,所以2015∈[0],故①正确;②由−3=5×(−1)+2,所以−3∉[3],故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故③正确;④假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,④正确;所以答案是:3小提示:本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.14、设P为非空实数集满足:对任意给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P,则称P为幸运集.①集合P={−2,−1,0,1,2}为幸运集;②集合P={x|x=2n,n∈Z}为幸运集;③若集合P1、P2为幸运集,则P1∪P2为幸运集;④若集合P为幸运集,则一定有0∈P;其中正确结论的序号是________答案:②④解析:①取x=y=2判断;②设x=2k1∈P,y=2k2∈P判断;③举例P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}判断;④由x、y可以相同判断;①当x=y=2,x+y=4∉P,所以集合P不是幸运集,故错误;②设x=2k1∈P,y=2k2∈P,则x+y=2(k1+k2)∈A,x−y=2(k1−k2)∈A,xy=2k1⋅k2∈A,所以集合P是幸运集,故正确;③如集合P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}为幸运集,但P1∪P2不为幸运集,如x=2,y=3时,x+y=5∉P1∪P2,故错误;④因为集合P为幸运集,则x−y∈P,当x=y时,x−y=0,一定有0∈P,故正确;所以答案是:②④小提示:关键点点睛:读懂新定义的含义,结合“给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P”,灵活运用举例法.解答题15、已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3+√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.答案:(1)x1∈A,x2∈A(2)x1x2∈A,理由见解析分析:(1)将x1,x2化简,并判断是否可以化为m+√6n,m,n∈Q的形式即可判断关系.(2)由题设,令x1=m1+√6n1,x2=m2+√6n2,进而判断是否有x1x2=m+√6n,m,n∈Q的形式即可判断.(1)x1=−√6=0+√6×(−1)∈A,即m=0,n=−1符合;x2=√(√3−1)22+√(√3+1)22=√6=0+√6×1∈A,即m=0,n=1符合.(2)x1x2∈A.理由如下:由x1,x2∈A知:存在m1,m2,n1,n2∈Q,使得x1=m1+√6n1,x2=m2+√6n2,∴x1x2=(m1+√6n1)(m2+√6n2)=(m1m2+6n1n2)+√6(m1n2+m2n1),其中m1m2+6n1n2,m1n2+ m2n1∈Q,∴x1x2∈A.。
第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)
![第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)](https://img.taocdn.com/s3/m/076240be760bf78a6529647d27284b73f24236da.png)
《第一章集合与常用逻辑用语》单元测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},A={1,3,4},B={1,3,5},则(∁U A)∪B=()A.{5}B.{1,3}C.{1,2,3,5,6}D.⌀2.命题“∀x∈Q,3x2+2x+1∈Q”的否定为()A.∀x∉Q,3x2+2x+1∉QB.∀x∈Q,3x2+2x+1∉QC.∃x∉Q,3x2+2x+1∉QD.∃x∈Q,3x2+2x+1∉Q3.已知集合A={0,1,2},B={1,m}.若B⊆A,则m=()A.0B.0或1C.0或2D.1或24.设全集U=R,M={x|x<-3或x>3},N={x|2≤x≤4},如图,阴影部分所表示的集合为()A.{x|-3≤x<2}B.{x|-3≤x≤4}C.{x|x≤2或x>3}D.{x|-3≤x≤3}5. “|x|≠|y|”是“x≠y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合A={x|2a<x<a+2},B={x|x<-3或x>5},若A∩B=⌀,则实数a的取值范围为()A.{a|a≥-32} B.{a|a>-32}C.{a|a≤-32} D.{a|a<-32}7.若p:x2+x-6=0是q:ax-1=0(a≠0)的必要不充分条件,则实数a的值为()A.-12B.-12或13C.-13D.12或-138.已知集合A中有10个元素,B中有6个元素,全集U有18个元素,A∩B≠⌀.设集合(∁U A)∩(∁U B)中有x个元素,则x的取值范围是()A.{x|3≤x≤8,且x∈N}B.{x|2≤x≤8,且x∈N}C.{x|8≤x≤12,且x∈N}D.{x|10≤x≤15,且x∈N}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的值可以是()A.1B.0C.3D.-310.图中阴影部分表示的集合是()A.N∩(∁U M)B.M∩(∁U N)C.[∁U(M∩N)]∩ND.(∁U M)∩(∁U N)11.设全集为U,下列选项中,是“B⊆A”的充要条件的是()A.A∪B=AB.A∩B=AC.(∁U A)⊆(∁U B)D.A∪(∁U B)=U12.整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2 022∈[2]B.-2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a-b∈[0],则整数a,b属于同一“类”三、填空题:本题共4小题,每小题5分,共20分.13.设集合M={2,3,a2+1},N={a2+a,a+2,-1},且M∩N={2},则实数a的值为.14.写出一个使得命题“∀x∈R,ax2-2x+3>0恒成立”是假命题的实数a的值:.15.若p:m-1≤x≤2m+1,q:2≤x≤3,q是p的充分不必要条件,则实数m的取值范围是.16.已知有限集合A={a1,a2,a3,…,a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N*}中的元素的个数为集合A的“容量”,记为L(A).若集合A={x∈N*|1≤x≤3},则L(A)=;若集合A={x∈N*|1≤x≤n},且L(A)=4 041,则正整数n的值是.(本题第一空2分,第二空3分.)四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.≤x≤2}.17.(10分)已知集合A={x|2-b≤ax≤2b-2}(a>0),B={x|-12(1)当a=1,b=3时,求A∪B和∁R B.(2)是否存在实数a,b,使得A=B?若存在,求出a,b的值;若不存在,请说明理由.18.(10分)在①A∪B=B,②“x∈A”是“x∈B”的充分条件,③“x∈∁R A”是“x∈∁R B”的必要条件这三个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|-1<x<3}.(1)当a=2时,求A∩B;(2)若,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、单项选择题1.C2.D3.C4.A5.A6.A7.D8.A二、多项选择题9.AC 10.AC 11.ACD 12.ACD三、填空题13.-2或014.-1(答案不唯一)15.{m|1≤m≤3}16.3 2 022四、解答题17. 解:(1)当a =1,b =3时,A ={x |-1≤x ≤4}.又B ={x |-12≤x ≤2},所以 A ∪B ={x |-1≤x ≤4},(2分) ∁R B ={x |x <-12或x >2}.(4分)(2)假设存在实数a ,b 满足条件.因为a >0,所以由2-b ≤ax ≤2b -2,得2−b a ≤x ≤2b−2a .(6分) 由A =B ,得{2−b a =−12,2b−2a =2, 解得{a =2,b =3.(9分) 故存在a =2,b =3,使得A =B.(10分)18. 解:(1)当a =2时,A ={x |2≤x ≤4}, 所以A ∩B ={x |2≤x <3}.(4分)(2)方案一 选条件①.因为A ∪B =B ,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案二 选条件②.因为“x ∈A ”是“x ∈B ”的充分条件, 所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案三 选条件③.因为“x ∈∁R A ”是“x ∈∁R B ”的必要条件,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分)。
苏州新区一中必修一第一单元《集合》测试卷(含答案解析)
![苏州新区一中必修一第一单元《集合》测试卷(含答案解析)](https://img.taocdn.com/s3/m/6266b561e53a580217fcfe59.png)
一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃2.由实数x ,﹣x ,|x |,2x ,33x -组成的集合中,元素最多有( ) A .2个 B .3个C .4个D .5个3.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .4.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或25.在整数集Z 中,被5所除得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|}k n k n Z =+∈,0,1,2,3,4k =;给出四个结论:(1)2015[0]∈;(2)3[3]-∈;(3)[0][1][2][3][4]Z =⋃⋃⋃⋃;(4)“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个6.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集7.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9B .16C .18D .278.下列各式中,正确的是( )A .{}22x x ⊆≤B .{32x x ∈>且}1x <C .{}{}41,21,x x k k Z x x k k Z =±∈≠=+∈D .{}{}31,32,x x k k Z x x k k Z =+∈==-∈9.定义一个集合A 的所有子集组成的集合叫做A 的幂集,记为()P a ,用()n A 表示有限集A 的元素个数,给出下列命题:(1)对于任意集合A ,都有()A P A ∈;(2)存在集合A ,使得()3nP A =;(3)若AB =Φ,则()()P A P B ⋂=Φ;(4)若A B ⊆,则()()P A P B ⊆;(5)若()()1n A n B -=,则[][]()2()n P A n P B =.其中正确命题的序号为( )A .(1)(2)(5)B .(1)(3)(5)C .(1)(4)(5)D .(2)(3)(4)10.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥11.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( )A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦ C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭12.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<二、填空题13.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为________.14.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2230,B x x x x R =--≥∈,则A B =_________. 15.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 16.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 17.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________. 18.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)19.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________. 20.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.三、解答题21.设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B .(1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由;(3)若A B ⋂≠∅,求实数a 的取值范围.22.设集合{}240A x x =-=,(){}222150B x x a x a =+++-=.(1)若{}2AB =-,求实数a 的值;(2)若A B A ⋃=,求实数a 的取值范围.23.已知集合|1|{|28}x A x -=<,2{|log (51)2}B x x =->,求AB .24.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.25.已知集合{|123}A x a x a =+≤≤+,{}2|7100B x x x =-+-≥. (1)已知3a =,求集合()R A B ;(2)若B A ⊆,求实数a 的范围. 26.关于x 的不等式111a x +>+的解集为P ,不等式11x -≤的解集为Q ,Q P =∅∩,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.A解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.3.C解析:C 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.4.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.5.C解析:C 【分析】根据新定义,对每个选项逐一判断,即可得到答案. 【详解】对于(1),因为20155403÷=,余数为0,所以2015[0]∈,故(1)正确; 对于(2),因为()3512-=⨯-+,所以33[]-∉,故(2)错误; 对于(3),因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故(3)正确;对于(4),因为整数,a b 属于同一“类”,所以整数,a b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”.故(4)正确.综上所述,正确的个数为:3个. 故选C .本题考查了集合的新定义,解题关键是理解被5所除得余数为k 的所有整数组成一个“类”,考查了分析能力和计算能力.6.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集. 对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.7.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=; 若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=,【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.8.D解析:D 【分析】根据元素与集合的关系,集合与集合的关系即可求解. 【详解】因为2与集合{}2x x ≤的关系是属于或者不属于,故A 选项错误; 因为{2x x >且}1x <是空集,3不是集合中的元素,故B 选项错误;因为集合{}{}41,,21,x x k k Z x x k k Z =±∈=+∈都表示奇数构成的集合,相等,故C 选项错误;因为集合{}{}31,,32,x x k k Z x x k k Z =+∈=-∈都表示被3整数余1的整数构成的集合,故D 选项正确. 【点睛】本题主要考查了集合的描述法,元素与集合的关系,集合与集合的关系,属于中档题.9.C解析:C 【分析】直接利用新定义判断五个命题的真假即可. 【详解】由P (A )的定义可知①正确,④正确, 设n (A )=n ,则n (P (A ))=2n ,∴②错误, 若A ∩B =∅,则P (A )∩P (B )={∅},③不正确; n (A )﹣n (B )=1,即A 中元素比B 中元素多1个, 则n [P (A )]=2×n [P (B )].⑤正确, 故选:C . 【点睛】本题考查集合的子集关系,集合的基本运算,新定义的理解与应用.10.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意; ②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.11.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.12.A解析:A 【解析】 【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.二、填空题13.【分析】由分和两种情况分别讨论进而建立不等关系可求出答案【详解】当即时此时满足;当即时此时由可得解得综上实数的取值范围为故答案为:【点睛】本题考查根据集合的包含关系求参数的范围其中的易漏点在于漏掉考 解析:(,3]-∞【分析】由B A ⊆,分B =∅和B ≠∅两种情况分别讨论,进而建立不等关系,可求出答案. 【详解】当121m m +>-,即2m <时,此时B =∅,满足B A ⊆; 当121m m +≤-,即2m ≥时,此时B ≠∅,由B A ⊆,可得12215m m +≥-⎧⎨-≤⎩,解得23m ≤≤.综上,实数m 的取值范围为(,3]-∞. 故答案为:(,3]-∞ 【点睛】本题考查根据集合的包含关系求参数的范围,其中的易漏点在于漏掉考虑子集为空集的情况,易错点在于弄错不等关系,结合数轴依次分类讨论即可避免此类问题.14.【分析】分别根据分式不等式和一元二次不等式的解法求出集合和再根据交集的定义求出【详解】∵集合∴故答案为【点睛】本题考查集合的交集的运算解题时要认真审题注意分式不等式和一元二次不等式的合理运用是基础题解析:(]5,1--. 【分析】分别根据分式不等式和一元二次不等式的解法求出集合A 和B ,再根据交集的定义求出A B ⋂.【详解】 ∵集合2{|0}{|52}5x A x x x x -=<=-<<+, 2{|230}{|13}B x x x x R x x x =--≥∈=≤-≥,或,∴{|51}A B x x ⋂=-<≤-,故答案为(]5,1--. 【点睛】本题考查集合的交集的运算,解题时要认真审题,注意分式不等式和一元二次不等式的合理运用,是基础题.15.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.16.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞) 【分析】先求出集合B ,再利用交集定义和不等式性质求解. 【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞. 故答案为:[)3,+∞. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题.17.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论. 【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点,HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M ,故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心; 若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心.故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.18.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案.【详解】对于①, 111112222----+-⋅=+=-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根,由>0∆,可得0t <或4t >,故②错;对于③,不妨设A 中123n a a a a <<<<, 由1212n n n a a a a a a na =+++<得121n a a a n -<, 当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确; 对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =,于是“复活集” A 只有一个,为{}1,2,3,当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾,∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.19.①③④【分析】对各个选项分别进行分析利用类的定义直接求解【详解】在①中∵2014÷5=402…4∴2014∈4故①正确;在②中∵﹣3=5×(﹣1)+2∴﹣3∉3故②错误;在③中∵整数集中的数被5除的解析:①③④【分析】对各个选项分别进行分析,利用类的定义直接求解.【详解】在①中,∵2014÷5=402…4,∴2014∈[4],故①正确;在②中,∵﹣3=5×(﹣1)+2,∴﹣3∉[3],故②错误;在③中,∵整数集中的数被5除的数可以且只可以分成五类,∴Z =[0]∪[1]∪[2]∪[3]∪[4],故③正确;在④中,∵2015÷5=403,2010÷5=402,∴2015与2010属于同一个“类”[0],故④正确.故答案为①③④.【点睛】本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题. 20.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】 解21x ->可得集合B ,对于A ,先将1|0x x a-≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤,要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.三、解答题21.(1){|2A x x a =>+或1}x a <-;(2)不存在;理由见解析;(3)01a <<.【分析】(1)解一元二次不等式能求出集合A .(2)由A B R =,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,得到不存在实数a ,使得AB R =. (3)由A B ≠∅,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,能求出实数a 的取值范围.【详解】解:(1)不等式2(21)(2)(1)0x a x a a -+++->可化为[(2)][(1)]0x a x a -+-->, 解得1x a <-或2x a >+,所以不等式的解集为{|1A x x a =<-或2}x a >+; (2)当0a =时,不等式2()()0x a x a --<化为20x <,此时不等式无解,当0a <时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当01a <<时,2a a <,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当1a =时,2a a =,不等式2()()0x a x a --<化为2(10)x -<,此时不等式无解, 当1a >时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,综上所述:当0a =或1a =时,B =∅,当0a <或1a >时,2{|}B x a x a =<<,当01a <<时,2{|}B x a x a =<<,要使A B R =, 当2{|}B a a x a =<<时,2a a >,2a x a <<,1a a - 或22a a +,无解,当2{|}B a a x a =<<时,2a a <,2a x a <<,2a a +,21a a =-,无解, 故不存在实数a ,使得AB R =. (3)A B ≠∅,∴当2{|}B a a x a =<<时,1a a -<,或22a a +>,即220a a --<,解得10a -<< 或12a <<,此时实数a 的取值范围是(1-,0)(1⋃,2),当2{|}B a a x a =<<时,21a a -<或2a a +>,即210a a -+>,解得01a <<,此时,实数a 的取值范围是(0,1).【点睛】本题考查含参一元二次不等式的解法,解含参一元二次不等式需分类讨论,首先判断二次项系数是否为零,再对所对应的一元二次方程的根进行分类讨论;22.(1)5;(2){3a a ≤-或}1a =-.【分析】(1)求得集合A ,由题意可得2B ∈,可求得a 的值,再验证{}2AB =-是否满足,由此可求得实数a 的值;(2)由题意可得B A ⊆,分B =∅、{}2B =-、{}2B =、2,2B四种情况讨论,求得实数a 的值,并检验A B ⊆是否成立,由此可求得实数a 的取值范围. 【详解】(1){}{}2402,2A x x =-==-,因为{}2A B =-,所以2B -∈,所以()244150a a -++-=,整理得2450a a --=,解得1a =-或5a =.当1a =-时,{}{}2402,2B x x =-==-,不满足{}2A B =-; 当5a =时,{}{}2122002,10B x xx =++==--,满足{}2A B =-; 故5a =; (2)由题意,知{}2,2A =-,由A B A ⋃=,得B A ⊆.①当集合B =∅时,关于x 的方程()222150x a x a +++-=没有实数根, 所以()()2241458240a a a ∆=+--=+<,即30a +<,解得3a <-; ②当集合{}2B =-时,()242145a a ⎧-=-+⎨=-⎩,无解; ③当集合{}2B =时,()242145a a ⎧=-+⎨=-⎩,解得3a =-, ④当2,2B 时,21054a a +=⎧⎨-=-⎩,解得1a =- 综上,可知实数a 的取值范围为{3a a ≤-或}1a =-.【点睛】本题考查交集的计算,同时也考查了利用集合的包含关系求参数,考查分类讨论思想的应用与运算求解能力,属于中等题.23.{|14}A B x x ⋂=<<.【分析】根据题意,先求出集合A 与集合B ,再利用交集的定义即可.【详解】 由题意,集合{}{}{}{}113|28|22|13|24x x A x x x x x x --=<=<=-<=-<<, 集合(){}(){}{}{}222|log 512|log 51log 4|514|1B x x x x x x x x =->=->=->=>, 所以,{}|14AB x x =<<. 【点睛】本题考查绝对值不等式,对数不等式的解法,考查交集的定义,属于基础题.24.(1)R (2)106m <≤或413m ≤≤ 【分析】(1)求出集合A ,B ,根据集合的并集运算即可;(2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围.【详解】由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞,所以{|04}B x x =<,所以A B R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C A B ⊆, 所以0132m m <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤, 故实数m 的取值范围106m <≤或413m ≤≤. 【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 25.(1)(){|24}R A B x x ⋂=≤<(2)1a =【分析】化简集合B ,(1)计算3a =时集合A ,根据补集与交集的定义;(2)由题意得出A ≠∅,根据包含关系,列出关于a 的不等式,求出实数a 的取值范围.【详解】集合{|123}A x a x a =+≤≤+{}{}22|7100|7100{|25}B x x x x x x x x =-+-≥=-+≤=≤≤;(1)当3a =时,{|49}A x x =≤≤{| 4 R A x x ∴=<或9}x >则(){|24}R A B x x ⋂=≤<(2)因为B A ⊆,{|25}B x x =≤≤,所以A ≠∅,则1232a a a +≤+⇒≥-并且由B A ⊆,得12235a a +≤⎧⎨+≥⎩,解得1a = 综上,实数a 的取值范围是1a =.【点睛】本题主要考查了交集,并集的运算以及根据包含关系求参数范围,属于中档题. 26.(],0-∞【分析】先分别求解分式不等式和绝对值不等式,再根据Q P =∅∩,夹逼出参数的范围.【详解】 对不等式111a x +>+,可解得()()10x x a +-<; ①当1a =-时,不等式的解集为空集;②当1a >-时,不等式的解集为()1,a -③当1a <-时,不等式的解集为(),1a - 对不等式11x -≤,可解得[]0,2x ∈,因为Q P =∅∩,故当1a =-时,满足题意;当1a >-时,要满足题意,只需0a ≤,则(]1,0a ∈-当1a <-时,要满足题意,显然满足题意,即(),1a ∈-∞-综上所述:(],0a ∈-∞.【点睛】本题考查含参二次不等式的求解,以及由集合之间的关系求解参数的范围,属综合中档题.。
苏州市必修第一册第一单元《集合与常用逻辑用语》测试(有答案解析)
![苏州市必修第一册第一单元《集合与常用逻辑用语》测试(有答案解析)](https://img.taocdn.com/s3/m/dd520efb482fb4daa58d4be5.png)
一、选择题1.下列命题中:①命题“若1l :210ax y +-=与2l :0x y -=垂直,则2a =”的逆否命题;②命题“若1a ≠,则210a -≠”的否命题;③命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定.其中真命题的个数为( )A .0个B .1个C .2个D .3个2.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数3.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a b b a ->+-”的( )( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知集合{}1A x x =>-,{}2B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .1,2D .R5.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( ) A .3B .2C .1D .06.“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”是“4a ≤-”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知1:12p x ≥-,:||2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(,4]-∞B .[1,4]C .(1,4]D .(1,4)8.非零向量,a b 满足4,2b a ==且a 与b 夹角为θ,则“23b a -=”是“3πθ=”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件9.设a 、b 是实数,则“0a >,0b >”是“2b aa b+≥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件10.不等式220x x --<成立的一个充分不必要条件是21a x a <<+,则a 的取值范围为( ) A .–11a ≤≤B .–11a ≤<C .–11a <<D .11a -<≤11.设,a b 是向量,“a a b =+”是“0b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知平面向量a 和b ,则“||||b a b =-”是“1()02b a a -⋅=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若“存在x ∈[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___. 14.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.15.下列命题为真命题的序号是__________. ①“若1sin ,2α≠则6πα≠”是真命题.②“若22,am bm <则a b <”的逆命题是真命题.③,a b ∈R ,“221a b +≥”是“1a b +≥”的充分不必要条件. ④“1a =”是“直线0x ay -=与直线+0x ay =互相垂直”的充要条件. 16.下列有关命题的说法正确的是___(请填写所有正确的命题序号). ①命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”; ②命题“若x y =,则sin sin x y =”的逆否命题为真命题; ③条件2:p x x ≥-,条件:q x x =,则p 是q 的充分不必要条件;④已知0x >时,()()10x f x '-<,若ABC ∆是锐角三角形,则()()sin cos f A f B >.17.已知集合{}12A x x =-<<,{}1,0,1,2B =-,则AB =__________.18.已知集合{}1A x x =>,{}22B x xx =<,则A B =__________.19.在正项等比数列{}n a 中,已知120151a a <=,若集合1212111|0,t t A t a a a t N a a a *⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-++-≤∈⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎩⎭,则A 中元素个数为______.20.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是___________. 三、解答题21.已知集合{}2540P xx x =-+≤∣,{}11S x m x m =-≤≤+∣. (1)用区间表示集合P ;(2)是否存在实数m ,使得x P ∈是x S ∈的______条件.若存在实数m ,求出m 的取值范围:若不存在,请说明理由.请从如下三个条件选择一个条件补充到上面的横线上: ①充分不必要;②必要不充分;③充要.22.设m R ∈,命题2:043p x x <-<,命题:(1)(3)0q x m x m -+--<. (1)若p 为真命题,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.23.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈-. (1)若2A ∈,则A 中至少还有几个元素? (2)集合A 是否为双元素集合?请说明理由. (3)若A 中元素个数不超过8,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A .24.已知2:7100p x x -+≤,22:430q x mx m -+≤,其中0m >. (1)若4m =且p q ∧为真,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围. 25.已知集合{}121A x a x a =-<<+,{}01B x x =<<.(1)若12a =,求A B ; (2)若A B =∅,求实数a 的取值范围.26.已知条件{}2:230,p x A x x x x R ∈=--≤∈,条件{}22:240,q x B x x mx m x R ∈=-+-≤∈.(1)若[]0,3AB =,求实数m 的值;(2)若p ⌝是q 的必要条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据原命题和逆否命题同真假来判断①是真命题,根据定义写出命题的否命题和命题的否定,再判断②③的真假即可. 【详解】①中,若1l :210ax y +-=与2l :0x y -=垂直,则()1210a ⨯+⨯-=,则2a =.故该命题是真命题,其逆否命题也是真命题;②中,命题“若1a ≠,则210a -≠”的否命题是:“若1a =,则210a -=”,易见若1a =,则21a =,则210a -=,故“若1a =,则210a -=”是真命题;③中,命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是“对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期”, 对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期2T πω=,故命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是真命题.故①②③均为真命题. 故选:D. 【点睛】 思路点睛:一般互为逆否的两个命题判断真假时,可以选择容易的进行判断,则另一个就同真假.2.B解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】 选项A 中,,2x ππ⎛⎫∈⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈- ⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-=⎪⎝⎭, sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】 方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.3.C解析:C 【分析】构造函数()ln f x x x =+,据a ,b 的范围结合函数的单调性确定充分条件,还是必要条件即可. 【详解】设()ln f x x x =+,显然()f x 在(0,)+∞上单调递增,a b >,所以()()f a f b >ln ln a a b b ∴+>+,即ln ln a b b a ->+-,故充分性成立, 因为ln ln a b b a ->+-ln ln a a b b ∴+>+,所以()()f a f b >,a b ∴>,故必要性成立,故“a b >”是“ln ln a b b a ->+-”的充要条件, 故选:C . 【点睛】本题考查了函数的单调性,必要条件、充分条件与充要条件的判断,考查了构造函数法的应用,是基础题.4.C解析:C 【分析】由集合的交集运算即可得出结果. 【详解】{|12}=(1,2)=-<<-A B x x故选:C 【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.5.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22⎛⎫ ⎪ ⎪⎝⎭,,22⎛-- ⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.6.B解析:B 【分析】先分析“4a ≤-”能否推出“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”,这是必要性分析;然后分析“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”能否推出“4a ≤-”,这是充分性分析,然后得出结果. 【详解】若4a ≤-,则对称轴(1)32x a =-+≥>,所以()f x 在(,2]-∞上为单调递增, 取3a =-,则对称轴(1)2x a =-+=,()f x 在(,2]-∞上为单调递增,但4a >-,所以“()f x 在(,2]-∞上为单调递增”是“4a ≤- ”的必要不充分条件. 【点睛】充分、必要条件的判断,需要分两步:一方面要说明充分性是否满足,另一方面也要说明必要性是否满足.7.C解析:C【分析】求出p ,q 的等价条件,根据充分条件和必要条件的定义即可得到结论. 【详解】由112x ≥-,即302x x -≤-,解得23x <≤, 由||2x a -<得22a x a -<<+,若p 是q 的充分不必要条件,则2223a a -≤⎧⎨+>⎩,解得14a <≤,实数a 的取值范围为(]1,4, 故选:C. 【点睛】本题主要考查充分条件和必要条件的应用,属于中档题.8.C解析:C 【分析】由题意,若23b a -=,根据向量的数量积和模的计算公式,可得1cos 2θ=,得到3πθ=,;反之也可求得23b a -=,即可得到答案.【详解】由题意,非零向量,a b 满足4,2b a ==且a 与b 夹角为θ, 若23b a -=,即2222()2164242cos 12b a b a b a a b θ-=-=+-⋅=+-⨯⨯=,解得1cos 2θ=,又因为[]0,θπ∈,可得3πθ=,即充分性是成立的;若3πθ=,由2222()2164242cos123b a b a b a a b π-=-=+-⋅=+-⨯⨯=,可得23b a -=,即必要性是成立的,所以“23b a -=”是“3πθ=”的充分必要条件.故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,其中解答中熟记向量的数量积的运算,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力.9.A解析:A 【分析】由2b aa b +≥可推导出0ab >,再利用充分条件、必要条件的定义判断可得出结论. 【详解】由2b a a b +≥可得()22222022a b b a a b ab a b ab ab-+-+-==≥,()20a b -≥,则0ab >,则“0a >,0b >”⇒“0ab >”,但“0ab >”⇒“0a >,0b >”. 所以,“0a >,0b >”是“2b aa b+≥”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,考查推理能力,属于中等题.10.D解析:D 【分析】求解一元二次不等式可得220x x --<的解集,再由题意得关于a 的不等式组求解即可. 【详解】由不等式220x x --<,得12x -<<,∵不等式220x x --<成立的一个充分不必要条件是21a x a <<+,∴()2,1a a +⫋()12-,, 则221112a a a a ⎧<+⎪≥-⎨⎪+≤⎩且1a ≥-与212a +≤的等号不同时成立,解得11a -<≤, ∴a 的取值范围为11a -<≤,【点睛】本题主要考查充分必要条件的判定及其应用,考查数学转化思想方法,属于中档题.11.B解析:B 【分析】根据向量的运算性质结合充分条件和必要条件的判定,即可得出答案. 【详解】 当12a b =-时,1122a b b b b a +=-+==,推不出0b =当0b =时,0b =,则0a b a a +=+= 即“a a b =+”是“0b =”的必要不充分条件 故选:B 【点睛】本题主要考查了判断必要不充分条件,属于中档题.12.C解析:C 【分析】||||b a b =-两边平方得出22()b a b =-,展开等价变形得出102b a a ⎛⎫-⋅= ⎪⎝⎭,根据充分条件和必要条件的定义进行判断即可. 【详解】22||||()b a b b a b =-⇔=-22221122020022b a a b b a a b a b a b a a ⎛⎫⎛⎫⇔=-⋅+⇔-⋅=⇔⋅-=⇔-⋅= ⎪ ⎪⎝⎭⎝⎭则“||||b a b =-”是“1()02b a a -⋅=”的充分必要条件 故选:C 【点睛】本题主要考查了充要条件的证明,涉及了向量运算律的应用,属于中档题.二、填空题13.【分析】转化为在上有解不等式右边构造函数利用单调性求出最大值即可得解【详解】存在x ∈﹣11成立即在上有解设易得y =f(x)在﹣11为减函数所以即即即所以故答案为:【点睛】关键点点睛:将问题转化为在上解析:9(,)2-+∞转化为213x xa +-<在[1,1]x ∈-上有解,不等式右边构造函数,利用单调性求出最大值即可得解. 【详解】存在x ∈[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数,所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞. 【点睛】关键点点睛:将问题转化为213x xa +-<在[1,1]x ∈-上有解进行求解是解题关键. 14.【解析】因为所以或则图中阴影部分所表示的集合为应填答案 解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-.15.①③【分析】对于①判断其逆否命题的真假;对于②写出其逆命题再判断真假;对于③利用单位圆判定;对于④根据充要条件的定义以及两直线垂直的条件可判断;【详解】对于①若则的逆否命题为若则显然为真即原命题为真解析:①③ 【分析】对于①判断其逆否命题的真假;对于②写出其逆命题再判断真假;对于③利用单位圆判定;对于④根据充要条件的定义以及两直线垂直的条件可判断; 【详解】对于①,若1sin ,2α≠则6πα≠的逆否命题为若6πα=,则1sin 2α=,显然为真,即原命题为真,故①正确;对于②,若22,am bm <则a b <的逆命题为若a b <,则22am bm <,当0m =时显然为假,即②错误;对于③,如图在单位圆221x y +=上或圆外任取一点(),P a b ,满足“221a b +≥”,根据三角形两边之和大于第三边,一定有“1a b +≥”,在单位圆内任取一点(),M a b ,满足“1a b +≥”,但不满足,“221a b +≥”,即“221a b +≥”是“1a b +≥”的充分不必要条件,故③正确;对于④“直线0x ay -=与直线+0x ay =互相垂直”210a ⇔-=,即1a =±, 故“实数1a =”是“直线0x ay -=与直线+0x ay =互相垂直”的充分不必要条件, 故④为假命题;故答案为:①③.【点睛】本题以命题的真假判断与应用为载体,考查了四种命题,充要条件,不等式的性质和两条直线的位置关系等,属于中档题.16.②④【分析】根据否命题与原命题的关系可判断命题①的真假;判断出原命题的真假可判断出其逆否命题的真假从而判断出命题②的真假;解出不等式以及根据集合的包含关系得出命题③的真假;根据得出函数在上的单调性由 解析:②④【分析】根据否命题与原命题的关系可判断命题①的真假;判断出原命题的真假可判断出其逆否命题的真假,从而判断出命题②的真假;解出不等式2x x ≥-以及x x =,根据集合的包含关系得出命题③的真假;根据()()10x f x '-<得出函数()y f x =在()0,1上的单调性,由ABC ∆是锐角三角形,得出sin cos A B >,结合函数()y f x =的单调性判断命题④的真假.【详解】对于①,命题“若21x =,则1x =”的否命题是:“若21x ≠,则1x ≠”,故错误;对于②,命题“若x y =,则sin sin x y =”是真命题,则它的逆否命题也是真命题,故正确;对于③,条件2:p x x ≥- ,即为1x ≤-或0x ≥;条件:q x x =,即为0x ≥;则q 是p的充分不必要条件,故错误;对于④,0x >时,()()10x f x '-<,当01x <<时,()0f x '>,则()f x 在()0,1上是增函数;当ABC ∆是锐角三角形,2A B π+>,即2A B π>-, 所以sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭,则()()sin cos f A f B >,故正确. 故答案为②④.【点睛】本题考查命题真假的判断,涉及四种命题、充分必要条件的判断以及函数单调性的应用,解题时应根据这些基础知识进行判断,考查推理能力,属于中等题.17.【解析】分析:利用交集的运算直接求解即可详解:由题所以即答案为点睛:本题考查交集的运算属基础题解析:{}0,1【解析】分析:利用交集的运算直接求解即可 详解:由题{}12A x x =-<<,{}1,0,1,2B =-,所以{}0,1A B ⋂=.即答案为{}0,1点睛:本题考查交集的运算,属基础题. 18.【解析】由得:则故答案为解析:()1,2【解析】由{}22B x x x =<得:{}02B x x =<<,则()1,2A B ⋂=,故答案为()1,2. 19.4029【解析】试题分析:设等比数列公比为的公比为因为所以即所以解得考点:等比数列求和公式 解析:4029【解析】试题分析:设等比数列公比为{}n a 的公比为,因为,所以,,即,所以,解得.考点:等比数列求和公式. 20.【分析】若使得成立只要保证在R 上不单调即可【详解】函数的对称轴为当即时在上不是单调函数则在R 上也不是单调函数满足题意;当即时分段函数为R 上的单调增函数不满足题意故答案为:【点睛】本题以命题的形式考查 解析:(,2)-∞【分析】若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,只要保证()f x 在R 上不单调即可.【详解】函数2y x ax =-+的对称轴为=2a x ,当12a <即2a <时,2y x ax =-+在(),1-∞上不是单调函数, 则()f x 在R 上也不是单调函数,满足题意; 当12a >即2a >时,分段函数为R 上的单调增函数,不满足题意. 故答案为:(,2)-∞【点睛】本题以命题的形式考查了分段函数单调性,考查了转化的思想,属于中档题.三、解答题21.(1)[]1,4;(2)答案见解析.【分析】(1)解不等式后可得集合P .(2)根据条件关系可得对应集合的包含关系,从而可得参数的取值范围.【详解】(1)因为254x x -+即()()140x x --≤,所以14x ≤≤,{}[]2|1,4045P x x x ≤==-+.(2)若选择①,即x P ∈是x S ∈的充分不必要条件,则11m m -≤+且11,14m m -≤⎧⎨+≥⎩(两个等号不同时成立), 解得3m ≥,故实数m 的取值范围是[3,)+∞.若选择②,即x P ∈是x S ∈的必要不充分条件.当S =∅时,11m m ->+,解得0m <.当S ≠∅时,11m m -≤+且11,14,m m -≥⎧⎨+≤⎩(两个等号不同时成立), 解得0m =.综上,实数m 的取值范围是(],0-∞.若选择③,即x P ∈是x S ∈的充要条件, 则P S =,即11,14,m m -=⎧⎨+=⎩此方程组无解, 则不存在实数m ,使x P ∈是x S ∈的充要条件.【点睛】方法点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.22.(1){}|24x x <<;(2){}|13m m ≤≤【分析】(1)解不等式2043x x <-<即可求解;(2)设命题p 成立对应集合A ,命题q 成立对应集合B ,由题意可得A 是B 的真子集,利用数轴即可求解.【详解】(1)若p 为真命题,则2043x x <-<,即240x ->且243x x -<,由240x ->得2x >或2x <-,由243x x -<可得14x -<<,所以解集为:{}|24x x <<,故实数x 的取值范围为{}|24x x <<,(2)由(1)知:p 为真命题,则24x <<,设{}|24A x x =<<,由(1)(3)0x m x m -+--<可得13m x m -<<+,设{}|13B x m x m =-<<+, 若p 是q 的充分不必要条件,则A 是B 的真子集,所以1234m m -≤⎧⎨+≥⎩,解得: 13m ≤≤, 经检验当1m =和3m =时满足A 是B 的真子集,所以实数m 的取值范围是{}|13m m ≤≤【点睛】结论点睛:从集合的观点判断命题的充分条件和必要条件的规则(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1)A 中至少还有两个元素;(2)不是双元素集合,答案见解析;(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 【分析】(1)由x A ∈(1x ≠且0x ≠),则11A x ∈-,结合2A ∈可计算得出集合A 中的元素;(2)由x A ∈,逐项可推导出11A x ∈-,1x A x-∈,结合集合元素满足互异性可得出结论;(3)由(2)A 中有三个元素为x 、11x -、1x x -(1x ≠且0x ≠),设A 中还有一个元素m ,可得出11A m ∈-,1m A m-∈,由已知条件列方程求出x 、m 的值,即可求得集合A 中的所有元素.【详解】(1)2A ∈,1112A ∴=-∈-. 1A -∈,()11112A ∴=∈--. 12A ∈,12112A ∴=∈-. A ∴中至少还有两个元素为1-,12; (2)不是双元素集合.理由如下:x A ∈,11A x ∴∈-,11111x A x x-=∈--, 由于1x ≠且0x ≠,22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,则210x x -+≠, 则()11x x -≠,可得11x x≠-,由221x x x -+≠-,即()21x x -≠-,可得111x x x-≠-, 故集合A 中至少有3个元素,所以,集合A 不是双元素集合.(3)由(2)知A 中有三个元素为x 、11x -、1x x -(1x ≠且0x ≠), 且1111x x x x-⋅⋅=--, 设A 中有一个元素为m ,则11A m ∈-,1m A m -∈,且1111m m m m -⋅⋅=--, 所以,1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,且集合A 中所有元素之积为1. 由于A 中有一个元素的平方等于所有元素的积, 设2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭,解得0x =(舍去)或2x =或12x =.此时,2A ∈,1A -∈,12A ∈, 由题意得1111421213m m m m -+-+++=-,整理得3261960m m m -++=, 即()()()621320m m m -+-=,解得12m =-或3或23, 所以,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 【点睛】 关键点点睛:本题考查集合中元素相关的问题,解题时要结合题中集合A 满足的定义推导出其它的元素,以及结合已知条件列方程求解,同时注意集合中元素满足互异性. 24.(1)[]4,5;(2)5,23⎡⎤⎢⎥⎣⎦. 【分析】(1)求出两个命题为真命题时的解集,然后利用p q ∧为真,求解x 的取值范围. (2)依题意可得p q ⇒,q p ≠>,所以p q ,即可得到不等式组,解得即可;【详解】解:(1)由27100x x -+≤,解得25x ≤≤,所以:25p x ≤≤又22430x mx m -+≤,因为0m >,解得3m x m ≤≤,所以:3q m x m ≤≤.当4m =时,:412q x ≤≤,又p q ∧为真,p ,q 都为真,所以45x ≤≤.即[]4,5x ∈(2)由p 是q 的充分不必要条件,即p q ⇒,q p ≠>,所以p q 所以235m m ≤⎧⎨≥⎩解得523m ≤≤,即5,23m ⎡⎤∈⎢⎥⎣⎦ 【点睛】本题考查了充分必要条件,考查复合命题的判断,属于中档题.25.(1){}01A B x x ⋂=<<;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】 (1)求出集合A ,利用交集的定义可求得集合A B ;(2)分A =∅和A ≠∅两种情况讨论,结合条件AB =∅可得出关于a 的不等式组,即可解得实数a 的取值范围.【详解】(1)当12a =时,122A x x ⎧⎫=-<<⎨⎬⎩⎭,{}01B x x =<<,因此,{}01A B x x ⋂=<<;(2)A B =∅.①当A =∅时,即121a a -≥+,2∴≤-a ;②当A ≠∅时,则12111a a a -<+⎧⎨-≥⎩或121210a a a -<+⎧⎨+≤⎩,解得122a -<≤-或2a ≥. 综上所述,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】 本题考查交集的运算,同时也考查了利用交集运算结果求参数,考查运算求解能力,属于中等题.26.(1)2m =;(2)()(),35,-∞-+∞. 【分析】(1)求出集合A 、B ,根据交集运算结果得出关于m 的等式和不等式,即可求出实数m 的值;(2)求出A R ,由p ⌝是q 的必要条件,可得出RB A ⊆,可得出关于实数m 的不等式,即可求得实数m 的取值范围. 【详解】(1){}[]2230,1,3A x x x x R =--≤∈=-, {}()(){}[]222402202,2B x x mx m x x m x m m m ⎡⎤⎡⎤=-+-≤=-+⋅--≤=-+⎣⎦⎣⎦, 又[]0,3A B ⋂=,则2023m m -=⎧⎨+≥⎩,解得2m =; (2)()(),13,R A =-∞-⋃+∞,且p ⌝是q 的必要条件,则R B A ⊆,所以,21m +<-或23m ->,解得3m <-或5m >.因此,实数m 的取值范围是()(),35,-∞-⋃+∞.【点睛】本题考查了利用交集的结果求参数,同时也考查了利用必要条件求参数,考查了推理能力与计算能力,属于中档题.。
新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测题(含答案解析)
![新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测题(含答案解析)](https://img.taocdn.com/s3/m/57b7e2d3f78a6529657d5321.png)
一、选择题1.已知命题p :x R ∀∈,2230ax x ++>是真命题,那么实数a 的取值范围是( ) A .13a < B .103a <≤ C .13a > D .13a ≤ 2.已知命题2:11x p x <-,命题:()(3)0q x a x -->,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .(,1]-∞B .[1,3]C .[1,)+∞D .[3,)+∞ 3.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知非空集合A ,B 满足以下两个条件:(i ){}1,2,3,4,5A B =,A B =∅; (ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素,则有序集合对(),A B 的个数为( )A .7B .8C .9D .105.函数3()1f x ax x =++有极值的充分但不必要条件是( )A .1a <-B .1a <C .0a <D .0a > 6.设,a b 为非零向量,则“a b a b +=+”是“a 与b 共线”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 7.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题;③“2019a >”是“2020a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题.其中真命题的序号为( )A .③④B .①②C .①③D .②④ 8.全集U =R ,集合04x A x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞9.已知集合{} 1A x x =>-,{}2B x x =<,则A B =( ) A .()1,-+∞ B .(),2-∞ C .1,2D .R 10.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.设{}n a 是等差数列,则“123a a a <<”是“数列{}n a 是递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 12.命题“对任意x ∈R ,都有20x ≥”的否定为A .对任意x ∈R ,都有20x <B .不存在x ∈R ,都有20x <C .存在0x ∉R ,使得200x <D .存在0x ∈R ,使得200x < 二、填空题13.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件;以上说法中,判断错误的有_______________.14.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.15.若“0,63x ππ⎡⎤∃∈⎢⎥⎣⎦使得0tan x m ≥”是假命题,则实数m 的取值范围为________. 16.已知命题:44,:(2)(3)0p x a q x x -<-<-->,若p ⌝是q ⌝的充分不必要条件,求a 的取值范围________.17.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则M N =__________.18.已知命题“0x ∃∈[1,2], 200210x ax -+>”是真命题,则实数a 的取值范围为______.19.已知集合{}ln(21)A x y x ==-,{}2230B x x x =--≤,则A B __________. 20.已知“x m ≥”是“121x +>”的充分不必要条件,且m Z ∈,则m 的最小值是________.三、解答题21.已知函数()f x =A ,函数2()41,[0,3]g x x x x =-+-∈的值域为B .(Ⅰ)设集合()M A B Z =⋂⋂,其中Z 是整数集,写出集合M 的所有非空子集; (Ⅱ)设集合{|121}C x a x a =-<<+,且B C =∅,求实数a 的取值范围. 22.已知集合A 是函数2lg 20()8y x x =+-的定义域,集合B 是不等式22210(0)x x a a -+-≥>的解集,:,:p x A q x B ∈∈.(1)若A B =∅,求a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求a 的取值范围.23.已知命题:P 实数x 满足2280x x --≤,命题:q 实数x 满足2(0)x m m -≤> (1)当m=3时,若“p 且q”为真,求实数x 的取值范围;(2)若“非p”是“非q”的必要不充分条件,求实数m 的取值范围.24.已知集合{}30A x x a =->,{}260B x x x =-->.(Ⅰ)当3a =时,求A B ,A B ; (Ⅱ)若()R A B ⋂≠∅,求实数a 的取值范围.25.设命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得不等式210x x m --+≤成立.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围.26.已知集合13279x A x⎧⎫=≤≤⎨⎬⎩⎭,函数()lg 1x f x -=B . (1)求A B ,()R B A ;(2)已知集合{}433C x m x m =-≤≤+,若A C ⋂=∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可得2230ax x ++>对于x ∈R 恒成立,讨论0a =和0a ≠即可求解.【详解】若命题p :x R ∀∈,2230ax x ++>是真命题,则2230ax x ++>对于x ∈R 恒成立,当0a =时,230x +>可得:32x >-不满足对于x ∈R 恒成立,所以0a =不符合题意; 当0a ≠时,需满足04430a a >⎧⎨∆=-⨯<⎩解得13a >, 所以实数a 的取值范围是13a >, 故选:C【点睛】关键点点睛:对于2230ax x ++>对于x ∈R 恒成立,需讨论0a =和0a ≠,当0a ≠时,结合二次函数图象即可得等价条件. 2.C解析:C【分析】化简命题q ,分类讨论a 解不等式()(3)0x a x -->,根据p 是q 的充分不必要条件列式可解得结果.【详解】 因为211x x <-,所以2101x x x -+<-,所以(1)(1)0x x -+<,所以11x -<<, 当3a <时,由()(3)0x a x -->得x a <或3x >, 因为p 是q 的充分不必要条件,所以1a ≥,所以13a ≤<,当3a =时,由()(3)0x a x -->得3x ≠,满足题意,当3a >时,由()(3)0x a x -->得3x <或x a >,满足题意,综上所述:1a ≥.故选:C【点睛】关键点点睛:本题考查由充分不必要条件求参数的取值范围,一般可根据如下规则求解: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.3.A解析:A【详解】 因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或,因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A.4.B解析:B【分析】结合题意,按照集合中的元素个数分类,即可得解.【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉,故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉,故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =;③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B ,故可能结果为:①{2,4,5}A =,3{}1,B ;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉,故{1,2,3,5}A =,{4}B =,共计1种.所以有序集合对(),A B 的个数为13318+++=.故选:B.【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.5.A解析:A【分析】求导2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,可求得a 的范围,再由充分必要条件可得选项.【详解】因为2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,解得0a <,又由1a <-可推得0a <,而由0a <不能推得1a <-,所以函数3()1f x ax x =++有极值的充分但不必要条件是1a <-,故选:A .【点睛】本题考查函数有极值的条件,以及命题的充分必要条件的判断,属于中档题.6.A解析:A【分析】根据向量共线的性质依次判断充分性和必要性得到答案.【详解】 若a b a b +=+,则a 与b 共线,且方向相同,充分性; 当a 与b 共线,方向相反时,a b a b ≠++,故不必要.故选:A .【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.7.B解析:B【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确;“2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误.故选:B .【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.8.C解析:C【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃.【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >, ()()[],04,5U C A B ∴=-∞⋃.故选:C .【点睛】本题考查集合的运算,属于基础题.9.C解析:C【分析】由集合的交集运算即可得出结果.【详解】{|12}=(1,2)=-<<-A B x x故选:C【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.10.B解析:B【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件. 11.C解析:C【分析】结合等差数列的单调性,根据充分条件、必要条件的判定方法,即可求解.【详解】在{}n a 是等差数列,若123a a a <<,可得21320d a a a a =-=->,所以数列{}n a 是递增数列,即充分性成立;若数列{}n a 是递增数列,则必有123a a a <<,即必要性成立,所以“123a a a <<”是“数列{}n a 是递增数列”的充分必要条件.故选:C.【点睛】本题主要考查了充分条件、必要条件的判定,以及等差数列的单调性判定及应用,其中解答中熟记等差数列的性质是解答的关键,着重考查推理与论证能力.12.D解析:D【解析】命题“对任意x R ∈,都有20x ≥”的否定为:存在0x R ∈,使得200x <,选D.二、填空题13.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列,有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.14.【解析】因为所以或则图中阴影部分所表示的集合为应填答案解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-. 15.【分析】根据题意写出原命题的否定则其是一个真命题再据此求范围即可【详解】因为使得是假命题所以其否定:是真命题又时所以故答案为:【点睛】本题考查命题的真假关系考查三角函数求最值属于简单题在解决命题真假解析:【分析】根据题意,写出原命题的否定,则其是一个真命题,再据此求范围即可.【详解】因为“0,63x ππ⎡⎤∃∈⎢⎥⎣⎦使得0tan x m ≥”是假命题,所以其否定:“,63x ππ⎡⎤∀∈⎢⎥⎣⎦,tan x m <”是真命题,又,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan x ∈,所以m >故答案为:)+∞. 【点睛】本题考查命题的真假关系,考查三角函数求最值,属于简单题.在解决命题真假性相关问题时,若原命题不好求解,可以考虑与之相关的其他命题,比如命题的否定,逆否命题等. 16.【分析】是的充分不必要条件可转化为是的充分不必要条件再化简两命题对应的取值范围进一步判断即可【详解】是的充分不必要条件是的充分不必要条件命题中:命题中:由是的充分不必要条件可知应满足解得故答案为:【 解析:[1,6]-【分析】p ⌝是q ⌝的充分不必要条件可转化为q 是p 的充分不必要条件,再化简两命题对应x 的取值范围,进一步判断即可【详解】“p ⌝是q ⌝的充分不必要条件”⇔q 是p 的充分不必要条件,命题p 中:44a x a -<<+,命题q 中:23x <<,由q 是p 的充分不必要条件可知,应满足4243a a -≤⎧⎨+≥⎩,解得[1,6]a ∈- 故答案为:[1,6]-【点睛】本题考查由命题的充分不必要条件求解参数范围,属于中档题17.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运 解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解.【详解】 由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭, 所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.18.【分析】由题意可得2a <x0在12的最大值运用对勾函数的单调性可得最大值即可得到所求a 的范围【详解】命题∃x0∈12x02﹣2ax0+1>0是真命题即有2a <x0在12的最大值由x0在12递增可得x 解析:5,4⎛⎫-∞ ⎪⎝⎭ 【分析】由题意可得2a <x 001x +在[1,2]的最大值,运用对勾函数的单调性可得最大值,即可得到所求a 的范围.【详解】命题“∃x 0∈[1,2],x 02﹣2ax 0+1>0”是真命题,即有2a <x 001x +在[1,2]的最大值, 由x 001x +在[1,2]递增,可得x 0=2取得最大值52, 则2a 52<,可得a 54<,则实数a 的取值范围为(﹣∞,54). 故答案为(﹣∞,54). 【点睛】本题考查存在性命题的真假问题解法,注意运用分离参数法,运用对勾函数的单调性,考查运算能力,属于中档题. 19.(或用区间表示为【解析】分析:先根据真数大于零得集合A 再解一元二次不等式得集合B 最后根据交集定义求结果详解:因为所以因为所以因此点睛:求集合的交并补时一般先化简集合再由交并补的定义求解在进行集合的运 解析:13|22x x ⎧⎫<≤⎨⎬⎩⎭(或用区间表示为13(,]22. 【解析】分析:先根据真数大于零得集合A,再解一元二次不等式得集合B ,最后根据交集定义求结果.详解:因为210x ->,所以12x >因为2230x x --≤,所以312x -≤≤因此13(,]22A B ⋂=. 点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 20.0【分析】根据是的充分不必要条件且即可得出【详解】由是的充分不必要条件且则的最小值是故答案为:【点睛】本题考查了充分不必要条件的判定方法考查了推理能力与计算能力属于基础题解析:0.【分析】1121221x x x +->⇔>⇔>-.根据x m ”是“+121x >”的充分不必要条件,且m Z ∈,即可得出.【详解】由1211x x +>⇒>-,“x m ”是“+121x >”的充分不必要条件,且m Z ∈,0m ∴,则m 的最小值是0.故答案为:0.【点睛】本题考查了充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.三、解答题21.(Ⅰ){}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1;(Ⅱ)(][),14,-∞-+∞【分析】(Ⅰ)计算得到(]3,log 8A =-∞,[]1,3B =-,再计算交集得到{}1,0,1M =-,得到答案.(Ⅱ)考虑C =∅和C ≠∅两种情况,得到121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得答案. 【详解】(Ⅰ)函数()f x =830x -≥,即3log 8x ≤,即(]3,log 8A =-∞,()22()4123,[0,3]g x x x x x =-+-=--+∈,[]1,3y ∈-,即[]1,3B =-,[]{}31,log (1,0,8)1M A B Z Z =⋂⋂=--⋂=.故集合M 的所有非空子集为{}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1. (Ⅱ){|121}C x a x a =-<<+,B C =∅,当C =∅时,121a a -≥+,解得2a ≤-;当C ≠∅时,121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得(][)2,14,a ∈--+∞. 综上所述:(][),14,a ∈-∞-+∞.【点睛】 本题考查了函数的定义域,值域,子集,根据交集运算结果求参数,意在考查学生的计算能力和转化能力,忽略空集是容易发生的错误.22.(1)9a ≥(2)03a <≤【解析】分析:(1)分别求函数2lg 20()8y x x =+-的定义域和不等式22210(0)x x a a -+-≥>的解集,从而确定集合A,B ,由A B φ⋂=,得到区间端点值之间的关系,解不等式组得到a 的取值范围;(2)求出p ⌝对应的x 的取值范围,由p ⌝是q 的充分不必要条件得到对应的集合之间的关系,由区间端点值的关系列不等式组求解a 的取值范围.详解:(1)由题意得{}{}|210,|11A x x B x x a x a =-<<=≥+≤-或. 若A B ⋂=∅,则必须满足110120a a a +≥⎧⎪-≤-⎨⎪>⎩,解得9a ≥.∴a 的取值范围为9a ≥.(2)易得:102p x x ⌝≥≤-或.∵p ⌝是q 的充分不必要条件,∴{}|102x x x ≥≤-或是{}|11B x x a x a =≥+≤-或的真子集,则101210a a a ≥+⎧⎪-≤-⎨⎪>⎩,解得03a <≤,∴a 的取值范围是03a <≤.点睛:该题所涉及的考点有交集及其运算,充分不必要条件,复合命题的真假,解题的关键是先确定集合中的元素,再者就是两集合交集为空集时对应参数的取值范围,可以借助于数轴来完成.23.(1)[1,4]-(2)4m ≥【详解】试题分析:(1)先转化,q ,由且q 为真,得真q 真,解出x (2)由p ⌝是q⌝的必要不充分条件 得是q 的充分不必要条件,根据数轴列出不等式解出m 试题解:(1)若真:24x -≤≤;当3m =时,若q 真:15x -≤≤ ∵且q 为真 ∴24{15x x -≤≤-≤≤ ∴实数x 的取值范围为:[1,4]-(2)∵p ⌝是q ⌝的必要不充分条件 ∴是q 的充分不必要条件 ∵若q 真:22m x m -≤≤+∴22{42m m-≤-≤+且等号不同时取得 (不写“且等号不同时取得”,写检验也可) ∴4m ≥.考点:复合命题,充要条件,解不等式24.(Ⅰ){}3A B x x ⋂=>,{|2A B x x ⋃=<-或1}x >;(Ⅱ)(),9-∞.【分析】(Ⅰ)解不等式求得集合,A B ,再由交并集的定义求解;(Ⅱ)求出A 与B R ,然后分析两集合有公共元素时的不等关系,可得a 的范围. 【详解】由30x a ->得3a x >,所以3a A x x ⎧⎫=>⎨⎬⎩⎭ 由260x x -->,得()()230x x +->,解得2x <-或3x >,所以{}2B x x =<-或3}x >.(Ⅰ)当3a =时,{}1A x x =>, 所以{}3A B x x ⋂=>,{|2A B x x ⋃=<-或1}x >(Ⅱ)因为{|2B x x =<-或3}x >, 所以{}23B x x =-≤≤R .又因为()R A B ⋂≠∅,所以33a <,解得9a <. 所以实数a 的取值范围是(),9-∞.【点睛】本题考查集合的表示、运算,考查集合间的关系,考查一元二次不等式的解法.属于基础题.25.(1)12m ≤≤(2)1m <或524m <≤ 【分析】(1)命题p 为真,只需[]()2min 21,20,3x m m x -≥-∈,根据一次函数的单调性,转化为求关于m 的一元二次不等式;(2)命题q 为真,只需[]()2min 1,1,10x x m x -+-∈-≤,根据二次函数的性质,求出m 的范围,依题意求出p 真q 假,和p 假q 真时,实数m 的取值范围.【详解】(1)对于命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立,而[]0,1x ∈,有()min 222x -=-,223m m ∴-≥-,12m ∴≤≤,所以p 为真时,实数m 的取值范围是12m ≤≤;(2)命题q :存在[]1,1x ∈-,使得不等式210x x m -+-≤成立,只需()2min 10x x m -+-≤,而22151()24x x m x m -+-=-+-,2min 5(1)4x x m m ∴-+-=-+,504m ∴-+≤,54m ≤, 即命题q 为真时,实数m 的取值范围是54m ≤, 依题意命题,p q 一真一假, 若p 为假命题, q 为真命题,则1254m m m ⎧⎪⎨≤⎪⎩或,得1m <; 若q 为假命题, p 为真命题,则1254m m ≤≤⎧⎪⎨>⎪⎩,得524m <≤, 综上,1m <或524m <≤. 【点睛】本题考查不等式恒(或存在)成立与函数最值关系,以及命题真假关系求参数范围,考查等价转化思想,计算求解能力,属于中档题. 26.(1)[)2,4A B =-,()[]2,1R B A =-;(2)()5,7,3⎛⎫-∞-+∞ ⎪⎝⎭. 【分析】(1)求出集合A 、B ,利用补集的定义可得出集合A B ,利用补集和交集的定义可得出集合()R B A ;(2)分C =∅和C ≠∅两种情况讨论,根据题意得出关于实数m 的不等式(组),解出即可.【详解】(1)解不等式13279x ≤≤,即23333x -≤≤,解得23x -≤≤,得[]2,3A =-. 对于函数()lg 1x f x -=1040x x ->⎧⎨->⎩,解得14x <<,则()1,4B =.[)2,4A B ∴=-,(][),14,R B =-∞+∞,则()[]2,1R B A =-;(2)当C =∅时,433m m ->+,得到72m <-,符合题意; 当C ≠∅时,433332m m m -≤+⎧⎨+<-⎩或43343m m m -≤+⎧⎨->⎩,解得7523m -≤<-或7m >. 综上所述,实数m 的取值范围是()5,7,3⎛⎫-∞-+∞ ⎪⎝⎭. 【点睛】本题考查交集、补集与并集的计算,同时也考查了利用交集的结果求参数,解题的关键就是对集合C 是否为空集进行分类讨论,考查运算求解能力,属于中等题.。
新版高中数学第一册第一章单元测试卷---集合与常用逻辑用语(含答案)
![新版高中数学第一册第一章单元测试卷---集合与常用逻辑用语(含答案)](https://img.taocdn.com/s3/m/53709dfcfe4733687f21aa26.png)
新版高中数学第一册第一章单元测试卷--集合与常用逻辑用语一.选择题(共9小题)1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}2.集合P={﹣1,0,1},Q={y|y=cos x,x∈R},则P∩Q=()A.P B.Q C.{﹣1,1}D.[0,1]3.设集合A={x|1≤x≤2},B={x|x≥a}.若A⊆B,则a的范围是()A.a<1B.a≤1C.a<2D.a≤24.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.85.设全集为R,集合A={x|﹣1<x<1},B={x|x≥1},则∁R(A∪B)等于()A.{x|0≤0<1}B.{x|x≥1}C.{x|x≤﹣1}D.{x|x>﹣1}6.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.7.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}8.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A ∩B的元素个数为()A.mn B.m+n C.n﹣m D.m﹣n9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18D.27二.填空题(共5小题)10.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有个元素.11.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B=.12.已知集合A={x|y=,x∈Z},B={y|y=2x﹣1,x∈A},则A∩B=.13.设全集I={2,3,a2+2a﹣3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M的所有子集是.14.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=.三.解答题(共6小题)15.一个无重复数字的五位数,如果满足万位和百位上的数字都比千位上的数字小,百位和个位上的数字都比十位上的数字小,则这个五位数称为“倒W型数”,问:一共有多少个倒W 型数?16.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)已知函数f(x)=﹣x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2﹣4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;(Ⅱ)是否存在实数k,使函数f(x)=cos kx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.17.已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁U B)={1,3,5,7},求集合B.18.已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.19.对于集合M、N,定义M⊖N={x|x∈M且x∉N},M⨁N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},B={y|y=﹣x+1,x>1},求A⨁B.20.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.参考答案与试题解析一.选择题(共9小题)1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}【解答】解:由题意知,N={0,2,4},故M∩N={0,2},故选:D.2.集合P={﹣1,0,1},Q={y|y=cos x,x∈R},则P∩Q=()A.P B.Q C.{﹣1,1}D.[0,1]【解答】解:∵Q={y|y=cos x,x∈R},∴Q={y|﹣1≤y≤1},又∵P={﹣1,0,1},∴P∩Q={﹣1,0,1}.故选:A.3.设集合A={x|1≤x≤2},B={x|x≥a}.若A⊆B,则a的范围是()A.a<1B.a≤1C.a<2D.a≤2【解答】解:根据题意,A⊆B,而A={x|1≤x≤2},在数轴上表示可得,必有a≤1,故选:B.4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8【解答】解:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选:C.5.设全集为R,集合A={x|﹣1<x<1},B={x|x≥1},则∁R(A∪B)等于()A.{x|0≤0<1}B.{x|x≥1}C.{x|x≤﹣1}D.{x|x>﹣1}【解答】解:∵集合A={x|﹣1<x<1},B={x|x≥1},∴A∪B={x|x>﹣1},∴∁R(A∪B)={x|x≤﹣1},故选:C.6.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.【解答】解:.由N={x|x2+x=0},得N={﹣1,0}.∵M={﹣1,0,1},∴N⊂M,故选:B.7.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}【解答】解:由已知可求得P={(1,m)},Q={(1﹣n,1+n)},再由交集的含义,有⇒,所以选A.8.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+n C.n﹣m D.m﹣n【解答】解法一:∵(∁U A)∪(∁U B)中有n个元素,如图所示阴影部分,又∵U=A∪B中有m个元素,故A∩B中有m﹣n个元素.解法二:∵(∁U A)∪(∁U B)=∁U(A∩B)有n个元素,又∵全集U=A∪B中有m个元素,由card(A)+card(∁U A)=card(U)得,card(A∩B)+card(∁U(A∩B))=card(U)得,card(A∩B)=m﹣n,故选:D.9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C 的所有元素之和为()A.3B.9C.18D.27【解答】解:由题意可求(A⊗B)中所含的元素有0,4,5,则(A⊗B)⊗C中所含的元素有0,8,10,故所有元素之和为18.故选:C.二.填空题(共5小题)10.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有6个元素.【解答】解:由(x﹣1)2<3x+7得x2﹣5x﹣6<0,∴A=(﹣1,6),因此A∩Z={0,1,2,3,4,5},共有6个元素.故答案是611.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B={1,2,5}.【解答】解:∵A∩B={2},∴log2(a+3)=2.∴a=1.∴b=2.∴A={5,2},B={1,2}.∴A∪B={1,2,5},故答案为{1,2,5}.12.已知集合A={x|y=,x∈Z},B={y|y=2x﹣1,x∈A},则A∩B={﹣1,1}.【解答】解:根据题意,A={x|y=,x∈Z},∴有1﹣x2≥0,且x∈Z,解得x=﹣1,0或﹣1,故A={﹣1,0,1},由B={y|y=2x﹣1,x∈A},解得y=﹣3,﹣1,1故B={﹣3,﹣1,1},于是A∩B={﹣1,1}.故答案为{﹣1,1}13.设全集I={2,3,a2+2a﹣3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M的所有子集是∅、{1}、{2}、{1,2}.【解答】解:∵A∪(∁I A)=I,∴{2,3,a2+2a﹣3}={2,5,|a+1|},∴|a+1|=3,且a2+2a﹣3=5,解得a=﹣4或a=2.∴M={log22,log2|﹣4|}={1,2}.故答案为:∅、{1}、{2}、{1,2}14.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=0或.【解答】解:由A∩B=A∪B知A=B,又根据集合元素的互异性,所以有或,解得或,故a=0或.答案:0或三.解答题(共6小题)15.一个无重复数字的五位数,如果满足万位和百位上的数字都比千位上的数字小,百位和个位上的数字都比十位上的数字小,则这个五位数称为“倒W型数”,问:一共有多少个倒W型数?【解答】解:若5个数字不含0,则共有种不同选择,不妨假设组成5位数的数字为1,2,3,4,5,①若千位为3,百、万位排1,2,则十位为5,则有2个;②若千位为4,百、万位排3,2 或3,1或1,2,则十位即为1,2,3,则有2+2+2=6个;③若千位为5,百、万位不排4,3,排2,4,则十位排3,有1个;百、万位排4,1,则十位排3,有1个;百、万位排3,2,或3,1或1,2,则十位排4,则有2+2+2=6个;“倒W型数”有:2+6+1+1+6=16个.故不含0的“倒W型数”有:16×=2016个,若5个数字含0,则共有种不同选择,不妨假设组成5位数的数字为0,2,3,4,5,①若千位为3,百、万位排0,2,则十位为5,则有1个;②若千位为4,百、万位排3,2 或0,3或0,2,则十位即为0,2,3,则有2+1+1=4个;③若千位为5,百、万位不排4,3,排2,4,则十位排3,有1个;百、万位排4,0,则十位排3,有1个;百、万位排3,2,或0,3或0,2,则十位排4,则有2+1+1=4个;“倒W型数”有:2+4+1+1+4=12个.故不含0的“倒W型数”有:12×=1512个,综上共有2016+1512=3528个倒W型数16.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)已知函数f(x)=﹣x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2﹣4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;(Ⅱ)是否存在实数k,使函数f(x)=cos kx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.【解答】解:(1)由题意可知:f(x+1)>2f(x),即﹣(x+1)2+a(x+1)>2(﹣x2+ax)对一切[3,+∞)恒成立,整理得:(x﹣1)a<x2﹣2x﹣1,∵x≥3,∴a<==x﹣1﹣,令x﹣1=t,则t∈[2,+∞),g(t)=t﹣在[2,+∞)上单调递增,∴g(t)min=g(2)=1,∴a<1.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x﹣1)=m•2x﹣1,…当x∈[n,n+1)时,f(x)=mf(x﹣1)=m2f(x﹣2)=…=m n f(x﹣n)=m n•2x﹣n,即x∈[n,n+1)时,f(x)=m n•2x﹣n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且m n•2n﹣n≥m n﹣1•2n﹣(n﹣1),即m≥2.(3)问题(Ⅰ)∵当x∈[0,4]时,y∈[﹣4,0],且有f(x+4)=mf(x),∴当x∈[4n,4n+4],n∈Z时,f(x)=mf(x﹣4)=…=m n f(x﹣4n)=m n[(x﹣4n)2﹣4(x﹣4n)],当0<m≤1时,f(x)∈[﹣4,0];当﹣1<m<0时,f(x)∈[﹣4,﹣4m];当m=﹣1时,f(x)∈[﹣4,4];当m>1时,f(x)∈(﹣∞,0];当m<﹣1时,f(x)∈(﹣∞,+∞);综上可知:﹣1≤m<0或0<m≤1.问题(Ⅱ):由已知,有f(x+T)=Tf(x)对一切实数x恒成立,即cos k(x+T)=T cos kx对一切实数恒成立,当k=0时,T=1;当k≠0时,∵x∈R,∴kx∈R,kx+kT∈R,于是cos kx∈[﹣1,1],又∵cos(kx+kT)∈[﹣1,1],故要使cos k(x+T)=T cos kx恒成立,只有T=±1,当T=1时,cos(kx+k)=cos kx得到k=2nπ,n∈Z且n≠0;当T=﹣1时,cos(kx﹣k)=﹣cos kx得到﹣k=2nπ+π,即k=(2n+1)π,n∈Z;综上可知:当T=1时,k=2nπ,n∈Z;当T=﹣1时,k=(2n+1)π,n∈Z.17.已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁U B)={1,3,5,7},求集合B.【解答】解:U=A∪B={x∈N|0≤x≤10}={0,1,2,3,4,5,6,7,8,9,10},{1,3,5,7}⊆A,而B中不包含{1,3,5,7},用Venn图表示如图∴B={0,2,4,6,8,9,10}.18.已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.【解答】解:(1)∵9∈(A∩B),∴9∈B且9∈A,∴2a﹣1=9或a2=9,∴a=5或a=±3.检验知:a=5或a=﹣3.(2)∵{9}=A∩B,∴9∈(A∩B),∴a=5或a=﹣3.当a=5时,A={﹣4,9,25},B={0,﹣4,9},此时A∩B={﹣4,9}与A∩B={9}矛盾,所以a=﹣3.19.对于集合M、N,定义M⊖N={x|x∈M且x∉N},M⨁N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},B={y|y=﹣x+1,x>1},求A⨁B.【解答】解:由4y+9≥0,得y≥﹣,∴A={y|y≥﹣}.∵y=﹣x+1,且x>1,∴y<0,∴B={y|y<0},∴A⊖B={y|y≥0},B⊖A={y|y<﹣},∴A⨁B=(A⊖B)∪(B⊖A)={y|y<﹣或y≥0}.20.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.【解答】解:(I)由,得P={x|﹣1<x<3}.(II)Q={x||x﹣1|≤1}={x|0≤x≤2}.由a>0,得P={x|﹣1<x<a},又Q⊆P,结合图形所以a>2,即a的取值范围是(2,+∞).第1页(共1页)。
高一数学《集合与常用逻辑用语》检测卷与答案
![高一数学《集合与常用逻辑用语》检测卷与答案](https://img.taocdn.com/s3/m/f1aa70b16394dd88d0d233d4b14e852458fb3985.png)
高一数学《集合与常用逻辑用语》检测卷一.选择题(共8小题,满分40分,每小题5分)1.(5分)下列各对象可以组成集合的是()A.与1非常接近的全体实数B.中国著名的数学家C.高一年级视力比较好的同学D.某学校2022~2023学年度第一学期全体高一学生2.(5分)命题“∀∈0,1,3<2”的否定是()A.∀∈0,1,3>2B.∀∉0,1,3≥2C.∃0∈0,1,03≥02D.∃0∉0,1,03≥023.(5分)“≥4”是“≥4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)下列结论中正确的个数是()①命题“有些平行四边形是矩形”是存在量词命题;②命题“∀∈R,+1≥1”是全称量词命题;③命题“∃∈R,2−+1=0”的否定为“∀∈R,2−+1=0”;④命题“∀∈Z,∈N”是真命题;A.0B.1C.2D.35.(5分)已知集合=1<<,=2<<6,若⊆,则的取值范围是()A.≥6B.>6C.≤6D.<66.(5分)设全集=−3,−2,−1,0,1,2,3,集合=−2,−1,0,1,=−1,1,3,则−3,2=()A.∁U∩B.∁U∪C.∁U∩D.∁U∪7.(5分)已知集合=1,2,=3,4,定义集合:∗=s∈s∈,则集合∗的非空子集的个数是()个.A.16B.15C.14D.138.(5分)已知集合=1,2,3,=>,∩∁=,则实数的取值范围是()A.≥1B.≤1C.≥3D.≤3二.多选题(共4小题,满分20分,每小题5分)9.(5分)下列命题中是全称量词命题并且是真命题的是()A.∀∈,2+2+1≥0B.∃∈,2为偶数C.所有菱形的四条边都相等D.π是无理数10.(5分)下列说法正确的是()A.由1,2,3组成的集合可表示为1,2,3或3,2,1B.∅与0是同一个集合C.集合U=2−1与集合U=2−1是同一个集合D.集合U2+5+6=0与集合−2,−3是同一个集合11.(5分)若“<或>+2”是“−4<<1”的必要不充分条件,则实数的值可以是()A.−8B.−5C.−3D.112.(5分)已知全集=,集合=1,2,3,=+s∈,则下列结论正确的是()A.集合中有6个元素B.∪=1,2,3,4,5,6C.∁∩=4,5,6D.∩的真子集个数是3三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知G>3,G>5,则是的.(选“充分不必要条件”“必要不充分条件”“充要条件”“即不充分也不必要条件”之一填空)14.(5分)若1∈0,s2−2+1,则=.15.(5分)设命题G∀∈2,2,+2≥,若¬是假命题,则实数的取值范围是. 16.(5分)已知集合=2−5+6=0,=−1<<5,∈,则满足⊆B的集合的个数为.四.解答题(共6小题,满分70分)17.(10分)用适当的方法表示下列集合:(1)大于1且不大于17的质数组成的集合;(2)所有奇数组成的集合;(3)平面直角坐标系中,抛物线=2上的点组成的集合;(4)=s+=5,∈N+,∈N+;18.(12分)已知命题:“∀−1≤≤1,不等式42−−<0成立”是真命题.(Ⅰ)求实数的取值范围;(Ⅱ)若G−4<−<4是的充分不必要条件,求实数的取值范围.19.(12分)已知集合=B2−3+2=0,∈s∈(1)若A中只有一个元素,求a的值(2)若A中至多有一个元素,求a的取值范围(3)若⊆0,+∞,求a的取值范围20.(12分)已知命题G∀∈,2+2−3>0,命题G∃∈,2−2B++2<0.(1)若命题p为真命题,求实数m的取值范围;(2)若命题p,q至少有一个为真命题,求实数m的取值范围.21.已知集合=4≤<8,=2≤≤10,=<2.(1)求∪,∁R∩;(2)若∩≠∅,求的取值范围.22.(12分)在①∪=;②“∈(是非空集合)”是“∈”的充分不必要条件;③∩=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合=−1≤≤2+1,∈R,=−1≤≤3.(1)当=2时,求∪和∩∁;(2)若________,求实数的取值范围.高一数学《集合与常用逻辑用语》检测卷答案一.选择题(共8小题,满分40分,每小题5分)1.(5分)下列各对象可以组成集合的是()A.与1非常接近的全体实数B.中国著名的数学家C.高一年级视力比较好的同学D.某学校2022~2023学年度第一学期全体高一学生【解题思路】根据集合元素的确定性可得正确的选项.【解答过程】对于A,非常接近无法确定实数,根据元素的确定性可知A错误.对于B,著名无法确定数学家,根据元素的确定性可知B错误.对于C,视力比较好无法确定学生,根据元素的确定性可知C错误.对于D,根据元素的确定性可知D正确,故选:D.2.(5分)命题“∀∈0,1,3<2”的否定是()A.∀∈0,1,3>2B.∀∉0,1,3≥2C.∃0∈0,1,03≥02D.∃0∉0,1,03≥02【解题思路】由命题否定的定义即可得解.【解答过程】命题“∀∈0,1,3<2”的否定是∃0∈0,1,03≥02.故选:C.3.(5分)“≥4”是“≥4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】利用集合的包含关系可得正确的选项.【解答过程】由≥4,解得≤−4或≥4,因为U≥4为{U≤−4或≥4}的真子集,则“≥4”是“≥4”的充分不必要条件.故选:A.4.(5分)下列结论中正确的个数是()①命题“有些平行四边形是矩形”是存在量词命题;②命题“∀∈R,+1≥1”是全称量词命题;③命题“∃∈R,2−+1=0”的否定为“∀∈R,2−+1=0”;④命题“∀∈Z,∈N”是真命题;A.0B.1C.2D.3【解题思路】根据全称量词命题、存在量词命题的定义,利用存在量词命题的否定及全称量词命题真假的判断依据即可求解.【解答过程】对①,“有些”为存在量词,所以命题“有些平行四边形是矩形”是存在量词命题;故①正确;对②,“∀”为任意,即为全称量词,所以命题“∀∈R,+1≥1”是全称量词命题,故②正确;对③,命题“∃∈R,2−+1=0”的否定为“∀∈R,2−+1≠0”;故③错误;对④,∵∀∈Z,≥0,∴∈N,故该命题为真命题,故④正确,所以正确的有3个.故选:D.5.(5分)已知集合=1<<,=2<<6,若⊆,则的取值范围是()A.≥6B.>6C.≤6D.<6【解题思路】根据给定条件,利用集合的包含关系列式求解即得.【解答过程】集合=1<<,=2<<6,由⊆,得≥6,所以的取值范围是≥6.故选:A.6.(5分)设全集=−3,−2,−1,0,1,2,3,集合=−2,−1,0,1,=−1,1,3,则−3,2=()A.∁U∩B.∁U∪C.∁U∩D.∁U∪【解题思路】根据集合的交并补运算逐项判断即可.【解答过程】对A,由∁U∩=−3,2,3∩−1,1,3=3,选项A错误;对B,,∁U∪=−3,2,3∪−1,1,3=−3,−1,1,2,3,选项B错误;对C,∁U∩=∁U−1,1=−3,−2,0,2,3,选项C错误;对D,因为∪=−2,−1,0,1,3,所以∁U∪=−3,2,所以选项D正确.故选:D.7.(5分)已知集合=1,2,=3,4,定义集合:∗=s∈s∈,则集合∗的非空子集的个数是()个.A.16B.15C.14D.13【解题思路】先确定集合∗有四个元素,则可得其非空子集的个数.【解答过程】根据题意,∗=s∈s∈=1,3,1,4,2,3,2,4,则集合∗的非空子集的个数是24−1=15.故选:B.8.(5分)已知集合=1,2,3,=>,∩∁=,则实数的取值范围是()A.≥1B.≤1C.≥3D.≤3【解题思路】先由∩∁=得出⊆∁R,再根据自己概念即可得解.【解答过程】由已知∩∁R=,所以⊆∁R,又∁R=≤,所以≥3,故选:C.二.多选题(共4小题,满分20分,每小题5分)9.(5分)下列命题中是全称量词命题并且是真命题的是()A.∀∈,2+2+1≥0B.∃∈,2为偶数C.所有菱形的四条边都相等D.π是无理数【解题思路】判断命题是否为全称量词命题,关键在于有无“∀,所有的,全部的,任意的”这些量词连接,判断命题真假需要具体分析,说明全称量词命题为真需要推理,为假时只需举个反例推翻;说明存在量词命题为真只需举个例子,为假时需要推理.【解答过程】对于A项,因∀∈,2+2+1=(+1)2≥0恒成立,故该命题是全称量词命题,且是真命题,故A正确;对于B项,该命题是真命题,但不是全称量词命题,故B不正确;对于C项,该命题是全称量词命题,且是真命题,故C正确;对于D项,该命题是真命题,但不是全称量词命题,故D不正确.故选:AC.10.(5分)下列说法正确的是()A.由1,2,3组成的集合可表示为1,2,3或3,2,1B.∅与0是同一个集合C.集合U=2−1与集合U=2−1是同一个集合D.集合U2+5+6=0与集合−2,−3是同一个集合【解题思路】根据集合的定义和元素的性质可判断AB的正误,对于CD,可计算出各自集合后判断其正误.【解答过程】对于A,根据集合元素的无序性可得1,2,3、3,2,1表示同一集合,元素有1,2,3,故A正确.对于B,0不是空集,故B错误.对于C,U=2−1=R,而U=2−1=U≥−1,故两个集合不是同一个集合,故C错误.对于D,U2+5+6=0=−2,−3,故D正确.故选:AD.11.(5分)若“<或>+2”是“−4<<1”的必要不充分条件,则实数的值可以是()A.−8B.−5C.−3D.1【解题思路】根据必要不充分条件列不等式,由此求得正确答案.【解答过程】若“<或>+2”是“−4<<1”的必要不充分条件,则≥1或+2≤−4,解得≤−6或≥1,所以AD选项符合,BC选项不符合.故选:AD.12.(5分)已知全集=,集合=1,2,3,=+s∈,则下列结论正确的是()A.集合中有6个元素B.∪=1,2,3,4,5,6C.∁∩=4,5,6D.∩的真子集个数是3【解题思路】计算出集合后,结合集合性质逐个选项计算即可得.【解答过程】由=+s∈,且=1,2,3,故=2,3,4,5,6,故集合中有5个元素,A错误;∪=1,2,3,4,5,6,B正确;∁∩=4,5,6,C正确;∩=2,3,真子集个数是22−1=3个,D正确.故选:BCD.三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知G>3,G>5,则是的必要不充分条件.(选“充分不必要条件”“必要不充分条件”“充要条件”“即不充分也不必要条件”之一填空)【解题思路】由必要不充分条件的定义即可得解.【解答过程】由题意G>3,G>5,所以是的必要不充分条件.故答案为:必要不充分条件.14.(5分)若1∈0,s2−2+1,则=2.【解题思路】分类讨论结合互异性即可得出答案.【解答过程】因为1∈0,s2−2+1,所以=1或2−2+1=1,若=1,2−2+1=0,不满足互异性;若2−2+1=1⇒=0或2,又≠0,所以=2,故答案为:2.15.(5分)设命题G∀∈2,2,+2≥,若¬是假命题,则实数−∞【解题思路】根据命题的否定与原命题的关系得出命题是真命题,即可根据命题得出≤+,∈2,2,再根据基本不等式或对勾函数的性质得出+在∈2,2上的最小值,即可得出答案.【解答过程】∵¬是假命题,∴是真命题,∵G∀∈2,2,+2≥,∴≤+,∈2,2,当>0时,+2≥⋅=22,当且仅当=2时,即=2时,等号成立,∵∈2,2,可取到=2,∴min=22,∴≤22,故答案为:−∞,22.16.(5分)已知集合=2−5+6=0,=−1<<5,∈,则满足⊆B的集合的个数为7.【解题思路】化简集合s,结合求集合的子集的结论求结果.【解答过程】集合=b2−5+6=0=2,3,=−1<<5,∈=0,1,2,3,4,∴满足⊆B的集合中必有元素2,3,所以求满足⊆B的集合的个数即求0,1,4集合的真子集个数,所以满足⊆B的集合的个数为23−1=7个.故答案为:7.四.解答题(共6小题,满分70分)17.(10分)用适当的方法表示下列集合:(1)大于1且不大于17的质数组成的集合;(2)所有奇数组成的集合;(3)平面直角坐标系中,抛物线=2上的点组成的集合;(4)=s+=5,∈N+,∈N+;【解题思路】(1)结合质数的概念以及列举法即可求解.(2)由奇数的概念以及描述法即可求解.(3)由描述法即可求解.(4)用列举法即可求解.【解答过程】(1)大于1且不大于17的质数组成的集合=2,3,5,7,11,13,17.(2)所有奇数组成的集合==2+1,∈Z.(3)平面直角坐标系中,抛物线=2上的点组成的集合=s=2.(4)=s+=5,∈N+,∈N+=1,4,2,3,3,2,4,1. 18.(12分)已知命题:“∀−1≤≤1,不等式42−−<0成立”是真命题.(Ⅰ)求实数的取值范围;(Ⅱ)若G−4<−<4是的充分不必要条件,求实数的取值范围.【解题思路】(1)进行参变分离,进而通过求函数的最值解得答案;(2)根据充分不必要条件的定义即可得到答案.【解答过程】(1)由题意>42−−1≤≤1恒成立,设=42−=4−116,因为−1≤≤1,所以op B=−1=5,所以>5.(2)因为G−4<<+4是的充分不必要条件,所以−4≥5⇒≥9.19.(12分)已知集合=B2−3+2=0,∈s∈11(1)若A 中只有一个元素,求a 的值(2)若A 中至多有一个元素,求a 的取值范围(3)若⊆0,+∞,求a 的取值范围【解题思路】(1)分=0和≠0两种情况,结合二次方程的判别式分析求解;(2)分A 中有一个元素或=∅两种情况,结合二次方程的判别式分析求解;(3)分类讨论A 是否为空集以及是否为0,结合二次方程的Δ判别式和韦达定理分析求解.【解答过程】(1)若=0时,=U −3+2=当≠0时,可知方程B 2−3+2=0为一元二次方程,则Δ=9−8=0,解得=98;综上所述:=0或=98.(2)若A 中至多有一个元素,即A 中有一个元素或=∅,若A 中有一个,由(1)可知:=0或=98;若=∅,则≠0Δ=9−8<0,解得>98;综上所述:a 的取值范围为0∪+∞.(3)因为⊆0,+∞,则有:若=∅,由(2)可知:>98;若≠∅,则有:若=0时,由(1)可知=⊆0,+∞,符合题意;当≠0时,则Δ=9−8≥03>02>0,解得0<≤98;综上所述:a 的取值范围为0,+∞.20.(12分)已知命题G ∀∈,2+2−3>0,命题G ∃∈,2−2B ++2<0.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题p ,q 至少有一个为真命题,求实数m 的取值范围.【解题思路】(1)根据命题是真命题,将不等式转化为2>3−2对∈R 恒成立,即可求的取值范围;(2)求命题q 为真命题时的取值范围,再求两个集合的并集.12【解答过程】(1)若命题p 为真命题,则2>3−2对∈R 恒成立,因此3−2<0,解得>32.因此,实数m 的取值范围是>(2)若命题q 为真命题,则Δ=(−2p 2−4(+2)>0,即2−−2>0,解得<−1或m >2.因此,实数m 的取值范围是{<−1或>2};若命题p ,q 至少有一个为真命题,可得>∪{<−1或>2}={<−1或>32}.所以实数的取值范围{<−1或>32}.21.已知集合=4≤<8,=2≤≤10,=<2.(1)求∪,∁R ∩;(2)若∩≠∅,求的取值范围.【解题思路】(1)根据并集、补集、交集的知识求得正确答案.(2)根据∩≠∅列不等式,从而求得的取值范围.【解答过程】(1)依题意,集合=4≤<8,=2≤≤10,所以∪=2≤≤10,∁R =U <4或≥8,所以∁R ∩=U2≤<4或8≤≤10.(2)由于=<2,若∩≠∅,则2>4,∴>2.22.(12分)在①∪=;②“∈(是非空集合)”是“∈”的充分不必要条件;③∩=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合=−1≤≤2+1,∈R ,=−1≤≤3.(1)当=2时,求∪和∩∁;(2)若________,求实数的取值范围.【解题思路】(1)先求出集合∪,再求出∁,进而可得集合∩∁;(2)分情况处理,若选择①,考虑⊆的情形即可,要分=∅和≠∅两种情况分析;若选择②,考虑⊆≠∅且≠的情形即可;若选择③,考虑∩=∅的情形即可,要分=∅和≠∅两种情况分析.【解答过程】(1)当=2时,集合=1≤≤5,=−1≤≤3,所以∪=−1≤≤5,又因为∁=<−1或>3,所以∩∁=3<≤5.13(2)若选择①,∪=,则⊆,当=∅时,−1>2+1,解得:<−2,当≠∅时,又⊆,=−1≤≤3,所以−1≤2+1−1≥−12+1≤3,得0≤≤1,所以实数a 的取值范围是−∞,−2∪0,1.若选择②,“∈“是“∈”的充分不必要条件,则⊆≠∅且≠,因为=−1≤≤3,−1≤2+1−1≥−12+1<3或−1≤2+1−1>−12+1≤3,解得:0≤≤1,由于−1=−12+1=3无解,=不成立,所以实数a 的取值范围是0,1.(不检验≠扣1分)若选择③,∩=∅,当=∅时,−1>2+1,解得:<−2,当=∅时,又∩=∅,则−1≤2+1−1>3或2+1<−1,解得:−2≤<−1或>4,所以实数a 的取值范围是−∞,−1∪4,+∞.。
新版高中数学第一册第一章单元测试卷---集合与常用逻辑用语(含答案)
![新版高中数学第一册第一章单元测试卷---集合与常用逻辑用语(含答案)](https://img.taocdn.com/s3/m/53709dfcfe4733687f21aa26.png)
新版高中数学第一册第一章单元测试卷--集合与常用逻辑用语一.选择题(共9小题)1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}2.集合P={﹣1,0,1},Q={y|y=cos x,x∈R},则P∩Q=()A.P B.Q C.{﹣1,1}D.[0,1]3.设集合A={x|1≤x≤2},B={x|x≥a}.若A⊆B,则a的范围是()A.a<1B.a≤1C.a<2D.a≤24.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.85.设全集为R,集合A={x|﹣1<x<1},B={x|x≥1},则∁R(A∪B)等于()A.{x|0≤0<1}B.{x|x≥1}C.{x|x≤﹣1}D.{x|x>﹣1}6.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.7.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}8.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A ∩B的元素个数为()A.mn B.m+n C.n﹣m D.m﹣n9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18D.27二.填空题(共5小题)10.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有个元素.11.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B=.12.已知集合A={x|y=,x∈Z},B={y|y=2x﹣1,x∈A},则A∩B=.13.设全集I={2,3,a2+2a﹣3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M的所有子集是.14.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=.三.解答题(共6小题)15.一个无重复数字的五位数,如果满足万位和百位上的数字都比千位上的数字小,百位和个位上的数字都比十位上的数字小,则这个五位数称为“倒W型数”,问:一共有多少个倒W 型数?16.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)已知函数f(x)=﹣x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2﹣4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;(Ⅱ)是否存在实数k,使函数f(x)=cos kx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.17.已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁U B)={1,3,5,7},求集合B.18.已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.19.对于集合M、N,定义M⊖N={x|x∈M且x∉N},M⨁N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},B={y|y=﹣x+1,x>1},求A⨁B.20.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.参考答案与试题解析一.选择题(共9小题)1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}【解答】解:由题意知,N={0,2,4},故M∩N={0,2},故选:D.2.集合P={﹣1,0,1},Q={y|y=cos x,x∈R},则P∩Q=()A.P B.Q C.{﹣1,1}D.[0,1]【解答】解:∵Q={y|y=cos x,x∈R},∴Q={y|﹣1≤y≤1},又∵P={﹣1,0,1},∴P∩Q={﹣1,0,1}.故选:A.3.设集合A={x|1≤x≤2},B={x|x≥a}.若A⊆B,则a的范围是()A.a<1B.a≤1C.a<2D.a≤2【解答】解:根据题意,A⊆B,而A={x|1≤x≤2},在数轴上表示可得,必有a≤1,故选:B.4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8【解答】解:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选:C.5.设全集为R,集合A={x|﹣1<x<1},B={x|x≥1},则∁R(A∪B)等于()A.{x|0≤0<1}B.{x|x≥1}C.{x|x≤﹣1}D.{x|x>﹣1}【解答】解:∵集合A={x|﹣1<x<1},B={x|x≥1},∴A∪B={x|x>﹣1},∴∁R(A∪B)={x|x≤﹣1},故选:C.6.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.【解答】解:.由N={x|x2+x=0},得N={﹣1,0}.∵M={﹣1,0,1},∴N⊂M,故选:B.7.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}【解答】解:由已知可求得P={(1,m)},Q={(1﹣n,1+n)},再由交集的含义,有⇒,所以选A.8.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+n C.n﹣m D.m﹣n【解答】解法一:∵(∁U A)∪(∁U B)中有n个元素,如图所示阴影部分,又∵U=A∪B中有m个元素,故A∩B中有m﹣n个元素.解法二:∵(∁U A)∪(∁U B)=∁U(A∩B)有n个元素,又∵全集U=A∪B中有m个元素,由card(A)+card(∁U A)=card(U)得,card(A∩B)+card(∁U(A∩B))=card(U)得,card(A∩B)=m﹣n,故选:D.9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C 的所有元素之和为()A.3B.9C.18D.27【解答】解:由题意可求(A⊗B)中所含的元素有0,4,5,则(A⊗B)⊗C中所含的元素有0,8,10,故所有元素之和为18.故选:C.二.填空题(共5小题)10.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有6个元素.【解答】解:由(x﹣1)2<3x+7得x2﹣5x﹣6<0,∴A=(﹣1,6),因此A∩Z={0,1,2,3,4,5},共有6个元素.故答案是611.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B={1,2,5}.【解答】解:∵A∩B={2},∴log2(a+3)=2.∴a=1.∴b=2.∴A={5,2},B={1,2}.∴A∪B={1,2,5},故答案为{1,2,5}.12.已知集合A={x|y=,x∈Z},B={y|y=2x﹣1,x∈A},则A∩B={﹣1,1}.【解答】解:根据题意,A={x|y=,x∈Z},∴有1﹣x2≥0,且x∈Z,解得x=﹣1,0或﹣1,故A={﹣1,0,1},由B={y|y=2x﹣1,x∈A},解得y=﹣3,﹣1,1故B={﹣3,﹣1,1},于是A∩B={﹣1,1}.故答案为{﹣1,1}13.设全集I={2,3,a2+2a﹣3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M的所有子集是∅、{1}、{2}、{1,2}.【解答】解:∵A∪(∁I A)=I,∴{2,3,a2+2a﹣3}={2,5,|a+1|},∴|a+1|=3,且a2+2a﹣3=5,解得a=﹣4或a=2.∴M={log22,log2|﹣4|}={1,2}.故答案为:∅、{1}、{2}、{1,2}14.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=0或.【解答】解:由A∩B=A∪B知A=B,又根据集合元素的互异性,所以有或,解得或,故a=0或.答案:0或三.解答题(共6小题)15.一个无重复数字的五位数,如果满足万位和百位上的数字都比千位上的数字小,百位和个位上的数字都比十位上的数字小,则这个五位数称为“倒W型数”,问:一共有多少个倒W型数?【解答】解:若5个数字不含0,则共有种不同选择,不妨假设组成5位数的数字为1,2,3,4,5,①若千位为3,百、万位排1,2,则十位为5,则有2个;②若千位为4,百、万位排3,2 或3,1或1,2,则十位即为1,2,3,则有2+2+2=6个;③若千位为5,百、万位不排4,3,排2,4,则十位排3,有1个;百、万位排4,1,则十位排3,有1个;百、万位排3,2,或3,1或1,2,则十位排4,则有2+2+2=6个;“倒W型数”有:2+6+1+1+6=16个.故不含0的“倒W型数”有:16×=2016个,若5个数字含0,则共有种不同选择,不妨假设组成5位数的数字为0,2,3,4,5,①若千位为3,百、万位排0,2,则十位为5,则有1个;②若千位为4,百、万位排3,2 或0,3或0,2,则十位即为0,2,3,则有2+1+1=4个;③若千位为5,百、万位不排4,3,排2,4,则十位排3,有1个;百、万位排4,0,则十位排3,有1个;百、万位排3,2,或0,3或0,2,则十位排4,则有2+1+1=4个;“倒W型数”有:2+4+1+1+4=12个.故不含0的“倒W型数”有:12×=1512个,综上共有2016+1512=3528个倒W型数16.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)已知函数f(x)=﹣x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2﹣4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;(Ⅱ)是否存在实数k,使函数f(x)=cos kx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.【解答】解:(1)由题意可知:f(x+1)>2f(x),即﹣(x+1)2+a(x+1)>2(﹣x2+ax)对一切[3,+∞)恒成立,整理得:(x﹣1)a<x2﹣2x﹣1,∵x≥3,∴a<==x﹣1﹣,令x﹣1=t,则t∈[2,+∞),g(t)=t﹣在[2,+∞)上单调递增,∴g(t)min=g(2)=1,∴a<1.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x﹣1)=m•2x﹣1,…当x∈[n,n+1)时,f(x)=mf(x﹣1)=m2f(x﹣2)=…=m n f(x﹣n)=m n•2x﹣n,即x∈[n,n+1)时,f(x)=m n•2x﹣n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且m n•2n﹣n≥m n﹣1•2n﹣(n﹣1),即m≥2.(3)问题(Ⅰ)∵当x∈[0,4]时,y∈[﹣4,0],且有f(x+4)=mf(x),∴当x∈[4n,4n+4],n∈Z时,f(x)=mf(x﹣4)=…=m n f(x﹣4n)=m n[(x﹣4n)2﹣4(x﹣4n)],当0<m≤1时,f(x)∈[﹣4,0];当﹣1<m<0时,f(x)∈[﹣4,﹣4m];当m=﹣1时,f(x)∈[﹣4,4];当m>1时,f(x)∈(﹣∞,0];当m<﹣1时,f(x)∈(﹣∞,+∞);综上可知:﹣1≤m<0或0<m≤1.问题(Ⅱ):由已知,有f(x+T)=Tf(x)对一切实数x恒成立,即cos k(x+T)=T cos kx对一切实数恒成立,当k=0时,T=1;当k≠0时,∵x∈R,∴kx∈R,kx+kT∈R,于是cos kx∈[﹣1,1],又∵cos(kx+kT)∈[﹣1,1],故要使cos k(x+T)=T cos kx恒成立,只有T=±1,当T=1时,cos(kx+k)=cos kx得到k=2nπ,n∈Z且n≠0;当T=﹣1时,cos(kx﹣k)=﹣cos kx得到﹣k=2nπ+π,即k=(2n+1)π,n∈Z;综上可知:当T=1时,k=2nπ,n∈Z;当T=﹣1时,k=(2n+1)π,n∈Z.17.已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁U B)={1,3,5,7},求集合B.【解答】解:U=A∪B={x∈N|0≤x≤10}={0,1,2,3,4,5,6,7,8,9,10},{1,3,5,7}⊆A,而B中不包含{1,3,5,7},用Venn图表示如图∴B={0,2,4,6,8,9,10}.18.已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.【解答】解:(1)∵9∈(A∩B),∴9∈B且9∈A,∴2a﹣1=9或a2=9,∴a=5或a=±3.检验知:a=5或a=﹣3.(2)∵{9}=A∩B,∴9∈(A∩B),∴a=5或a=﹣3.当a=5时,A={﹣4,9,25},B={0,﹣4,9},此时A∩B={﹣4,9}与A∩B={9}矛盾,所以a=﹣3.19.对于集合M、N,定义M⊖N={x|x∈M且x∉N},M⨁N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},B={y|y=﹣x+1,x>1},求A⨁B.【解答】解:由4y+9≥0,得y≥﹣,∴A={y|y≥﹣}.∵y=﹣x+1,且x>1,∴y<0,∴B={y|y<0},∴A⊖B={y|y≥0},B⊖A={y|y<﹣},∴A⨁B=(A⊖B)∪(B⊖A)={y|y<﹣或y≥0}.20.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.【解答】解:(I)由,得P={x|﹣1<x<3}.(II)Q={x||x﹣1|≤1}={x|0≤x≤2}.由a>0,得P={x|﹣1<x<a},又Q⊆P,结合图形所以a>2,即a的取值范围是(2,+∞).第1页(共1页)。
(易错题)高中数学必修第一册第一单元《集合与常用逻辑用语》测试(有答案解析)
![(易错题)高中数学必修第一册第一单元《集合与常用逻辑用语》测试(有答案解析)](https://img.taocdn.com/s3/m/24ae30d1581b6bd97e19ea18.png)
一、选择题1.设,a b 为非零向量,则“a b a b +=+”是“a 与b 共线”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 2.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( )A .(-1,3)B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)3.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)1,-+∞D .(],3-∞4.已知集合{}{}2|13,|4,P x R x Q x R x =∈≤≤=∈≥ 则()R P Q ⋃=A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞5.已知在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则“113a =”是“数列{}n a 唯一”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.非零向量,a b 满足4,2b a ==且a 与b 夹角为θ,则“23b a -=”是“3πθ=”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件7.“3,a =23b =”是双曲线22221(0,0)x y a b a b -=->>的离心率为72( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件8.设点A ,B ,C 不共线,则“()AB AC BC +⊥”是“AB AC =”( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件9.对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则实数m 的取值范围是( ) A .[]0,2 B .(],2-∞ C .()0,2D .(),2-∞10.设,a b 是向量,“a a b =+”是“0b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.已知平面向量a 和b ,则“||||b a b =-”是“1()02b a a -⋅=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件12.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若“存在x ∈[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___. 14.已知集合(){},320,A a b a b a N =+-=∈,()(){}2,10,B a b k a a b a N =-+-=∈,若存在非零整数k ,满足A B ⋂≠∅,则k =______.15.不等式220mx mx --<对任意x ∈R 恒成立的充要条件是m ∈__________. 16.已知集合1,2,3,{}4,5,6X Y Z ⋃⋃=,若1,21,2,3,4,5}{},3{,X Y X Y X ⋂=⋃=∉,则集合X Y Z 、、所有可能的情况有_________种. 17.已知下列命题:①命题“213x R x x ∃∈+>,”的否定是“213x R x x ∀∈+<,”;②已知,p q 为两个命题,若p q ∨“”为假命题,则()()“”p q ⌝⌝∧为真命题;③“2a >”是“5a >”的充分不必要条件;④“若0,xy =则0x =且0y =”的逆否命题为真命题.其中 真命题的序号是__________.(写出所有满足题意的序号) 18.已知集合{}1A x x =>,{}22B x x x =<,则AB =__________.19.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是___________.20.下列有关命题的说法正确的是__________________.①命题“若x 2-3x +2=0,则x =1”的逆否命题为:若x ≠1,则x 2-3x +2≠0 ②x =1是x 2-3x +2=0的充分不必要条件 ③若p ∧q 为假命题,则p ,q 均为假命题④对于命题p :∃x ∈R ,使得x 2+x +1<0,则非p :∀x ∈R , 均有x 2+x +1≥0三、解答题21.已知集合411A x x ⎧⎫=>⎨⎬+⎩⎭,集合{}22220,B x x x a a a R =+-+<∈.(1)求集合A ;(2)若x B ∈是x A ∈的必要条件,求实数a 的取值范围.22.已知函数4321x x A x -+⎧⎫⎪⎪=>⎨⎬⎪⎪⎩⎭,{}321B x m x m =-≤≤+.(1)当2m =时,求A 和()RA B ⋂;(2)若x B ∈是x A ∈的充分不必要条件,求实数m 的取值范围. 23.设集合{|33},{|13}A x x B x a x a =-≤≤=-≤≤+. (1)若1a =,求,A B A B ;(2)若AB B =,求实数a 的取值范围.24.设集合{}22240A x x x =+-≥,集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,集合1C x ax a ⎧⎛⎫=-⎨ ⎪⎝⎭⎩()}60x +≤.(1)求AB ;(2)若C A ⊆,求实数a 的取值范围. 25.已知{}2680A x x x =-+≤,201B x x ⎧⎫=≥⎨⎬-⎩⎭,{}260C x x mx =-+<,且“x AB ∈”是“xC ∈”的充分不必要条件.(1)求AB ;(2)求实数m 的取值范围.26.(1)已知直线:3420l x y+=-,求与直线l 平行且到直线l 距离为2的直线方程;(2)若关于x 的不等式2(1)0x a x a -++<的解集是[0,1)的子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据向量共线的性质依次判断充分性和必要性得到答案. 【详解】若a b a b +=+,则a 与b 共线,且方向相同,充分性; 当a 与b 共线,方向相反时,a b a b ≠++,故不必要. 故选:A . 【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.2.C解析:C 【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解. 【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-, 所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力.3.B解析:B 【分析】解一元二次不等式化简命题p ,再利用集合间的基本关系,求得参数a 的取值范围. 【详解】由2:230p x x +->,知3x <-或1x >, 则p ⌝为31x -≤≤,q ⌝为x a ≤, p ⌝是q ⌝的充分不必要条件,∴1{|}3x x ≤≤-{|}x x a ≤∴1a ≥.故选:B. 【点睛】本题考查利用命题的充分不必要条件求参数的取值范围,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将充分不必要条件转化为真子集的关系.4.B解析:B 【解析】有由题意可得:{}|22R C Q x x =-<< , 则()RP Q ⋃= ( -2,3 ] .本题选择B 选项.5.C解析:C 【分析】根据条件“在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项”求解数列{}n a ,然后由充分必要条件的定义判断.【详解】在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则2213(2)(1)(3)a a a +=++,22213134433a a a a a a ++=+++,设{}n a 的公比为q ,则22222111114433a q a q a q a a q ++=+++,211430q q a -+-=(*),10a >,因为1114164(3)40a a ∆=--=+>,所以此方程一定有两不等实解,当等比数列{}n a 只有一解时,方程(*)的两解中一解为0q =需舍去,此时113a =; 若113a =,方程(*)有一个解是0q =,另一解4q =.数列{}n a 只有一解, 由上分析知113a =是数列{}n a 唯一的充要条件. 故选:C . 【点睛】本题考查充分必要条件的判断,掌握充分必要条件的定义是解题关键.6.C解析:C 【分析】由题意,若23b a -=,根据向量的数量积和模的计算公式,可得1cos 2θ=,得到3πθ=,;反之也可求得23b a -=,即可得到答案.【详解】由题意,非零向量,a b 满足4,2b a ==且a 与b 夹角为θ, 若23b a -=,即2222()2164242cos 12b a b a b a a b θ-=-=+-⋅=+-⨯⨯=,解得1cos 2θ=,又因为[]0,θπ∈,可得3πθ=,即充分性是成立的;若3πθ=,由2222()2164242cos123b a b a b a a b π-=-=+-⋅=+-⨯⨯=,可得23b a -=,即必要性是成立的,所以“23b a -=”是“3πθ=”的充分必要条件.故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,其中解答中熟记向量的数量积的运算,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力.7.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b -=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有2222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.8.C解析:C 【分析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可. 【详解】由于点A ,B ,C 不共线,则()()0AB AC BC AB AC BC +⊥⇔+⋅=()()22AB AC AC AB AC AB ⇔+⋅-=-=22AC AB ⇔=⇔“AB AC =”;故“()AB AC BC +⊥”是“AB AC =”的充分必要条件. 故选:C . 【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.9.D解析:D 【分析】设(1,2)x ∈时,2485()1x x f x x -+=-的值域A ,2()1mx m g x x -+=-的值域B ,只要A B ⊆即可满足题意.【详解】设2485()1x x f x x -+=-((1,2)x ∈),24(1)11()4(1)11x f x x x x -+==-+--, 设1t x =-,则1()4f x y t t ==+,则(0,1)x ∈,由勾形函数性质知当102t <<时,y 递减,当112t <<时,y 递增, min 1144122y =⨯+=,[4,)y ∈+∞,即()f x 值域为[4,)+∞, 2()1mx m g x x -+=-((1,2)x ∈),设1x t -=,(0,1)t ∈,则2()g x y m t==+,(0,1)t ∈时,2y m t=+是减函数,(2,)y m ∈++∞,即()(2,)g x m ∈++∞, 对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则24m +<,2m <.故选:D . 【点睛】本题考查含有存在题词与全称题词的命题恒成立问题,解题关键是把问题转化为集合之间的包含关系.10.B解析:B 【分析】根据向量的运算性质结合充分条件和必要条件的判定,即可得出答案. 【详解】 当12a b =-时,1122a b b b b a +=-+==,推不出0b =当0b =时,0b =,则0a b a a +=+= 即“a a b =+”是“0b =”的必要不充分条件 故选:B【点睛】本题主要考查了判断必要不充分条件,属于中档题.11.C解析:C 【分析】||||b a b =-两边平方得出22()b a b =-,展开等价变形得出102b a a ⎛⎫-⋅= ⎪⎝⎭,根据充分条件和必要条件的定义进行判断即可. 【详解】22||||()b a b b a b =-⇔=-22221122020022b a a b b a a b a b a b a a ⎛⎫⎛⎫⇔=-⋅+⇔-⋅=⇔⋅-=⇔-⋅= ⎪ ⎪⎝⎭⎝⎭则“||||b a b =-”是“1()02b a a -⋅=”的充分必要条件 故选:C 【点睛】本题主要考查了充要条件的证明,涉及了向量运算律的应用,属于中档题.12.C解析:C 【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案. 【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>. 所以22lg lg (lg )(lg )lg lg b aa b b a ab a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >. 又因为log log a b a b b a <,所以log log a b b ba a <,即2(log )ab b a<. 当a b =时,11<,不等式不成立. 当a b >时,01b a<<,log 1a b >,不等式2(log )a bb a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a bb a<成立. 必要性满足.综上:p 是q 的充要条件. 故选:C 【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.二、填空题13.【分析】转化为在上有解不等式右边构造函数利用单调性求出最大值即可得解【详解】存在x ∈﹣11成立即在上有解设易得y =f(x)在﹣11为减函数所以即即即所以故答案为:【点睛】关键点点睛:将问题转化为在上解析:9(,)2-+∞【分析】转化为213x xa +-<在[1,1]x ∈-上有解,不等式右边构造函数,利用单调性求出最大值即可得解. 【详解】存在x ∈[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数,所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞. 【点睛】关键点点睛:将问题转化为213x xa +-<在[1,1]x ∈-上有解进行求解是解题关键. 14.【分析】首先根据条件得到有实数解从而得到又根据为非零整数所以再分别验证的值即可得到答案【详解】因为存在非零整数满足所以有实数解且整理得:有实数解且所以解得因为为非零整数所以当时解得或符合题意当时解得 解析:1-【分析】首先根据条件得到()2231b a b k a a =-⎧⎪⎨=-+⎪⎩k ≤≤,又根据k 为非零整数,所以1,1,2k =-,再分别验证k 的值即可得到答案. 【详解】因为存在非零整数,满足A B ⋂≠∅,所以()2231b a b k a a =-⎧⎪⎨=-+⎪⎩有实数解,且a N ∈. 整理得:()2320ka k a k +-+-=有实数解,且0k ≠,a N ∈.所以()()23420k k k ∆=---≥k ≤≤, 因为k 为非零整数,所以1,1,2k =-当1k =-时,2430a a -+=,解得1a =或3,符合题意. 当1k =时,2210a a +-=,解得a N ∉,舍去. 当2k =时,220a a +=,解得a N ∉,舍去. 综上1k =-. 故答案为:1- 【点睛】本题主要考查集合的交集运算,同时一元二次不等式的解法,属于中档题.15.【分析】先根据一元二次不等式恒成立得再根据充要条件概念即可得答案【详解】解:当时显然满足条件当时由一元二次不等式恒成立得:解得:综上所以不等式对任意恒成立的充要条件是故答案为:【点睛】本题考查充要条 解析:(]8,0-【分析】先根据一元二次不等式恒成立得(]8,0m ∈-,再根据充要条件概念即可得答案. 【详解】解:当0m =时,显然满足条件,当0m ≠时,由一元二次不等式恒成立得:2800m m m ⎧+<⎨<⎩,解得:80m -<<综上,(]8,0m ∈-,所以不等式220mx mx --<对任意x ∈R 恒成立的充要条件是(]8,0m ∈-, 故答案为:(]8,0- 【点睛】本题考查充要条件的求解,一元二次不等式恒成立问题,是基础题.16.【分析】通过确定XYZ 的子集利用乘法公式即可得到答案【详解】根据题意可知由于可知Z 共有种可能而有4种可能故共有种可能所以答案为128【点睛】本题主要考查子集相关概念乘法分步原理意在考查学生的分析能力 解析:128【分析】通过确定X,Y ,Z 的子集,利用乘法公式即可得到答案.【详解】根据题意,可知1,2,1,236{}{},{}Z X Y ⊆⊆⊆,,由于{6}Z ⊆,可知Z 共有 52=32种可能,而(){4},5X Y ⊆⋃有4种可能,故共有432=128⨯种可能,所以答案为128. 【点睛】本题主要考查子集相关概念,乘法分步原理,意在考查学生的分析能力,计算能力,难度较大.17.②【分析】①写出命题的否定即可判定正误;②由为假命题得到命题都是假命题由此可判断结论正确;③由时不成立反之成立由此可判断得到结论;④举例说明原命题是假命题得出它的逆否命题也为假命题【详解】对于①中命解析:② 【分析】①写出命题“213x R x x ∃∈+>,”的否定,即可判定正误;②由p q ∨“”为假命题,得到命题,p q 都是假命题,由此可判断结论正确;③由2a >时,5a >不成立,反之成立,由此可判断得到结论; ④举例说明原命题是假命题,得出它的逆否命题也为假命题. 【详解】对于①中,命题“213x R x x ∃∈+>,”的否定为“213x R x x ∀∈+≤,”,所以不正确;对于②中,命题,p q 满足p q ∨“”为假命题,得到命题,p q 都是假命题,所以,p q ⌝⌝都是真命题,所以()()“”p q ⌝⌝∧为真命题,所以是正确的;对于③中,当2a >时,则5a >不一定成立,当5a >时,则2a >成立,所以2a >是5a >成立的必要不充分条件,所以不正确;对于④中,“若0,xy =则0x =且0y =”是假命题,如3,0x y ==时,所以它的逆否命题也是假命题,所以是错误的; 故真命题的序号是②. 【点睛】本题主要考查了命题的否定,复合命题的真假判定,充分与必要条件的判断问题,同时考查了四种命题之间的关系的应用,试题有一定的综合性,属于中档试题,着重考查了推理与论证能力.18.【解析】由得:则故答案为 解析:()1,2【解析】由{}22B x x x =<得:{}02B x x =<<,则()1,2A B ⋂=,故答案为()1,2.19.【分析】若使得成立只要保证在R 上不单调即可【详解】函数的对称轴为当即时在上不是单调函数则在R 上也不是单调函数满足题意;当即时分段函数为R 上的单调增函数不满足题意故答案为:【点睛】本题以命题的形式考查 解析:(,2)-∞【分析】若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,只要保证()f x 在R 上不单调即可. 【详解】函数2y x ax =-+的对称轴为=2a x , 当12a<即2a <时,2y x ax =-+在(),1-∞上不是单调函数, 则()f x 在R 上也不是单调函数,满足题意; 当12a>即2a >时,分段函数为R 上的单调增函数,不满足题意. 故答案为:(,2)-∞ 【点睛】本题以命题的形式考查了分段函数单调性,考查了转化的思想,属于中档题.20.①②④【分析】对4个命题分别进行判断即可得出结论【详解】解:①命题若则的逆否命题是:若则正确;②若则成立即充分性成立;若则或此时不一定成立即必要性不成立故是的充分不必要条件正确;③若为假命题则至少有解析:①②④ 【分析】对4个命题分别进行判断,即可得出结论. 【详解】解:①命题“若2320x x -+=,则1x =”的逆否命题是:“若1x ≠,则2320x x -+≠”,正确;②若1x =,则2321320x x -+=-+=成立,即充分性成立;若2320x x -+=,则1x =或2x =,此时1x =不一定成立,即必要性不成立,故“1x =”是“2320x x -+=”的充分不必要条件,正确;③若p q ∧为假命题,则p 、q 至少有一个为假命题,不正确④对于命题:p x R ∃∈使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++,正确. 故答案为:①②④ 【点睛】此题注重对基础知识的考查,特别是四种命题之间的真假关系,复合命题的真假关系,特称命题与全称命题的真假及否定,是学生易错点,属中档题.三、解答题21.(1)()13A ,=-;(2)(][),35,-∞-+∞.【分析】(1)解分式不等式411x >+可得集合A ; (2)由已知条件可得出A B ⊆,对a -和2a -的大小关系进行分类讨论,结合A B ⊆可得出实数a 所满足的不等式(组),综合可解得实数a 的取值范围. 【详解】 (1)因为411x >+,所以431011x x x --=>++, 所以()()130x x +-<,所以13x,故()13A ,=-;(2)由22220x x a a +-+<得()()20x a x a +-+<, 由x B ∈是x A ∈的必要条件,知A B ⊆.①当2a a -<-,即1a >时,{}2B x a x a =-<<-,则1231a a a >⎧⎪-≥⎨⎪-≤-⎩,解得5a ≥;②当2a a ->-,即1a <时,{}2B x a x a =-<<-,则1321a a a <⎧⎪-≥⎨⎪-≤-⎩,解得3a ≤-;③当2a a =-,即1a =时,B =∅,不满足A B ⊆. 综上可得,实数a 的取值范围为(][),35,-∞-+∞.【点睛】结论点睛:本题考查利用充分条件求参数,一般可根据如下规则求解: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,则q 对应集合与p 对应集合互不包含. 22.(1)()()34-∞-+∞,,,[]1,4-;(2)2m <-或7m >.【分析】(1)由指数函数的单调性可得403x x ->+,解分式方程即可得集合A ,从而可求出()R A B ⋂. (2)由题意知B A ,分B =∅和B ≠∅两种情况进行讨论,从而可求出实数m 的取值范围.【详解】 (1)∵4321x x -+>,∴40322x x -+>,∴403x x ->+,解得3x <-或4x >, ∴()(),34,A =-∞-⋃+∞,又2m =,[]1,5B =-,[]3,4RA =-∴()[]1,4RA B ⋂=-.(2)∵x B ∈是x A ∈的充分不必要条件,∴BA ,(1)当B =∅时,则321m m ->+,即4m <-.(2)当B ≠∅时,32134m m m -≤+⎧⎨->⎩或321213m m m -≤+⎧⎨+<-⎩∴7m >或42m -≤<- 综上所述,2m <-或7m >. 【点睛】 结论点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1){}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤;(2)20a -≤≤. 【分析】(1)代入a 的值,根据交集和并集的概念以及运算求解出,A B A B ;(2)根据A B B =分析出B A ⊆,由此列出关于a 的不等式,求解出a 的取值范围.【详解】(1)当1a =时,{}04B x x =≤≤且{}33A x x =-≤≤, 所以{}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤; (2)因为AB B =,所以B A ⊆,且31a a +>-,所以B ≠∅,所以1333a a -≥-⎧⎨+≤⎩,所以20a -≤≤.【点睛】结论点睛:常见集合的交集、并集运算性质: (1)若AB B =,则B A ⊆;(2)若A B B ⋃=,则A B ⊆. 24.(1)[)4,+∞;(2)1,02⎡⎫-⎪⎢⎣⎭. 【分析】(1)解二次不等式求出集合A ,利用基本不等式求出集合B ,进而可得AB ;(2)由()2160a x x a ⎛⎫-+≤ ⎪⎝⎭,知0a ≠,分0a >和0a <两类讨论,利用C A ⊆,即可求得a 的取值范围. 【详解】解:(1)集合{}22240A x x x =+-≥, 即满足()()640x x +-≥,解一元二次不等式可得{6A x x =≤-或}4x ≥,而集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,则111111y x x x x =+=++-++11≥=,当且仅当111x x +=+时,即0x =时取等号 所以{}1B y y =≥;由集合交集运算可得{6A B x x ⋂=≤-或}4x ≥{}1y y ⋂≥{}4x x =≥ 即[)4,AB =+∞;(2)集合()160C x ax x a ⎧⎫⎛⎫=-+≤⎨⎬ ⎪⎝⎭⎩⎭. 则0a ≠.化简可得()2160a x x a ⎛⎫-+≤ ⎪⎝⎭当0a >时,可得216C x x a ⎧⎫=-≤≤⎨⎬⎩⎭,{6A x x =≤-或}4x ≥ 则C A ⊆不成立.当0a <时,可得{6C x x =≤-或21x a ⎫≥⎬⎭若C A ⊆,则214a≤,解得102a -≤<或102a <≤. 又由于0a <,所以102a -≤<. 综上可知,当C A ⊆时实数a 的取值范围为1,02a ⎡⎫∈-⎪⎢⎣⎭. 【点睛】本题主要考查交集及其运算,考查集合的包含关系,考查学生计算能力和分类讨论的思想,是中档题.25.(1)[]2,4A B ⋂=;(2)11,2⎛⎫+∞ ⎪⎝⎭. 【分析】(1)解出集合A 、B ,利用交集的定义可求得集合A B ;(2)根据题意可得知AB C ,可知,不等式260x mx -+<在区间[]2,4上恒成立,可得出关于实数m 的不等式组,即可解得实数m 的取值范围. 【详解】(1){}[]26802,4A x x x =-+≤=,()201,1B x x ⎧⎫=≥=+∞⎨⎬-⎩⎭,[]2,4A B ∴=;(2)因为“x AB ∈”是“xC ∈”的充分不必要条件,A B ∴ C ,设()26f x x mx =-+,由题意可知,不等式()0f x <在区间[]2,4上恒成立, 则()()2102042240f m f m ⎧=-<⎪⎨=-<⎪⎩,解得112m >. 因此,实数m 的取值范围是11,2⎛⎫+∞ ⎪⎝⎭. 【点睛】本题考查交集的计算,同时也考查了利用充分不必要条件求参数,考查了二次不等式在区间上恒成立问题的求解,考查计算能力,属于中等题. 26.(1)34120x y -+=或3480x y --=;(2)[]0,1 【分析】(1)根据两直线平行,设所求直线为340x y c -+=,利用两平行线间的距离公式,求出c 的值,从而得到答案;(2)解一元二次不等式,然后按1a <,1a =,1a >进行分类讨论,得到答案. 【详解】(1)设与直线:3420l x y+=-平行的直线方程为340x y c -+=,2=,解得12c =或8c =-,所以所求直线方程为34120x y -+=或3480x y --=.(2)解关于x 的不等式2(1)0x a x a -++<,可化为()()10x x a --<, ①当1a <时候,解集为(),1a , 要使(),1a 是[)0,1的子集,所以0a ≥, 所以得到[)0,1a ∈, ②当1a =时,解集为∅,满足解集是[)0,1的子集,符合题意, ③当1a >时,解集为()1,a ,此时解集不是[)0,1的子集,不符合题意. 综上所述,a 的取值范围为[]0,1.【点睛】本题考查根据平行求直线方程,根据平行线间的距离求参数,根据集合的包含关系求参数的范围,属于中档题.。
第1章 集合与常用逻辑用语 高中数学必修第一册(Word含答案)
![第1章 集合与常用逻辑用语 高中数学必修第一册(Word含答案)](https://img.taocdn.com/s3/m/05ab1eda0066f5335b81216d.png)
第一章:集合与常用逻辑用语测试题一、选择题:(每小题5分,共65分)1、已知集合A={2,4,5},B={3,5,7},则A ∪B=( )。
A 、{5}B 、{2,4,5}C 、{3,5,7}D 、{2,3,4,5,7} 2、设集合{|21}A x x =-<<,{|04}B x x =<≤,则=B A ( )。
A .{|24}x x -<≤B .{|01}x x <<C .{|14}x x <≤D .{|20}x x -<< 3、已知全集U =R ,集合{}|23A x x =-≤≤,那么集合A =R( )。
A .{}|23x x -<<B .{}|23x x x -或≤≥ C .{}|23x x -≤≤D .{}|23x x x <->或4、已知集合M={x|x 2=1},集合N={x|ax=1},若N ⊂≠M ,那么a 的值为( )。
A 、1B 、-1C 、1或-1D 、0,1或-1 5、设a,b ∈R ,集合{1,a+b,a}=⎭⎬⎫⎩⎨⎧a b b ,,0,则b-a 等于( )。
A 、1 B 、-1 C 、2 D 、-26、已知:P={y|y=x 2+1,x ∈R},Q={y|y=x+1,x ∈R}则P ∩Q=( )。
A.RB.),1[+∞C.{0,1}D.{(0,1),(1,2)} 7、设集合M={}1,2,3|---x ,N={}02|2≤-+x x x ,则MN =( )。
A 、{-2,0,1} B 、{-3,-2,-1}C 、{-2,-1,0,1}D 、{-3,-2,-1,0,1}8、“三角形的三条边相等”是“三角形为等边三角形”的( )。
A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件9、下列命题中,真命题是( )。
A .质数都是奇数B .{||1|3}x N x ∈-<是无限集C .π是有理数D .250x x -=的根是自然数10、22530x x --<的一个必要不充分条件是( )。
苏州市必修一第一单元《集合》检测(含答案解析)
![苏州市必修一第一单元《集合》检测(含答案解析)](https://img.taocdn.com/s3/m/2d4e86f1f18583d04864595c.png)
一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,2 2.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个 3.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b cB .()(),,c a b dC .(][),,a c d bD .()(),,c a d b 4.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=U AB ,则满足条件的集合A 的个数为( ) A .7个B .8个C .15个D .16个 5.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( )A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥6.已知集合302x A x x ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,7.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( ) A .B A ⊆B .A B =C .C B ⊆D .A C ⊆ 8.集合2|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|()()0}B x x a x b =--<,若“2a =-”是“A B ⋂≠∅”的充分条件,则b 的取值范围是( )A .1b <-B .1b >-C .1b ≤-D .12b -<<- 9.设集合1{|0}x A x x a -=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 ()A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥10.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若BA B =,则a 的取值范围为( )A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭ 11.对于下列结论:①已知∅ 2{|40}x x x a ++=,则实数a 的取值范围是(],4-∞;②若函数()1y f x =+的定义域为[)2,1-,则()y f x =的定义域为[)3,0-;③函数2y =(],1-∞;④定义:设集合A 是一个非空集合,若任意x A ∈,总有a x A -∈,就称集合A 为a 的“闭集”,已知集合{}1,2,3,4,5,6A ⊆,且A 为6的“闭集”,则这样的集合A 共有7个. 其中结论正确的个数是( )A .0B .1C .2D .312.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( )A .310B .112C .4564D .38 二、填空题 13.已知,a b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为_____________.14.在①A B A =,②A B ⋂≠∅,③R B C A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由. 问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?15.非空集合G 关于运算⊕满足:①对任意,a b G ∈,都有a b G +∈;②存在e G ∈使得对于一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合与运算:①G 是非负整数集,⊕:实数的加法;②G 是偶数集,⊕:实数的乘法;③G 是所有二次三项式构成的集合,⊕:多项式的乘法;④{},G x x a a b Q ==+∈,⊕:实数的乘法;其中属于融洽集的是________(请填写编号) 16.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 17.设集合A 、B 是实数集R 的子集,[2,0]A B =-R ,[1,2]B A =R,()()[3,5]A B =R R ,则A =________18.设全集U =R ,1|11A x x ⎧⎫⎪⎪=<⎨⎬-⎪⎪⎩⎭,{}2|540B x x x =-+>,则()U A C B =______.19.已知集合{|11},{|01}A x a x a B x x =-<<+=<<若A B φ⋂=,实数a 的取值范围是______.20.已知集合{}{}2430,21x A x x x B x =++≥<,则A B =____________三、解答题21.设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B .(1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由;(3)若A B ⋂≠∅,求实数a 的取值范围.22.设集合(){lg 1A x y x ==-,{}230B x x x a =-+=. (1)若2a =时,求A B ;(2)若A B A ⋃=,求a 的取值范围.23.已知集合2A {x |x x 20}=--≥,集合()22{|1210,}B x m x mx m R =-+-<∈ ()1当m 2=时,求集合R A 和集合B ;()2若集合B Z ⋂为单元素集,求实数m 的取值集合;()3若集合()A B Z ⋂⋂的元素个数为()*n n N ∈个,求实数m 的取值集合24.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求U B A ;(2)若“U x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.25.已知集合{}25A x x =-≤≤,集合{}121B x p x p =+≤≤-,若AB B =,求实数p 的取值范围.26.设集合{}|36A x x =≤<,集合{}|19B x x =<≤.求:(1)A B ;(2)()R C A B ⋃.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题.【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分. 2.C解析:C【分析】先求集合B ,再求并集、交集、补集,最后根据元素确定子集个数.【详解】因为{}2|1,{1,2,5,10}B x x t t A ==+∈=,所以{}{}1,0,1,2,3510,1,2,A B A B =-=,,*{1,0,3,5,10}A B ∴=-因此集合*A B 的子集有5232=个,故选:C【点睛】本题考查并集、交集、补集定义以及子集个数,考查综合本分析求解能力,属基础题. 3.C解析:C【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案.【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C【点睛】 本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.4.C解析:C【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果.【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则A B 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=. 故选C.【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.5.C解析:C【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案.【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤. 综上所述:3m ≤故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.6.B解析:B【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围.【详解】 解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B .【点睛】本题考查集合间的关系,属于基础题.7.D解析:D【分析】根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系.【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤, {}{}|1324B x x x x =-≤=-≤≤,{}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 可知,A C ⊆.故选:D.【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.8.B解析:B【分析】由题意知{}|12A x x =-<<,当2a =-时,()(){}|20B x x x b =+-<,且A B ⋂≠∅成立,通过讨论2b <-,2b =-,2b >-三种情况,可求出b 的取值范围.【详解】 解:{}2|0|121x A x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭,当2a =-时,()(){}|20B x x x b =+-< 当2b <- 时,{}|2B x b x =<<-,此时AB =∅不符合题意; 当2b =-时,B =∅ ,此时A B =∅不符合题意;当2b >-时,{}|2B x x b =-<<因为A B ⋂≠∅,所以1b >-.综上所述,1b >-.故选:B.【点睛】本题考查了分式不等式求解,考查了一元二次不等式,考查了由两命题的关系求参数的取值范围.本题的关键是由充分条件,分析出两集合的关系.9.C解析:C【解析】【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围.【详解】 解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意;②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤.故选:C.【点睛】 本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.10.C解析:C【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围.【详解】B A B =B A ∴⊂, 当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-,故选C.【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.11.D解析:D【分析】A .考虑方程有解的情况;B .根据抽象函数定义域求解方法进行分析;C .根据二次函数的取值情况分析函数值域;D .根据定义采用列举法进行分析.【详解】①由∅ 2{|40}x x x a ++=可得²40x x a ++=有解,即2440a ∆=-,解得4a ≤,故①正确;②函数()1y f x =+的定义域为[)2,1-,则21x ,故112x -≤+<,故()y f x =的定义域为[)1,2-,故②错误;③函数21y ==[)1,+∞,故(]2,1y =-∞,故③正确;④集合{}1,2,3,4,5,6A ⊆且A 为6的“闭集”,则这样的集合A 共有{}3,{}1,5, {}2,4,{}1,3,5,{}2,4,6,{}1,2,4,5,{}1,2,3,4,5共7个,故④正确.故正确的有①③④.故选:D .【点睛】本题考查命题真假的判定,考查集合之间的包含关系,考查函数的定义域与值域,考查集合的新定义,属于中档题.12.D解析:D【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算.【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.二、填空题13.【分析】由集合相等可求出直接计算即可【详解】即故解得故答案为:【点睛】本题主要考查了集合相等的概念集合中元素的互异性属于中档题 解析:1-【分析】由集合相等可求出,a b ,直接计算20192019a b +即可.【详解】{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭, 0,0a b ∴≠=,即{}{}2,0,1,,0a a a =, 故21,1a a =≠, 解得1a =-,2019201920192019(1)01a b +=-+=-故答案为:1-【点睛】本题主要考查了集合相等的概念,集合中元素的互异性,属于中档题.14.答案见解析【分析】求得集合化简集合分三种情况讨论得到集合;再分别得若选择①若选择②若选择③时实数a 的取值范围【详解】当时;当时;当时若选择①则当时要使则所以当时满足题意当时不满足题意所以选择①则实数解析:答案见解析【分析】求得集合[1,1)B =-,化简集合{()(1)0,}A xx a x x R =-+<∈∣,分1a >-,1a =-,1a <-三种情况讨论得到集合A ;再分别得若选择①,若选择②,若选择③时,实数a 的取值范围.【详解】{}2log (1)1,R [1,1)B x x x =-≤∈=-∣,0,{()(1)0,}1x a A x x R x x a x x R x -⎧⎫=<∈=-+<∈⎨⎬+⎩⎭∣∣, 当1a >-时,(1,)A a =-;当1a =-时,A =∅;当1a <-时,(,1)A a =-若选择①A B A =,则A B ⊆,当1a >-时,要使(1,)[1,1)a -⊆-,则1a ≤,所以11a -<≤当1a =-时,A =∅,满足题意当1a <-时,(,1)A a =-不满足题意所以选择①,则实数a 的取值范围是[-1,1]若选择②A B ⋂≠∅,当1a >-时,(1,),[1,1)A a B =-=-,满足题意;当1a =-时,A =∅,不满足题意;当1a <-时,(,1),[1,1)A a B =-=-,不满足题意所以选择②,则实数a 的取值范围是(1,)-+∞.若选择③R B A ⊆,当1a >-时,(1,),(,1][,)R A a A a =-=-∞-⋃+∞,而[1,1)B =-,不满足题意 当1a =-时,,R R A A =∅=,而[1,1)B =-,满足题意当1a <-时,(,1),(,][1,)R A a A a =-=-∞⋃-+∞,而[1,1)B =-,满足题意.所以选择③,则实数a 的取值范围是(,1]-∞-,综上得:若选择①,则实数a 的取值范围是[-1,1];若选择②,则实数a 的取值范围是(1,)-+∞;若选择③,则实数a 的取值范围是(,1]-∞-.【点睛】本题考查集合间的包含关系,集合间的运算,属于中档题.15.①④【分析】逐一验证每个选项是否满足融洽集的两个条件若两个都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意的两非负整数仍为非负整数所以取及任意的非负整数则因此是非负整数集:实数的加法是融洽集 解析:①④【分析】逐一验证每个选项是否满足“融洽集”的两个条件,若两个都满足,是“融洽集”,有一个不满足,则不是“融洽集”.【详解】①对于任意的两非负整数,,a b a b +仍为非负整数,所以a b G +∈,取0e =及任意的非负整数a ,则00a a a +=+=,因此G 是非负整数集,⊕:实数的加法是“融洽集”;②对于任意的偶数a ,不存在e G ∈,使得a e e a a ⊕=⊕=成立,所以②的G 不是“融洽集”;③对于{G 二次三项式},若任意,a b G ∈时,则,a b 其积就不是二次三项式,故G 不是“融洽集”;④{},G x x a a b Q ==+∈,设1,x a a b Q =+∈,212,,(,x c c d Q x x a c b d a c b d Q =+∈+=+++++∈,所以12x x G +∈;取1e =,任意,11a G a a a ∈⨯=⨯=,所以④中的G 是“融洽集”.故答案为:①④.【点睛】本题考查对新定义的理解,以及对有关知识的掌握情况,关键是看所给的数集是否满足“融洽集”的两个条件,属于中档题.16.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案.【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.17.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】根据条件()()[3,5]A B =R R 可得()(),35,A B =-∞+∞,结合[1,2]B A =R 的意义,可得集合A .【详解】因为集合A 、B 是实数集R 的子集,若A B =∅,则[2,0]A B A =-=R ,[1,2]BA B ==R ,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]B A =R 表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞. 【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.18.【分析】解不等式求出集合根据补集与交集的定义写出【详解】全集;∴∴故答案为:【点睛】本题考查集合的运算解题是先解不等式确定集合然后再根据集合运算的定义计算解析:{}|24x x <≤【分析】解不等式求出集合A 、B ,根据补集与交集的定义写出()U A C B ⋂.【详解】全集U =R ,{}1|1|111A x x x x ⎧⎫⎪⎪=<=->⎨⎬-⎪⎪⎩⎭{}|02x x x =<>或; {}{}2|540|14B x x x x x x =-+>=<>或,∴{}|14U C B x x =≤≤,∴(){}|24U AC B x x =<≤.故答案为:{}|24x x <≤. 【点睛】本题考查集合的运算,解题是先解不等式确定集合,A B ,然后再根据集合运算的定义计算.19.【分析】由根据集合的交集的运算得到或即可求解【详解】由题意集合因为则满足或解得或即实数的取值范围是故答案为:【点睛】本题主要考查了集合的运算以及利用集合的交集求参数其中解答中熟记集合交集运算列出相应 解析:(][),12,-∞-⋃+∞【分析】由A B φ⋂=,根据集合的交集的运算,得到11a -≥或10a +≤,即可求解.【详解】由题意,集合{|11},{|01}A x a x a B x x =-<<+=<<,因为A B φ⋂=,则满足11a -≥或10a +≤,解得2a ≥或1a ≤-,即实数a 的取值范围是(][),12,-∞-⋃+∞.故答案为:(][),12,-∞-⋃+∞.【点睛】本题主要考查了集合的运算,以及利用集合的交集求参数,其中解答中熟记集合交集运算,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题. 20.【解析】【分析】根据一元二次不等式的解法和指数函数的单调性求出集合和集合然后进行交集的运算即可求解【详解】根据一元二次不等式的解法可得集合由指数函数的单调性可得集合所以【点睛】本题主要考查了集合表示 解析:(][),31,0-∞-⋃-【解析】【分析】根据一元二次不等式的解法和指数函数的单调性,求出集合A 和集合B ,然后进行交集的运算,即可求解.【详解】根据一元二次不等式的解法,可得集合(][),31,A =-∞-⋃-+∞,由指数函数的单调性,可得集合(),0B =-∞,所以A B =(][),31,0-∞-⋃-.【点睛】本题主要考查了集合表示方法、一元二次不等式的解法和指数函数的单调性,以及交集的运算,着重考查了推理与运算能力,属于基础题.三、解答题21.(1){|2A x x a =>+或1}x a <-;(2)不存在;理由见解析;(3)01a <<.【分析】(1)解一元二次不等式能求出集合A .(2)由A B R =,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,得到不存在实数a ,使得AB R =. (3)由A B ≠∅,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,能求出实数a 的取值范围.【详解】解:(1)不等式2(21)(2)(1)0x a x a a -+++->可化为[(2)][(1)]0x a x a -+-->, 解得1x a <-或2x a >+,所以不等式的解集为{|1A x x a =<-或2}x a >+; (2)当0a =时,不等式2()()0x a x a --<化为20x <,此时不等式无解,当0a <时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当01a <<时,2a a <,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当1a =时,2a a =,不等式2()()0x a x a --<化为2(10)x -<,此时不等式无解, 当1a >时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,综上所述:当0a =或1a =时,B =∅,当0a <或1a >时,2{|}B x a x a =<<,当01a <<时,2{|}B x a x a =<<,要使A B R =, 当2{|}B a a x a =<<时,2a a >,2a x a <<,1a a - 或22a a +,无解,当2{|}B a a x a =<<时,2a a <,2a x a <<,2a a +,21a a =-,无解,故不存在实数a ,使得AB R =. (3)A B ≠∅,∴当2{|}B a a x a =<<时,1a a -<,或22a a +>,即220a a --<,解得10a -<< 或12a <<,此时实数a 的取值范围是(1-,0)(1⋃,2),当2{|}B a a x a =<<时,21a a -<或2a a +>,即210a a -+>,解得01a <<,此时,实数a 的取值范围是(0,1).【点睛】本题考查含参一元二次不等式的解法,解含参一元二次不等式需分类讨论,首先判断二次项系数是否为零,再对所对应的一元二次方程的根进行分类讨论;22.(1){}2;(2)()2,+∞【分析】(1)先求出A ,代入2a =,求出集合B ,然后直接求出A B ⋂即可.(2)由题意得,A B A ⋃=,可得B A ⊆,然后分类讨论:①当B =∅;②当B ≠∅;然后直接【详解】(1)由题意得(){{}lg 11A x y x x x ==--=>,因为a=2,所以{}{}2301,2B x x x a =-+== 则{}2A B ⋂=(2)因为A B A ⋃=,所以B A ⊆①当B =∅时,由题意得9-4a <0.解得94a >; ②当B ≠∅时,由题意得940394123941a a a ⎧⎪-≥⎪--⎪>⎨⎪⎪+->⎪ 解得924a <≤. 综上,a 的取值范围为()2,+∞.【点睛】本题考查含参集合的交集和并集运算,难点在于不要遗漏空集情况的考虑,属于难题. 23.(1)R A {x |1x 2}=-<<,1{|3B x x =<或1}x >;(2){}0;(3)211 1.32m m -<<-<<或 【分析】(1)m =2时,化简集合A ,B ,即可得集合∁R A 和集合B ;(2)集合B ∩Z 为单元素集,所以集合B 中有且只有一个整数,而0∈B ,所以抛物线y =(1﹣m 2)x 2+2mx ﹣1的开口向上,且与x 轴的两个交点都在[﹣1,1]内,据此列式可得m =0;(3)因为A =(﹣∞,﹣1)∪(2,+∞),(A ∩B )∩Z 中由n 个元素,所以1﹣m 2>0,即﹣1<m <1;A ∩B 中至少有3或﹣2中的一个,由此列式可得.【详解】集合A ={x |x 2﹣x ﹣2≥0}={x |x ≥2或x ≤﹣1},集合{x |(1﹣m 2)x 2+2mx ﹣1<0,m ∈R}={x |[(1+m )x ﹣1][(1﹣m )x +1]<0}(1)当m =2时,集合∁R A ={x |﹣1<x <2};集合1{|3B x x =<或1}x > ; (2)因为集合B ∩Z 为单元素集,且0∈B ,所以,解得m =0,当m =0时,经验证,满足题意.故实数m 的取值集合为{0}(3)集合(A ∩B )∩Z 的元素个数为n (n ∈N *)个,A ∩B 中至少有3或﹣2中的一个, 所以令f (x )=(1﹣m 2)x 2+2mx ﹣1,依题意有或,解得﹣1<m <﹣或<m <1∴【点睛】本题考查了交、并、补集的混合运算.属难题.24.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.25.3p ≤【分析】根据题意,由集合的性质,可得若满足A B B =,则B A ⊆,进而分:①121p p +>-,②121p p +=-,③121p p +<-,三种情况讨论,讨论时,先求出p 的取值范围,进而可得B ,讨论集合B 与A 的关系可得这种情况下p 的取值范围,对三种情况下求得的p 的范围求并集可得答案.【详解】解:根据题意,若AB B =,则B A ⊆; 分情况讨论:①当121p p +>-时,即2p <时,B =∅,此时B A ⊆,则A B B =,则2p <时,符合题意;②当121p p +=-时,即2p =时,{}{}333B x x =≤≤=,此时B A ⊆,则A B B =,则2p =时,符合题意;③当121p p +<-时,即2p >时,{}121B x p x p =+≤≤-,若B A ⊆,则有21512p p -≤⎧⎨+≥-⎩,解可得33p -≤≤, 又由2p >,则当23p <≤时,符合题意;综上所述,满足AB B =成立的p 的取值范围为3p ≤. 【点睛】本题考查根据集合的包含关系求参数的取值范围,易错点为遗漏B =∅的情况,考查了分类讨论的思想,属于中档题.26.(1){}|36A B x x ⋂=≤<;(2)()R C A B R ⋃=【分析】(1)根据集合的交集运算即可(2)根据集合的补集、并集运算.【详解】因为集合{}|36A x x =≤<,集合{}|19B x x =<≤所以{}|36A B x x ⋂=≤<.所以{|3R C A x x =<或}6x ≥,∴R C A B R ⋃=.【点睛】本题主要考查了集合的交集,补集,并集运算,属于容易题.。
人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)
![人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)](https://img.taocdn.com/s3/m/af16d987804d2b160a4ec012.png)
一、选择题1.已知集合()(){}225A x x x =+-<,(){}2log 1,B x x a a N =->∈,若A B =∅,则a 的可能取值组成的集合为( )A .{}0B .{}1C .{}0,1D .*N2.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}3.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞4.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}5.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<<D .2a <-或1a >6.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( ) A .(-1,3)B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)8.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}10.已知命题P :∃0x R ∈,20010x x -+≥;命题Q :若a <b ,则1a >1b,则下列为真命题的是( ) A .P Q ∧B .P Q ⌝∧ C .P Q ⌝∧D .P Q ⌝⌝∧11.命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立12.已知函数()31f x x ax =--,则()f x 在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,3a ∈二、填空题13.已知命题:“∃x ∈{ x |1≤x ≤2},使x 2+2x +a ≥0”为真命题,则实数a 的取值范围是______.14.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________. 15.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.16.已知“21[2]102x ,,x mx ∃∈-+≤”是假命题,则实数m 的取值范围为________. 17.若命题:“2000,10x R ax ax ∃∈-->”为假命题,则实数a 的取值范围是__________.18.下列命题中,正确的是___________.(写出所有正确命题的编号) ①在中,是的充要条件;②函数的最大值是;③若命题“,使得”是假命题,则; ④若函数,则函数在区间内必有零点.19.给出下列四个命题:⑴“直线a ∥直线b ”的必要不充分条件是“a 平行于b 所在的平面”; ⑵“直线l ⊥平面α”的充要条件是“l 垂直于平面α内的无数条直线”; ⑶“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件; ⑷“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 上面命题中,所有真命题的序号为______. 20.集合{}*110,,S x x x N n N=≤≤∈∈共有120个三元子集()1,2,...,120iA i =,若将i A 的三个元素之和记为()1,2,...,120i a i =,则12120...a a a +++=______.三、解答题21.已知全集U =R ,集合{}2|2150A x x x =--<,集合()(){}2|210B x x a x a =-+-<.(1)若1a =,求UA 和B ;(2)若A B A ⋃=,求实数a 的取值范围.22.已知集合2102x a A x x a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<.(Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围.23.设命题p :12≤x ≤1,命题q :x 2-(2a +1)x +a (a +1)≤0.若q 是p 的必要而不充分条件,求实数a 的取值范围.24.已知集合{}220A x x x =--<,()(){}30,B x x a x a a R =--<∈.(1)当1a =时,求集合A 和A B ;(2)若()R B C A ⊆,求实数a 的取值范围.25.已知集合121284xA x ⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.26.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】解不等式确定集合,A B ,然后由交集的结果确定参数a 的取值范围. 【详解】()(){}{}22533A x x x x x =+-<=-<<, (){}{}2log 1,2,B x x a a N x x a a N =->∈=>+∈,因为AB =∅,所以23a +≥,1a ≥.又a N ∈,∴*a N ∈.故选:D . 【点睛】本题考查由集合交集的结果求参数范围,解题时可先确定两个集合中的元素,然后分析交集的结果得出结论.2.C解析:C 【分析】根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解.【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.3.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.4.C【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.5.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.6.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.7.C解析:C 【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解. 【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-, 所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力.8.A【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.9.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.10.B解析:B 【分析】判断命题P 为真命题,命题Q 为假命题,再依次判断每个选项得到答案. 【详解】取00x =,则200110x x -+=≥,故命题P 为真命题;取2a =-,1b =,满足a b <,但是11a b<,故命题Q 为假命题. 故P Q ∧为假命题,P Q ⌝∧为真命题,P Q ⌝∧为假命题,P Q ⌝⌝∧为假命题.故选:B. 【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力.11.D解析:D 【分析】将“全称量词”改“存在量词”,“至少有一个成立”改为“都不成立”即可得到. 【详解】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D 【点睛】本题考查了全称命题的否定,属于基础题.12.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,()23[,3)f x x a a a =-∈--‘,当0a ≤时,'()0f x ≥,当3a ≥时,'()0f x ≤,所以()f x 在()1,1-上单调,则0a ≤或3a ≥,故()f x 在()1,1-上不单调时,a 的范围为(0,3),A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件.故选:D 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.二、填空题13.a≥-8【分析】等价于∃x ∈{x|1≤x≤2}求出函数在的最小值即得解【详解】由题得∃x ∈{x|1≤x≤2}x 2+2x +a≥0所以∃x ∈{x|1≤x≤2}因为函数在的最小值为此时所以故答案为:【点睛解析:a ≥-8【分析】等价于∃x ∈{ x |1≤x ≤2},2(1)1a x ≥-++,求出函数2(1)1y x =-++在[1,2]的最小值即得解. 【详解】由题得∃x ∈{ x |1≤x ≤2},x 2+2x +a ≥0,所以∃x ∈{ x |1≤x ≤2},222(1)1a x x x ≥--=-++,因为函数2(1)1y x =-++在[1,2]的最小值为8-,此时2x =. 所以8a ≥-. 故答案为:8a ≥- 【点睛】本题主要考查特称命题,考查一元二次不等式的能成立问题的求解,意在考查学生对这些知识的理解掌握水平.14.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.15.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab=−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足ab=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题16.【分析】求出命题的否定由原命题为假命题得命题的否定为真命题参变分离得到构造函数求在所给区间上的最小值【详解】解:由题意可知是真命题对恒成立令令则;令则;即在上单调递减上单调递增;故答案为:【点睛】本 解析:(,2)-∞【分析】求出命题的否定,由原命题为假命题,得命题的否定为真命题,参变分离得到1m x x <+,构造函数()1g x x x=+求()g x 在所给区间上的最小值.【详解】解:由题意可知,21[2]102x ,,x mx ∀∈-+>是真命题 1m x x ∴<+对1[2]2x ,∀∈恒成立, 令()1g x x x =+()211g x x '∴=-令()0g x '>则12x <≤;令()0g x '<则112x ≤<; 即()1g x x x =+在1,12⎛⎫⎪⎝⎭上单调递减,()1,2上单调递增; ()()min 11121g x g ∴==+=2m <∴故答案为:(,2)-∞ 【点睛】本题考查根据命题的真假求参数的取值范围,关键是将问题进行转化,属于中档题.17.【解析】由题意得 解析:[]4,0-【解析】 由题意得204040a a a a a <⎧=∴-≤≤⎨∆=+≤⎩或18.①③④【分析】根据正弦定理及三角形的性质可判断(1);利用均值不等式可判断(2);利用假命题求参数的范围可判断(3);利用零点存在性定理可判断(4)【详解】解:对于(1)sinA >sinB ⇔2Rsi 解析:①③④【分析】根据正弦定理,及三角形的性质,可判断(1);利用均值不等式,可判断(2);利用假命题求参数的范围,可判断(3);利用零点存在性定理,可判断(4).【详解】解:对于(1),sin A>sin B⇔2R sin A>2R sin B⇔a>b⇔A>B(其中R为△ABC外接圆半径),故(1)正确;对于(2),x21x+=--(1﹣x21x+-)+1≤﹣1=﹣+1,当且仅当x=12)错误;对于(3),若命题“x R∃∈,使得()2310ax a x+-+≤”是假命题⇔命题:“∀x∈R,使得ax2+(a﹣3)x+1>0”恒成立.∵a=0时,不符合题意,∴2(3)40aa a⎧⎨=--<⎩>∴1a9<<,故(3)正确;对于(4),∵()12af a b c=++=-,∴3a+2b+2c=0,∴32c a b=--.又f(0)=c,f(2)=4a+2b+c,∴f(2)=a﹣c.(i)当c>0时,有f(0)>0,又∵a>0,∴()102af=-<,故函数f(x)在区间(0,1)内有一个零点,故在区间(0,2)内至少有一个零点.(ii)当c≤0时,f(1)<0,f(0)=c≤0,f(2)=a﹣c>0,∴函数f(x)在区间(1,2)内有一零点,故(4)正确.故正确答案为:①③④【点睛】本题考查的知识点是命题的真假判断与应用,熟练掌握正弦定理,均值不等式,二次函数的,图象和性质,函数零点存在定理,是解答的关键.19.⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断【详解】(1)a平行于b所在的平面是直线a∥直线b的既不充分也不必要条件;所以(1)错;(2)l垂直于平面α内的无数条直线是直线l⊥平面α的必解析:⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断.【详解】(1)“a平行于b所在的平面” 是“直线a∥直线b”的既不充分也不必要条件;所以(1)错;(2)“l垂直于平面α内的无数条直线” 是“直线l⊥平面α”的必要不充分条件;所以(2)错;(3)若“平面α∥平面β”则“α内有无数条直线平行于平面β”,若 “α内有无数条直线平行于平面β”则“平面α,平面β不一定平行”,所以“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件;(4)若“有一条与α平行的直线l 垂直于β”,则α内存在一条直线垂直于β,即“平面α⊥平面β”,所以“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 综上填(3)(4)【点睛】本题考查线面位置关系以及充要关系,考查基本分析判断能力,属基础题.20.1980【分析】根据题意将所有元素在子集中的个数算出然后再求和即可【详解】因为集合所以含元素1的子集有同理含2345678910的子集也各有所以故答案为:1980【点睛】本题主要考查集合的新定义以及解析:1980【分析】根据题意,将所有元素在子集中的个数算出,然后再求和即可.【详解】 因为集合{}{}*110,,1,2,3,4,5,6,7,8,9,10S x x x N n N=≤≤∈∈=, 所以含元素1的子集有29C ,同理含2,3,4,5,6,7,8,9,10的子集也各有29C ,所以2121209...(123...10)a a a C +++=++++⨯,()1011098198022+⨯=⨯=. 故答案为:1980【点睛】 本题主要考查集合的新定义以及组合问题,还考查了分析推理的能力,属于中档题.三、解答题21.(1)U A ={x ∣x ≤−3或x ≥5};B =∅;(2)−1≤a【分析】(1)利用一元二次不等式的解法化简集合A 、B ,利用集合的基本运算即可算出结果; (2)因为A B A ⋃=,所以B A ⊆,对集合B 分等于空集和不等于空集两种情况讨论,求出a 的取值范围.【详解】(1)若1a =,则集合2{|2150}{|35}A x x x x x =--<=-<<,{|3U A x x ∴=-或5}x , 若1a =,则集合22{|(21)()0}{|(1)0}B x x a x a x x =-+-<=-<=∅,(2)因为A B A ⋃=,所以B A ⊆,①当B =∅时,221a a =-,解1a =,②当B ≠∅时,即1a ≠时,2{|21}B x a x a =-<<,又由(1)可知集合{|35}A x x =-<<,∴22135a a --⎧⎨⎩,解得15a -,且1a ≠, 综上所求,实数a 的取值范围为:15a-. 【点睛】 本题主要考查了集合的基本运算,考查了一元二次不等式的解法,是基础题. 22.(Ⅰ){|45}A B x x ⋂=<<;(Ⅱ)1,22⎡⎤⎢⎥⎣⎦【分析】(Ⅰ)当2a =时,求出集合A ,集合B ,由此能求出A B . (Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,从而A B ⊆,由此能求出实数a 的取值范围.【详解】解:(Ⅰ)当2a =时,集合215|0{|0}{|45}24x a x A x x x x x a x ⎧⎫---=<=<=<<⎨⎬--⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.{|45}A B x x ∴=<<.(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,A B ∴⊆,当221a a <+时,1a ≠,集合221|0{|21}2x a A x x a x a x a ⎧⎫--=<=<<+⎨⎬-⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.∴22115a a ⎧⎨+⎩,且1a ≠,解得122a .且1a ≠, 当1a =时,A =∅,成立. 综上,实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦. 【点睛】本题考查交集、实数的取值范围的求法,考查充分条件、交集、子集等基础知识,考查运算求解能力,属于中档题. 23.[0,1]2【分析】求出q 的等价条件,结合充分条件和必要条件的定义转化为集合子集关系进行求解即可.【详解】由2(21)(1)0x a x a a -+++得1a x a +,若q 是p 的必要不充分条件, 则1[2,1][a ,1]a +, 即1211a a ⎧⎪⎨⎪+⎩,得120a a ⎧⎪⎨⎪⎩,得102a , 即实数a 的取值范围是[0,1]2, 【点睛】本题主要考查充分条件和必要条件的应用,求出命题的等价条件,转化为集合关系是解决本题的关键,属于容易题.24.(1){}12A x x =-<<,{}13A B x x ⋃=-<<;(2)0a =或1a ≤-或2a ≥.【分析】(1)先求出集合A ,B ,再根据并集的定义即可求出;(2)先求出A R ,再根据题意讨论a 的范围即可求出. 【详解】(1)由不等式220x x --<解得12x -<<,{}12A x x ∴=-<<,当1a =时,()(){}{}13013B x x x x x =--<=<<, {}13A B x x ∴⋃=-<<;(2){}12A x x =-<<,{1R A x x ∴=≤-或}2x ≥,当0a =时,{}20B x x =<=∅,满足题意; 当0a >时,{}3B x a x a =<<,要使()R B A ⊆,则2a ≥;当0a <时,{}3B x a x a =<<,要使()RB A ⊆,则1a ≤-; 综上,0a =或1a ≤-或2a ≥.【点睛】本题考查集合的并集、补集运算,考查根据集合的包含关系求参数,其中涉及一元二次不等式的求解,属于基础题.25.(1)3m ≤;(2)m 1≥.【分析】(1)化简集合A ,B ,求出AB ,分类讨论C =∅和C ≠∅情况,求解,再取并集即可得出结果.(2)求出AB ,结合数轴列不等式,即可得出结果.【详解】(1){}|27A x x =-≤≤,{}|35B y y =-≤≤,{}|25AB x x =-≤≤,①若C =∅,则121m m +>-,∴2m <; ②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤;综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴1m ≥.【点睛】本题考查了指数不等式和对数不等式,集合的运算等基本数学知识,考查了运算求解能力和逻辑推理能力,属于基础题目.26.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+,当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+,所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题.。
苏州市必修一第一单元《集合》测试(有答案解析)
![苏州市必修一第一单元《集合》测试(有答案解析)](https://img.taocdn.com/s3/m/5550139d27284b73f342505c.png)
一、选择题1.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2802.已知x ,y 都是非零实数,||||||x y xyz x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉ B .3A ∈,1A -∈ C .3A ∉,1A -∈ D .3A ∉,1A -∉ 3.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉4.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{P x x Q x y =-≤-≤==∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 5.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆6.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞7.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭ D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭8.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<9.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤10.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<11.已知()()()()22221234()4444f x x x c xx c x x c x x c =-+-+-+-+,集合{}{}127()0,,,M x f x x x x Z ===⋯⊆,且1234c c c c ≤≤≤,则41c c -不可能的值是( ) A .4B .9C .16D .6412.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<二、填空题13.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________ 14.用列举法表示集合*6,5A a N a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________. 15.若集合1A ,2A 满足12A A A ⋃=,则称()12,A A 为集合A 的一种分拆,并规定:当且仅当12A A =时,()12,A A 与()21,A A 为集合A 的同一种分拆,则集合{}123,,A a a a =的不同分拆种数是______ .16.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.17.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________18.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.19.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________.20.已知集合{}A a =-,,2||b aB a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b +=______。
苏州市必修第一册第一单元《集合与常用逻辑用语》检测(含答案解析)
![苏州市必修第一册第一单元《集合与常用逻辑用语》检测(含答案解析)](https://img.taocdn.com/s3/m/07f647a901f69e31423294cf.png)
一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.24x >成立的一个充分非必要条件是( )A .23x >B .2xC .2x ≥D .3x >3.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}4.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.已知集合{}1A x x =>-,{}2B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .1,2D .R6.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( ) A .3 B .2C .1D .07.已知1:12p x ≥-,:||2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(,4]-∞B .[1,4]C .(1,4]D .(1,4)8.非零向量,a b 满足4,2b a ==且a 与b 夹角为θ,则“23b a -=”是“3πθ=”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件9.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}10.下列有关命题的说法正确的是( )A .若命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥B .“3sin 2x =”的一个必要不充分条件是“3x π=”C .若+=-a b a b ,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,βn//,那么αβ⊥ 11.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”12.已知函数32()(,,)f x x ax bx c a b c R =+++∈,则“230a b -≤”是“()f x 在R 上只有一个零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.已知集合(){},320,A a b a b a N =+-=∈,()(){}2,10,B a b k a a b a N =-+-=∈,若存在非零整数k ,满足A B ⋂≠∅,则k =______.14.有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0” ②若事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ); ③在△ABC 中,“A <B ”是“sin A <sin B ”成立的充要条件;④若α、β是两个相交平面,直线m ⊂α,则在平面β内,一定存在与直线m 平行的直线. 上述命题中,其中真命题的序号是_____. 15.已知命题,则为_______.16.集合{}*110,,S x x x N n N=≤≤∈∈共有120个三元子集()1,2,...,120iA i =,若将i A 的三个元素之和记为()1,2,...,120i a i =,则12120...a a a +++=______.17.已知“x m ≥”是“121x +>”的充分不必要条件,且m Z ∈,则m 的最小值是________. 18.记集合[],A a b =,当,64ππθ⎡⎤∈-⎢⎥⎣⎦时,函数()223sin cos 2cos f θθθθ=+的值域为B ,若“x A ∈”是“x B ∈”的必要条件,则b a -的最小值是______.19.设命题p :431x -≤,命题q :()()22110x a x a a -+++≤,若q 是p 的必要不充分条件,则实数a 的取值范围是______20.已知命题“[1,3],x ∀∈不等式240x ax -+≥”为真命题,则a 的取值范围为_______.三、解答题21.设命题:p 实数x 满足22430x ax a -+<,(0)a >,命题:q 实数x 满足(3)(2)0x x --≥.(1)若1a =,p q ∧为真命题,求x 的取值范围;(用区间表示)(2)若q 是p 的充分不必要条件,求实数a 的取值范围.(用区间表示) 22.已知22:|27|3,:430p x q x mx m -<-+<,其中m >0. (1)若m =4且p ∧q 为真,求x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围. 23.如果():30p x x -<是:23q x m -<的充分不必要条件,求实数m 的取值范围.24.已知命题p :实数x 满足()225400x ax a a -+<>;命题q :实数x 满足2560x x -+<.(1)当1a =时,若P 和q 都为真,求x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.25.已知集合(](),13,A =-∞+∞,[],2B m m =+.(1)若2m =,求()R C A B ⋂;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求m 的取值范围. 26.已知集合121284x A x⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭.(1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件,故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.D解析:D 【分析】根据题意,找到24x >解集的一个真子集即可求解. 【详解】由24x >解得2x >或2x <-,所以24x >成立的一个充分非必要条件是(2)(2,)-∞-+∞的真子集,因为3+∞(,) (2)(2,)-∞-+∞,所以24x >成立的一个充分非必要条件是3x >, 故选:D 【点睛】本题主要考查了充分条件、必要条件,真子集的概念,属于中档题.3.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.4.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.5.C解析:C 【分析】由集合的交集运算即可得出结果. 【详解】{|12}=(1,2)=-<<-A B x x故选:C 【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.6.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.7.C解析:C【分析】求出p ,q 的等价条件,根据充分条件和必要条件的定义即可得到结论. 【详解】由112x ≥-,即302x x -≤-,解得23x <≤, 由||2x a -<得22a x a -<<+,若p 是q 的充分不必要条件,则2223a a -≤⎧⎨+>⎩,解得14a <≤,实数a 的取值范围为(]1,4, 故选:C. 【点睛】本题主要考查充分条件和必要条件的应用,属于中档题.8.C解析:C 【分析】由题意,若23b a -=,根据向量的数量积和模的计算公式,可得1cos 2θ=,得到3πθ=,;反之也可求得23b a -=,即可得到答案.【详解】由题意,非零向量,a b 满足4,2b a ==且a 与b 夹角为θ, 若23b a -=,即2222()2164242cos 12b a b a b a a b θ-=-=+-⋅=+-⨯⨯=,解得1cos 2θ=,又因为[]0,θπ∈,可得3πθ=,即充分性是成立的;若3πθ=,由2222()2164242cos123b a b a b a a b π-=-=+-⋅=+-⨯⨯=,可得23b a -=,即必要性是成立的,所以“23b a -=”是“3πθ=”的充分必要条件.故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,其中解答中熟记向量的数量积的运算,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力.9.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.10.A解析:A 【分析】对选项逐个分析,对于A 项,根据特称命题的否定是全称命题,得到其正确;对于B 项,根据充分必要条件的定义判断正误;对于C 项根据向量垂直的条件得到其错误,对于D 项,从空间直线平面的关系可判断正误. 【详解】对于A ,命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥,A 正确;对于B ,当3x π=时, sin 2x =成立, 所以“3x π=”是“sin x =”的充分条件,所以B 错误; 对于C ,a b >且两向量反向时 +=-a b a b 成立, a b ⊥不成立C 错误; 对于D ,若m n ⊥,m α⊥,βn//,则α,β的位置关系无法确定,故D 错误. 故选:A. 【点睛】该题考查的是有关选择正确命题的问题,涉及到的知识点有含有一个量词的命题的否定,充分必要条件的判断,空间直线和平面的关系,属于简单问题.11.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.12.A解析:A 【分析】求出()f x ',由230a b -≤知()0f x '≥恒成立,即函数()f x 在R 上单调递增,只有一个零点,然后可举例说明在230a b ->,即()f x 有两个极值点时,()f x 也可能只有一个零点,由此可得结论.【详解】因为32()f x x ax bx c =+++,2()32f x x ax b '=++,若230a b -≤, 则24120a b ∆=-≤,则()0f x '≥恒成立,所以()f x 在R 上单调递增. 当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞, 所以()f x 在R 上只有一个零点,即充分性成立. 令32a =,0b =,1c =-,则323()12f x x x =+-,2()333(1)f x x x x x '=+=+, 则()f x 在(,1)-∞-,(0,)+∞上单调递增,在(1,0)-上单调递减,又1(1)02f -=-<, 3(1)02f =>,则()f x 在R 上只有一个零点,但不满足“230a b -≤”,即必要性不成立, 所以“230a b -≤”是“()f x 在R 上只有一个零点”的充分不必要条件, 故选:A . 【点睛】本题考查充分条件、必要条件的判断、函数的零点的概念.注意区别A 是B 的充分不必要条件(A B ⇒且B A ⇒/)与A 的充分不必要条件是B (B A ⇒且A B ⇒/)两者的不同.二、填空题13.【分析】首先根据条件得到有实数解从而得到又根据为非零整数所以再分别验证的值即可得到答案【详解】因为存在非零整数满足所以有实数解且整理得:有实数解且所以解得因为为非零整数所以当时解得或符合题意当时解得 解析:1-【分析】首先根据条件得到()2231b a b k a a =-⎧⎪⎨=-+⎪⎩有实数解,从而得到1133k -+≤≤,又根据k 为非零整数,所以1,1,2k =-,再分别验证k 的值即可得到答案. 【详解】因为存在非零整数,满足A B ⋂≠∅,所以()2231b ab k a a =-⎧⎪⎨=-+⎪⎩有实数解,且a N ∈. 整理得:()2320ka k a k +-+-=有实数解,且0k ≠,a N ∈.所以()()23420k k k ∆=---≥k ≤≤, 因为k 为非零整数,所以1,1,2k =-当1k =-时,2430a a -+=,解得1a =或3,符合题意.当1k =时,2210a a +-=,解得a N ∉,舍去. 当2k =时,220a a +=,解得a N ∉,舍去. 综上1k =-. 故答案为:1- 【点睛】本题主要考查集合的交集运算,同时一元二次不等式的解法,属于中档题.14.②③【分析】写出原命题的逆否命题可判断①;通过与互斥判断(A )(B )的正误;由三角形中的边角关系正弦定理及充分必要条件判定方法判断③;由直线为两平面的交线时结论成立可判断④【详解】对于①则全为0的逆解析:②③. 【分析】写出原命题的逆否命题,可判断①;通过A 与B 互斥,判断()P A B P =(A )P +(B )的正误;由三角形中的边角关系、正弦定理及充分必要条件判定方法判断③;由直线m 为两平面的交线时,结论成立,可判断④. 【详解】对于①,“220a b +=,则a ,b 全为0”的逆否命题是“若a ,b 不全为0,则220a b +≠”,故①错误;对于②,满足互斥事件的概率求和的方法,所以②为真命题;对于③,在ABC ∆中,sin sin a b A B A B <⇔<⇔<,∴命题“在ABC ∆中,A B <是sin sin A B <成立的充要条件,故③正确;对于④,若直线m α⊂,当直线m 为两平面的交线时,在平面β内,一定存在与直线m平行的直线,故④不正确; 故答案为:②③ 【点睛】本题主要考查了命题的真假判断与应用,涉及互斥事件与对立事件,四种命题的逆否关系,以及概率的性质.充分必要条件的判定方法,考查空间线线和线面、面面的位置关系,属于中档题.15.【解析】试题分析:根据全称命题的定义得为故答案为考点:全称命题的否定解析:00,sin 1x R x ∃∈>【解析】试题分析:根据全称命题的定义得为00,sin 1x R x ∃∈>,故答案为00,sin 1x R x ∃∈>.考点:全称命题的否定.16.1980【分析】根据题意将所有元素在子集中的个数算出然后再求和即可【详解】因为集合所以含元素1的子集有同理含2345678910的子集也各有所以故答案为:1980【点睛】本题主要考查集合的新定义以及解析:1980 【分析】根据题意,将所有元素在子集中的个数算出,然后再求和即可. 【详解】因为集合{}{}*110,,1,2,3,4,5,6,7,8,9,10S x x x N n N=≤≤∈∈=,所以含元素1的子集有29C ,同理含2,3,4,5,6,7,8,9,10的子集也各有29C ,所以2121209...(123...10)a a a C +++=++++⨯,()1011098198022+⨯=⨯=. 故答案为:1980 【点睛】 本题主要考查集合的新定义以及组合问题,还考查了分析推理的能力,属于中档题.17.0【分析】根据是的充分不必要条件且即可得出【详解】由是的充分不必要条件且则的最小值是故答案为:【点睛】本题考查了充分不必要条件的判定方法考查了推理能力与计算能力属于基础题解析:0. 【分析】1121221x x x +->⇔>⇔>-.根据x m ”是“+121x >”的充分不必要条件,且m Z ∈,即可得出. 【详解】由1211x x +>⇒>-,“x m ”是“+121x >”的充分不必要条件,且m Z ∈,0m ∴,则m 的最小值是0. 故答案为:0. 【点睛】本题考查了充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.18.3【分析】利用倍角公式和差公式化简利用三角函数的单调性可得根据是的必要条件可得即可得出结论【详解】根据题意可得:∵∴即是的必要条件则∴∴即故答案为:3【点睛】本题考查了倍角公式和差公式三角函数的单调解析:3 【分析】利用倍角公式、和差公式化简()fθ,利用三角函数的单调性可得B ,根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆,即可得出结论.【详解】根据题意可得:()2cos 2cos 2sin 216f πθθθθθ⎛⎫=+=++ ⎪⎝⎭. ∵,64ππθ⎡⎤∈-⎢⎥⎣⎦ ∴()[]0,3f θ∈,即[]0,3B =“x A ∈”是“x B ∈”的必要条件,则B A ⊆∴03a b ≤⎧⎨≥⎩∴303b a -≥-=,即()min 3b a -=.故答案为:3.【点睛】本题考查了倍角公式、和差公式、三角函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.19.【分析】求出两个命题的等价命题即x 的取值范围得到两命题pq 分别对应的的集合AB 由q 是p 的必要不充分条件得进而可求实数a 的取值范围【详解】因为所以所以命题p 对应的集合为解不等式可得命题q 对应的集合为因 解析:10,2⎡⎤⎢⎥⎣⎦【分析】求出两个命题的等价命题,即x 的取值范围,得到两命题p ,q 分别对应的的集合A ,B ,由q 是p 的必要不充分条件,得A B ≠⊂,进而可求实数a 的取值范围。
苏州苏州大学实验学校必修第一册第一单元《集合与常用逻辑用语》检测(答案解析)
![苏州苏州大学实验学校必修第一册第一单元《集合与常用逻辑用语》检测(答案解析)](https://img.taocdn.com/s3/m/912dfbedeefdc8d376ee32e5.png)
一、选择题1.已知集合{}*N 0A x x y =∈=≥∣,若B A ⊆且集合B 中恰有2个元素,则满足条件的集合B 的个数为( ). A .1B .3C .6D .102.已知:250p x ->,2:20q x x -->,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.下列命题中,不正确...的是( ) A .0x R ∃∈,200220x x -+≥B .设1a >,则“b a <”是“log 1a b <”的充要条件C .若0a b <<,则11a b> D .命题“[]1,3x ∀∈,2430x x -+≤”的否定为“[]01,3x ∃∈,200430x x -+>”4.已知非空集合A ,B 满足以下两个条件: (i ){}1,2,3,4,5AB =,A B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( ) A .7B .8C .9D .105.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}6.已知定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,则对于实数a ,b ,“a b >”是“()()f a f b <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞8.已知集合{}1,2,3,4,5A =,且A B A =,则集合B 可以是( )A .{}|21xx >B .{}21x xC .{}2log 1x xD .{}1,2,39.设{}n a 是等差数列,则“123a a a <<”是“数列{}n a 是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知平面向量a 和b ,则“||||b a b =-”是“1()02b a a -⋅=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件11.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件12.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为__________.14.命题“2000,2390x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是 .15.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________. 16.若“0,63x ππ⎡⎤∃∈⎢⎥⎣⎦使得0tan x m ≥”是假命题,则实数m 的取值范围为________. 17.命题“数列的前n 项和()2*3n S n n n N=+∈”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母n )18.已知m R ∈,则“02m <<”是“方程22212x y m m +=-表示焦点在x 轴上的椭圆”的______ 条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选择一个).19.若集合{}1,3,A x =,{}21,B x =,且{}1,3,A B x ⋃=,则x =___________.20.记集合[],A a b =,当,64ππθ⎡⎤∈-⎢⎥⎣⎦时,函数()2cos 2cos f θθθθ=+的值域为B ,若“x A ∈”是“x B ∈”的必要条件,则b a -的最小值是______.三、解答题21.已知幂函数2242()(1)m m f x m x -+=-⋅在(0,)+∞上单调递增,函数()2xg x k =-.(1)求m 的值;(2)当[1,2]x ∈-时,()f x 、()g x 的值域分别为A 、B ,设命题p :x A ∈,命题q :x B ∈,若命题p 是q 成立的必要条件,求实数k 的取值范围.22.已知22:|27|3,:430p x q x mx m -<-+<,其中m >0. (1)若m =4且p ∧q 为真,求x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.23.已知集合103x A xx +⎧⎫=≤⎨⎬-⎩⎭∣,{}2(1)20B x x m x m =--+-≤∣.(1)若[,][1,4]A a b ⋃=-,求实数a ,b 满足的条件; (2)若A B A ⋃=,求实数m 的取值范围.24.已知函数4321x x A x -+⎧⎫⎪⎪=>⎨⎬⎪⎪⎩⎭,{}321B x m x m =-≤≤+. (1)当2m =时,求A 和()RA B ⋂;(2)若x B ∈是x A ∈的充分不必要条件,求实数m 的取值范围. 25.设全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值构成的集合. 26.已知条件{}2:230,p x A x x x x R ∈=--≤∈,条件{}22:240,q x B x x mx m x R ∈=-+-≤∈.(1)若[]0,3AB =,求实数m 的值;(2)若p ⌝是q 的必要条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将方程平方整理得()2224820y xy x x -+-=,再根据判别式得04x ≤≤,故1,2,3,4x =,再依次检验得{}2,3,4A =,最后根据集合关系即可得答案.【详解】解:根据题意将x 22x x =+继续平方整理得:()2224820y xy x x -+-=,故该方程有解.所以()222641620x x x ∆=--≥,即240x x -+≥,解得04x ≤≤, 因为*N x ∈,故1,2,3,4x =,当1x =时,易得方程无解,当2x =时,240y y -=,有解,满足条件; 当3x =时,242490y y -+=,方程有解,满足条件; 当4x =时,28160y y -+=,方程有解,满足条件; 故{}2,3,4A =,因为B A ⊆且集合B 中恰有2个元素, 所以B 集合可以是{}2,3,{}2,4,{}3,4. 故选:B. 【点睛】本题考查集合的元素,集合关系,解题的关键在于将方程平方转化为()2224820y xy x x -+-=,再结合判别式得1,2,3,4x =,进而求出集合{}2,3,4A =.考查运算求解能力,化归转化能力,是中档题.2.A解析:A 【分析】先求出,p q 对应的不等式的解,再利用集合包含关系,进而可选出答案. 【详解】由题意,5:2502p x x ->⇒>,设5|2A x x ⎧⎫=>⎨⎬⎩⎭2:20q x x -->,解得:2x >或1x <-,设{|2B x x =>或}1x <-显然A 是B 的真子集,所以p 是q 的充分不必要条件. 故选:A. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.3.B解析:B 【分析】由()2200022110x x x -+=-+≥,可判断A ;由对数函数的定义域和对数函数的单调性得充分性不一定成立,必要性成立,可判断B ;运用作差法,判断其差的符号可判断C ;根据全称命题的否定是特称命题可判断D. 【详解】由()2200022110x x x -+=-+≥,得A 为真命题;由“b a <”不能推出“log 1a b <”,所以充分性不一定成立,由“log 1a b <”得“b a <”,所以必要性成立,故B 不正确;由0a b <<,则110b aa b ab --=>,∴11a b>,故C 正确; 根据全称命题的否定是特称命题知D 正确. 故选:B. 【点睛】本题考查判断命题的真假,对数函数的定义域,单调性,全称命题与特称命题的关系,属于中档题.4.B解析:B 【分析】结合题意,按照集合中的元素个数分类,即可得解. 【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉, 故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉, 故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =; ③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B , 故可能结果为:①{2,4,5}A =,3{}1,B;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉, 故{1,2,3,5}A =,{4}B =,共计1种. 所以有序集合对(),A B 的个数为13318+++=. 故选:B. 【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.5.C解析:C 【分析】根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解.【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.6.B解析:B 【分析】根据充分条件与必要条件的判断,看条件与结论之间能否互推,条件能推结论,充分性成立,结论能推条件,必要性成立,由此即可求解. 【详解】解:∵定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,∴()y f x =在(),0-∞上单调递增,∴当(),0a ∈-∞,(),0b ∈-∞时,如1,2a b =-=-,满足a b > ,但()()>f a f b ,所以由“a b >”推不出“()()f a f b <”,反之,当a R ∈,b R ∈时,“()()f a f b <”⇒“a b >”⇒“a b >”, 故对于实数a ,b ,“a b >”是“()()f a f b <”的必要不充分条件, 故选:B . 【点睛】本题以函数的奇偶性为背景,考查充分条件与必要条件的判断,考查理解辨析能力,属于中档题.7.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.8.A解析:A 【分析】 由AB A =可知,A B ⊆,据此逐一考查所给的集合是否满足题意即可.由AB A =可知,A B ⊆,对于A :0{|212}x x >=={|0}x x A ⊇>,符合题意.对于B :{}21x x ={|11}x x x <->或,没有元素1,所以不包含A ; 对于C :22{|log 1log 2}x x >=={|2}x x >,不合题意; D 显然不合题意, 本题选择A 选项. 【点睛】本题主要考查集合的表示方法,集合之间的关系等知识,意在考查学生的转化能力和计算求解能力.9.C解析:C 【分析】结合等差数列的单调性,根据充分条件、必要条件的判定方法,即可求解. 【详解】在{}n a 是等差数列,若123a a a <<,可得21320d a a a a =-=->, 所以数列{}n a 是递增数列,即充分性成立;若数列{}n a 是递增数列,则必有123a a a <<,即必要性成立, 所以“123a a a <<”是“数列{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及等差数列的单调性判定及应用,其中解答中熟记等差数列的性质是解答的关键,着重考查推理与论证能力.10.C解析:C 【分析】||||b a b =-两边平方得出22()b a b =-,展开等价变形得出102b a a ⎛⎫-⋅= ⎪⎝⎭,根据充分条件和必要条件的定义进行判断即可. 【详解】22||||()b a b b a b =-⇔=-22221122020022b a a b b a a b a b a b a a ⎛⎫⎛⎫⇔=-⋅+⇔-⋅=⇔⋅-=⇔-⋅= ⎪ ⎪⎝⎭⎝⎭则“||||b a b =-”是“1()02b a a -⋅=”的充分必要条件 故选:C本题主要考查了充要条件的证明,涉及了向量运算律的应用,属于中档题.11.C解析:C 【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案. 【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>.所以22lg lg (lg )(lg )lg lg b aa b b a ab a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >. 又因为log log a b a b b a <,所以log log a b b ba a <,即2(log )ab b a<. 当a b =时,11<,不等式不成立. 当a b >时,01b a<<,log 1a b >,不等式2(log )a bb a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a bb a<成立. 必要性满足.综上:p 是q 的充要条件. 故选:C 【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.12.A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.二、填空题13.【分析】集合A 中所有元素被选取了次可得集合中所有3个元素的子集的元素和为即可得结果【详解】集合中所有元素被选取了次∴集合中所有3个元素的子集的元素和为故答案为【点睛】本题考查了集合的子集正整数平方和 解析:(2)(1)(1)(21)12n n n n n --++【分析】集合A 中所有元素被选取了21n C -次,可得集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()222122123n n C -+++⋯+即可得结果.【详解】 集合{}22221,2,3,,A n =中所有元素被选取了21n C -次,∴集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()()()()()2222211212112326n n n n n n C n ---+++++⋯+=⨯()()()()2112112n n n n n --++=,故答案为(2)(1)(1)(21)12n n n n n --++.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.14.【解析】试题分析:由题意可得命题:为真命题所以解得考点:命题的真假解析:a -≤≤【解析】试题分析:由题意可得命题:x R ∀∈,22390x ax -+≥为真命题.所以()234290a ∆=--⨯⨯≤,解得a -≤≤考点:命题的真假.15.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.16.【分析】根据题意写出原命题的否定则其是一个真命题再据此求范围即可【详解】因为使得是假命题所以其否定:是真命题又时所以故答案为:【点睛】本题考查命题的真假关系考查三角函数求最值属于简单题在解决命题真假解析:【分析】根据题意,写出原命题的否定,则其是一个真命题,再据此求范围即可. 【详解】 因为“0,63x ππ⎡⎤∃∈⎢⎥⎣⎦使得0tan x m ≥”是假命题, 所以其否定:“,63x ππ⎡⎤∀∈⎢⎥⎣⎦,tan x m <”是真命题,又,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan x ∈,所以m >故答案为:)+∞.【点睛】本题考查命题的真假关系,考查三角函数求最值,属于简单题.在解决命题真假性相关问题时,若原命题不好求解,可以考虑与之相关的其他命题,比如命题的否定,逆否命题等.17.数列为等差数列且【分析】根据题意设该数列为由数列的前项和公式分析可得数列为等差数列且反之验证可得成立综合即可得答案【详解】根据题意设该数列为若数列的前项和则当时当时当时符合故有数列为等差数列且反之当解析:数列为等差数列且14a =,6d =. 【分析】根据题意,设该数列为{}n a ,由数列的前n 项和公式分析可得数列为等差数列且14a =,6d =,反之验证可得23n S n n =+成立,综合即可得答案.【详解】根据题意,设该数列为{}n a ,若数列的前n 项和23n S n n =+,则当1n =时,114a S ==,当2n 时,162n n n a S S n -=-=-, 当1n =时,14a =符合62n a n =-, 故有数列为等差数列且14a =,6d =,反之当数列为等差数列且14a =,6d =时,62n a n =-,21()232n n a a S n n +⨯==+; 故数列的前n 项和23(*)n S n n n N =+∈”成立的充要条件是数列为等差数列且14a =,6d =,故答案为:数列为等差数列且14a =,6d =. 【点睛】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.18.必要不充分【解析】因为方程表示焦点在轴上的椭圆所以因此是方程表示焦点在轴上的椭圆的必要不充分条件点睛:充分必要条件的三种判断方法定义法:直接判断若则若则的真假并注意和图示相结合例如⇒为真则是的充分条解析:必要不充分 【解析】因为方程22212x y m m +=-表示焦点在x 轴上的椭圆,所以2202m m m >-><<因此“02m <<”是“方程22212x y m m +=-表示焦点在x 轴上的椭圆”的必要不充分条件点睛:充分、必要条件的三种判断方法.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.19.0或【解析】由题意得解析:0或【解析】由题意得2223,1,3,10x x x x x x x 或或==≠≠≠⇒=±20.3【分析】利用倍角公式和差公式化简利用三角函数的单调性可得根据是的必要条件可得即可得出结论【详解】根据题意可得:∵∴即是的必要条件则∴∴即故答案为:3【点睛】本题考查了倍角公式和差公式三角函数的单调解析:3 【分析】利用倍角公式、和差公式化简()fθ,利用三角函数的单调性可得B ,根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆,即可得出结论. 【详解】根据题意可得:()2cos 2cos 2sin 216f πθθθθθ⎛⎫=+=++ ⎪⎝⎭. ∵,64ππθ⎡⎤∈-⎢⎥⎣⎦ ∴()[]0,3fθ∈,即[]0,3B =“x A ∈”是“x B ∈”的必要条件,则B A ⊆∴03a b ≤⎧⎨≥⎩∴303b a -≥-=,即()min 3b a -=. 故答案为:3. 【点睛】本题考查了倍角公式、和差公式、三角函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)0;(2)10,2⎡⎤⎢⎥⎣⎦.【分析】(1)解方程2(1)1m -=检验即得解;(2)求出[0,4]A =,1[,4]2B k k =--,解不等式组1244k k ⎧-≥⎪⎨⎪-≤⎩即得解.【详解】(1)依题意得:∵()y f x =为幂函数,∴2(1)1m -=,∴0m =或2m =,当2m =时,2()f x x -=在(0,)+∞上单调递减,舍去, 当0m =时,2()f x x =在(0,)+∞上单调递增,可取,所以0m =.(2)由(1)得2()f x x =,当[1,2]x ∈-时,()[0,4]f x ∈,即[0,4]A =,当[1,2]x ∈-时,1()[,4]2g x k k ∈--,即1[,4]2B k k =--,∵命题p 是q 成立的必要条件,∴B A ⊆,∴10244k k ⎧-≥⎪⎨⎪-≤⎩,∴102k ≤≤, ∴k 的取值范围是1[0,]2. 【点睛】本题主要幂函数的定义和单调性,考查函数的值域的求法,考查指数函数的单调性和必要条件的判断,意在考查学生对这些知识的理解掌握水平. 22.(1)45x <<(2)523m ≤≤ 【分析】(1)分别求解绝对值不等式和一元二次不等式,化简p 与q ,结合p q ∧为真,解不等式组,即可得出x 的取值范围;(2)由p 是q 的充分不必要条件,建立关于m 的不等式组,求解即可得出答案. 【详解】(1)由|27|3x -<,解得25x <<由22430x mx m -+<以及0m >,解得3m x m << 当4m =时,q :412x <<p q ∧为真,25412x x <<⎧∴⎨<<⎩,解得45x <<(2):25,:3p x q m x m <<<<p 是q 的充分不必要条件2350m m m ≤⎧⎪∴≥⎨⎪>⎩,解得523m ≤≤当53m =时,5:53q x <<成立 当2m =时,:26q x <<成立523m ∴≤≤ 【点睛】本题主要考查了根据复合命题的真假求参数的范围以及由充分不必要条件求参数的范围,属于中档题.23.(1)4b =,13a -≤<;(2)15m ≤<. 【分析】(1)直接利用并集结果可得4b =,13a -≤<;(2)根据A B A ⋃=可得B A ⊆,再对集合B 的解集情况进行分类讨论,即可得答案; 【详解】 解:(1)10{13}3x A x x x x +⎧⎫=≤=-≤<⎨⎬-⎩⎭∣∣;[,][1,4]A a b ⋃=-,∴4b =,13a -≤<; (2){}2(1)20{|(1)((2))0}B x x m x m x x x m =--+-≤=---≤∣,A B A ⋃=B A ∴⊆∴分情况讨论①21m -<,即3m <时2121m m -≥-⎧⎨-<⎩得13m ≤<;②若21m -=,即3m =,B 中只有一个元素1符合题意; ③若21m ->,即3m >时2321m m -<⎧⎨->⎩得35m <<,∴35m <<∴综上15m ≤<. 【点睛】由集合间的基本关系求参数时,注意对可变的集合,分空集和不为空集两种情况. 24.(1)()()34-∞-+∞,,,[]1,4-;(2)2m <-或7m >.【分析】(1)由指数函数的单调性可得403x x ->+,解分式方程即可得集合A ,从而可求出()R A B ⋂. (2)由题意知B A ,分B =∅和B ≠∅两种情况进行讨论,从而可求出实数m 的取值范围.【详解】 (1)∵4321x x -+>,∴40322x x -+>,∴403x x ->+,解得3x <-或4x >, ∴()(),34,A =-∞-⋃+∞,又2m =,[]1,5B =-,[]3,4RA =-∴()[]1,4RA B ⋂=-.(2)∵x B ∈是x A ∈的充分不必要条件,∴BA ,(1)当B =∅时,则321m m ->+,即4m <-. (2)当B ≠∅时,32134m m m -≤+⎧⎨->⎩或321213m m m -≤+⎧⎨+<-⎩∴7m >或42m -≤<- 综上所述,2m <-或7m >. 【点睛】 结论点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 25.(1)A ∩B ={x |3≤x <6},(∁R B )∪A ={x |x ≤2,或3≤x <6,或x ≥9};(2) {a |2≤a ≤8} 【分析】(1)根据集合A ={x |3≤x <6},B ={x |2<x <9},利用交集的运算求解.;根据全集为R ,B ={x |2<x <9},利用补集运算得到UB ,再利用并集的运算求解.(2)由C ={x |a <x <a +1},且C ⊆B ,利用子集的定义,分C =∅和C ≠∅两种情况求解. 【详解】(1)因为集合A ={x |3≤x <6},B ={x |2<x <9}, 所以A ∩B ={x |3≤x <6};因为全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}. 所以{|2U B x x =≤或 }9x ≥ ,所以UB ∪A {|2x x =≤或36x <≤ 或}9x ≥;(2)由C ={x |a <x <a +1},且C ⊆B , 当C =∅时,则1a a ≥+,无解;当C ≠∅时,则1219a a a a <+⎧⎪≥⎨⎪+≤⎩,解得28a ≤≤,综上:实数a 取值构成的集合是[2,8] 【点睛】本题主要考查集合的基本运算及基本关系应用,关键点是熟悉集合的性质,掌握集合的交并补基本运算,还考查了运算求解的能力,属于中档题. 26.(1)2m =;(2)()(),35,-∞-+∞.【分析】(1)求出集合A 、B ,根据交集运算结果得出关于m 的等式和不等式,即可求出实数m 的值; (2)求出A R,由p ⌝是q 的必要条件,可得出RB A ⊆,可得出关于实数m 的不等式,即可求得实数m 的取值范围.【详解】 (1){}[]2230,1,3A x x x x R =--≤∈=-,{}()(){}[]222402202,2B x x mx m x x m x m m m ⎡⎤⎡⎤=-+-≤=-+⋅--≤=-+⎣⎦⎣⎦,又[]0,3A B ⋂=,则2023m m -=⎧⎨+≥⎩,解得2m =;(2)()(),13,R A =-∞-⋃+∞,且p ⌝是q 的必要条件,则RB A ⊆,所以,21m +<-或23m ->,解得3m <-或5m >. 因此,实数m 的取值范围是()(),35,-∞-⋃+∞. 【点睛】本题考查了利用交集的结果求参数,同时也考查了利用必要条件求参数,考查了推理能力与计算能力,属于中档题.。
苏州新草桥中学必修第一册第一单元《集合与常用逻辑用语》检测题(包含答案解析)
![苏州新草桥中学必修第一册第一单元《集合与常用逻辑用语》检测题(包含答案解析)](https://img.taocdn.com/s3/m/0700b7fa192e45361166f505.png)
一、选择题1.“不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是( )A .12m >B .01m <<C .14m >D .1m2.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数 3.“21x >”是“2x >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( )A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞5.m n 是两条不同的直线,α是平面,n α⊥,则//m α是m n ⊥的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件6."tan 1"α=是""4πα=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件7.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④ B .①② C .①③ D .②④8.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件9.已知点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,则“m =是“点P 到直线l ”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件10.下列命题错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠ ,则2320x x -+≠”B .若p q ∧为假命题,则,p q 均为假命题C .对于命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥D .“2x >”是“2320x x -+>”的充分不必要条件 11.命题“对任意x ∈R ,都有20x ≥”的否定为 A .对任意x ∈R ,都有20x < B .不存在x ∈R ,都有20x < C .存在0x ∉R ,使得200x < D .存在0x ∈R ,使得200x <12.以下四个命题中错误..的是( ) A .若样本1x 、2x 、、5x 的平均数是2,方差是2,则数据12x 、22x 、、52x 的平均数是4,方差是4B .ln 0x <是1x <的充分不必要条件C .样本频率分布直方图中的小矩形的面积就是对应组的频率D .抛掷一颗质地均匀的骰子,事件“向上点数不大于3”和事件“向上点数不小于4”是对立事件二、填空题13.若集合{}{}2|560|20A x x x B x ax a Z =-+≤=-=∈,,,且B A ⊆,则实数a =_____.14.已知集合1,2,3,{}4,5,6X Y Z ⋃⋃=,若1,21,2,3,4,5}{},3{,X Y X Y X ⋂=⋃=∉,则集合X Y Z 、、所有可能的情况有_________种.15.已知命题“0x ∃∈[1,2], 200210x ax -+>”是真命题,则实数a 的取值范围为______.16.已知集合{}{}21,,A m B m ==,若B A ⊆,则实数m 的值是__________. 17.集合{}|20M x N x =∈-≤≤的子集个数为__________. 18.已知命题:①将一组数据中的每个数都变为原来的2倍,则方差也变为原来的2倍; ②命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”; ③在ABC ∆中,若sin sin A B A B ><,则; ④在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<的概率是78; ⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭. 以上命题中正确的是__________(填写所有正确命题的序号).19.已知命题q :2,10.x R x mx ∀∈++>是真命题,则实数m 的取值范围为__________ 20.非空集合*S N ⊆,且满足条件“x S ∈,则()10x S -∈”,则集合S 的所有元素之和的总和为______.三、解答题21.已知命题p :01x ≤≤;q :()120a x a a -≤≤>. (1)若1a =,写出命题“若p 则q ”的逆否命题,并判断真假; (2)若p 是q 的充分不必要条件,求实数a 的取值范围. 22.如果():30p x x -<是:23q x m -<的充分不必要条件,求实数m 的取值范围.23.已知函数()f x =A ,函数2()41,[0,3]g x x x x =-+-∈的值域为B .(Ⅰ)设集合()M A B Z =⋂⋂,其中Z 是整数集,写出集合M 的所有非空子集; (Ⅱ)设集合{|121}C x a x a =-<<+,且BC =∅,求实数a 的取值范围.24.已知命题:P 实数x 满足2280x x --≤,命题:q 实数x 满足2(0)x m m -≤> (1)当m=3时,若“p 且q”为真,求实数x 的取值范围;(2)若“非p”是“非q”的必要不充分条件,求实数m 的取值范围. 25.已知集合{}30A x x a =->,{}260B x x x =-->. (Ⅰ)当3a =时,求A B ,A B ;(Ⅱ)若()RA B ⋂≠∅,求实数a 的取值范围.26.已知集合(](),13,A =-∞+∞,[],2B m m =+.(1)若2m =,求()R C A B ⋂;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.【详解】因为“不等式2+0mx x m +>在R 上恒成立”,所以当0m =时,原不等式为0x>在R 上不是恒成立的,所以0m ≠,所以“不等式2+0mx x m +>在R 上恒成立”,等价于2>0140m m ⎧⎨∆=-<⎩,解得12m >. A 选项是充要条件,不成立;B 选项中,12m >不可推导出01m <<,B 不成立; C 选项中,12m >可推导14m >,且14m >不可推导12m >,故14m >是12m >的必要不充分条件,正确;D 选项中,1m 可推导1>2m ,且1>2m 不可推导1m ,故>1m 是12m >的充分不必要条件,D 不正确. 故选:C. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.B解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】 选项A 中,,2x ππ⎛⎫∈⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈-⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-=⎪⎝⎭, sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】 方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.3.B解析:B 【分析】设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性. 【详解】设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A ,所以“21x >”是“2x >”的必要不充分条件. 故选:B . 【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.4.C解析:C 【分析】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题,分0x =和0x ≠两种情况讨论,结合参变量分离法可求得实数a 的取值范围. 【详解】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题. 当0x =时,则有10-≥,不合乎题意;当0x ≠时,由2410ax x +-≥,可得214ax x ≥-,则有221414x a x x x-≥=-, 22141244x x x ⎛⎫-=--≥- ⎪⎝⎭,当且仅当12x =时,等号成立, 所以,4a ≥-.综上所述,实数a 的取值范围是[)4,-+∞. 故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.5.A解析:A 【分析】根据线面平行的性质定理、线面垂直的定义结合充分条件、必要条件的定义判断即可. 【详解】当//m α时,过直线m 作平面β,使得l αβ=,则//m l ,n α⊥,l α⊂,n l ∴⊥,m n ∴⊥,即//m m n α⇒⊥;当m n ⊥时,由于n α⊥,则m α⊂或//m α,所以,//m n m α⊥⇒/.综上所述,//m α是m n ⊥的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了空间点、线、面位置关系的判断,考查推理能力,属于中等题.6.B解析:B 【解析】 由"tan 1"α=,得,而""4πα=得"tan 1"α=,所以"tan 1"α=是""4πα=的必要非充分条件. 故选B7.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.8.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.9.B解析:B 【分析】“点P 到直线l 10”解得:35m =±. 【详解】点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,考虑“点P 到直线l 10” 设()[)2cos ,sin ,0,2P θθθπ∈, 点P 到直线l 的距离()5sin 2cos sin 2255mmd θϕθθϕϕ++-+===点P 到直线l ()m θϕ++的最小值()m θϕ++符号恒正或恒负, ()m m m θϕ⎡++∈⎣当0m <时,m =-,当0m >时,m =综上所述:m =±所以“m =是“点P 到直线l ”的充分不必要条件. 故选:B 【点睛】此题考查充分条件与必要条件的辨析,关键在于根据题意准确求出参数的取值范围.10.B解析:B 【分析】由原命题与逆否命题的关系即可判断A ;由复合命题的真值表即可判断B ; 由特称命题的否定是全称命题即可判断C ;根据充分必要条件的定义即可判断D ;. 【详解】A .命题:“若p 则q ”的逆否命题为:“若¬q 则¬p ”,故A 正确;B .若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故B 错.C .由含有一个量词的命题的否定形式得,命题p :∃x ∈R ,使得x 2+x +1<0,则¬p 为:∀x ∈R ,均有x 2+x +1≥0,故C 正确;D .由x 2﹣3x +2>0解得,x >2或x <1,故x >2可推出x 2﹣3x +2>0,但x 2﹣3x +2>0推不出x >2,故“x >2”是“x 2﹣3x +2>0”的充分不必要条件,即D 正确 故选B . 【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.11.D解析:D 【解析】命题“对任意x R ∈,都有20x ≥”的否定为:存在0x R ∈,使得200x <,选D.12.A解析:A 【分析】利用平均数和方差公式可判断A 选项的正误;解不等式ln 0x <,利用集合的包含关系可判断B 选项的正误;根据频率直方图的概念可判断C 选项的正误;根据对立事件的概念可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,样本1x 、2x 、、5x 的平均数为1234525x x x x x x ++++==,方差为()()()()()222221234522222225x x x x x s ⎡⎤-+-+-+-+-⎣⎦==, 数据12x 、22x 、、52x 的平均数是1234522222245x x x x x x x ++++'===,方差为()()()()()2222212345224242424245x x x x x s ⎡⎤-+-+-+-+-⎣⎦'=()()()()()2222212345242222244285x x x x x s ⎡⎤-+-+-+-+-⎣⎦===⨯=,A 选项错误;对于B 选项,解不等式ln 0x <,得01x <<,{}01x x << {}1x x <,所以,ln 0x <是1x <的充分不必要条件,B 选项正确;对于C 选项,由频率分布直方图的概念可知,样本频率分布直方图中的小矩形的面积就是对应组的频率,C 选项正确;对于D 选项,抛掷一颗质地均匀的骰子,事件“向上点数不大于3”即为:向上的点数为1或2或3,事件“向上点数不小于4”即为:向上的点数为4或5或6, 这两个事件互为对立事件,D 选项正确. 故选:A. 【点睛】本题考查命题正误的判断,涉及平均数、方差的计算、充分不必要条件的判断、频率直方图和对立事件概念的理解,考查推理能力,属于中等题.二、填空题13.或【分析】先解二次不等式可得再由讨论参数两种情况再结合求解即可【详解】解:解不等式得即①当时满足②当时又则解得又则综上可得或故答案为:或【点睛】本题考查了二次不等式的解法空集的定义及集合的包含关系重解析:0或1 【分析】先解二次不等式可得{}|23A x x =≤≤,再由B A ⊆,讨论参数0a =,0a ≠两种情况,再结合a Z ∈求解即可. 【详解】解:解不等式2560x x -+≤,得23x ≤≤,即{}|23A x x =≤≤, ①当0a =时,B φ=,满足B A ⊆, ②当0a ≠时,2B a ⎧⎫=⎨⎬⎩⎭,又B A ⊆,则223a ≤≤,解得213a ≤≤,又a Z ∈,则1a =,综上可得0a =或1a =, 故答案为:0或1. 【点睛】本题考查了二次不等式的解法、空集的定义及集合的包含关系,重点考查了分类讨论的数学思想方法,属基础题.14.【分析】通过确定XYZ 的子集利用乘法公式即可得到答案【详解】根据题意可知由于可知Z 共有种可能而有4种可能故共有种可能所以答案为128【点睛】本题主要考查子集相关概念乘法分步原理意在考查学生的分析能力 解析:128【分析】通过确定X,Y ,Z 的子集,利用乘法公式即可得到答案. 【详解】根据题意,可知1,2,1,236{}{},{}Z X Y ⊆⊆⊆,,由于{6}Z ⊆,可知Z 共有 52=32种可能,而(){4},5X Y ⊆⋃有4种可能,故共有432=128⨯种可能,所以答案为128. 【点睛】本题主要考查子集相关概念,乘法分步原理,意在考查学生的分析能力,计算能力,难度较大.15.【分析】由题意可得2a <x0在12的最大值运用对勾函数的单调性可得最大值即可得到所求a 的范围【详解】命题∃x0∈12x02﹣2ax0+1>0是真命题即有2a <x0在12的最大值由x0在12递增可得x解析:5,4⎛⎫-∞ ⎪⎝⎭【分析】 由题意可得2a <x 001x +在[1,2]的最大值,运用对勾函数的单调性可得最大值,即可得到所求a 的范围. 【详解】命题“∃x 0∈[1,2],x 02﹣2ax 0+1>0”是真命题, 即有2a <x 001x +在[1,2]的最大值,由x 001x +在[1,2]递增,可得x 0=2取得最大值52, 则2a 52<,可得a 54<, 则实数a 的取值范围为(﹣∞,54). 故答案为(﹣∞,54). 【点睛】本题考查存在性命题的真假问题解法,注意运用分离参数法,运用对勾函数的单调性,考查运算能力,属于中档题.16.【解析】分析:根据集合包含关系得元素与集合属于关系再结合元素互异性得结果详解:因为所以点睛:注意元素的互异性在解决含参数的集合问题时要注意检验集合中元素的互异性否则很可能会因为不满足互异性而导致解题 解析:0【解析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为B A ⊆,所以22110.m m m m m m m=≠⎧⎧∴=⎨⎨≠=⎩⎩或 点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.17.2【解析】因为集合所以集合子集有两个:空集与故答案为解析:2 【解析】因为集合{}{}|200M x N x =∈-≤≤=,所以集合M 子集有两个:空集与{}0,故答案为2.18.③④⑤【解析】所以将一组数据中的每个数都变为原来的2倍则方差也变为原来的4倍;故①错误;命题的否定是故②错误;在中若则由正弦定理得故③正确;在正三棱锥内任取一点P 使得则在与底面平行的中截面上则中截面解析:③④⑤ 【解析】,所以将一组数据中的每个数都变为原来的2倍,则方差也变为原来的4倍;故①错误;命题“2,10x R x x ∃∈++<”的否定是“”,故②错误;在ABC ∆中,若,则,由正弦定理,得,故③正确;在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<,则,在与底面平行的中截面上,则中截面将正三棱锥的体积分成的两部分,所以所求概率是78,即④正确;⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则,即,令,显然在上为减函数,且,即,即实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭,故⑤正确;所以选③④⑤.考点:命题的判定.19.【解析】【分析】因为命题:是真命题可得即可求得答案【详解】命题:是真命题解得则实数的取值范围为故答案为【点睛】这是一道关于命题的真假判断与应用的题目关键是根据已知命题为真命题构造关于的不等式是解题的 解析:[2,2]-【解析】 【分析】因为命题q :210x R x mx ∀∈++>,,是真命题,可得240m =-<即可求得答案【详解】命题q :210x R x mx ∀∈++>,,是真命题240m ∴=-<,解得22m -<<则实数m 的取值范围为()22-, 故答案为()22-,【点睛】这是一道关于命题的真假判断与应用的题目,关键是根据已知命题为真命题,构造关于m 的不等式是解题的关键20.720【分析】欲求中所有元素和的总和需要知道中的元素和分别是多少;中的元素都可以通过题中已知条件:则求出【详解】解:依题意得为正整数集且及均为正整数即可可取的任意正整数1和9要么必须同时出现要么都不解析:720. 【分析】欲求S 中所有元素和的总和,需要知道S 中的元素和分别是多少;S 中的元素都可以通过题中已知条件:x S ∈,则(10)x S -∈求出.【详解】解:依题意得S 为正整数集, x S ∈,且10x S -∈x 及10x -均为正整数即可 x 可取19→的任意正整数,1和9要么必须同时出现,要么都不出现;同理:2和8、3和7、4和6依此类推5……单独考虑,共5组. 那么:只选1组是45,即(19)(28)545++++⋯⋯+= 依此类推: 选2组是180, 选3组是270, 选4组是180, 选5组是45,共计4518027018045720++++=. 故答案为:720. 【点睛】首先要明确*N 所代表的数集,然后根据已知条件将所有的可能考虑全面即可,属于中档题.三、解答题21.(1)逆否命题为“若0x <或2x >,则0x <或1x >”,真命题;(2)112a ≤≤. 【分析】(1)直接写出命题“若p 则q ”逆否命题并判断真假即可; (2)由题意得{}|01x x ≤≤(){}|120x a x a a -≤≤>,即1021a a -≤⎧⎨≥⎩解不等式组可得答案. 【详解】(1)若1a =,则q :02x ≤≤,命题“若p 则q ”为“若01x ≤≤,则02x ≤≤”, 命题“若p 则q ”的逆否命题为“若0x <或2x >,则0x <或1x >”,是真命题; (2)若p 是q 的充分不必要条件,{}|01x x ≤≤(){}|120x a x a a -≤≤>则1021a a -≤⎧⎨≥⎩,解得112a ≤≤,实数a 的取值范围为112a ≤≤.【点睛】结论点睛:充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.22.3m ≥【分析】通过解不等式化简命题,再由充分不必要条件列不等式组解得即可. 【详解】由不等式()30x x -<,得03x <<,由不等式23x m -<,得32mx +<, ∵命题p 是命题q 的充分不必要条件,∴332m+≥,即3m ≥. 故实数m 的取值范围为3m ≥. 【点睛】本题考查解不等式,充分必要条件的定义,属于基础题.23.(Ⅰ){}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1;(Ⅱ)(][),14,-∞-+∞【分析】(Ⅰ)计算得到(]3,log 8A =-∞,[]1,3B =-,再计算交集得到{}1,0,1M =-,得到答案.(Ⅱ)考虑C =∅和C ≠∅两种情况,得到121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得答案.【详解】(Ⅰ)函数()f x =830x -≥,即3log 8x ≤,即(]3,log 8A =-∞,()22()4123,[0,3]g x x x x x =-+-=--+∈,[]1,3y ∈-,即[]1,3B =-,[]{}31,log (1,0,8)1M A B Z Z =⋂⋂=--⋂=.故集合M 的所有非空子集为{}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1. (Ⅱ){|121}C x a x a =-<<+,BC =∅,当C =∅时,121a a -≥+,解得2a ≤-;当C ≠∅时,121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得(][)2,14,a ∈--+∞.综上所述:(][),14,a ∈-∞-+∞.【点睛】本题考查了函数的定义域,值域,子集,根据交集运算结果求参数,意在考查学生的计算能力和转化能力,忽略空集是容易发生的错误. 24.(1)[1,4]-(2)4m ≥ 【详解】试题分析:(1)先转化,q ,由且q 为真,得真q 真,解出x (2)由p ⌝是q⌝的必要不充分条件 得是q 的充分不必要条件,根据数轴列出不等式解出m试题 解:(1)若真:24x -≤≤;当3m =时,若q 真:15x -≤≤∵且q 为真 ∴24{15x x -≤≤-≤≤ ∴实数x 的取值范围为:[1,4]-(2)∵p ⌝是q ⌝的必要不充分条件 ∴是q 的充分不必要条件∵若q 真:22m x m -≤≤+ ∴22{42m m-≤-≤+且等号不同时取得 (不写“且等号不同时取得”,写检验也可)∴4m ≥.考点:复合命题,充要条件,解不等式25.(Ⅰ){}3A B x x ⋂=>,{|2A B x x ⋃=<-或1}x >;(Ⅱ)(),9-∞. 【分析】(Ⅰ)解不等式求得集合,A B ,再由交并集的定义求解; (Ⅱ)求出A 与B R,然后分析两集合有公共元素时的不等关系,可得a 的范围.【详解】 由30x a ->得3ax >,所以3a A x x ⎧⎫=>⎨⎬⎩⎭由260x x -->,得()()230x x +->,解得2x <-或3x >,所以{}2B x x =<-或3}x >. (Ⅰ)当3a =时,{}1A x x =>,所以{}3A B x x ⋂=>,{|2A B x x ⋃=<-或1}x > (Ⅱ)因为{|2B x x =<-或3}x >, 所以{}23B x x =-≤≤R . 又因为()R A B ⋂≠∅,所以33a<,解得9a <. 所以实数a 的取值范围是(),9-∞. 【点睛】本题考查集合的表示、运算,考查集合间的关系,考查一元二次不等式的解法.属于基础题.26.(1)[2,3](2)(,1](3,)-∞-⋃+∞【分析】(1)根据集合的交集、补集运算即可求解; (2)由题意知B A ,结合数轴建立不等式求解即可. 【详解】(1)2m =时,[]2,4B =,(1,3]R C A =, ∴()[2,3]R C A B ⋂=(2)因为“x A ∈”是“x B ∈”的必要不充分条件, 所以B A , 故21m +≤或3m >, 解得1m ≤-或3m >故m 的取值范围为(,1](3,)-∞-⋃+∞ 【点睛】本题主要考查了集合的交集、补集运算,集合的真子集,必要不充分条件,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.下列命题中:①命题“若1l :210ax y +-=与2l :0x y -=垂直,则2a =”的逆否命题;②命题“若1a ≠,则210a -≠”的否命题;③命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定.其中真命题的个数为( )A .0个B .1个C .2个D .3个3.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分又不必有4.已知a ,b R ∈,则“0a b +<”是“0a a b b +<”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件5.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞6.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞7.设a ,b 都是不等于1的正数,则“log 3log 31a b >>”是“33a b <”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.已知集合{}1,2,3,4,5A =,且A B A =,则集合B 可以是( )A .{}|21xx >B .{}21x xC .{}2log 1x xD .{}1,2,39.若集合1|,6 A x x m m Z ⎧⎫==+∈⎨⎬⎩⎭, 1|,23n B x x n Z ⎧⎫==-∈⎨⎬⎩⎭,1|,26p C x x p Z ⎧⎫==+∈⎨⎬⎩⎭,则A ,B ,C 之间的关系是( )A .ABC ==B .AB C = C .ABC D .B CA10.命题“对任意x ∈R ,都有20x ≥”的否定为 A .对任意x ∈R ,都有20x < B .不存在x ∈R ,都有20x < C .存在0x ∉R ,使得200x <D .存在0x ∈R ,使得200x <11.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}12.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若“存在x ∈[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___. 14.若“条件α:24x ≤≤”是“条件β:31m x m -≤≤-”的充分条件,则m 的取值范围是________.15.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.16.已知条件:21p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.17.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则M N =__________.18.设集合{1,2,3,4}I =,选择I 的两个非空子集A 和B ,使得A 中最大的数不大于B 中最小的数,则可组成不同的子集对(,)A B __________个. 19.已知集合{}1,2,3,4A =,集合{}3,4,5B =,则AB =_______.20.非空集合*S N ⊆,且满足条件“x S ∈,则()10x S -∈”,则集合S 的所有元素之和的总和为______.三、解答题21.已知集合{}2|3100M x x x =--≤,{}|121N x a x a =+≤≤+.(1)若2a =,求()()RRM N ;(2)若M N M ⋃=,求实数a 的取值范围. 22.已知命题p :01x ≤≤;q :()120a x a a -≤≤>. (1)若1a =,写出命题“若p 则q ”的逆否命题,并判断真假; (2)若p 是q 的充分不必要条件,求实数a 的取值范围. 23.已知命题:342,:()(2)0p x q x a x a ->---<. (1)若1a =,p q ∧为真命题,求x 的取值范围; (2)若q 是p ⌝的必要不充分条件,求实数a 的取值范围. 24.已知集合{}13A x x =<<,集合{}21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若A B ⊆,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.25.已知命题p :实数x 满足()225400x ax a a -+<>;命题q :实数x 满足2560x x -+<.(1)当1a =时,若P 和q 都为真,求x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 26.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件, 故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.D解析:D 【分析】根据原命题和逆否命题同真假来判断①是真命题,根据定义写出命题的否命题和命题的否定,再判断②③的真假即可. 【详解】①中,若1l :210ax y +-=与2l :0x y -=垂直,则()1210a ⨯+⨯-=,则2a =.故该命题是真命题,其逆否命题也是真命题;②中,命题“若1a ≠,则210a -≠”的否命题是:“若1a =,则210a -=”,易见若1a =,则21a =,则210a -=,故“若1a =,则210a -=”是真命题;③中,命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是“对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期”, 对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期2T πω=,故命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是真命题.故①②③均为真命题. 故选:D. 【点睛】 思路点睛:一般互为逆否的两个命题判断真假时,可以选择容易的进行判断,则另一个就同真假.3.B解析:B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:3x y +≠时,则1x ≠或2y ≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若1x =且2y =,则有3x y +=,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选:B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.4.C解析:C 【分析】从充分性和必要性两个方面,分0,0a b <<和0,0a b <≥讨论,分别求解证明即可. 【详解】解:当 0,0a b <<,0a b +<时,此时220a a b b a b +=--<成立,当0,0a b <≥,0a b +<时,此时()()220a a b b a b a b b a +=-+=+-<成立,即0a b +<可以推出0a a b b +<,反之,若0a a b b +<,则,a b 中至少有一个负数, 若,a b 均为负数,必然有0a b +<,若0,0a b <≥,则()()220a a b b b a a b b a +=-=+-<,因为0b a ->,则必有0a b +<, 所以0a a b b +<可以推出0a b +<, 故“0a b +<”是“0a a b b +<”的充分必要条件. 故选:C. 【点睛】本题考查充分性和必要性的判断,考查学生分类讨论的思想,是中档题.5.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.6.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.7.B解析:B 【分析】由已知结合对数不等式的性质可得13a b <<<,得到33a b <;反之,由33a b <,不一定有log 3log 31a b >>成立,再由充分必要条件的判定得答案. 【详解】解:a ,b 都是不等于1的正数,由log 3log 31a b >>,得13a b <<<,33a b ∴<;反之,由33a b <,得a b <,若01a <<,1b >,则log 30a <,故log 3log 31a b >>不成立.∴ “log 3log 31a b >>”是“33a b <”的充分不必要条件.故选:B . 【点睛】本题考查指数不等式与对数不等式的性质,考查充分必要条件的判定方法,是基础题.8.A解析:A 【分析】 由A B A =可知,A B ⊆,据此逐一考查所给的集合是否满足题意即可. 【详解】由AB A =可知,A B ⊆,对于A :0{|212}x x >=={|0}x x A ⊇>,符合题意.对于B :{}21x x ={|11}x x x <->或,没有元素1,所以不包含A ; 对于C :22{|log 1log 2}x x >=={|2}x x >,不合题意; D 显然不合题意, 本题选择A 选项. 【点睛】本题主要考查集合的表示方法,集合之间的关系等知识,意在考查学生的转化能力和计算求解能力.9.B解析:B 【分析】分别将集合中的元素表示为61,6m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,31|,6t x x t Z +⎧⎫=∈⎨⎬⎩⎭和31|,6p x x p Z +⎧⎫=∈⎨⎬⎩⎭即可得结果. 【详解】 ∵161|,,66m A x x m m Z x x m Z ⎧⎫+⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 13231|,|,|,2366n n t B x x n Z x x n Z x x t Z -+⎧⎫⎧⎫⎧⎫==-∈==∈==∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,131|,|,266p p C x x p Z x x p Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭显然A B C =,故选:B. 【点睛】本题主要考查集合间的包含关系的判断,考查集合的包含关系等基础知识,属于基础题.10.D解析:D 【解析】命题“对任意x R ∈,都有20x ≥”的否定为:存在0x R ∈,使得200x <,选D.11.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.12.C解析:C【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案. 【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>. 所以22lg lg (lg )(lg )lg lg b aa b b a ab a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >. 又因为log log a b a b b a <,所以log log a b b ba a <,即2(log )ab b a<. 当a b =时,11<,不等式不成立.当a b >时,01b a<<,log 1a b >,不等式2(log )a bb a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a b b a<成立.必要性满足.综上:p 是q 的充要条件. 故选:C 【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.二、填空题13.【分析】转化为在上有解不等式右边构造函数利用单调性求出最大值即可得解【详解】存在x ∈﹣11成立即在上有解设易得y =f(x)在﹣11为减函数所以即即即所以故答案为:【点睛】关键点点睛:将问题转化为在上解析:9(,)2-+∞【分析】转化为213x xa +-<在[1,1]x ∈-上有解,不等式右边构造函数,利用单调性求出最大值即可得解. 【详解】存在x ∈[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数,所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞. 【点睛】关键点点睛:将问题转化为213x xa +-<在[1,1]x ∈-上有解进行求解是解题关键. 14.【分析】利用充分必要条件的定义问题转化为集合的包含关系根据不等式之间的关系即可得到结论【详解】设p 对应的集合为q 对应的集合为若p 是q 的充分条件则解得:实数m 的取值范围为故答案为【点睛】本题主要考查充 解析:(],4-∞-【分析】利用充分、必要条件的定义,问题转化为集合的包含关系,根据不等式之间的关系即可得到结论. 【详解】设p 对应的集合为A=[2,4),q 对应的集合为B=[3m-1,-m], 若p 是q 的充分条件, 则A B ⊆,313124m m m m -≥-⎧⎪∴-≤⎨⎪-≥⎩, 1414m m m ⎧≤⎪⎪≤⎨⎪≤-⎪⎩, 解得:4m ≤-.实数m 的取值范围为(,4]-∞-,故答案为(,4]-∞-. 【点睛】本题主要考查充分条件和必要条件的应用,以及转化思想的应用,属于中档题.15.【解析】因为所以或则图中阴影部分所表示的集合为应填答案 解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-.16.【分析】根据得出由是的充分不必要条件得出根据包含关系得出的范围【详解】由题设得或设或由得设因为是的充分不必要条件所以因此故答案为:【点睛】本题主要考查了由充分不必要条件求参数范围属于中档题解析:(],2-∞-【分析】根据p ⌝,q ⌝得出,p q ,由q 是p 的充分不必要条件,得出Q P ,根据包含关系得出a 的范围. 【详解】由题设:21p x ⌝-<<,得:1p x ≥或2x -≤,设{|1P x x =≥或}2x ≤- 由:q x a ⌝>,得:q xa ,设{}|Q x x a =≤因为q 是p 的充分不必要条件,所以Q P ,因此2a ≤-. 故答案为:(],2-∞- 【点睛】本题主要考查了由充分不必要条件求参数范围,属于中档题.17.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运 解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解. 【详解】由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭,所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.18.49【解析】分析:根据题意进行列举即可得出结果详解:①若则可以表示为共种若则可以表示为共种若则可以表示为共种若则可以表示为共种计种②若则可以表示为共种若则可以表示为共种则可以表示为共种则有种则有种则解析:49【解析】分析:根据题意进行列举,即可得出结果详解:①若{}1A =,则B 可以表示为{}1,{}12,,{}13,,{}14,,{}123,,,{}124,,,{}134,,,{}1234,,,,{}2,{}23,,{}24,,{}234,,, {}3,{}34,,{}4,共15种 若{}2A =,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种 若{}3A =,则B 可以表示为{}3,{}34,,{}4,共3种 若{}4A =,则B 可以表示为{}4,共1种计1573126+++=种②若{}12A =,,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种若{}13A =,,则B 可以表示为{}3,{}34,,{}4,共3种 {}14A =,,则B 可以表示为{}4,共1种{}23A =,,则B 有3种{}24A =,,则B 有1种{}34A =,,则B 有1种计73131116+++++=种③{}123A =,,,则B 有3种 {}124A =,,,则B 有1种{}134A =,,,则B 有1种{}234A =,,,则B 有1种计31116+++=种④若{}1234A =,,,,则B 有1种 综上所述,共有26166149+++=种故答案为49种点睛:本题主要考查的知识点是排列组合的实际应用,本题解题的关键是理解题意,能够看懂A 中最大的数不大于B 中最小的数的意义,本题是一个难题也是一个易错题,需要认真解答19.{34}【分析】利用交集的概念及运算可得结果【详解】【点睛】本题考查集合的运算考查交集的概念与运算属于基础题解析:{3,4}.【分析】利用交集的概念及运算可得结果.【详解】{}1234A =,,,,{}345B =,,{}34A B ∴⋂=,.【点睛】本题考查集合的运算,考查交集的概念与运算,属于基础题.20.720【分析】欲求中所有元素和的总和需要知道中的元素和分别是多少;中的元素都可以通过题中已知条件:则求出【详解】解:依题意得为正整数集且及均为正整数即可可取的任意正整数1和9要么必须同时出现要么都不 解析:720.【分析】欲求S 中所有元素和的总和,需要知道S 中的元素和分别是多少;S 中的元素都可以通过题中已知条件:x S ∈,则(10)x S -∈求出.【详解】解:依题意得S 为正整数集,x S ∈,且10x S -∈ x 及10x -均为正整数即可 x 可取19→的任意正整数,1和9要么必须同时出现,要么都不出现;同理:2和8、3和7、4和6依此类推5……单独考虑,共5组.那么:只选1组是45,即(19)(28)545++++⋯⋯+=依此类推:选2组是180,选3组是270,选4组是180,选5组是45,共计4518027018045720++++=.故答案为:720.【点睛】首先要明确*N 所代表的数集,然后根据已知条件将所有的可能考虑全面即可,属于中档题.三、解答题21.(1){|2x x <-或5}x >;(2)(],2-∞.【分析】先化简集合M ,(1)2a =时,求N ,再求()()R R M N ;(2)把M N M ⋃=转化为N M ⊆,建立不等式组,解得a 的取值范围.【详解】(1)2a =时,{}{}|25,|35M x x N x x =-≤≤=≤≤,{|2R M x x =<-或5}x >,{|3R N x x =<或5}x >,()(){|2R R M N x x ∴=<-或5}x >. (2),M N M N M =∴⊆①若N =∅,则121a a +>+,解得0a <,符合题意;②若N ≠∅,则12121512a a a a +≤+⎧⎪+≤⎨⎪+≥-⎩,解得02a ≤≤.综合可得实数a 的取值范围是(],2-∞.【点睛】集合的交、并、补运算:(1)离散型的数集用韦恩图;(2) 连续型的数集用数轴.22.(1)逆否命题为“若0x <或2x >,则0x <或1x >”,真命题;(2)112a ≤≤. 【分析】(1)直接写出命题“若p 则q ”逆否命题并判断真假即可;(2)由题意得{}|01x x ≤≤(){}|120x a x a a -≤≤>,即1021a a -≤⎧⎨≥⎩解不等式组可得答案.【详解】(1)若1a =,则q :02x ≤≤,命题“若p 则q ”为“若01x ≤≤,则02x ≤≤”, 命题“若p 则q ”的逆否命题为“若0x <或2x >,则0x <或1x >”,是真命题; (2)若p 是q 的充分不必要条件,{}|01x x ≤≤(){}|120x a x a a -≤≤> 则1021a a -≤⎧⎨≥⎩,解得112a ≤≤, 实数a 的取值范围为112a ≤≤. 【点睛】结论点睛:充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1)()2,3;(2)20,3⎛⎫ ⎪⎝⎭.【分析】(1)首先根据题意分别解得p 真和q 真时x 的范围,再根据p q ∧为真命题解不等式组即可.(2)首先解出p ⌝和q ,再根据q 是p ⌝的必要不充分条件解不等式组即可. 【详解】(1)p 真:342x ->或342x -<-,即p 真:2x >或23x <. :(1)(3)0q x x --<,q 真:13x <<.因为p q ∧为真命题,所以p ,q 都为真命题. 所以22313x x x ⎧><⎪⎨⎪<<⎩或,解得23x <<.(2)由(1)知2:23p x ⌝≤≤,:2q a x a <<+. 因为q 是p ⌝的必要不充分条件, 所以2203322a a a ⎧<⎪⇒<<⎨⎪+>⎩,a 的取值范围是2(0,)3. 【点睛】本题第一问考查逻辑连接词,第二问考查充分不必要条件,属于中档题.24.(1){}23A B x x ⋃=-<<;(2)(],2-∞-;(3)[)0,+∞.【分析】(1)求出集合B ,利用并集的定义可求得集合A B ; (2)利用A B ⊆可得出关于实数m 的不等式组,由此可解得实数m 的取值范围; (3)分B =∅和B ≠∅两种情况讨论,结合AB =∅可得出关于实数m 的不等式组,可求得实数m 的取值范围.【详解】(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<; (2)由A B ⊆知122113m m m m ->⎧⎪≤⎨⎪-≥⎩,解得2m ≤-,即m 的取值范围是(],2-∞-;(3)由AB =∅得 ①若21m m ,即13m ≥时,B =∅符合题意;②若21m m ,即13m <时,需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩. 得103m ≤<或m ∈∅,即103m ≤<. 综上知0m ≥,即实数的取值范围为[)0,+∞.【点睛】易错点睛:在求解本题第(3)问时,容易忽略B =∅的情况,从而导致求解错误. 25.(1)()2,3:(2)324a ≤≤. 【分析】(1)先化简命题,p q ,再求集合的交集得解; (2)先求出p ⌝和q ⌝,再解不等式组243a a ≤⎧⎨≥⎩,即得解. 【详解】(1)命题p :实数x 满足()225400x ax a a -+<>, 所以4a x a <<,设{}4A x a x a =<<,命题q :实数x 满足2560x x -+<,解得23x <<, 设{}23B x x =<<,1a =时,若p q ∧为真,则{}23A B x x ⋂=<<. 故x 的取值范围为()2,3;(2)(][):,4,p a a ⌝-∞⋃+∞,(][):,23,q ⌝-∞⋃+∞,若p ⌝是q ⌝的充分不必要条件,可得243a a ≤⎧⎨≥⎩,解得324a ≤≤, 故实数a 的取值范围为324a ≤≤. 【点睛】方法点睛:利用集合法分析判断充分必要条件,首先分清条件和结论;然后化简每一个命题,建立命题p q 、和集合A B 、的对应关系.:{|()p A x p x =成立},:{|()q B x q x =成立};最后利用下面的结论判断:(1)若A B ⊆,则p 是q 的充分条件,若A B ⊂,则p 是q 的充分非必要条件;(2)若B A ⊆,则p 是q 的必要条件,若B A ⊂,则p 是q 的必要非充分条件;(3)若A B ⊆且B A ⊆,即A B =时,则p 是q 的充要条件.26.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++, 2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+, 当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+,所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题.。