单相电容运转异步电机工作原理及故障分析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


三、单相电容运转异步电动机工作原理
单相电容运转异步 电机与三相电机的 区别: 三相电机的绕组在 空间按120°电角度 分部,单相异步电 机则按则按90°电 角度分部,见右图
i
0
120
240
360
ωτ
i
0
90
180
270
360
ωτ
在单相电机中, 由于单相绕组 产生的是脉振 磁场,电机没 有起动转矩, 不能起动,如 右图表示:
四、电容运转单相异步电动机
前面讲到,单相绕组产生的是一个脉振磁势,因此单相电 机的启动转矩为零,即电机不能自行启动,要使单相电机能够 自行启动,就必须如同三相异步电机一样,在电机内部产生一 个旋转磁场。产生旋转磁场最简单的方法是在两相绕组中通入 相位不同的两相电流。因此在单相异步电机中必须有两套绕组, 一套为工作绕组,另一套为副绕组或启动绕组,工作绕组或主 绕组M与副绕组A的轴线在空间相隔90°电角度,副绕组串联 一个适当的电容C(电容选配不当会使电机系统变差,如片面 增大或减小电容量,负序磁场可能加强,使输出功率减小性能变 坏,磁场可能会由圆形或近似圆形变为椭圆形)再与工作绕组 并接于电源。由于副绕组串联了电容,所以副绕组中的电流在 相位上超前于主绕组电流,这样由单相电流分解成具有时间相 位差的两相电流M 和A(也就是事实上的两相电流),因而电机的 两相绕组就能产生圆形或椭圆形的旋转磁场。
二、单相异步电机的基本结构
• 1、固定部分—定子;由定子铁芯、定子绕组和机座
(壳)组成。 定子铁芯是电机磁路的一部分,一般由0.5mm硅钢 片叠压而成,片与片之间相互绝缘,以减少涡流损 耗。 定子绕组一般由高强度聚酯漆包线绕制而成。 机座(或机壳)一般由A3钢板冲制而成,大电机 (单相)则是钢板卷筒后在与铸铝端盖配合而成, 三相电机一般均为铸铁机座。 2、转动部分—转子:由转子铁芯、转子绕组(纯 铝)、转轴(45#碳结钢)组成。
i
0
90
180
270
360
ωτ
i=Icosωt
要使单相电机具有起动转矩并旋转,就必须使其分相, 一般的,单相电机分相有以下几种型式: 1、电阻分相 2、电容分相 3、罩极分相 空调风机用单相异步电机几乎均采用第二种方式,即要 使单相电机既能运转又能独立启动,就必须在电机定子铁芯 中嵌放轴线在空间相隔90°电角度的两相绕组,其中一相绕 组称为主绕组(用M表示)。另一相称为副绕组或起动绕组 (用A表示)。副绕组串接一移相元件电容器,形成事实上 的两相电源。原理如7页图示: 在单相电机中,若定子上的主、副两相绕组完全对称, 两相绕组接到两相对称电源上,则与4页三相电机图示一样 也产生在空间旋转的圆形旋转磁势和磁场。
不论哪种调速,都各有优缺点,选用哪种除要考虑设计 时要达到哪个结果,还要考虑电机的经济性,一般L型较经 济)。
七、电动机主要参数介绍
• A) 空载输入电流:是指电机在额定工作电压、额定电源频 率、额定电容下、空载运行(轴上输出功率为零)情况下, 流入电动机的电流称为空载电流。单位:A或mA。 B)空载输入功率:是指电机在额定工作电压、额定电源频 率、额定电容下、空载运行(轴上输出功率为零)情况下, 输入电动机的功率。这部分功率消耗主要表现在磁场储能, 定、转子绕组铜耗和铝耗,交变磁通在铁芯损耗,通风、 轴承磨擦产生机械损耗。单位:W(瓦)
塑封PG电机就是可控硅降压调速。对于塑封PG电机, 其绕组工作原理与抽头电机一致,但不同之处在于塑封PG 电机的输入电压不是直接接到电源上的,而是通过电控的输 出端施加电压于电机上的,其电控的输出电压是可调节的。 其电气原理图见图3,调速是利用电机输出转矩与电机输入 电压成近似一次关系,通过改变电机输入电压来改变电机的 输出转矩,起到调节电机转速的作用,其原理如下图示:
抽头调速(重点) 电容运转电动机在调速范围不大时,普遍采用定子绕组 抽头调速。此时定子槽中放置有主绕组、副绕组及调速绕组, 通过改变调速绕组与主、副绕组的联接方式,调整气隙磁场 大小及椭圆度来实现调速的目的。 一般电容运转单相电机,主绕组与副绕组嵌在不同的槽 中,绕组与铁芯间由聚酯纤维无纺布(DMDM或DMD)隔 开,其在空间一般相差90度电角度,且副绕组通过串联一个 工作电容器后与主绕组并接于电源。当电机通电后,主绕组 与副绕组在气隙中共同形成一个有方向有幅值强度的旋转磁 场。其方向与主、副绕组所处的空间位置等有关,它决定了 电机的转向;其幅值强度则与主副绕组的参数设计有关,它 决定了电机输出力矩的大小。该旋转磁场与转子鼠笼转子相 互作用,使电动机按一定的方向旋转。若调换主副绕组的空 间位置,则旋转磁场的旋转方向会相反,该反方向的旋转磁 场与转子相互作用,使电动机的转向也会相反。
该结构是在电机的轴上装有一个磁环,它一般有6极磁环及 2极磁环2种。当电机转子旋转一圈时,磁环也旋转一圈,磁环 与PG板中的霍尔元件相感应,6极磁环会在PG板的OUTPUT (白)脚中输出3个脉冲,2极磁环会输出1个脉冲,这样根据输 出脉冲的数量就可以知道电机的转速。在电控中设定有预定的 转速值,将它与从PG块中采样取得的转速值相比较,当转速偏 低时,则提高电控的输出电压(可控硅导通角变大),当转速 偏高时,则降低电控的输出电压(可控硅导通角变小),这样 通过PG信号的反馈调节电控输出电压就实现了对电机的平滑调 速。由于电控的输出电压不会高于其输入电压,因此在电机设 计时要保证电机达到高风档的转速时其电控的电压不高于工作 的额定电压。如我国额定电压为220VAC,则设计时的电控电 压一般设计为180VAC~200VAC左右。此参数值设定太低则造 成电机材料浪费,且电控若损坏击穿后电机直通市网电压,其 电机温升会较高;若此参数值设定过高则会造成市网电压降低 时,有可能达不到设定的额定转速,影响空调的能力

• • •
• •
B)转速不一致:风叶的变化(不同厂家不同模号)、蒸发 器片距变化、风道的变化、测试环境的变化(温度、湿 度)、电机工艺波动的原因(铝环、定子端部高度控制、 绕线模具变化、气隙变化、硅钢片材料变化等)。 C)电磁声:定子椭圆、同轴度大、轴承距过大、端盖强度 不够、磁路设计不对称。 D)轴承声:装配过程轴承损坏、轴承油脂声、轴承与轴承 室配合松动。 E)摩擦声:定转子相擦、错片、异物、漆瘤及风轮风叶变 形和转轴弯曲等。 F)转速低:转子导条和端环截面过小、定转子气隙偏大; G)温升高:铁芯长度偏低、漆包线截面偏小(即铁、铜耗 过大)、散热不良;
由于大多数情况下两相绕组总是不对称的,谐波分量较多, 因此单相异步电机的性能总要比三相异步电机差得多。谐波 对电机的影响主要有以下三个方面: 1、使电机的附加损耗增加; 2、引起电机振动并产生噪音; 3、产生附加转矩,使电机的启动发生困难(某些位置较 大、某些位置又较小、某些位置干脆就不能启动,削弱办法 之一,就是采用斜槽转子。这就是我们看到的转子槽是斜的 原因之一)
抽头调速可分为T型抽头调速和L型抽头调速。L型抽头 调速又可分为主绕组抽头L-1型和副绕组抽头L-2型。目前最 常用的是T型抽头调速和副绕组抽头L-2型调速。原理线路图 见下
T型抽头调速优点:中、低档运行绕组温升低;缺点:电机 高档效率低,主绕组易形成匝间短路(见企业技术标准13设 计案例的DC03.043-001“YDK29-8E电机匝间短路案例分 析”)。 L型抽头调速优点:电机高档效力高,绕组不易形成匝间短 路;缺点:中、低档运行绕组温升高。
八、空调电动机常见的技术问题 及解决方法
A)整机噪音及振动:电机噪音值在某一频段存在峰值, 此噪音峰值频段与整机固有频率相接近或重合,形成共鸣、 共振和整机噪音。整机预防及解决措施:在电机确认阶段 将电机噪音峰值频段与整机固有频率错开(这就是一般情 况下一次送样不能成功的原因之一,也是我们一般遵循的, 只要是系统中的对电机有影响的零部件如支架和风轮风叶 等的改变,就必须装整机做噪音等测试)电机,空调钣金 件上加阻尼胶,调整风叶形状、增加电机支架刚性(如04 年今年3月份汕头出现较多71S振动和噪音严重的问题,后 将电机支架加强后上述现象全部消失)、电机安装脚上加 胶垫,调整空调板金件的形状、厚度,调整电机极数、定 转子的槽配合、定转子直径、定转子气隙、转子斜槽度、 铁芯长度、轴承距离等。

• • • •
C)负载输入电流:是指电动机在额定工作电压、额定电 源频率、额定电容、带额定负载运行在额定转速下,所 输入电机的电流。单位:A或mA。 D)额定负载输出功率:是指电动机在额定电压、额定电 源频率、额定电容、带额定负载运行在额定转速下,轴 伸所输出的有功功率。单位:W(瓦) E)温升:指电动机在额定测试条件下运行,内部绕组与 铁芯部分的温度相对于测试环境温度的升高值。目前较 常用的测试温升方法为绕组电阻法。 F)噪音:电机噪音可分为机械噪音和电磁噪音。机械噪 音通常由电机装配不良定、转子摩擦及轴承声等形成。 电磁噪音通常由定、转子气隙不均匀或磁场过于饱和造 成,定、转子气隙不均匀受装配零部件同轴度的影响较 大,磁场过于饱受所设计功率较大电机的材料限制造成。 噪音用分贝dB表示。
单相电容运转异步电机工作 原理及故障分析
一、单相异步电机的定义及标识说明
1、单相异步电机是指由单相电源供电的电动机,但它并不 表示电机的定子上只Байду номын сангаас一相绕组,它是由空间上相差90°相 位角的两套绕组构成,二者共同产生旋转磁场,在转子上产 生转矩而旋转的电动机。 2、YD(S)Kaa-bc所代表的意义 Y—异步;D(S)—单(双)轴;K—空调用;aa代表功 率名义值;b代表极数;c为设计序号或其它意义 以YDK24-6 T为例说明如下 设计序列号为T、功率名义值 为24W 、极数为6极的单轴伸空调用异步电动机。
六、电机的调速方法及原理
作为单相异步电动机其调速方法有三种: (1)变极调速; (2)降压调速; (3)抽头调速。 变极调速(简介) 在单相电机中,有倍极调速和非倍极调速之分。倍极调 速电机一般定子上只有一套绕组,用改变绕组端部联接方法 获得不同的极对数以达到调整旋转磁场的转速。在极数比较 大的变极调速中,定子槽中安放两套不同极数的独立绕组, 实际上相当于两台不同极数的单速电机的组合,其原理和性 能与一般单相异步电机一样。
降压调速
降压调速方法很多,如串联电抗器(吊扇)、串联电容、 自耦变压器和串连可控硅调压调速。空调中最常用的调压调 速是可控硅(塑封)调压调速。 可控硅调速是改变可控硅导通角的方法,改变电动机端 电压的波形,从而改变了电动机的端电压的有效值。可控硅 导通角α1=180°时,电机端电压为额定值,α1<180°时电 压波形如下图实线部分,电机端电压有效值小于额定值,α1 越小,电压越低,如下图:

H)电机冒烟: (1)子绕组匝间短路; (2)焊接线不良致使接触电阻过大,电机发热; (3)电容器击穿,致使电路的容性成分消失,电机单相运 行(事实上电机无法运行,处于堵转状态); • I)电机带电:电机内部或引出线绝缘不良; • J)电机转速下降 电机部分绕组匝间短路; 电容器容量衰减; 转子断条: • K)电机失速(保护)或不转 霍尔元件失效; 可控硅击穿。即使霍尔元件正常,信号有反馈,但因可 控硅已经击穿,电压已不可调; 转子被异物卡滞或电机无电和烧毁;
可见对称两相绕组通入对称两相电流产生的旋转磁势与 三相电机产生旋转磁势一样。其旋转速度与电源频率和电机 极数有关:即n=2×60f/p, 其中“f”—电源频率(Hz) “p”—电机极对数 “n”—磁场旋转转速,即电机同步转速(r/min) 当电机中磁场以n速度旋转时,处于旋转磁场中的转子 导条就会切割磁力线而产生感应电势和感应电流,感应电流 在磁场的作用下产生电磁力和电磁力矩,行成一定的转速n’。 一般情况下电机转速n’不等于旋转磁场转速n。因为n’= n时, 转子导条相对旋转磁场是静止的,导条中就不会产生感应电 势和感应电流,电机就不会产生电磁力矩,电机转速就会自 然下降。因转子速度始终低于旋转磁场速度,故称此种电机 为“单相异步电动机”。
相关文档
最新文档