高聚物的性质

合集下载

高聚物的介电常数

高聚物的介电常数

介 2.
1 2
电24.0
3
常23.5
数ε23.0~~ 4
~~
′210.
205. △湿度对高聚物非0介极00电性性高20的聚影物40响的介60电8常温(0 数℃100与度)温
度1的-P关P;系2-HDPE;3-LDPE;
4-PTFE
9 ε7 ′ 60
5 Hz
3 60 Hz
1000 Hz 1000 2ε
低电压 区
高电压区 绝缘破坏区
I
电流-电压曲线 击穿电压强度:连续对高聚物材料升高电压,电当压试V样被击穿时的电压和试样厚度的比
值称为击穿电压强度。
Eb
V h
§8-3 高聚物的击穿电压强度 介电击穿的形式、原因及决定因素
高压电场
本征击穿
加速
离子
运动
少数自由电子
获能 碰撞
新的 电子
高聚物材料
介电击 穿形式
V 高聚物介电损耗示意图
-高聚物将电能转变为热能损耗的程度。
△介电损' '耗的原因
对非极性'高聚物 在交变电场中,所含的杂质产生的漏导电流,载流子流动时,克服
内摩擦阻力而作功,使一部分电能转变为热能,属于欧姆损耗。
对极性高聚物 在交变电场中极化时,由于黏滞阻力,偶极子的转动取向滞后于交变
电场的变化,致使偶极子发生强迫振动,在每次交变过程中,吸收一部分电能成热能而释
0.抗0静. 电0. 剂0. 2 345
0. 6
抗静 电剂 加入 量对 静电 荷的 影响
1PVC
2-PE
3-PP
§8-4 高聚物的静电现象
抗静电剂的选择 对抗静电剂的要求
亲水性强 与高聚物的相溶性好 容易分散混合 稳定性好 无毒、无味、无害 加入后不影响高聚物其他性能

高弹态高聚物的力学性质

高弹态高聚物的力学性质
力学损耗角: E’/E’’= σo / εo cosδ / σo / εo sinδ=tan δ
δ—力学损耗角,可以用tanδ表示内耗的大小
动态力学分析
当样品受到变化着的外力作用时,产生相应的应 变。在这种外力作用下,对样品的应力-应变关系 随温度等条件的变化进行分析,即为动态力学分 析。
高弹态高聚物
橡胶高弹性的特点:
形变量大(链段长,具有柔性) 形变可恢复(交联结构) 弹性模量小且随温度升高而增大 形变伴有热效应(分子内摩擦,结晶)
弹性变形
一、弹性变形及其实质
弹性变形及其实质:弹性变形是一种可逆变形(即卸载 后可以恢复变形前形状的变形,热力学意义上的可逆变 形)。
弹性变形
聚合物力学性能
高弹态高聚物的力学性质
高弹态
定义:聚合物达到玻璃态转变温度以后,链 段运动激化,受力后能产生可以回复的大形 变,此时的状态称之为高弹态。
高弹态和玻璃态、粘流态一样,是聚合物特 有的力学状态,它可表现出橡胶的弹性行为
高弹态
高弹性的本质:
高弹性是由熵变引起的,在外力作用下,聚 合物分子链由卷曲状态变为伸展状态,熵减 小;当外力移去后,由于热运动,分子链自 发的趋向熵增大状态,所以形变可逆。
测量过程中通过控制样品炉的升温程序
炉温范围:-150℃~600℃(注意:设置温度禁止超 过材料熔点)
升温速率:0.1℃/min~40℃/min(400℃后 25℃/min)
降温速率:0.1℃/min~20℃/min 或改变频率:频率范围:1.6×10-3~200Hz。最后
可得到,和对温度(T)、频率(HZ)或时间(t) 的图谱。
样品制备:
根据不同的材质进行制样:薄膜、片材等
高弹态

玻璃态和结晶态高聚物的力学性质

玻璃态和结晶态高聚物的力学性质

继续屈服
弹性变形后继续施加载荷,则产生塑性形变,称为继 续屈服,包括: •应变软化:屈服后,应变增加,应力反而有稍许下 跌的现象,原因至今尚不清楚。 •呈现塑性不稳定性,最常见的为细颈。
•塑性形变产生热量,试样温度升高,变软。
•发生“取向硬化”,应力急剧上升。 •试样断裂。
屈服机理
银纹 银纹屈服 应力发白 脆性材料
分类:应力银纹、环境银纹(内应力)、溶剂银纹。 什么材料中?大多在玻璃态高聚物如PMMA、PS、PC; 也可晶态高聚物如PE、PP、POM中,甚至热固性材料 如PF、EPOXY等也可观察到。 银纹体:产生银纹的区域,其结构?
Microstructure of crazing
银纹体 = 空穴 + 微纤 质量不为零,约是本体密度 的1/2。 微纤连接银纹体的两个面, 由高分子链构成并沿外力方 向高度取向(塑性形变)。
剪切带 剪切屈服
细颈(宏观) 韧性材料
----形变过程都表现为不均匀的局部应变。
①银纹(Craze)屈服
定义:在拉伸应力及环境的作用下材料内部的某些薄弱部 位因局部应力集中而产生的空化条纹状形变区。 位置:在材料表面或内部垂直于应力方向上。
大小:一般长度100µ m、宽度10µ m左右、厚度约1µ m。
小球晶 大球晶
其内部的空隙和结 晶界面的缺陷较多
ε
The Degree of Crystallization 结晶度
高:强度、模量、硬度均提高 太高:韧性及断裂伸长降低
Different types of stress-strain curve

软而弱 硬而脆 硬而强
软而韧 硬而韧

“软”和“硬”用于区分模量的低或高,“弱”和“强” 是指强度的大小,“脆”是指无屈服现象而且断裂伸长很 小,“韧”是指其断裂伸长和断裂应力都较高的情况。

高分子和高聚物的特点.

高分子和高聚物的特点.
究来获得 • 单链也能形成凝聚态 • 超分子体系
12. 银纹现象—高聚物特有
• 银纹不是裂纹,不是空的,而是含有50% 左右体积的空穴
• 银纹质(高度取向的束状或片状高聚物) • 银纹仍有强度,其力学性能也有粘弹现象 • 可逆性
13. 高聚物熔体—弹性液体
• 具有明显的非牛顿性,不符合牛顿定律 • 在流动时产生可回复的形变 • 产生拉伸应力 • 熔体弹性对高聚物的加工成形又很大的影

分 子 量 大
内 旋转 柔性
形成特有 的 高弹 性 , 可 逆 形变 大, 模 量 低, 与 温度 成正 比 , 绝 热 拉伸时 放热 , 是 熵弹 性
显著 的 粘 弹 性 , 在 通 常温度 和外力作 用 时 间 粘 性 和 弹 性 同时 呈现
特有 的 链段 运 动温度 依 赖 性 WLF 方 程
分子 量 只 有 统 计 意 义 ,有 分子 量 分布 银 纹 中 还 有 50% 塑 性 变 形了 的 高 聚 物 高聚 物 熔 体 流 动时 弹 性 明 显, 非牛 顿 性 有 挤 出胀大, 拉伸流 动
• 高聚物可能具有最多种凝聚态结构 并导致丰富的物理行为和性能
高分子和高聚物的特点
得多
• 高分子溶液行为与小分子理想溶液的行为相比 又很大的偏差
• 混合熵比理想溶液的混合熵大得多
10. 平均分子量和分子量分布
• 分子量大 103 : 107
• 分子量不均一
• 量变引起质变
11. 高分子间的相互作用力特别重要
• 高聚物无气态 高聚物气化所需的能量 》破坏化学键所需的能量 • 不可能用蒸馏的方法来纯化聚合物 • 单根高分子链的行为要通过对稀溶液性质进行研
10000个C-C单键: 310000=1.3×104770个可能的构象

高聚物的溶液性质-2高聚物的溶解和溶剂的选择

高聚物的溶液性质-2高聚物的溶解和溶剂的选择
主要根据高分子在溶液中的形态来判断
良溶剂:
溶剂分子对高分子链单元有很大的溶剂化作用
(相当于链单元间的相斥力),超过高分子链
单元间的内聚力,因而在这种溶剂中高分子线
团松散,呈扩张形态,末端距较大。
劣溶剂
溶剂分子与高分子链单元间的相互作用小,链
单元间的内聚力使线团紧缩,末端距较小。
良溶剂
劣溶剂
同一种高分子在不同性能溶剂中的 形态示意图
V1 1 2 1 RT
2
2
1 1 临界溶解条件: 1c 1 1 2 2 x
1 2 c
取: V1 100ml
2
RT 1 1 1 2 2V1 x
25 C
2
x
1 2 c 1.7(cal1/2∙cm-3/2)
3
R M
12
12
ip M
密集程度 PS:
a 1.05 g cm 1 :虚拟的单链密度
3
M
105 106
R nm
8.7 27.4
a 1
17 54
溶解前高聚物凝聚态结构的特点之二:
一根链上相隔较远的链单元间相互作用力 =相邻链的链单元间相互作用力(屏蔽) (链单元间无远程相互吸引或推拒的作用)
高聚物溶剂的选择原则:
1. 高聚物与溶剂的极性通常要相近
2. 溶度参数越是接近,溶解的可能性越大
3. 溶剂化相当于在高分子链间产生相斥力 4. 1 1 2 原则要慎用 5. 混合溶剂的溶解能力有时好于单一溶剂 6. 可以通过改变高分子结构以提高溶解性能
9.2.3 溶剂的良劣性 良溶剂
劣溶剂
高聚物
聚异丁烯 聚苯乙烯

聚 合 物 的 结 构 与 性 能

聚 合 物 的 结 构 与 性 能

共聚物结构中的序列问题

为描述共聚物的序列结构,常用的参数有各单体单 元的平均序列长度和嵌段数R。例如下面共聚物分 子: A B AA BBB A BB AA BBBB AAA B 其中A单体9个,A序列为5段,B单体11个,B序列 为5段(短划表示序列)。 嵌段R的含义是指在100个单体单元中出现的各种嵌 段的总和。R与平均序列长度的关系是: —— —— R 200/( LA n LB n) 上例中R=50;当R为100时,表明是交替共聚;对 于嵌段共聚物,当分子无限长时,R的极限为0;无 规共聚物的R介于这两者之间。因此——R愈大愈富 有交替性,R愈小愈富有嵌段性。
这种由结构单元间的联结方式不同所产生的异构体称为 顺序异构体。
实验证明,在自由基或离子型聚合的产物中,大多数是 头——尾键接的。
支化与交联



线形高聚物可以在适当溶剂中溶解,加热可以熔 融,易于加工成型; 支化对物理机械性能的影响有时相当显著: 支化程度越高,支链结构越复杂,影响高分子材 料的使用性能越大;支化点密度或两相临支化点 之间的链的平均分子量来表示支化的程度,称为 支化度。 高分子链之间通过支链联结成一个三维空间网型 大分子时即成为交联结构。所谓交联度,通常用 相邻两个交联点之间的链的平均分子量 来表示。 _ 交联度越大, 越小。 Mc
第 四 章
聚合物的结构
聚 合 物 的 结 构 与 性 能
聚合物是由许多单个的高分子链聚集而成,因而其结构有 两方面的含义:(1)单个高分子链的结构;(2)许多高分子 链聚在一起表现出来的聚集态结构。可分为以下几个层次: 聚 合 物 的 结 构 一级结构 近程结构 二级结构 远程结构 结构单元的化学组成、连接顺序、 立体构型,以及支化、交联等 高分子链的形态(构象)以及 高分子的大小(分子量)

5. 高聚物的力学性能

5. 高聚物的力学性能

L
L
N
H
(1)温度
(1)
(3)
应力
(2)
(4)
应变
(2)应变速率
(1)
(3)
应力
(2)
(4)
应变
强迫高弹形变的定义
处于玻璃态的非晶聚合物在拉伸过程中屈服点后产生
的较大应变,移去外力后形变不能回复。若将试样温度
升到其 Tg 附近,该形变则可完全回复,因此它在本质上 仍属高弹形变,并非粘流形变,是由高分子的链段运动 所引起的。 这种形变称为强迫高弹形变。
Stress
Yield stress
(4)断裂强度 (5)断裂伸长率 (6)断裂韧性
Strain
以应力应变曲线测定的韧性


d
量纲=Pam/m=N/m2 m/m= J/m3
材料在屈服点之前发生的断裂称为脆性断裂 brittle fracture ; 在屈服点后发生的断裂称为韧性断裂 ductile fracture 。
5.1.2细颈
1)细颈的形成原因
本质:剪切力作用下发生塑性流动 A0 F F
F
F
Fn F α F 正应力 0 A0 切向力 A Fs
A0 斜截面面积 A sin
F
法向力 Fn=F·sinα
Fs=F·cosα
A
法应力: n Fn 0 sin 2 切应力: S FS 0 sin cos 1 0 sin 2
A
plastic deformation 塑性形变
Strain hardening 应变硬化
A E A
O
A y
B
图 非晶态聚合物在玻璃态的应力-应变曲线

高聚物的力学性能

高聚物的力学性能

●相对分子质量及分布对强度的影响
规律:强度随相对分子质量的增大而增加,分布宽窄影响不大,但低聚物部分增加时,因低分子部分发生分子间断裂而使强度下降。

●低分子掺合物对强度的影响
规律:低分子物质的加入降低强度。

▓实例增塑剂的加入能降低强度,但对脆性高聚物而言,少量加入低分子物质,能增加强度。

●交联对强度的影响
规律:适度交联增加强度,但过度交联,在受外力时,会使应力集中而降低强度。

▓实例橡胶的适度交联。

●结晶对强度的影响
规律:结晶度增大,强度增加,但材料变硬而脆;大球晶增加断裂伸长率,小球晶增加韧性、强度、模量等;纤维状晶体强度大于折叠晶体强度。

▓实例缓慢降温有利形成大球晶,淬火有利形成小球晶。

●取向对强度的影响
规律:取向能增加取向方向上材料的强度。

§5高聚物的力学性能
特例:以橡胶为改性剂,提高高聚物材料抗冲击性能。

对橡胶的要求:玻璃化温度必须远低于使用温度;橡胶不溶于刚性高聚物而形成二相;两种高聚物溶解行为上相似,有利于相互黏着。

若三条件达不到,加入第三组分。

效果:原脆性高聚物的冲击强度提高5~10倍。

高聚物结构的主要特点

高聚物结构的主要特点

高聚物结构的主要特点高聚物是由大量相同或相似的单体通过化学键连接而成的大分子化合物。

其主要特点如下:1. 高分子量:高聚物通常具有较大的分子量,由于其由许多单体通过共价键连接形成,因此分子量较大。

高分子量不仅使高聚物具有较高的物理性质,如强度和硬度,还决定了高聚物的应用领域和性能。

2. 长链结构:高聚物具有长链结构,由于单体的连接,高聚物的分子链可以延伸到很长的距离。

这种长链结构使高聚物具有较高的柔韧性和可塑性,可以通过加热、拉伸等方式改变其形状和性质。

3. 分子间力:高聚物分子链之间通常存在各种分子间力,如范德华力、静电力和氢键等。

这些分子间力对高聚物的物理性质和化学性质都有重要影响。

例如,范德华力可以使高聚物分子紧密堆积,增加高聚物的密度和硬度;静电力可以使高聚物带有静电荷,影响高聚物的导电性和电磁性质。

4. 重复单元:高聚物由相同或相似的单体通过化学键连接而成,这些单体称为重复单元。

高聚物的结构和性质主要由重复单元的种类和排列方式决定。

不同的重复单元可以通过不同的化学键连接方式形成不同的高聚物结构,从而具有不同的性质和应用。

5. 无定形结构:高聚物通常具有无定形结构,即没有规则的晶体结构。

这是由于高聚物分子链的长度和连接方式的随机性,使得高聚物没有明确的晶体结构。

无定形结构使高聚物具有较高的玻璃化转变温度和热塑性,可以通过加热和冷却改变其形状和性质。

6. 多样性:高聚物具有较高的多样性,可以通过改变单体的种类、重复单元的排列方式和分子链的长度等方式来调控高聚物的结构和性质。

这种多样性使得高聚物具有广泛的应用领域,如塑料、橡胶、纤维等。

总的来说,高聚物结构的主要特点包括高分子量、长链结构、分子间力、重复单元、无定形结构和多样性。

这些特点决定了高聚物的物理性质、化学性质和应用领域,使其成为现代化学和材料科学的重要研究对象。

通过深入研究高聚物的结构和性质,可以开发出更多种类的高聚物材料,满足不同领域的需求,推动科学技术的发展和进步。

高聚物的物理性质与工程应用

高聚物的物理性质与工程应用

高聚物的物理性质与工程应用高聚物是一种由化学反应合成的大分子化合物,由许多重复单元组成。

它们具有独特的物理性质,这些性质使得高聚物在工程领域有着广泛的应用。

本文将探讨高聚物的物理性质以及它们在工程应用中的重要性。

一、高聚物的物理性质1. 分子量:高聚物的分子量通常非常高,可以达到数百万甚至上亿。

这是由于高聚物是由许多重复单元组成的,每个单元都与其他单元通过化学键相连。

分子量的增加会导致高聚物的物理性质发生变化,如增加了高聚物的黏度和强度。

2. 熔点和玻璃化转变温度:高聚物的熔点和玻璃化转变温度是其物理性质的重要指标。

熔点是高聚物由固态转变为液态的温度,而玻璃化转变温度是高聚物由固态转变为玻璃态的温度。

这些温度的变化可以影响高聚物的加工和使用条件。

3. 弹性模量和延展性:高聚物的弹性模量是衡量其刚度和弹性的指标。

高聚物通常具有较低的弹性模量,使其具有良好的延展性和弯曲性能。

这使得高聚物在工程应用中可以承受一定的外力而不易断裂。

4. 热膨胀系数:高聚物的热膨胀系数是衡量其热胀冷缩性能的指标。

高聚物通常具有较高的热膨胀系数,这意味着它们在受热时会膨胀,而在冷却时会收缩。

这一性质在工程应用中需要考虑,以避免因热胀冷缩引起的尺寸变化。

二、高聚物的工程应用1. 塑料制品:高聚物是制造塑料制品的主要原料。

由于高聚物具有良好的延展性和可塑性,可以通过热塑性加工方法,如注塑、挤出和吹塑等,制造出各种形状的塑料制品,如瓶子、容器、管道、薄膜等。

2. 弹性体制品:高聚物中的弹性体具有良好的弹性和延展性,广泛应用于橡胶制品的生产。

例如,天然橡胶和合成橡胶可以用于制造轮胎、密封件、橡胶管等,这些产品需要具有良好的弹性和耐磨性。

3. 纤维制品:高聚物可以用于制造纤维制品,如聚酯纤维、尼龙纤维和丙纶纤维等。

这些纤维具有良好的耐磨性、抗拉强度和耐热性,广泛应用于纺织、服装和家居用品等领域。

4. 膜材料:高聚物可以用于制造各种膜材料,如聚乙烯膜、聚氯乙烯膜和聚酯膜等。

高分子材料

高分子材料

的弹性、塑性、柔顺性,但强度较低、硬度小、耐热性、耐腐蚀性
较差,且可融可熔。线型结构的合成树脂可反复加热软化、冷却硬 化,称为热塑性树脂。
(2)支链型:分子在主链上带有比主链短的支链(如图9-1b)。分
子排列较松,分子间作用力较弱,因而密度、熔点及强度低于线型 高聚物。
(3)体型:分子由线型或支链型高聚物分子以化学键交联形成,呈
(8) 有机硅树脂(OR)
由一种或多种有机硅单体水解而成。 耐热、耐寒、耐水、耐化学腐蚀,但机械 性能不佳,粘结力不高。 用酚醛、环氧、聚酯等合成树脂或用玻璃 纤维、石棉等增强,可提高其机械性能和粘 结力。 返回
2 常用工程塑料制品
(1) 塑料门窗
(2) 塑料管材
(3)塑料壁纸
(4)塑料地板
(5)其他塑料制品
• 千奇百怪的塑料制品让人目不暇接,其中, 正处于研发阶段的一种塑料非常引人注目, 这就是——塑料血液。
这种替代血液虽然可以为伤员供应氧气, 却只能是解决“一时之需”,并不能长期 代替真正的血液。目前,塑料血液的研究 还在起步的阶段,真正生产出来产品可能 还需要十年的时间。
一、塑料的基本组成
• • • • • • 1 2 3 4 5 6 合成树脂 填充料 增塑剂 固化剂 着色剂 稳定剂
(3) 聚苯乙烯塑料(PS)
由苯乙烯单体聚合而成。 透光性好,易于着色,化学稳定性高, 耐水、耐光,成型加工方便,价格较低。 性脆,抗冲击韧性差,耐热性差,易燃, 使其应用受到一定限制。
返回
(4)
聚丙烯塑料(PP)
由丙烯聚合而成。
质轻(密度0.90g/cm3),耐热性较高 (100~120℃),刚性、延性和抗水性均好。 低温脆性显著,抗大气性差,用于室内。

高聚物的物理性能

高聚物的物理性能

第五章 高聚物的物理性能第一节 高聚物的物理状态高聚物的聚集态结构,根据链结构的规整性和能否结晶可分为两类: 结晶性高聚物(有规则排列)非结晶性高聚物(无规则排列)链段运动——使高聚物具有高弹性高聚物热运动具有两重性整个分子链运动——使高聚物象液体一样具有粘流性热-机械曲线——形变-温度曲线:表示高聚物材料在一定负荷下,形变大小与温度的关系曲线。

按高聚物的结构可以分为:线型非晶高聚物形变-温度曲线结晶态高聚物形变-温度曲线 其他类型的形变-温度曲线三种一、线型非晶态高聚物的物理状态1.形变-温度曲线A B C D ET b T g 温度(℃) T fT b -脆化温度;T g -玻璃化温度;T f -粘流温度可分为五个区A 区(玻璃态):内部结构类似玻璃,大分子不能运动,链段也不能运形变(%)动,在除去外力后,形变马上消失而恢复原状,可逆形变称为普弹性形变。

C 区(高弹态或橡胶态):除了普弹形变外,主要发生了大分子的链段位移(取向)运动。

但整个大分子间并未发生相对位移,形变也可以消除,所以是可逆的弹性形变。

E 区(粘流态或塑化态):当施加负荷时,高聚物象粘性液体一样,发生分子粘性流动,大分子能运动,链段也能运动,形变不能自动全部消除,这种不可逆特性,称为可塑性。

B 区和D 区:为过渡区。

其性质介于前后两种状态之间。

玻璃态物理力学三态高弹态 (是一般非晶态高聚物所共有的)粘流态2.非晶态高聚物三种物理状态的力学行为特征和形变机理3.三态之间的转变随温度的变化而逐渐变化过程 玻璃态 ⇔高弹态⇔ 粘流态 4.注意问题1/ T g 是大分子链段能运动的最低温度,高弹态的出现是链段运动的产物。

2/ T g 与柔性的关系:柔性大,T g 低,反之。

刚性大,T g 高。

3/ T g 与T f 的使用价值T g 是塑料、纤维的最高使用温度T f 是橡胶的最低使用温度,也是高聚物成型加工温度。

5.线型非晶态高聚物的物理力学状态与相对分子质量的关系不同相对分子质量的聚苯乙烯的热-机械曲线二、结晶态高聚物的物理状态晶态高聚物的形变-温度曲线 1-一般相对分子质量 2-相对分子质量很大1/ 结晶态高聚物按成型工艺条件的不同可以处于晶态和非晶态。

高聚物的力学性能

高聚物的力学性能

4.3 高弹性
1. 高弹性的特点
高弹态是高聚物所特有的,是基于链段运动的一种力学状态, 可以通过高聚物在一定条件下,通过玻璃化转变而达到。
处于高弹态的高聚物表现出独特的力学性能——高弹性。 这是高聚物中一项十分难能可贵的性能。
橡胶就是具有高弹性的材料,高弹性的特征表现在:
①弹性形变大,可高达1000%,而金属材料的普弹形变不超过1%。
高聚物作为结构材料,在实际应用时,往往受到交变力的作用。例 如轮胎,传动皮带,齿轮,消振器等,它们都是在交变力作用的场 合使用的。 以轮胎为例,车在行进中,它上面某一部分一会儿着地,一会 离地,受到的是一定频率的外力,它的形变也是一会大,一会小, 交替地变化。
滞后现象:高聚物在交变力作用下,形变落后于应力变化的现象 原因解释:链段在运动时要受到内摩擦力的作用,当外力变化时 链段的运动还跟不上外力的变化,形变落后于应力。链段运动愈 困难,愈是跟不上外力的变化。
应力松弛行为与温度有大的依赖性。在玻璃化转变区尤为明显。
(1)如果 T Tg ,如常温下的橡胶,链段易运动,受到的内摩擦 力很小,分子很快顺着外力方向调整,内应力很快消失(松弛了), 甚至可以快到觉察不到的程度。
(2)如果
,如常温下的塑料,虽然链段受到很大的应力,
但由于内摩擦力很大,链段运动能力很小,所以应力松弛极慢,也
t1
t2
t
普弹形变示意图
(ii)高弹形变(e2):
聚合物受力时,高分子链通过链段运动产生的形变,形变量比普弹 形变大得多,但不是瞬间完成,形变与时间有关。当外力除去后,高弹 形变逐渐回复。如下图:
e2
t1
t2
t
高弹形变示意图
(iii)粘性流动(e3):

高聚物的热传导性质

高聚物的热传导性质

高聚物的热传导性质高聚物,也称高分子材料或聚合物,是一种以类似蛋白质、淀粉等聚合物基础构成的材料,它在各种应用领域都有着广泛的使用,比如汽车内饰、家具材料、建筑材料、室内装饰、电子元件等。

然而,它们的热传导性能却不及金属或石英等传统材料。

高聚物的热传导性能主要取决于其结构,其中一些基本因素包括分子量、分子聚集状态、环境温度、分子链条长度、分子链结构、分子重量及其分子间距离等。

它们共同决定了高聚物的热传导系数。

因此,热传导性能的改善,主要靠改变其分子结构,也就是改变化学结构,比如合成无机硅基的有机高聚物,来改善它们的热传导性能。

另一方面,高聚物的热传导性能还可以通过加热处理改善。

通过加热和压合可以改变高聚物的热传导性能。

当高聚物加热到一定温度时,其分子结构将发生变化,从而使其热传导系数增加。

随着压合、加热温度的增加,高聚物的热传导性能会有所改善。

此外,在高聚物中增加一些无机硅基材料,也可以改善其热传导能力。

此外,还有一些新技术可以改善高聚物的热传导性能。

例如采用模板法合成纳米结构的纳米高聚物,通过控制其结构尺寸,可以显著提高其热传导率。

此外,磁性高聚物的热传导性能也可以改善,它具有较好的热传导性能和磁性特性,可以用来制造新型热传感器。

通过上述方法,可以改善高聚物的热传导性能,从而使其在各种应用领域有更广泛的使用。

热传导性能改善将带来更好的环境效果,减少能源浪费,同时有助于节约能源、改善工作环境等。

总结上述内容,可以说高聚物的热传导性能取决于其分子结构,并可以通过改变其分子结构,改善其热传导性能。

此外,高聚物还可以通过加热处理和增加无机填料来改善其热传导性能,以实现更好的热传感器性能,有效地减少能源浪费,节约能源以及改善工作环境。

第七章 高聚物的力学性质(修改2)

第七章 高聚物的力学性质(修改2)

⑴. 简单拉伸
(7-1) (7-2)
(7-3)
(7-4)
式中,F是垂直于截面积大小相等方向相反的两个作用力;l0为 材料起始的长度;l为变形后材料的长度;ε为拉伸应变;ζ为应力; A0为材料起始的横截面积;A为在拉力F的作用下,材料变形后 真实的截面积;δ为真应变。
⑵. 简单剪切
偏斜角θ 的正切定义为切应变:
④ T>Tg,高弹态,不出现
屈服点,出现很大的高弹 形变
2. 玻璃态高聚物的强迫高弹形变 玻璃态高聚物在大的外力作用下发生很大的形变称 为强迫高弹形变。
影响强迫高弹形变的因素:
⑴.外力的大小 玻璃态高聚物,外力作用的松弛时间η与应力ζ的关 系:
⑵.温度的影响
脆化温度:其是一个特征温度,用 Tb 表示,当温 度低于 Tb 时,玻璃态高聚物不能发生强迫高弹形变, 而必定发生脆性断裂,因此称 Tb 为脆化温度。 玻璃态 高聚物只有在 Tb ~ Tg 之间的温度范围内,才能在外力 作用下实现强迫高弹形变,而强迫高弹形变又是塑料 具有韧性的原因,因此 Tb 是塑料使用的最低温度。 ⑶.外力作用速度的影响
在试样上施加压缩载荷至其破裂(脆性材料)或产生 屈服现象(非脆性材料)时,原单位横截面上所能承 受的载荷称为压缩强度。
压缩强度:
压缩模量:
压缩模量等于拉伸模量
一般而言,塑性材料抵抗拉伸应力能力强,而脆性材 料抵抗压缩应力能力强。
3. 弯曲强度(也称为挠曲强度)
在两支点间的试样上施加集中载荷,使试样变形直至 破裂时的载荷称为弯曲强度。
ζβn = ζ0 cos2β= ζ0 sin2α ζβs = ζ0 sin2β/2= -ζ0 sin2α/2
ζαn + ζβn = ζ0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档