卟啉的生物合成途径与化学合成方法的比较
卟啉合成机理
卟啉合成机理卟啉是一种广泛存在于自然界中的生物发色素,它在许多重要的生物作用中发挥着重要作用。
在生物体内,卟啉的合成过程十分复杂,涉及到多种酶的协同作用。
而人工合成卟啉的研究也日趋成熟,其机理也被逐渐揭示。
现代合成卟啉的方法主要有两种:一种是通过有机合成方法,另一种是通过生物合成方法。
无论是哪种方法,卟啉的合成机理都很复杂。
下面我们分别来看一下这两种合成卟啉的方法及其机理:有机合成法此法合成卟啉,主要是通过对合成步骤、反应条件和催化剂等进行优化来提高反应的效率和选择性。
具体方法如下:首先,在有机溶剂中将芳香烃硝化,然后用孟加拉醇还原,得到α,β-二硝基芳香烃。
接着,将α,β-二硝基芳香烃在碱性条件下裂解,生成间位甲酸。
此时,间位甲酸自身与芳香氨基结合,形成卟啉。
从反应机理看,其中一个关键步骤是裂解反应,通过裂解反应来生成间位甲酸,因此选择合适的催化剂及反应条件,对提高反应效率具有重要意义。
生物合成法采用生物合成法合成卟啉,主要是将天然的酵母或其他真菌,以及一些原代细胞培养在适宜的条件下,加入咖啡因等有机化合物后,通过酶的催化作用,使血红素原转变成卟啉。
母细胞中咖啡因及相关有机化合物还可以在生长过程中维持卟啉的产量。
从反应机理看,生物合成法中的酶是起到了至关重要的作用。
青霉素和乳酸菌激酶等多种酶的协同作用,非常关键,保证了反应的正常进行。
总之,卟啉的合成机理是非常复杂的,无论是有机合成法还是生物合成法都需要采用复杂的化学和生物工程技术,以实现合成卟啉的目标。
此外,随着科学技术不断的更新和改进,人工合成卟啉的效率和成本都将得到进一步提高,对卟啉及其衍生物的研究也会进一步深入,为人类发展带来更多的机遇和挑战。
卟啉分子式
卟啉分子式
卟啉(porphyrin),大环共轭化合物,分子式C20H14N4。
由四个吡咯通过单原子桥在α位相连构成。
很容易从氯仿和甲醇的混合溶剂中得到深红色有金属光泽的片状卟啉结晶。
高温不熔化但变黑分解(360℃),易溶于吡啶、二氧六环,微溶于氯仿、冰醋酸,不溶于丙酮、醇和醚。
卟啉的衍生物,如四苯基卟啉、八乙基卟啉等在有机溶剂中的溶解性要好得多。
卟啉的合成方法主要有两类:①室温下将吡咯、苯甲醛的二氯甲烷溶液在三氟乙酸或三氟化硼乙醚催化的条件下搅拌,再加入二氯二氰基对苯二醌(DDQ)脱氢即得,反应的产率可达35%~40%。
②以二吡咯甲烷为基础的[2+2]合成法,用酸催化缩合形成大环,再经空气氧化脱氢生成。
此法使不对称卟啉的合成变的容易得多。
卟啉化合物的合成及物理化学性质
卟啉化合物的合成及物理化学性质周彬 ,张文 ,曾琪 ,张智(武汉大学 化学与分子科学学院 ,武汉 430072)【摘要】利用中位-四[对羟基苯基]卟啉和四水合乙酸钴在DMF 中搅拌加热至100℃回流30min 合成了金属钴卟啉。
然后再用柱层析分离得到纯净的金属卟啉产物。
利用电导率仪研究了金属卟啉金属钴卟啉的电迁移性质。
通过金属钴卟啉配合物与咪唑配位动力学的研究证实了其轴向上存在配位作用。
【关键词】 卟啉、金属(钴)卟啉配合物、咪唑、动力学性质、电迁移性质【前言】卟啉化合物是一类含氮杂环的共轭化合物,其中环上的各原子处于同一平面内(如图1所示) :NHNHNNNHNHNNXXXX图1X=COOH;OH;NH 2如图2卟啉环中含有四个吡咯环,每两个吡咯环在2位与5位之间由一个次甲基桥连,在5,10,15,20,位上也可键合四个取代苯基(如图2),形成四取代苯基卟啉。
卟啉环中有交替的单键和双键,有18个π电子组成的共轭体系,具有芳香性。
当两个氮原子上的质子电离后,其形成的空腔中可以容纳Fe,Co,Mg,Cu,Zn,等金属离子而形成金属配合物,并且这些金属配合物都具有一些生理上的作用。
卟啉化合物具有对光,热的良好稳定性。
它的这种稳定性,大的可见光消光系数和它在电荷转移过程中的特殊作用,使得它在光电领域中的应用受到高度重视,它被用于气体传感器,太阳能的贮存,生物模拟氧化反应的催化剂,生物大分子探针,还可以作为模拟天然产物的母体,金属卟啉配合物被广泛的应用于微量分析等领域。
本实验合成并提纯了卟啉配合物,采用电导仪测定金属配合物在溶液中的电迁移性质,还就其与有机碱的轴向配位反应进行动力学的测定。
【实验部分】⒈试剂与仪器:1.1试剂卟啉,醋酸钴,DMF(二甲基甲酰胺),无水乙醇,无水乙醚,二氯甲烷,丙酮,环己烷,薄层层析硅胶,柱层析硅胶,氢氧化钠,咪唑,1.2仪器紫外-可见分光光度仪,傅立叶变换红外光谱仪,DD3001电导率仪,分析天平,电磁搅拌器,减压蒸馏装置,旋转蒸发仪,抽滤装置,真空干燥器.⒉实验步骤:2.1金属(钴)卟啉配合物的合成与分离在25 ml两口烧瓶中加入0.1540g中位-四(对羟基苯基)卟啉与8mlDMF,搅拌加热,至100o C时加入卟啉量的10倍摩尔量的四水和乙酸钴(0.5606g),继续加热至回流,并保持回流状态20-30min。
卟啉类化合物的应用及其前景
在光催化领域,卟啉类化合物可以作为催化剂在可见光条件下促进有机反应。 例如,在环己烷的液相氧化反应中,卟啉类化合物可以吸收可见光,激发电子, 并促进氧气与环己烷的电子转移,从而实现氧化反应。此外,卟啉类化合物还 可以应用于光催化降解污染物,例如在污水处理中,通过光催化反应可以有效 地降解有机污染物。
2、金属卟啉的制备
将四苯基卟啉和金属盐按照1:1的摩尔比例混合,加入适量的溶剂,搅拌均匀。 将混合物加热至适宜温度,保持一定时间,然后冷却至室温。经过滤、洗涤、测定产物的吸光度,对比标准曲线,确定产物中四苯基卟啉和 金属卟啉的含量。进一步分析实验结果可知,反应条件和溶剂用量对四苯基卟 啉和金属卟啉的合成具有重要影响。优化反应条件和溶剂用量可提高产物收率 和纯度。
根据现有的研究成果和实验验证,卟啉类化合物的应用前景非常广阔。首先, 由于卟啉类化合物具有优异的光电性能和良好的生物相容性,其在太阳能电池、 光催化反应和生物医学领域的应用潜力巨大。其次,通过结构优化和分子设计, 可以进一步提高卟啉类化合物的性能,从而拓展其应用范围。此外,随着绿色 化学和可持续发展的理念日益受到重视,卟啉类化合物的合成方法也将得到进 一步改进,提高其生产效率并降低成本。
参考内容
基本内容
卟啉类试剂是一类具有特殊化学结构的有机化合物,其在化学、生物学、材料 科学等领域具有广泛的应用。近年来,随着科学技术的不断进步,卟啉类试剂 的合成方法与技术也得到了长足的发展。本次演示将简要介绍卟啉类试剂合成 的进展,以期让读者了解其未来的发展方向。
一、卟啉类试剂概述
卟啉类试剂是指由四个吡咯环组成的环形化合物,其具有独特的物理和化学性 质,如大环共轭体系、较强的吸电子能力、高稳定性等。这些特性使得卟啉类 试剂在很多领域都具有重要的应用价值,如光电器件、生物传感器、药物开发 等。
卟啉化合物的合成及光电性能
卟啉化合物的合成及光电性能卟啉是一种重要的天然有机化合物,其分子结构为四个吡啶环通过甲烷桥相连而成,是许多生物体内重要的分子构建块。
因其具有独特的光电性能,广泛应用于光电领域。
本文主要探讨卟啉化合物的合成方法以及其在光电领域的性能表现。
首先,卟啉化合物的合成可通过多种途径实现。
其中,自然界中往往通过生物合成途径产生,而在实验室中,化学合成是常见的方法之一。
通过闭环合成法,可以较为高效地合成卟啉化合物。
闭环合成是指通过碳环的闭合反应,在不断逐步构建分子骨架的过程中,最终合成目标产物。
这种方法具有较高的选择性和效率,是实验室合成卟啉化合物的常用手段之一。
其次,卟啉化合物在光电领域中表现出色的性能。
由于其分子结构的特殊性质,卟啉具有较好的光吸收和电子传输性能。
在太阳能电池中,卟啉化合物可以作为光敏染料,吸收阳光的能量转化为电能。
此外,在光导纤维和光合成中也起到重要作用。
卟啉还可以通过与不同金属配合形成卟啉金属络合物,拓展了其在光电领域的应用领域。
最后,通过对卟啉化合物的研究和合成,可以不断拓展其在光电领域的应用。
通过调控卟啉分子结构,改善其光电性能,提高其在光伏和光催化领域的效率。
同时,进一步研究卟啉与金属的配合反应,探索新的卟啉金属络合物的光电性能,为光电材料的开发提供新的思路和途径。
总的来说,卟啉是一种重要的有机化合物,其在光电领域的应用潜力巨大。
通过合成方法的不断改进和性能研究的深入探索,将为卟啉化合物在光电领域的应用提供更为广阔的前景。
希望未来能够有更多的研究者加入到这一领域,共同推动卟啉化合物的应用与发展。
卟啉类化合物的合成与性质研究
卟啉类化合物的合成与性质研究卟啉类化合物是一类具有特殊结构和重要应用价值的有机化合物。
它们由四个吡咯环通过共享碳原子构成,并且在一个或多个环上含有金属原子。
卟啉类化合物在生物学、材料科学和光电子学等领域具有广泛的应用。
本文将探讨卟啉类化合物的合成方法和性质研究。
一、卟啉类化合物的合成方法卟啉类化合物的合成方法多种多样,其中最常见的方法是通过酸催化的缩合反应合成。
这种方法利用吡咯环上的氨基和醛基或酮基之间的反应,生成卟啉环。
此外,还可以通过金属催化的反应合成卟啉类化合物。
金属催化反应的优势在于反应条件温和,产率高,适用范围广。
二、卟啉类化合物的性质研究卟啉类化合物具有许多独特的性质,其中最引人注目的是它们的光学性质。
由于卟啉环中的共轭双键结构,卟啉类化合物具有很强的吸收和发射光谱。
这使得它们在光电子学领域有着广泛的应用,如光敏染料、光电转换器件等。
此外,卟啉类化合物还具有良好的电子传输性质。
由于卟啉环中的共轭结构,电子在分子内可以自由传输,使得卟啉类化合物成为一种优良的电子传输材料。
这一性质使得卟啉类化合物在有机电子器件中有着广泛的应用,如有机太阳能电池、有机场效应晶体管等。
此外,卟啉类化合物还具有较强的配位性质。
由于卟啉环上的氮原子可以与金属形成配位键,卟啉类化合物可以与金属离子形成稳定的配合物。
这些配合物在生物学和催化领域有着重要的应用,如血红素和维生素B12等。
三、卟啉类化合物的应用前景卟啉类化合物由于其独特的结构和多样的性质,具有广泛的应用前景。
在生物学领域,卟啉类化合物被广泛应用于光动力疗法、荧光探针和生物传感器等。
在材料科学领域,卟啉类化合物可用于制备光电材料、催化剂和分子电子器件等。
在光电子学领域,卟啉类化合物可用于制备光电转换器件、光敏染料和有机发光二极管等。
总之,卟啉类化合物的合成与性质研究对于推动生物学、材料科学和光电子学等领域的发展具有重要意义。
通过不断深入研究,我们可以进一步了解卟啉类化合物的结构与性质之间的关系,为其应用提供更加可靠的理论基础。
卟啉配合物
卟啉配合物
卟啉配合物是一类含有卟啉结构的配合物,其中卟啉是一种含有四个吡啶环并通过共轭连接的大环分子。
卟啉配合物在自然界中广泛存在,包括生物体内的血红蛋白和叶绿素等。
此外,在化学合成和材料科学领域,也可以合成许多具有卟啉结构的配合物,并且它们具有多种不同的性质和应用。
以下是卟啉配合物的一般特点和性质:
1.结构特点:
卟啉结构是由四个吡啶环通过共轭连接而成的大环分子。
在卟啉结构中,通常会有一个中心金属离子与卟啉的氮原子形成配位键,形成卟啉配合物的基本结构。
2.颜色:
许多卟啉配合物在溶液中具有鲜艳的颜色,这是由于卟啉结构中的π电子的共轭结构导致的吸收和发射可见光的能力。
不同金属离子和配体的选择会影响卟啉配合物的颜色。
3.配合键:
卟啉结构的氮原子通过配位键与中心金属离子形成配合物。
配位键的形成使得卟啉配合物具有稳定的结构和特定的化学性质。
4.生物学功能:
在生物体内,卟啉配合物具有重要的生物学功能。
例如,血红蛋白和肌红蛋白中的血红素就是一种卟啉配合物,它们在氧气的运输和储存中起着关键的作用。
叶绿素是另一个重要的卟啉配合物,它在光合作用中起着捕获光能和催化光合反应的作用。
5.合成方法:
合成卟啉配合物通常涉及到有机合成和配位化学技术。
常见的合成方法包括静态反应、动态反应和模板合成等。
通过选择不同的金属离子和配体,可以合成具有不同结构和性质的卟啉配合物,从而拓展其在材料科学和生物医学领域的应用。
总的来说,卟啉配合物具有多种重要的性质和应用,包括生物学功能、光学性质和化学反应活性等,因此受到了广泛的研究和应用。
卟啉化合物的合成
化 学 进 展
PROGRESS IN CHEMISTRY
Vol . 19 No. 4 Apr. , 2007
卟啉化合物的合成 3
王周锋 邓文礼 3 3
(华南理工大学材料科学与工程学院 广州 510640)
摘 要 卟啉化合物在自然界中广泛存在 ,它作为辅基普遍存在于血色素 、肌球素 、细胞色素 、接触酶 素 、过氧物酶 、叶绿素和细胞叶绿素中 。本文主要介绍吡咯与醛酮缩合环化合成卟啉化合物的两种方法 :吡 咯与醛酮直接缩合环化法和模块法 ,分别论述近年来四苯基卟啉型 ( meso2取代) 和八乙基卟啉型 (β2取代) 合 成方面的研究进展 。对模块法中模块单体的合成制备给予较为详细的介绍 。
© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved.
第4期
王周锋等 卟啉化合物的合成
·521 ·
图 1 不同种类的卟啉化合物 Fig. 1 Different kinds of porphyrins
收稿 : 2006 年 5 月 , 收修改稿 : 2006 年 6 月 3 国家自然科学基金项目 (No. 20643001) 资助 3 3 通讯联系人 e2mail :wldeng @scut. edu. cn
发展非常迅速 ,关于卟啉的著名专著就有 Porphyrins and Metalloporphyrins [3 , 4] 、The Porphyrin Handbook [5] 和 The Porphyrins[6] 等 。在过去的二十年间 ,卟啉化学 经历了一个飞速发展阶段 ,其主要的突破口就是卟 啉类化合物种类的增多和合成方法的改进 。
卟啉生成及代谢过程
卟啉生成及代谢过程*导读:卟啉或其前体[如δ-氨基-r-酮戊酸(ALA)和胆色素原(PBG)]生成,浓度异常升高,并在组织中蓄积,由尿和粪中排出.临床表现主要累及神经系统和皮肤。
……血红素,一种含铁的色素,参与血红蛋白的组成,存在于机体内所有组织.血红素生物合成途径见8种不同的酶参与8步合成步骤,第1个酶和最后3个酶存在于线粒体中,而中间步骤中的酶存在于胞液中.1.ALA合成酶,是血红素生物合成途径的第一个酶,它催化甘氨酸和琥珀酰辅酶A聚合成ALA.该酶积聚在线粒体的内膜且需要5′-磷酸吡哆醛作为辅酶,不同的基因把红细胞和非红细胞的ALA合成酶进行编码.2.ALA脱水酶,存在于胞液中,它使2分子的ALA脱去2分子的水而合成单吡咯---PBG.铅抑制ALA脱水酶,是由于它取代了酶中的锌(酶活性所必需的金属).琥珀酰丙酮是一种ALA的结构类似物,它是最强的酶抑制剂,可见于遗传性酪氨酸血症病人的尿和血中.3.PBG脱氨酶催化4分子PBG聚合产生线性四吡咯,即HMB.有两个PBG脱氨酶的同功酶:一个只存在于红细胞中,而另一个则存在于非红细胞中.这两种PBG脱氨酶的同功酶是由不同的信使RNAs(mRNAs)进行编码,这些mRNAs是由一个单基因通过交替的转录和嫁接而被转录.4.尿卟啉原Ⅲ聚合酶催化HMB形成尿卟啉原Ⅲ,这涉及分子内重排和影响D环的定向(HMB分子最右边的吡咯环见大环闭合形成尿卟啉原Ⅲ.当该酶缺乏时,HMB则自发环化,没有反向的D环,而形成尿卟啉原Ⅰ.5.胞液中,尿卟啉原脱羧酶催化尿卟啉(8个羧基的卟啉)中羧甲基侧链的4个羧基连续脱去产生7个羧基卟啉,6个羧基卟啉,5个羧基卟啉,最后形成粪卟啉原Ⅲ(一个4个羧基的卟啉).此酶也能催化尿卟啉原Ⅰ形成粪卟啉原Ⅰ.6.哺乳动物细胞中的粪卟啉原氧化酶是一种线粒体酶,它催化粪卟啉原Ⅲ的吡咯环A和B上的丙基脱去羧基和2个氢成为这些位置上的乙烯基而形成原卟啉原.这种酶不能代谢粪卟啉原Ⅰ.7.原卟啉原Ⅸ氧化为原卟啉Ⅸ是由原卟啉原氧化酶起中介作用,该酶催化原卟啉原Ⅸ中心脱去6个氢原子.8.亚铁螯合酶,催化铁嵌入原卟啉,是血红素生物合成的最后一步.该酶并非对铁有特异性,它也能催化一些其他金属的嵌入例如锌.代谢途径的中间体仅存在于细胞内,正常排泄的量很少.他们的分子大小,溶解度和其他的性质相互间差异很大.ALA,PBG和卟啉原是无色和无荧光的.原卟啉,最后的中间体,唯一被氧化的卟啉.氧化的卟啉受到长波紫外线照射时呈红色荧光.漏到细胞外液的卟啉原自动氧化为卟啉而排泄.然而,一定量的未氧化的粪卟啉原可能排泄在尿中.ALA,PBG,尿卟啉,7羧基,6羧基和5羧基的卟啉是水溶性的,大部分排泄在尿中.粪卟啉(一个4羧基卟啉)是排泄在尿和胆汁中.硬卟啉(一种3羧基卟啉)和原卟啉(一种2羧基卟啉)很难溶解于水中,而不能由肾脏排泄.它们出现在血浆中,被肝脏摄取,然后排泄在胆汁和粪中,它们也可积聚在骨髓.血红素合成的控制血红素合成最多在骨髓,在那里血红素和有氧转输功能的血红蛋白结合,而在肝脏,则多数和细胞色素结合,它是电子转输蛋白.在肝脏大多数细胞色素是细胞色素P-450酶,它代谢药物和许多其他外源的和内源的化学品血红素生物合成在肝脏和骨髓的调控机制是不同的.在肝脏血红素合成是限速的,它受到第一个酶,ALA合成速度的控制酶1).正常肝细胞中酶活性十分缓慢,在肝脏为应答各种化学疗法而需要制造更多的血红素时,酶的浓度显著地上升.酶的合成也受细胞内血红素量的反馈控制,当游离的血红素浓度高时,合成就降低.某些药物和激素诱导肝细胞制造更多的ALA合成酶,血红素及细胞色素P-450.在骨髓,血红素由成红细胞和仍保留有线粒体的网织红细胞制造,然而循环中的红细胞没有线粒体则不能形成血红素.红细胞系内血色素合成至少部分受到细胞摄取铁过程的调节.骨髓细胞表达某些途径中酶的红细胞系的特异形式.红细胞系的特异ALA合成酶受到在mRNA中的铁应答元素的调节,它也部分受到为形成血红蛋白而合成血红素的组织特异调节.。
金属卟啉的合成方法综述
金属卟啉的合成方法综述吴润东;何金莲;陈伟;翟锦龙【摘要】卟啉及金属卟啉是一类大环共轭结构的化合物,其广泛存在于自然界中.其独特的分子结构赋予其许多特殊的性质,其在分子识别、传感器、半导体、光信息存储、非线性光学材料、光催化剂、能量捕获和传递等领域具有广阔应用前景.本文主要就金属卟啉的合成方法进行综述.【期刊名称】《东莞理工学院学报》【年(卷),期】2019(026)001【总页数】5页(P81-85)【关键词】卟啉;金属卟啉;合成方法【作者】吴润东;何金莲;陈伟;翟锦龙【作者单位】东莞理工学院生态环境与建筑工程学院,广东东莞 523808;东莞理工学院生态环境与建筑工程学院,广东东莞 523808;东莞理工学院生态环境与建筑工程学院,广东东莞 523808;东莞理工学院生态环境与建筑工程学院,广东东莞523808【正文语种】中文【中图分类】O646.54卟啉是一类由四个吡咯类亚基的α-碳原子通过次甲基桥(=CH-)互联而形成的大分子杂环化合物。
卟啉可进一步与金属离子形成金属络合物,即金属卟啉。
自然界中以金属卟啉最为多见,金属卟啉广泛存在于生物体中,血红素、叶绿素、维生素B12都是金属卟啉类化合物,其在生物氧化过程中起着氧的传递、储存、活化以及电子传输作用,在光合过程中起光敏电子转移作用,其在新陈代谢中也起着不可或缺的地位,具有特殊的生理活性[1]。
卟啉环的共轭的大环结构使其具有良好的光电特性,常用于分子识别、传感器、半导体、光信息存储、非线性光学材料、光催化剂、能量捕获和传递等领域[2-5]。
目前金属卟啉的合成方法有很多种,本文就其合成方法进行综述。
金属卟啉的合成从步骤上可以分为“一步法”和“两步法”。
1 一步法一步法是指在生产步骤中,不制备卟啉而将吡咯等原料同金属盐直接反应生成金属卟啉络合物的方法。
G.M.Badger等[6]报道了以邻氯苯甲醛、吡咯、无水醋酸锌为原料一步与高压反应釜中加热直接合成对应的四-(邻-氯苯基)锌卟啉化合物。
卟啉和叶绿素代谢
卟啉和叶绿素代谢卟啉和叶绿素是植物体内重要的光合色素,它们的代谢对于植物的生长发育和光合作用至关重要。
本篇文章将介绍卟啉和叶绿素的合成和降解途径以及它们在植物体内的角色。
一、卟啉的合成和降解途径卟啉是植物体内多种重要色素的基础,包括叶绿素、类胡萝卜素等。
在植物体内,卟啉的合成主要发生在叶绿体内。
其合成途径比较复杂,包括醛缩反应、青霉素酸途径等多个步骤。
具体来说,卟啉的合成主要包括以下步骤:1. δ-氨基水平酸(ALA)合成:ALA合成是卟啉生物合成途径的第一步,也是速率限制步骤。
ALA在叶绿体内由连续的两步反应合成,第一步是通过丙酮酸和磷酸的反应形成丙酮酸磷酸羧化物,第二步是通过ALA合成酶的作用将羧化物的一个羧基与谷氨酸上的一个氨基结合,形成ALA。
2. 卟啉合成:ALA是卟啉生物合成的起始物质,经过多个步骤,最终形成卟啉。
其中,ALA在叶绿体中被转运到叶绿体外膜中进入线粒体,转变成硬质卟啉,并在线粒体内生成第一分支和第二分支物质,最后形成卟啉。
3. 卟啉的修饰:在植物体内,卟啉需要进行酯化和环化反应,形成叶绿素。
其中,硬质卟啉被酯化生成Protoporphyrin IX,经过多个步骤进入叶绿体,在叶绿体中进一步环化,形成叶绿素。
卟啉的降解通常发生在叶绿体内,主要是通过卟啉酸还原酶的作用将卟啉降解为5-氨基戊酸和Co2+。
此外,在一些特殊情况下,卟啉也可以通过物理或化学方法进行降解。
叶绿素是植物体内最重要的光合色素之一,是光合作用过程中捕获光能的主要色素。
其合成和降解途径与卟啉的代谢有密切联系。
1. 叶绿素的合成:叶绿素的合成与卟啉的生物合成相似,但存在一些差异。
具体来说,叶绿色素的合成需要将硬质卟啉进行甲酯化和脱酰化反应,形成叶绿色素。
其过程主要包括以下几步:(1)硬质卟啉的甲酯化:硬质卟啉被甲酸转移酶作用下甲酸酯化,将其转变为甲酯肟型物。
(2)甲酯肟酯的水解:甲酯肟酯在水的作用下减去甲酸和氨,形成乙二酰原基,也即叶绿原型物。
卟啉化合物的合成
卟啉化合物的合成汤莹;胡炳成;刘祖亮【摘要】卟啉化合物广泛存在于自然界中和生命体中,对生命活动起着重要作用,卟啉化合物因其特殊的结构和生物活性,应用前景广阔.本文主要介绍卟啉化合物的合成方法,根据所采用起始反应物的不同,将卟啉的合成方法分为两大类:全合成法和半合成法,对两类合成方法给予较详细的介绍.【期刊名称】《广州化工》【年(卷),期】2010(038)010【总页数】4页(P75-78)【关键词】卟啉;全合成;半合成【作者】汤莹;胡炳成;刘祖亮【作者单位】南京理工大学化工学院,江苏,南京,210094;南京理工大学化工学院,江苏,南京,210094;南京理工大学化工学院,江苏,南京,210094【正文语种】中文【中图分类】TQ2Abstract:Porphyrinswere widely distributed in nature and played an important role in the activities of life.Porphyrins had bright prospects in various applications owing to their unique structure and biological activity.The synthesis of porphyrinswasmainly introduced.The methodology for preparation of porphyrinswas divided into full and semi-synthesis,according to different reactants.The two kinds of synthesismethods of porphyrinswere described in detail.Key words:porphyrins;total synthesis;semi-synthesis卟啉是含四个吡咯分子的大环化合物,当卟啉环中N上的两个H被金属取代后便成为金属卟啉[1]。
血红素生物合成途径
血红素生物合成途径
血红素是红细胞中的主要成分,是通过一系列生物合成途径合成的。
以下是血红素的生物合成途径:
1. 色氨酸代谢途径
色氨酸在体内首先被酶氧化为吲哚丙酮酸,再被酶裂解为吲哚醋酸,最后转化为尿酸和Ⅰ原卟啉;Ⅰ原卟啉是血红素合成的起始物。
2. 卟啉合成途径
Ⅰ原卟啉在体内被酶依次加成甲基、乙酰基和丙酰基,然后去酰基、去二氧化碳、酸化和还原等反应,在多个中间体的转化作用下,最终合成卟啉酸。
3. 血红素合成途径
卟啉酸在体内被酶还原和甲基化,然后失去一分子硫化氢和一分子羧基,转化为血红素原。
血红素原再失去一分子飞蝇素,形成血红素。
最后,血红素与珠蛋白结合成为血红蛋白,由此产生红细胞的红色。
注:以上途径是人体中血红素的生物合成途径,部分途径可能在其他生物体中略有不同。
卟啉代谢途径高价值产物及其微生物合成研究进展
卟啉代谢途径高价值产物及其微生物合成研究进展随着对卟啉生物合成和代谢途径的研究不断深入,越来越多的高价值代谢产物被发现,这些产物不仅在医药、化工等领域具有广泛应用,同时也被广泛运用在环境保护等方面。
本文将就卟啉代谢途径高价值产物及其微生物合成的研究进展进行综述。
一、卟啉代谢途径及其产物卟啉是生物体内的一种重要的天然生物色素,其在生物体内担任着多种生物学功能。
卟啉代谢途径主要包括:卟吩酸(ALA)路径、THB途径、Shemin途径、Chlorophyll途径等。
卟吩酸通常是作为卟啉合成途径的起始化合物,而后续的合成路径则各有特点和特有的酶促反应。
通过对卟啉代谢途径的研究,我们发现,除了卟啉自身以外,其代谢途径中还存在大量的高价值化合物,下面我们将陆续介绍这些产物和其生物学功能。
1. 卟啉类化合物卟啉类化合物包括各种卟啉类色素,如叶绿素、细菌叶绿素等。
这类化合物在植物、细菌等生物体内都起着至关重要的作用。
例如,叶绿素在光合作用中扮演着重要角色,而细菌叶绿素则可以被用于生物柴油的合成等领域。
2. 卟吩酸类化合物卟吩酸类化合物中,最为重要的是δ-卟吩酸和鞘氨醇卟吩酸。
这些化合物在医药、化工等领域具有广泛应用。
例如,鞘氨醇卟吩酸可以被用于白血病治疗,而δ-卟吩酸则可以用于光敏剂、化学试剂等领域。
3. 卟氨酸类化合物卟氨酸类化合物包括多种间系卟胱氨酸和缬氨酸。
这些化合物在免疫、生物学等领域具有重要的应用价值,例如间系卟胱氨酸可以用于体外诊断试剂。
4. 卟啉类代谢产物卟啉类代谢产物主要包括多种乙酰化卟胺、滴定阴离子等。
这些化合物在医学、环境保护等领域具有广泛应用,例如滴定阴离子可以被用于环境中的卟啉类有机污染物检测。
二、微生物合成卟啉代谢产物微生物在卟啉代谢途径中起着重要的作用。
利用微生物合成卟啉代谢产物可以实现代谢途径的定向调控和高效产物合成。
下面将介绍最新的微生物合成卟啉代谢产物的研究进展。
1. 合成δ-卟吩酸的微生物株最近的研究表明,一些细菌能够高效地合成δ-卟吩酸。
卟啉衍生物的合成与生物学应用
卟啉衍生物的合成与生物学应用卟啉是天然存在于生物体内的一种重要有机化合物,它在生物学上具有重要的作用。
例如,卟啉催化酶是许多生物反应的重要催化剂,卟啉又作为血红素的前体可以赋予血液红色。
在化学领域,卟啉也是一种重要的化合物,其稳定性好、分子结构多样性和光学性能强,使得其在许多领域具备了广泛的应用,如药物、材料和分析化学等。
卟啉衍生物的合成卟啉类化合物具有稳定的分子结构和光敏性质,因此也成为了许多生物学和化学应用中的重要分子。
卟啉的核心结构是以四个吡嗪环(pyrrole)和四个根氢原子(H)组成的。
通过不同的取代基和连接方式,可以合成多种有活性的卟啉衍生物。
在化学合成方面,卟啉的第一个有机合成成功是由罗森巴克和奥尔特曼在20世纪20年代首先实现的。
当时用一个芳香酮类化合物和一些氰化物的反应,得到了一种卟吩类化合物。
此后,多种制备卟啉类化合物的反应得以发现,如德索托化学反应和拉夫曼反应等。
这些反应均以吡嗪环上的氢原子的去除或取代作为中间步骤,进而形成对于特定应用具有具体取代基的卟啉类分子。
在生物合成方面,卟啉是通过多个酶催化产生的。
其中最著名的生物合成途径是“伯-辛”环化反应,此反应产生血红素所需的前草酸,主要是绿叶素和谷氨酸的酶催化反应。
这种生物合成过程在体内是一个高度底物、协同且灵活的过程,在化学领域中也有需要模拟和理解的地方。
卟啉衍生物的生物学应用卟啉类化合物由于稳定性好、选择性高、吸收、发射等光学性质好,因此在生物学领域具备广泛的应用。
例如,卟啉衍生物可以用作荧光探针,这种荧光在各种离子和分子的存在下会发生不同程度的改变。
如利用卟啉衍生物分别对甲醇和苯酚进行氧化反应,会出现不同的荧光信号。
由于生物体内的许多代谢物和药物都是可以被酶类催化氧化而产生代表性的荧光产生,因此利用卟啉作为荧光标识物是一种高效的生物传感器。
另外,卟啉类化合物也可以作为光敏剂用于光动力治疗、抗癌治疗等方面。
这种治疗方式是选择性地在癌细胞内积累卟啉类化合物,然后通过光照使卟啉产生的激发态向周围的氧分子转移,从而生成具有杀伤力的自由基,进而达到治疗目的。
卟啉的合成
卟啉的合成卟啉是一类重要的有机化合物,广泛应用于生物学、化学和医学等领域。
它是一种由四个吡咯环通过甲烷基连接而成的大环状结构,具有多种生物活性和光物理性质。
本文将介绍卟啉的合成方法和应用。
卟啉的合成方法有多种途径,其中最常见的是通过多步反应合成。
一种常用的合成方法是从苯乙烯出发,经过多步反应制备卟啉。
首先,苯乙烯经过氧化反应得到苯乙酮,然后经过氨化反应生成苯乙酰胺。
接下来,苯乙酰胺经过环化反应生成吡咯烷酮,再经过羧化反应得到吡咯烷酮酸。
最后,吡咯烷酮酸经过环化反应得到卟啉。
除此之外,还有其他合成方法,如格里氏反应、Meerwein-Ponndorf-Verley还原等。
卟啉在生物学中起着重要的作用,其中最著名的应用是在光合作用中光合色素叶绿素中的卟啉结构。
通过吸收光能,卟啉能够将光能转化为化学能,从而驱动光合作用中的反应。
除了叶绿素,卟啉还存在于其他生物分子中,如血红素、细胞色素等。
这些卟啉分子在生物体内参与氧气运输、电子传递和催化反应等重要生物过程中起着关键作用。
在化学领域,卟啉也有广泛的应用。
卟啉具有良好的电子传递性质和催化活性,可以作为催化剂用于有机合成反应中。
例如,卟啉催化剂可以催化氧化反应、还原反应和环化反应等。
此外,卟啉还可以与金属离子形成稳定的配合物,这些卟啉金属配合物在催化剂、药物和材料等方面具有重要应用价值。
在医学领域,卟啉也有广泛的应用。
卟啉分子具有丰富的光物理性质,可以吸收特定波长的光线并发生激发态反应。
通过选择合适的光源和卟啉分子,可以实现光动力疗法。
光动力疗法是一种新兴的肿瘤治疗方法,通过激发卟啉分子产生的活性氧物质来杀灭癌细胞。
此外,卟啉还可以用于光热疗法、荧光成像和光敏化学等领域。
卟啉是一类重要的有机化合物,具有多种合成方法和广泛的应用领域。
通过合成卟啉和研究其性质和应用,可以推动化学、生物学和医学等领域的发展。
随着科学技术的进步,相信卟啉的合成和应用将会得到更多的突破和创新,为人类社会带来更多的福祉。
卟啉类色素生物合成及其功能研究
卟啉类色素生物合成及其功能研究卟啉类色素是一种广泛存在于生命体中的生物分子,与光合作用、呼吸作用、色素功能、酶催化作用等诸多生命过程密切相关。
近年来,对于卟啉类色素生物合成及其功能的研究已成为生物学研究的焦点之一。
一、卟啉类色素的分类和生物合成卟啉类色素包括叶绿素、类胡萝卜素、血红素等多种不同类型的生物分子。
其中,叶绿素是植物和藻类特有的卟啉类色素,参与光合作用;血红素则是动物、微生物和植物等生物内的重要氧载体,在呼吸作用中发挥重要作用。
卟啉类色素的生物合成过程经过多个酶催化反应,包括与结构相关的基因、中间代谢物和环境因素等多个因素调控。
血红素及其衍生物的生物合成是一种复杂的过程,首先由5-氨基乙酸在线粒体内形成伍斯特-科士达尔生长环(ALA),经过多步反应,最终形成血红素。
而叶绿素的生物合成则需要经过四个主要的步骤,包括前体物质、受体、光信号和多个酶催化反应等。
二、卟啉类色素的功能研究卟啉类色素在生命体中的功能非常广泛,主要与光合作用、呼吸作用、色素功能、酶催化作用等诸多生命过程密切相关。
其中,血红素在呼吸作用中发挥重要作用,通过氧的结合和释放调节细胞的代谢活动;叶绿素则是光合色素,在植物和藻类中承担着接收光能的重要作用;而类胡萝卜素则是植物和某些微生物的天然色素,能够抗氧化,预防癌症和心血管疾病等。
除了以上的作用外,现代研究还发现,卟啉类色素还具有广泛的光化学、荧光性、电化学、纳米材料等应用价值。
如通过将某些卟啉类色素增强荧光性能,可以应用于生物成像和药物检测等领域;将其与纳米材料结合,可以提高电池、太阳能电池等器件的性能等。
三、卟啉类色素生物合成及其功能研究的前景随着生物技术和分子生物学研究方法的不断改进,卟啉类色素生物合成及其功能的研究将取得更多的突破。
例如,对于叶绿素的生物合成机制研究,能够为植物基因编辑技术的发展提供帮助,帮助植物实现更高的光能利用率和产量;而对于血红素生物合成通路的研究,则可以用于治疗一些相关疾病。
卟啉合成机理
卟啉合成机理引言卟啉是一类重要的有机分子,具有类似叶绿素和血红素等生物活性物质的结构,广泛应用于药物、电化学和材料科学等领域。
卟啉分子的合成机理是研究该类化合物的关键。
卟啉的结构与性质卟啉分子由四个吡咯环组成,每个吡咯环连接一个氮原子形成大环结构,同时又和中心金属离子形成配位键。
卟啉分子的叶绿素和血红素等衍生物在生物体内起着光合作用和运输氧气的重要作用。
卟啉的合成方法卟啉的合成方法有很多种,其中最重要的途径是通过在吡咯环上引入酮、醛等官能团,然后用Lewis酸或金属离子催化进行缩合反应。
Rothemund方法Rothemund方法是一种经典的卟啉合成方法,通过对吡咯环进行酮、醛官能团的引入,再使用酸催化剂进行缩合反应,形成卟啉环。
这个方法的优点是操作简单,产率较高,适用于合成不同的卟啉衍生物。
Lindsey方法Lindsey方法是另一种常用的卟啉合成方法,它利用Lewis酸(如锌、镧)催化剂,将吡咯环上的醛或酮反应生成卟啉中间体,然后通过环内复杂自组装过程,得到合成的卟啉产物。
这种方法可以优化卟啉合成的空间构象,得到具有特定功能或性质的卟啉分子。
叶绿素和血红素的合成叶绿素和血红素是卟啉的重要衍生物,它们在生物体内发挥着光合作用和运输氧气的作用。
叶绿素和血红素的合成方法主要是通过反应卟啉分子与镁或铁离子的络合反应得到。
这个过程中,还需要调控反应条件,使得卟啉分子的合成与金属离子的配位形成稳定的络合物。
卟啉合成机理的研究与应用研究卟啉合成机理不仅可以提高合成方法的效率,还可以帮助理解卟啉分子的性质和行为,为设计新的功能材料提供理论指导。
目前,卟啉分子已经应用于太阳能电池、有机发光二极管和化学传感器等领域。
太阳能电池卟啉分子因其良好的光吸收特性和电荷转移行为,在太阳能电池领域得到广泛应用。
通过调控卟啉分子的结构和配位方式,可以提高光电转换效率和稳定性,为实现高效的太阳能转换提供了新的思路。
发光二极管卟啉分子还具有优异的荧光性能,可以用于制备有机发光二极管(OLEDs)。
卟啉光敏剂的合成、生物活性筛选与构效关系研究共3篇
卟啉光敏剂的合成、生物活性筛选与构效关系研究共3篇卟啉光敏剂的合成、生物活性筛选与构效关系研究1卟啉光敏剂的合成、生物活性筛选与构效关系研究随着人类社会的快速发展,各种疾病也不断涌现,而传统的治疗方式已经无法解决所有问题。
因此,光动力疗法是一种全新的疗法,引起了越来越多的重视和研究。
作为光动力疗法的核心物质——卟啉光敏剂,其合成、生物活性筛选与构效关系研究已经成为了一个重要的研究领域。
卟啉光敏剂的合成是该领域的核心内容之一。
卟啉是一种由四个吡咯环通过共边相连而成的大环结构,因此它的合成方法有很多。
比较常用的方法是Pyrrol-Synth-Methode和Lindsey-Synthesis。
其中,Pyrrol-Synth-Methode是以吡咯为起始物,通过反应方法逐步组合成卟啉结构;而Lindsey-Synthesis是利用四个吡咯环在特定条件下自组装形成卟啉结构。
值得一提的是,卟啉不仅可以通过化学方法合成,还可以通过生物法、酶法和微波辐射反应等方法合成。
生物活性筛选是卟啉光敏剂研究的另一个重要方面。
目前,卟啉光敏剂的临床应用主要包括光动力疗法和病菌检测。
在光动力疗法中,卟啉光敏剂可以与体内的氧气反应,生成活性物质,从而实现光照后的杀菌、抗癌等功效。
而在病菌检测领域,卟啉光敏剂可以与特定的病菌结合并发生荧光,从而实现对病菌的检测。
因此,对卟啉光敏剂的光学特性、化学反应动力学和光热特性等多方面进行生物活性的筛选,则可以有效地提高卟啉光敏剂的对疾病的治疗效果和检测灵敏度。
构效关系研究是卟啉光敏剂研究中的另一个重要方面。
卟啉光敏剂的构效关系研究主要包括结构与光物理性质的关系、结构与光化学反应动力学的关系以及结构与光热性质的关系等。
在这些关系中,结构与光物理性质的关系是其中的重点。
其中包括了卟啉分子的基态、激发态、能量差、电子云密度等多方面的分析。
这些关系可以通过计算化学方法、光谱学方法和电子显微镜等手段进行研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27卷第6期2012年12月 大学化学UNIVERSITY CHEMISTRY Vol.27No.6Dec.2012 卟啉的生物合成途径与化学合成方法的比较*苏优拉1 张逸2 李嘉宾3** 陆军农3 (1中国药科大学2010届基地班本科生;2中国药科大学2010届制药工程专业本科生;3中国药科大学无机化学教研室药学基础化学实验中心 江苏南京211198) 摘要 对卟啉的生物合成途径和化学合成方法进行简要介绍,并尝试通过比较分析,寻找它们之间的联系,以期对卟啉化学合成方法的改进提供一些有益的信息㊂ 关键词 卟啉 化学合成 生物合成 在自然界的生命体中,有一些化合物发挥着非常重要的作用,比如:叶绿素,其介导的光合作用将光能转化为化学能储存于植物体中,是地球上有机体生存和发展的源泉;细胞色素C,能促进氢与氧的结合,加强体内的氧化供能反应,是细胞呼吸过程中电子传递体的主要组成部分;血红素,作为血红蛋白和肌红蛋白的核心结构域,负责氧气和二氧化碳的转运,在生物体的新陈代谢中起着举足轻重的作用㊂令人惊奇的是,这些化合物虽然在生物体中所处部位不同㊁所起作用迥异,但是,它们都含有一个共同的核心结构 卟啉㊂ 卟啉是在卟吩环上拥有取代基的一类大环化合物的总称㊂卟吩是由4个吡咯环和4个次甲基桥联起来的大π共轭体系,其结构如图1所示㊂天然卟啉类化合物一般是卟吩的吡咯环上的氢被不同基团取代所形成的,例如图1中的血红素㊁叶绿素和细胞色素C㊂卟啉的化学合成方法虽然早在1935年就被首次报道,近年来也进行了一系列的改进,但仍存在产率低㊁产物分离困难㊁能合成的卟啉种类有限等缺点㊂本文介绍卟啉的生物合成途径以及近年来的一系列文献报道的化学合成方法,并尝试通过比较分析,找寻它们之间存在的联系㊂图1摇重要的卟啉类化合物1 卟啉的生物合成途径 卟啉的生物合成几乎存在于所有真核细胞中,可分为6步(图2),即:①δ⁃氨基⁃γ⁃酮戊酸(ALA)的* **基金资助:2009年国家大学生创新训练计划项目通讯联系人,E⁃mail:jbli@2大学化学第27卷 形成;②吡咯单元(PBG)的形成;③尿卟啉原Ⅲ(含HMB中间体)的形成;④尿卟啉原Ⅲ的氧化;⑤粪卟啉原Ⅲ的氧化;⑥原卟啉原Ⅸ的氧化㊂其中,第②步缩合㊁第③步环合和第⑥步氧化涉及卟啉环骨架的构建,而第④步和第⑤步只是对卟啉环上侧链的修饰㊂图2 卟啉类化合物的生物合成途径[1⁃2]1.1 ALA的形成 ALA的形成是卟啉生物合成中的第一步,也是限速步骤[2]㊂在生物体中,ALA可由两条途径形成(图3)㊂Shemin途径[4]由David Shemin于1945年首次发现并逐步完善,主要存在于不进行光合作用的真核生物中,如动物和真菌[5]㊂ALA合成酶末端含一个赖氨酸(Lys)残基,当没有底物时,辅基磷酸吡哆醛(pyridoxal⁃5′⁃phosphate,PLP)与其形成Schiff碱,存在底物甘氨酸(Gly)时,Gly与PLP形成Schiff 碱再和琥珀酰CoA缩合形成ALA的同时释放CO2[3]㊂Beale等于20世纪70年代中期发现了以谷氨酸(Glu)为起始原料的C5途径[6]㊂它存在于植物㊁大多数细菌和所有古细菌中㊂C5途径主要依赖3种酶,连接酶通过形成谷氨酰基⁃1⁃t RNA激活1位羧基,还原酶将羧基还原为醛基,再经转氨酶的作用形成ALA[3]㊂在少数几种生物中也发现两条途径都存在[5]㊂图3 ALA形成的两种途径[3]1.2 PBG 的形成 两分子ALA 之间不对称缩合产生第一个吡咯衍生物 PBG(porphobilinogen)[5](图4)㊂反应机制与Knorr 吡咯缩合反应相似,首先,2个ALA 分子与酶活性部位的保守Lys 残基形成Schiff 碱,P 位ALA 分子的C 4和A 位ALA 分子的C 3进行Aldol 缩合形成C C 键,接着P 位ALA 分子的氨基进攻羰基碳原子形成C N 键[7]㊂图4 两分子ALA 缩合形成PBG1.3 HMB 的形成及其转化为尿卟啉原Ⅲ 4分子PBG 缩合形成尿卟啉原Ⅲ(uroporphyrinogen Ⅲ)是卟啉环生成的一个关键步骤,很多人对其具体过程提出了不同的猜想[8⁃10]㊂1980年Battersby A.R.等通过同位素标记证明了HMB(1⁃hydroxym⁃ethylbilane,羟甲基胆色烷)是尿卟啉原Ⅲ合成过程中的中间体;1987年他们又发现了新型辅基 二吡咯甲烷(dipyrromethane,DPM)[11],为阐明具体步骤奠定了基础㊂尿卟啉原Ⅲ的形成由两种酶共同完图5 尿卟啉原的形成(HMB 中间体)[3,10,13]成(图5)㊂首先,脱氨酶将4个PBG 组装形成开链HMB;在此过程中,先合成出二吡咯甲烷辅助因子,与脱氨酶末端的半胱氨酸巯基以硫醚键相结合,DPM 再和4分子底物相连接;当DPM 上连有4个吡咯单体时,a 环和DPM 之间的键断裂形成HMB㊂第二步,HMB 被转运到尿卟啉原Ⅲ合成酶上,在环合的同时,d 环重排生成尿卟啉原Ⅲ[12]㊂在无尿卟啉原Ⅲ合成酶时,HMB 在酸催化下迅速形成有毒性的不被代谢的尿卟啉原Ⅰ㊂值得注意的是,编码两种酶的基因位于同一操纵子内,两个基因协同表达[5],但3 第6期李嘉宾等:卟啉的生物合成途径与化学合成方法的比较尿卟啉原Ⅲ合成酶的表达量远远超过脱氨酶,以保证在生理条件下总是生成尿卟啉原Ⅲ[8]㊂1.4 尿卟啉原Ⅲ 粪卟啉原Ⅲ 原卟啉原Ⅸ 尿卟啉原脱羧酶(uroporphyrinogen Ⅲdecarboxylase,UROD)和粪卟啉原氧化酶(coproporphyrinogen Ⅲoxidase,CPOs)催化卟啉环侧链的修饰(图6)㊂在生理底物浓度下,4个环的脱羧作用是按d →a →b →c 的顺序发生;当底物浓度超过生理浓度时,脱羧作用以随机方式发生[5]㊂脱羧后生成的粪卟啉原Ⅲ(coproporphyrinogen Ⅲ)在哺乳动物中,经过位于线粒体外膜的依赖O 2的CPOs 催化,最终把电子传递给O 2㊂此过程不需要金属和辅助因子辅助[2],CPOs 的催化机理至今仍不清楚[5],详细过程见文献[14]㊂图6 卟啉环侧链的修饰[2]1.5 原卟啉原Ⅸ的氧化[15] 原卟啉原氧化酶(protoporphyrinogen Ⅸoxidase,PPOs)位于线粒体内膜的外表面,以O 2作为最终的电子受体,以FAD 为辅助因子,催化原卟啉原Ⅸ(protoporphyrinogen Ⅸ)的氧化,最终形成完全共轭的大环体系(图7)㊂生成的原卟啉Ⅸ(protoporphyrin Ⅸ)被直接转运到亚铁螯合酶上,以避免其对细胞的损害(原卟啉Ⅸ对光高度敏感,在O 2存在下,经光照射会产生自由基)㊂图7 原卟啉原Ⅸ的氧化2 卟啉的化学合成方法总结 目前,卟啉的化学合成方法主要有两种:①4个吡咯单体直接缩合环化生成卟啉(简称四吡咯合成法);②模块法㊂合成方法和路线的选择取决于目标卟啉分子的结构特点,中位对称取代的卟啉主要用四吡咯合成法,而不对称卟啉㊁天然卟啉及其类似物主要采用模块法合成㊂2.1 四吡咯合成法2.1.1 Rothemund 法 卟啉类化合物最早由Rothemund 合成[16]㊂Rothemund 法以醛类化合物(甲醛㊁乙醛㊁苯甲醛等)和吡咯为原料,以吡啶和甲醇为溶剂在封管中反应,90~95℃下反应24~48h(图8)㊂该法反应时间长,所需反应条件苛刻,而且后处理非常麻烦,产率很低;在此条件下,能用来作反应物的取代苯甲醛极少[17]㊂4大学化学第27卷 图8 Rothemund 法2.1.2 Adler⁃Longo 法及其改进 Adler 和Longo 等以有机质子酸作催化剂成功地制备了卟啉,并在1964年提出了卟啉生成的反应机理[18]㊂该法采用苯甲醛和吡咯在丙酸中回流反应30min,经冷却㊁过滤㊁洗涤及真空干燥,得到四苯基卟啉,产率达20%(图9)㊂此法的优点是操作比较简单,实验条件不算苛刻,产率较高㊂但由于反应条件的限制,一些带敏感基团的取代苯甲醛不能用作原料,带有强吸电子基的苯甲醛为底物时产率特别低;反应极易产生大量焦油状物,导致纯化非常困难;另外反应中的副产物四苯基二氢卟啉与四苯基卟啉分离较困难[17]㊂图9 Adler⁃Longo 法 潘继刚等[19]对Adler⁃Longo 法作了进一步调整,他们采用催化量的有机酸和极性溶剂代替丙酸介质,反应过程中产生的杂质明显减少,四苯基卟啉的产率最高达到50%㊂研究溶剂和催化剂对反应的影响,发现H +在反应过程中起催化剂的作用,p K a 2.0~4.0的酸作催化剂,合成产率较高㊂以二甲苯㊁甲苯㊁氯苯㊁硝基苯㊁苯甲醚为溶剂,四苯基卟啉产率较高,可达30%~50%㊂2.1.3 Lindsey 法及其改进 Lindsey 等[20]进一步改进了四苯基卟啉的合成,采用苯甲醛和吡咯在氮气保护下,在二氯甲烷中,以三氟化硼和乙醚络合物催化,整个反应分两步进行,先得到卟啉合成的中间体卟啉原(porphyrinogen),然后,以二氯二腈基苯醌(DDQ)或四氯苯醌(TCQ)将卟啉原氧化得到最终产物卟啉,从而使反应可以在常温下进行㊂近20年来,Lindsey 小组进一步研究了此一锅两步合成法的影响因素,发现酸催化剂的种类和用量㊁醛和吡咯上的取代基以及反应物浓度均会影响反应产率,并对主要副产物 链状聚合物的组成进行了分析[22⁃24]㊂由于Lindsey 法的反应温度较低,较少产生焦油状副产物,目标产物的分离提纯较容易;同时较低的反应温度也允许反应物先经过化学修饰,连接上一些敏感基团,平均产率可达45%~50%(图10)㊂但该反应浓度低,且最大反应容积为1L,放大后效果不好[21]㊂反应条件较苛刻,需要无水无氧操作,且反应还不能一步生成四苯基卟啉,必须在反应过程中另外加入氧化剂㊂ 郭灿城等[25]采用N ,N ⁃二甲基甲酰胺为溶剂,无水AlCl 3为催化剂,苯甲醛和吡咯缩合生成四苯基卟啉,产率可达30%,高于Adler 法㊂反应过程中不需氮气保护,产物不含副产物四苯基二氢卟啉,并且反应时间也较短,为2h㊂该方法的应用范围较广,对于以取代苯甲醛为原料的合成反应,产率在25%~30%之间㊂缺点是催化剂AlCl 3易与水反应,给产物的分离造成困难㊂5 第6期李嘉宾等:卟啉的生物合成途径与化学合成方法的比较6大学化学第27卷 图10 Lindsey法 Adler⁃Longo法和Lindsey法是目前应用比较广泛的两种方法㊂它们的主要区别在于所用的催化剂不同,Adler⁃Longo法用有机质子酸作为催化剂,而Lindsey法则用Lewis酸作为催化剂㊂2.1.4 微波催化合成法 1986年,Gedye等[26]发现微波可显著加快有机合成反应速率㊂从此,微波在合成化学领域迅速得到重视㊂以二甲苯为溶剂,对硝基苯甲酸为催化剂使苯甲醛和吡咯在微波炉内反应20min,可以得到卟啉,产率为9.5%[27]㊂微波辅助合成卟啉在我国发展较快,研究表明微波作用的时间与强度㊁溶剂及催化剂的选择㊁反应试剂的组成及用量等均对卟啉的合成有较大的影响㊂此法避免了传统加热合成方法的反应时间较长(一般需回流2~3h)㊁副反应多㊁产率不高且产物难提纯等缺点,且符合节能环保㊁绿色化学的发展趋势[28]㊂2.2 模块法 模块法主要包括[2+2]和[3+1]两种方法㊂ [2+2]合成亦称MacDonald方法[29],即两分子二吡咯甲烷缩合产生卟啉母核㊂该法可方便地合成具有C2对称轴的四苯基卟啉,也称为trans⁃卟啉,还可合成中位是4个不同芳基取代的卟啉㊂近年来,随着原料二吡咯甲烷衍生物合成方法的逐步改进和优化,可以合成的衍生物种类逐渐增多,产率也得到了提高,使[2+2]法的应用范围越来越广[30]㊂ [3+1]法是由MacDonald方法衍生出来的,将一个由两个桥碳原子连接的3个吡咯环组成的胆色素分子和一分子a,a′⁃二甲酰基吡咯环合得到卟啉的合成方法㊂此方法总产率较低,能合成一些结构复杂且较为特殊的卟啉,主要用于扩充卟啉的种类[31]㊂ 关于卟啉化学合成方法更详细的总结可参考文献[32]㊂3 化学合成和生物合成之间的联系3.1 起始原料 化学合成和生物合成两种途径都以单个吡咯环作为合成卟啉环的起始原料㊂不同的是,化学合成通常以吡咯或取代吡咯以及醛类为原料,而生物合成途径中由两个ALA分子通过类似Knorr吡咯缩合产生的带亚甲氨基侧链的吡咯单元(PBG)作为起始原料㊂3.2 单体吡咯的聚合方式 在生物合成和化学合成过程中,吡咯都是通过质子化㊁脱氨或脱水㊁再去质子的3步循环逐步加成形成聚合物㊂在此过程中都会产生活泼烯键,以促进吡咯的聚合(图11)㊂在生物合成中,吡咯单元(PBG)自身带有亚甲氨基侧链(来自甘氨酸),侧链脱氨之后形成烯键而被活化;而在化学合成中则是吡咯进攻醛基,产生带羟基的侧链,羟基质子化脱水后形成烯键而被活化㊂图11 单体吡咯聚合的可能机理(a )生物合成;(b )化学合成3.3 链状吡咯聚合物环合形成卟啉原 两种途径都是单体吡咯先聚合成链状吡咯聚合物,然后4个吡咯单体经亚甲基桥再进一步环合成卟啉原(图12)㊂在生物合成途径中,PBG 脱氨酶与辅助因子DPM 和吡咯聚合物形成复合物,当连有4个吡咯时,环a 和酶之间的键会水解断裂形成链状HMB㊂其原因至今仍是一个谜,可能与酶的空间结构和新型辅助因子二吡咯甲烷有关;可能类似于生物体内多糖和多肽的形成过程㊂ 根据Adler 等提出的机理,化学合成时吡咯和醛类先形成长短不一的链状聚合物,推测反应中形成的焦油状副产物很可能是吡咯和醛类的链状聚合物或者吡咯自身的聚合物㊂主要生成环状四聚体可能与卟啉独特的空间结构的稳定性有关㊂ 在环合时,生物合成途径有一步特有的环翻转过程,HMB 的亚甲基被活化后,进攻与其距离较远的C 16,与C 16环合形成螺中间体,d 环翻转,碳链在另一处断裂再环合形成尿卟啉原Ⅲ㊂而化学合成没有环的翻转过程,活泼烯键直接与C 19环合形成卟啉环,与体内尿卟啉原Ⅰ的形成过程类似㊂3.4 卟啉原氧化形成大环共轭的卟啉 在生物合成中,原卟啉原Ⅸ在PPOs 的催化下形成大环共轭的卟啉㊂PPOs 以二聚体形式存在,由3个结构域组成(图13),分别为FAD 结合域㊁底物结合域和膜结合域㊂原卟啉原氧化酶的辅助因子FAD 发挥重要的电子传递作用,以O 2作为最终的电子受体,因其每次只能转移两个电子,所以要经过3个独立的循环才能氧化完全,产生二氢卟啉和四氢卟啉中间体(图14)㊂当酶与底物结合时,底物带负电荷的丙酸基侧链与酶的精氨酸残基结合,使底物以一定方向被固定在酶上,只能以a 环和d 环间的亚甲基桥通过酶的狭缝与FAD 的N 5原子接触,环上的氢原子通过亚胺⁃烯胺互变异构重排并逐步被氧化㊂ 在化学合成中,4分子醛与吡咯缩合,最终环合后产生卟啉原㊂1970年,Dolphin 等证实卟啉原确实是卟啉合成过程的中间体[31]㊂卟啉原不稳定,极易被氧化,但在一般条件下氧化又不完全,产生的二氢卟吩混在卟啉中很难除去[35]㊂在反应中加入氧化剂或在反应结束后再进一步氧化能提高产率㊂硝基7 第6期李嘉宾等:卟啉的生物合成途径与化学合成方法的比较图12 由吡咯单体形成卟啉原的过程(a )生物合成;(b )化学合成图13 原卟啉原氧化酶的空间结构[15]8大学化学第27卷 图14 生物合成中原卟啉原Ⅸ的氧化[18,33⁃34,41]苯[36]㊁DMSO [37]㊁DDQ [20]以及最近文献报道的MnO 2[38]和SeO 2[39]等均能作为氧化剂,实现从卟啉原到卟啉的氧化,但氧化反应的具体机理至今仍不太清楚㊂ 在卟啉原的氧化过程中,生物合成和化学合成都是通过互变异构转移H N 和H C,逐步延长共轭链,产生二氢卟啉和四氢卟啉的中间体并最终形成大环共轭的卟啉㊂不同的是在生物合成过程中,底物被酶包裹,由于酶对底物的固定作用,卟啉原上所有的氢必须都转移到C 20上才能被氧化;而且由于酶蛋白对底物的稳定作用,中间体二氢卟啉和四氢卟啉可以以不太稳定的形式存在㊂而在化学合成过程中,氧化反应可以在任一亚甲基桥上发生,而且氧化后氢转移的最终结果要保证共轭链的延伸,中间体二氢卟啉和四氢卟啉要以相对稳定的形式存在㊂9 第6期李嘉宾等:卟啉的生物合成途径与化学合成方法的比较01大学化学第27卷 4 总结和展望 近年来,由于卟啉类化合物独特的分子结构,在仿生学㊁药物化学㊁分析化学㊁光物理与化学㊁材料化学㊁电化学㊁催化化学等领域中被广泛地研究与应用,但是较低的化学合成产率限制了进一步发展㊂本文通过比较卟啉的生物合成途径和化学合成方法,尝试寻找二者的联系,希望能为改进化学合成方法㊁提高合成产率提供一些启示㊂ 生物合成和化学合成一样,也遵循基本的化学反应规律,反应的本质是相同的㊂只不过由于酶的参与,酶的辅基或酶上的某个保守基团与底物相互作用,固定或增强底物的反应活性,稳定中间体的结构,降低反应的活化能,可使化学反应高效专一地进行㊂在化学合成中,影响产率的主要是底物的活性㊁对聚合度的控制以及卟啉原的氧化;而生物合成在这3方面的控制很精密㊂基于上述生物合成与化学合成的联系与差别,可以尝试从以下几方面对化学合成进行改进㊂ (1)在生物合成过程中,底物的反应活性较高㊂例如,吡咯聚合时,氨基被质子化后经脱氨酶作用迅速形成活泼烯键,易于被进攻㊂而在化学合成中,活泼烯键的形成要通过脱水,而在一般条件下自动脱水比较困难㊂在底物上引入其他适当的离去基团可以促进缩合,有时甚至可以省去最后一步的氧化,直接生成卟啉㊂Pierre Martin小组2010年报道的[2+2]法就是在底物上引入碘原子,缩合时消除碘化氢和水,不用加氧化剂直接在室温下生成大环共轭的卟啉[40]㊂此方法的原理若能推广至其他卟啉合成方法中,有可能显著降低反应温度,提高产率㊂ (2)生物合成途径对副产物的控制非常严格,原料利用率较高㊂吡咯聚合时一端通过巯基与酶相连,只有另一端延伸㊂当尿卟啉原Ⅲ合成酶催化链状吡咯聚合物的环合时,将聚合度严格控制在4,不会生成长链吡咯聚合物或者多元环状吡咯聚合物㊂这一点若化学合成则实现起来较困难㊂而且,目前的化学合成都需要酸催化,吡咯在酸性条件下容易因聚合而被破坏㊂抑制吡咯自身的聚合并精确控制吡咯和醛类的链状聚合物的聚合度尚有待于进一步改善㊂可以先在酸催化下不断延伸生成长链聚合物,将聚合物的一端固定,再用PBG脱氨酶和尿卟啉原Ⅲ合成酶从另一端进行切割和组装;或者在反应中加入具有空腔的材料,而空腔的大小恰好能容纳四聚体,这样就能把反应分割成多个单元,抑制聚合物的形成㊂例如,各种型号的分子筛孔径大小不同,具有一定的酸性,又能吸水,可以尝试㊂此外,既然卟啉能和金属离子形成配合物,可以模拟冠醚的合成方法,通过金属离子的模板效应来促进四聚体的形成㊂ (3)生物合成途径的最后一步为芳构化反应,在辅助因子FAD的作用下,以氧气作为最终的电子受体,实现了大π共轭体系(即卟啉环)的构建㊂在化学合成模拟生物合成时,聚合和氧化这两步分别进行,以避免在聚合过程中生成氧化的中间体,阻碍四聚体的形成㊂最近有文献报道分别以MnO2和SeO2作为氧化剂,用于卟啉原的氧化,能提高产率㊂它们虽然易于后处理,但都会污染环境㊂继续寻找价格低廉且环境友好的氧化剂,温和并高效地完成芳构化反应,符合当前绿色化学的发展趋势和要求㊂参 考 文 献[1] Scott A I.J Org Chem,2003,68(7):2529[2] Ajioka R S,Phillips J D,Kushner J P.Biochimica et Biophysica Acta,2006,1763:723[3] Porra R J.Photochem Photobiol,1997,65(3):492[4] Battersby A R.Nat Prod Rep,2000,17:507[5] Heinemann I U,Jahn M,Jahn D.Arch Biochem Biophys,2008,474:238[6] Beale S I.Proc Natl Acad Sci USA,1975,72(7):2719[7] Leeper F J.Nat Prod Rep,1985,2(1):19[8] Frydman B,Frydman R B.Acc Chem Res,1975,8(6):201[9] Scott A I,Ho K S,Kajiwara M.J Am Chem Soc,1976,98(6):1589[10] Battersby A R,Mcdonald E.Acc Chem Res,1979,12(1):14[11] Hart G J,Miller A D,Battersby A R,et al.J Chem Soc,Chem Commun,1987,23:1762[12] Battersby A R.J Nat Prod,1988,51(4):629[13] Leeper F J.Nat Prod Rep,1985,2:561[14] Jackson A H,Elder G H,Smith S G.Int J Biochem,1978,9(12):877[15] Koch M,Breithaupt C,Messerschmidt A,et al.EMBO J,2004,23:1720[16] Paul R.J Am Chem Soc,1935,57:2010[17] 郝晓伶,韩士田,刘彦钦.河北师范大学学报(自然科学版),2009,33(1):85[18] Adler A D,Longo F R,Williams H.J Am Chem Soc,1964,84(15):3145[19] 潘继刚,何明威,刘轻轻.有机化学,1993,13(5):533[20] Lindsey J S,Schreiman I C,Hsu H C,et al.J Org Chem,1987,52(5):827[21] 杨彪.精细化工,1999,16:56[22] GeierⅢG R,Lindsey J S.J Porphyrins Phthalocyanines,2002,6:159[23] GeierⅢG R,Lindsey J S.J Chem Soc,Perkin Trans2,2001(5):677[24] GeierⅢG R,Lindsey J S.Tetrahedron,2004,60:11435[25] 郭灿城,何兴涛,邹纲要.有机化学,1991,11(4):416[26] Gedye R.Tetrahedron Lett,1986,27(3):279[27] Petit A.Synth Commun,1992,22(8):1137[28] 汉玉霞,韩士田,刘彦钦.化学工程与装备,2008,6:98[29] Arsenault G P,Bullock E,Macdonald S F.J Am Chem Soc,1960,82:4384[30] Lindsey J S.Acc Chem Res,2010,43(2):300[31] 王周锋,邓文礼.化学进展,2007,19(4):520[32] akthitharan S,Edwards C,Boyle R W.Tetrahedron,2000,56:1025[33] Massey V.Biochem Soc Trans,2000,28(4):283[34] Mattevi A.Trends Biochem Sci,2006,31:276[35] 王君文,何明威.化学试剂,2001,23(1):9[36] 杨琴,冯清.中国药物化学杂志,2006,16(3):154[37] 章艳,高保娇.合成化学,2008,16(1):86[38] Bruno F O N,António M R G,Marta P.Inorg Chem Commun,2010,13:395[39] Stephanie M S L,Diogo R B D,Eugênia R D,et al.Tetrahedron Lett,2011,52:1441[40] Pierre M,Markus M,Dietmar F,et Process Res Dev,2010,14:799[41] Banerjee R.REDOX BIOCHEMISTRY.Hoboken,New Jersey:Wiley John&Sons,Inc,200811 第6期李嘉宾等:卟啉的生物合成途径与化学合成方法的比较。