mrs的原理和临床应用
完整版磁共振波谱MRS临床应用
MRS 在脑部临床应用技术
? 点分辨波谱法 PRESS ? 选用SV 或 MV ? 选择成像参数 ? 兴趣区的选择定位 ? 自动预扫描:匀场、水抑制 ? 数据采集后处理和分析
序列及扫描参数
? SV, press ? TR 1500 ms ? TE 144/35 ms ? FOV 24 cm ? Voxel size 20
MRS技术及基本原理
? MRS 表示方法
? 在横轴代表化学位移(频率差别),单位百万分子一 (ppm )
? 纵轴代表信号强度,峰高和峰值下面积反映某种化合物的 存在和化合物的量,与共振原子核的数目成正比。
脑 MRS
如何获得MRS
? 选择成像序列:激励回波法 STEAM 、点分辨波 谱法 PRESS 等
变、代谢性病变等
脑MRS 常见成分
中文名称 脂质 乳酸 乙酰天门冬 谷氨酸 胆碱 肌醇
英文缩写 Lipid Lac NAA Glu/Gln Cr/Pcr Mi/Ins
ppm 位置 0.8-1.3 1.3 2.0 2.1, 2.3, 3.7 3.2 3.6
NAA Cho
Cr
mI
人脑代谢物测定的意义
? 水、脂抑制:水、脂浓度是代谢物的几十倍,几 百倍,甚至几千倍,如不抑制,代谢物将被掩盖
? 匀场和水抑制后 : 线宽,头颅小于 10Hz,肝脏小 于20Hz;水抑制大于 95%
MRS 的信噪比
? MRS 的信噪比决定谱 线的质量
? MRS 的信噪比:最大 代谢物的峰高除以无信 号区噪声的平均振幅。 通常大于 3 ,谱线的质 量可以接受。
? N- 乙酰天门冬氨酸(NAA) :位于波谱2.0ppm 处,主要 位于成熟神经元内,是神经元的内标记物,是 正常波谱中最大的峰。
MRS成像技术及临床应用总结
MRS成像技术及临床应用总结<i>MRS成像技术、MRS分析的主要代谢产物、脑肿瘤―鉴别肿瘤和非肿瘤性病变、原发和转移鉴别、胶质瘤分级提示、鉴别放疗后复发和放射性脑坏死、颞叶癫痫-定侧、定量、血管性异常―梗死、脑缺氧、感染性病变--脑炎、脑脓肿</i>一MRS成像技术回波时间应用长、短TE确定的常规代谢物-N-乙酰天门冬氨酸(N-acetyl asparte, NAA)-肌酸(creatine, Cr)-胆碱(choline, Cho)-乳酸(lactate, Lac)仅短TE确定的代谢物-脂质(lipids, Lip)-谷氨酰胺和谷氨酸(glutamine and glutamate, Glx)-肌醇(myo-inositol, mI)如何选择长、短TE中等TE(144ms)PRESS用于肿瘤性病变。
易于显示Cho和Lac 峰,两者是肿瘤性病变的主要代谢改变短TE(30-35ms)PRESS用于其他的病理状态体素的位置和大小为提高1H MRS 敏感性,感兴趣区(ROI)要求有严格的边界,并避免来自邻近组织的干扰:●血管、血液、空气、脑脊液、脂肪、坏死区、金属、钙化● 颅骨,ROI距其至少约5~10mm● 邻近静脉窦体素越小,部分容积效应越小,但信噪比及空间分辨率降低如何确定Lac峰(Lac与Lip 共振频率基本相同)严格匀场后,Lac的共振呈双峰线(doublet)当TE为144ms时,Lac峰反转于基线下当选择长TE(270ms)时,Lip信号不再磁化,只能检测到Lac 二MRS分析的主要代谢产物NAA(N-乙酰门冬氨酸):主要存在于神经元及其轴突,可作为神经元的内标物,其含量可反映神经元的功能状态。
含量降低表示神经元受损;峰值升高仅见于Canavan病(海绵状脑白质营养不良)。
第一大峰。
主要位于2.02ppm,正常浓度为6.5-9.7mmol,平均7.8mmol胆碱化合物(Cho )主要是自由胆碱、细胞膜翻转的标志物,反映细胞增殖,其峰值升高见于肿瘤、炎症、慢性缺氧,降低见于卒中、脑病(肝性脑病、AIDS)等位于3.20ppm,正常浓度0.8-1.6mmol,平均1.3mmol肌酸类(Cr)<i>MRS成像技术、MRS分析的主要代谢产物、脑肿瘤―鉴别肿瘤和非肿瘤性病变、原发和转移鉴别、胶质瘤分级提示、鉴别放疗后复发和放射性脑坏死、颞叶癫痫-定侧、定量、血管性异常―梗死、脑缺氧、感染性病变--脑炎、脑脓肿</i>此峰由肌酸、磷酸肌酸、-氨基丁酸、赖氨酸和谷胱甘肽共同组成;是脑细胞能量代谢的提示物,在低代谢状态下增加,而在高代谢状态下减低。
MR波谱技术
MR波谱技术MR波谱(MRS)是无创伤、无辐射危害进行活体组织化学物质检测的唯一方法。
研究的是一定体积的组织中化学物质的含量和浓度。
它的扫描单位是体积,称为体素。
根据每次MRS扫描时设置的体素数量,可分为单体素成像和多体素成像(化学位移成像)。
一、MRS的基本原理1.化学位移现象因所处分子结构不同造成同一磁性原子核进动频率差异的现象被称为化学位移。
2.MRS简要原理以1H为例,首先对某目标区域施加带宽较宽的射频脉冲,其频率范围涵盖所要检测代谢产物中质子的进动频率,然后采集该区域发出的MR信号,由于受化学位移的影响,不同的代谢产物质子的进动频率有轻微差别,通过傅立叶转换得一系列谱线代表不同的代谢物质。
其横坐标表示不同物质中质子的进动频率,通常用百万分几(ppm)来标示代谢产物中质子进动频率与标准物质进动频率的差别,波峰下面积与目标区域内某特定代谢产物的含量成正比。
3.MRS的特点:①提供组织的代谢信息;②可用数值或谱线来表示;③对磁场均匀度的要求更高;④其对比分辨力与主磁场强度成正比;⑤信号较弱,常需进行多次平均,检查时间较长;⑥可用两种或两种以上代谢产物含量之比来反映组织的代谢变化;⑦可利用不同的磁性原子核(1H、31P、12C、23Na和19F)进行MRS检查;⑧常选择一种比较稳定的化学物质作为标准参照物。
二、MRS的常用技术临床上1H-MRS多用激励回波采集模式( STEAM)和点解析波谱( PRESS)两种技术STEAM : 通过3个不同方法的层面选择梯度场,将3个90°脉冲分别施加在相互垂直的层面上,三者相交得到一个点状容积信号。
优点是TE较短;缺点是信噪比较低。
PRESS:采用1个90°脉冲和2个180°相位重聚脉冲,其施加层面选择梯度场与STEAM相同,得到的是自旋回波信号。
优点是信噪比较高;缺点是TE较长。
三、MRS的临床应用MRS的临床应用:①脑肿瘤的诊断和鉴别诊断;②代谢性疾病的脑改变;③脑肿瘤治疗后复发与肉芽组织的鉴别;④脑缺血疾病的诊断和鉴别诊断;⑤前列腺癌的诊断和鉴别诊断;⑥弥漫性肝病;⑦肾脏功能检测和肾移植排斥反应等。
MRS的原理和临床应用
MRS的原理和临床应用磁共振声能体系(Magnetic Resonance Spectroscopy,MRS)是一种基于核磁共振(Nuclear Magnetic Resonance,NMR)技术的谱学方法,用于研究生物体内各种物质的浓度、代谢水平以及分子结构。
与常见的磁共振成像(Magnetic Resonance Imaging,MRI)技术不同,MRS主要关注的是信号产生者的化学分子本身,它可以提供关于生物体内分子含量和代谢的信息,从而对生物体进行非侵入性的组织和代谢状态评估。
MRS的原理基于核磁共振现象,核磁共振是一种磁共振现象,其基本原理是核自旋在外磁场中被激发并释放能量的过程。
当核自旋受到外磁场的作用时,它具有不同的能级,其中能级之间的跃迁依赖于外加磁场的强度。
通过在外磁场中施加一种特定的脉冲序列,可以使得不同的核自旋产生不同的共振信号,这些信号可以被接收线圈捕捉到并转换成数据。
MRS技术可以在体内测量到许多核的共振信号,主要包括氢原子的共振信号(称为质子磁共振,Proton Magnetic Resonance,1H-MRS),以及磷、碳、氮、硫和氧等原子的共振信号。
这些信号的频率和强度可以提供体内不同物质的含量和分布信息。
MRS的临床应用广泛,主要包括以下几个方面:1.肿瘤诊断和治疗评估:MRS可以提供肿瘤组织内代谢物的浓度和代谢水平信息,从而对肿瘤进行定性和定量分析。
通过测量乳酸、胆碱、肌酸等代谢物的含量,可以实现对肿瘤的定位、分级和预后评估,以及肿瘤治疗的监测和评估。
2.神经代谢疾病诊断和研究:MRS可以用于研究和评估脑部神经疾病的代谢异常。
例如,通过测量谷氨酸和谷氨酸盐的比例,可以评估脑细胞的能量代谢情况,进而判断神经退行性疾病的程度和发展趋势。
3.心脏病诊断和研究:MRS可以用于评估心脏肌肉的代谢状态。
通过测量磷代谢物如磷酸肌酸和磷酸二酯等的含量和代谢速率,可以评估心脏肌肉的功能和损伤程度,提供对心脏病的更准确的诊断和治疗策略。
MRS在中枢神经系统的基本应用
脑功能研究
01
脑功能区定位: 通过MRS技术, 可以精确定位大 脑功能区,如语 言、运动、视觉 等。
02
脑网络研究:通 过MRS技术, 可以研究大脑网 络连接,揭示大 脑功能运作机制。
03
脑疾病研究:通 过MRS技术, 可以研究脑疾病 发生发展过程, 为临床诊断和治 疗提供依据。
04
脑发育研究:通 过MRS技术, 可以研究大脑发 育过程,为教育、 心理等领域提供 科学依据。
MRS在中枢神经系统的基本应用
目录
01. MRS的基本原理 02. MRS在中枢神经系统的应用领域 03. MRS在中枢神经系统的应用前景
磁共振技术的发展
01
1970年代:磁共振成像技术诞生
02
1980年代:磁共振成像技术应用于人体
03
1990年代:磁共振波谱技术出现
04
2000年代:磁共振波谱技术应用于中枢神经系统研究
创新研究方法:结合多种研究方法,如功能磁共振成像(fMRI)、脑电图 (EEG)等,提高MRS在中枢神经系统研究的准确性和可靠性
创新应用领域:将MRS应用于神经退行性疾病、精神疾病、脑损伤等疾病 的诊断和治疗,以及脑功能研究等领域
创新技术:开发新型MRS技术,提高MRS在中枢神经系统研究的灵敏度、 分辨率和速度,推动MRS在中枢神经系统应用的发展
01 脑功能成像:通过MRS技术,可以更清晰地观 察大脑功能活动
02 脑肿瘤诊断:通过MRS技术,可以更准确地诊 断脑肿瘤
03 脑损伤评估:通过MRS技术,可以更全面地评 估脑损伤程度
04 神经退行性疾病研究:通过MRS技术,可以更 深入地研究神经退行性疾病的发病机制和治疗方 法
跨学科合作与创新
MRS在中枢神经系统基本应用
脑梗死的诊断
MRS技术:磁共振波谱技术,用于 检测脑部病变
脑梗死:缺血性中风,导致脑部组 织缺血、缺氧、坏死
MRS诊断脑梗死:通过检测脑部组 织代谢物,判断脑梗死的发生和发展
诊断优势:无创、快速、准确,有 助于早期诊断和治疗
脑损伤的诊断
MRS技术:利用磁共振成像技术,对
01
脑损伤进行无创、精确的诊断 诊断方法:通过分析MRS图像,对脑损 02 伤的部位、程度、类型等进行判断 优势:MRS技术具有较高的空间分辨率
02
信号采集方法: 采用磁共振成 像技术描 时间、扫描 序列、采集 频率等
04
信号采集质量: 保证信号采集 的准确性和完 整性,避免噪 声干扰
数据分析
数据来源: MRS实验数据、 临床数据等
数据预处理: 去除噪声、异 常值等
数据分析方法: 统计分析、机器 学习等
MRS在中枢神经系统 的应用挑战
成像质量
信噪比:提高信号与噪声的比例, 01 提高成像质量
空间分辨率:提高图像的清晰度, 02 提高对细节的识别能力
时间分辨率:提高成像速度,减
03
少运动伪影 磁敏感性:提高对磁信号的敏感
04
度,提高成像效果
信号采集
01
信号采集设 备:MRS设 备,如磁共 振成像仪 (MRI)
04 应用范围:中枢神经系统、 肿瘤、代谢性疾病等领域
MRS在中枢神经系统 的应用
脑肿瘤的诊断
MRS技术:利用 磁共振成像技术, 对脑肿瘤进行无创 诊断
诊断方法:通过分 析MRS图像,判 断肿瘤的性质、位 置、大小等特征
优势:MRS技术 具有较高的诊断准 确性,可辅助医生 制定治疗方案
局限性:MRS技 术对肿瘤的早期诊 断效果有限,需结 合其他诊断方法进 行综合评估
MRS技术及在颅脑肿瘤中的应用
新技术介绍
➢脑发育、成熟过程中及神经损伤后轴 索回复中NAA会升高,Canavan(中枢 神经系统海绵状变性)是唯一可致NAA 增高的疾病,由于该病人体内缺乏 NAA水解酶
新技术介绍
➢胆碱化合物(Cho),反应总胆碱储 备量,波峰于3.2ppm,是细胞膜磷脂 代谢成分之一,参与细胞膜的合成、 代谢,Cho峰的高低可作为肿瘤细胞增 殖的指标,是评价脑瘤的重要共振峰 之一
➢在高级别星形细胞瘤中,Lip峰升高, 可反应坏死存在
新技术介绍
MRS在颅脑肿瘤的应用
➢ 胶质瘤:肿瘤细胞增长旺盛致使神经 元破坏,MRS表现为不同程度的NAA 峰下降,Cho峰升高。恶性程度高的胶 质瘤可以出现Lac峰,Cho、Lip峰较高
➢ 病例1:左额叶间变性胶质细 胞瘤WHOⅢ级伴大片状坏死 ,局部进展为胶质母细胞瘤 WHOⅣ级。
➢其横坐标代表共振频率,采用磁场强 度的百万分率(ppm,ppm表示10-6) 为单位,纵坐标表示MR信号强度
新技术介绍
波谱中常用代谢物
➢N-乙酰天门冬氨酸(NAA),正常脑 1H-MRS中最高的峰,位于2.0ppm, 主要存在成熟神经元内,是其内标物
➢肿瘤、多发性硬化、梗死、神经细胞 变性疾病、代谢性疾病等均可致NAA 下降,脑膜瘤、转移瘤NAA缺失
新技术介绍
➢ 病例3:右侧额叶内皮细胞型 脑膜瘤(WHOⅠ级)。
新技术介绍
多体素MRS :肿瘤区 域谱线, NAA含量 明显减低 ,Cho明 显升高, Cr轻度降 低
新技术介绍
新技术介绍
后处理方法
➢ 运用MR机附带的波谱分析软件自动完 成Ganssian曲线,得到化学位移图、 波谱图,分别测量感兴趣区NAA、 Cho、Cr、Lac、Lip等代谢物浓度,同 时计算Cho/Cr比值
mrs的原理和应用
Mrs的原理和应用1. Mrs的概述Mrs(Mind Reading System)是一种通过脑机接口技术(Brain-Computer Interface,BCI)实现读取人类大脑中思维信息的系统。
通过对脑电信号的分析和处理,Mrs能够解码人类大脑中的思维活动,并将其转化为可理解的形式。
2. Mrs的原理Mrs系统主要基于脑电图(Electroencephalogram,EEG)信号的采集和分析。
在使用Mrs之前,需要在被试者头部安装脑电采集设备,通常是一组电极阵列。
这些电极会记录下被试者大脑中的脑电信号。
Mrs通过对脑电信号进行处理和分析,实现以下几个步骤:2.1 数据采集Mrs系统使用脑电设备采集被试者的脑电信号。
脑电信号是由大脑神经元的电活动产生的微弱电流,可以通过安装在头部的电极阵列记录下来。
2.2 信号处理采集到的脑电信号经过一系列的信号处理操作,包括滤波、放大和去噪等。
这些处理操作旨在提高信号质量,去除噪声和干扰。
2.3 特征提取在信号处理完成后,Mrs系统会从脑电信号中提取出一些特征,比如频谱特征、时域特征等。
这些特征能够反映出被试者的思维活动。
2.4 模式识别提取的特征将被输入到模式识别算法中,用于从中识别和解码被试者的思维活动。
常用的模式识别算法包括支持向量机(Support Vector Machine,SVM)、人工神经网络等。
2.5 可视化输出Mrs系统将解码的思维活动转化为可理解的形式,通常是通过图形界面的方式展示出来。
被试者可以通过观察界面上的反馈信息了解到自己的思维活动。
3. Mrs的应用Mrs系统具有广泛的应用前景,尤其在医学和人机交互领域有着重要的价值。
3.1 医学领域Mrs系统在医学领域具有重要的研究和应用意义。
例如,可以利用Mrs系统帮助研究脑部疾病和神经系统紊乱的机制,如帕金森病、癫痫等。
此外,Mrs系统还可以为脑机接口辅助治疗提供支持,比如帮助瘫痪患者恢复运动能力。
mrs技术的原理及临床应用
mrs技术的原理及临床应用1. 什么是mrs技术?MRS全称为磁共振波谱技术(Magnetic Resonance Spectroscopy),是一种非侵入性的方法,通过使用核磁共振(NMR)技术来获取生物体内的化学信息。
它通过测量生物体内不同化合物的特定核的能量水平,从而识别和定量不同类型的化学物质,如代谢物、神经递质和细胞标志物。
MRS技术在临床医学和科学研究中被广泛应用,对于疾病的诊断、治疗和监测起到了重要的作用。
2. MRS技术的原理MRS技术的原理基于核磁共振(NMR)原理,该原理是研究原子和分子结构的一种重要方法。
核磁共振是由磁场和无线电频率辐射引起的原子核的行为,通过外加峰度和射频脉冲可以引起原子核的能量状态发生变化,进而产生特定的回波信号。
这些回波信号经过信号处理和傅里叶变换等复杂的数学算法处理后,可以得到生物体内不同核的能谱信息。
3. MRS技术的临床应用3.1 代谢物测定MRS技术可以用于非侵入性地测定生物体内的代谢物含量及其浓度。
通过测量特定核的能谱信息,医生可以了解患者体内不同代谢物的水平,从而辅助诊断和治疗疾病。
例如,通过测量脑部组织中的乳酸浓度,可以帮助判断患者是否存在脑缺氧等问题。
3.2 肿瘤诊断MRS技术在肿瘤诊断中发挥着重要作用。
肿瘤组织与正常组织在代谢物的含量和比例上存在差异,通过比较肿瘤组织和周围正常组织的代谢物谱图,可以帮助医生确定肿瘤的类型、分级和活动程度。
这对于制定适当的治疗方案和预测疗效有重要意义。
3.3 神经系统疾病监测MRS技术还可以应用于神经系统疾病的监测和研究。
通过测量大脑中特定区域的代谢物浓度变化,医生可以了解神经系统疾病的发展过程和病情变化,从而进行及时干预和治疗。
例如,对于阿尔茨海默病等神经退行性疾病,MRS技术可以提供有关脑内代谢物变化的线索。
3.4 乳腺癌筛查MRS技术在乳腺癌筛查中也有应用,可以通过测量乳腺组织中的代谢物谱图来判断是否存在恶性肿瘤。
脑外DWI、MRS临床及原理
DWI和MRS在脑外肿瘤复发监测中的联合应用
DWI和MRS在脑外肿瘤复发 监测中的作用
DWI和MRS在脑外肿瘤复发 监测中的联合应用方法
DWI和MRS在脑外肿瘤复发 监测中的联合应用效果
DWI和MRS的原理和特点
DWI和MRS在脑外肿瘤复发 监测中的联合应用前景
脑外DWI、MRS 的临床研究进展
脑外DWI、MRS临床及 原理
汇报人:XX
目录
添加目录标题
01
脑外DWI和MRS的基 本概念
02
脑外DWI的临床应用
03
脑外MRS的临床应用
04
脑外DWI和MRS的联 合应用
05
脑外DWI、MRS的临 床研究进展
06
添加章节标题
脑外DWI和MRS 的基本概念
DWI和MRS的定义
DWI:扩散加权成像,用于检测脑组织中的水分子扩散情况,从而反映脑组织的微观结构变化。 MRS:磁共振波谱成像,用于检测脑组织中的化学成分,从而反映脑组织的代谢状态。
DWI和MRS的合可以提高 肿瘤诊断的准确性
DWI和MRS可以提供脑外肿 瘤的详细信息
DWI和MRS在脑外肿瘤诊断 中具有重要的临床应用价值
DWI和MRS在脑外肿瘤疗效评估中的联合应用
DWI和MRS的原理和特点 DWI和MRS在脑外肿瘤疗效评估中的作用 DWI和MRS在脑外肿瘤疗效评估中的联合应用方法 DWI和MRS在脑外肿瘤疗效评估中的局限性和挑战
MRS可以检测到肿瘤复发的早期信 号
MRS可以帮助医生制定更准确的治 疗方案
添加标题
添加标题
添加标题
添加标题
MRS可以评估肿瘤的恶性程度和侵 袭性
MRS可以监测肿瘤治疗后的疗效和 预后
MRS的原理和解读
MRS的原理和解读来源:山东省脑瘤整理MRS是目前临床中唯一无创性研究人体器官、组织代谢、生化改变和化合物定量分析的方法。
自1984年Koeze应用磷磁共振波谱以来,MRS得到了广泛的应用和发展,有助于研究脑组织生理和疾病时的生化改变,进行肿瘤成分的分析。
同时根据肿瘤的质子波谱与正常脑组织以及水肿区波谱的不同,进行量化分析,它对于观察肿瘤的生物学特性,确定肿瘤性质、范围、检测肿瘤的发展变化、对治疗的反应、复发等有重要作用。
原理与方法MRS是一种利用磁共振现象和化学位移作用,进行一系列特定原子核及其化合物分析的方法。
将人体置入外加主磁场中,核沿主磁场方向做陀螺样进动,核所受的磁场主要有主磁场决定。
但是,也与核的磁旋比γ、核外电子云及临近质子的电子云有关。
电子云的作用会屏蔽主磁场的作用,使的核所受的磁场强度小于外加主磁场。
这种由于电子云的作用产生的磁场差异被称为化学位移。
当施加90 射频脉冲(radio frenquency pulse,RFP)后,使它们从Z轴自旋到X轴上,停止Rf后,自旋核便以进动方式回到它们原来的Z轴位置,称为驰豫(relaxation)。
接收线圈在驰豫时间内能接收到一种随时间变化而呈指数衰减的信号——自由感应衰减信号(free indication decay,FID)。
经过傅立叶转换产生了按频率分布的函数值,即磁共振波谱。
对于给定的外磁场,不同核所处的化学环境不一样,从而产生Lamour 进动频率的微小差别,导致磁共振波谱的差别。
能代表其特性的参数有磁共振频率、峰值、半高宽度。
半高宽度受横向驰豫时间T2、外磁场的均匀度及样品内在因素的影响,并反映其变化。
同时可测曲线下面积,因共振峰面积与共振核数目成正比,反映化合物浓度,因此可用来定量分析。
临床应用临床上质子磁共振波谱通常用的定位方法包括深度分辨表面波谱(Depthresolved coil spectroscopy,DRESS)技术、点分辨表面波普(point-resolved surface coil spectroscopy)技术、活体内图像选择波谱(image-selected in vivo spectroscopy)、激励回波采样(stimulated-echo method, STEAM)模式。
MRS的临床应用
基本技术
如何选择长、短TE 中等TE(144ms)PRESS用于肿瘤性病变。
易于显示 Cho和Lac峰,两者是肿瘤性病变 的主要代谢改变 短TE(30-35ms)PRESS用于其他的病理 状态
AD
体素——扣带回后缘 TE:30ms 主要表现
NAA,NAA/Cr Cho,Cho/Cr mI,mI/Cr(>0.70,为早期异常,对诊断最重要) 重要事项: 只在选择短TE时, mI才能确定。 AD的代谢异常首先出现于扣带回。 最早的代谢异常是mI/Cr升高。
AD
9月21日-世界阿尔茨海默病(老年痴呆病) 日
MRS的临床应用
常规磁共振(cMRI) 功能性磁共振(fMRI)
灌注成像 (PWI)
弥散张量成像 (DTI)
弥散成像 (DWI )
脑皮层功能成像 (BOLD)
波谱成像 (MRS)
基本概念
MRS是目前唯一无创性观察活体组织 代谢及生化变化的技术,检测到cMRI 不能显示的异常
1995年,MRS被美国食品及药品管理 局正式批准
Cr—肌酸 波峰位置:3.02和3.94 脑代谢标记物,最稳定
Cho—胆碱 波峰位置:3.22
提示厌氧性糖酵解(正常脑组织不可见) Lip—脂质 波峰位置:在0.8至1.3PPM之间多峰 提示髓鞘坏死和/或中断(正常脑组织不可见) Ala—丙氨酸
磷脂代谢的成分,细胞膜转换的标记物, 反映细胞增殖 mI—肌醇
代谢性疾病
影响白质和灰质的代谢性疾病-线粒体脑病Leigh 病(亚急性坏死性脑脊髓病) 对于有肌病的儿童,除外Leigh病和线粒体异常非 常重要 肌张力减退、精神性运动退化、共济失调、眼睑 麻痹、吞咽困难,可进展为呼吸衰竭直至死亡 cMRI显示尾状核、豆状核以及导水管周围灰质、 齿状核、大脑脚、丘脑以及脑室周围白质双侧对 称性T2高信号
M R S的原理和临床应用ppt课件
MRS基本原理
•
化学环境指的是,原子核所在
的分子结构。同一种原子核处在不
同的分子结构中,甚至同一个分子
结构的不同位置或者不同的基团中,
其周围的电子数和电子分布都将有
所不同,因而受到的磁屏蔽作用也
不同。处于化合物中的同一种原子
核,由于所受磁屏蔽作用的程度不
同,将具有不同的共振频率,这就
是所谓的化学位移现象,也是磁共
什么叫核磁共振?
• 若质子受到一定频率的电磁波辐射, 辐射所提供的能量恰好等于质子两 种取向的能量差,质子就吸收电磁 辐射的能量,从低能级跃迁至高能 级。这种现象即称核磁共振。
MRS发展历史
• 1 1946年美国斯坦福F.布洛克 和哈弗大学E.M.帕塞尔小组均 同时记录到液体样品和固体样 品的磁共振信号。
• 2 热力学的研究:测定酶与底物、 配基、抑制剂的结合常数;测定可 解离基团的PK值,特别是生物大分 子中处于不同微环境的同类残基的 同类基团的不同PK值。
MRS在生物体中研究范围
• 3 动力学研究 பைடு நூலகம் 监测反应进程测定各组分随时
间的变化等。 • 4 分子运动研究:如生物膜的
流动性等。 • 5 分子构象及构象变化研究 • 6 活体研究 • 7二维MRS研究:20世纪70-80年
• 2 20世纪50年代桑德斯和柯克 伍德首次成功的利用MRS直接 观测生物大分子40MHz的核糖 核酸酶的MRS。此后,又连续 测到其他蛋白质、核酸、磷脂 等相应组分。
MRS技术特点
• 在研究生物大分子时,MRS有 以下技术特点:
• 1 不破坏生物高分子的结构 (包括空间结构)
• 2 在溶液中测定符合生物体的 常态,也可测定固体样品,比 较晶态和溶液态构象的异同。
磁共振波谱(mr spectroscopymrs)
磁共振波谱(MR spectroscopy,MRS)磁共振波谱(MR spectroscopy,MRS)是目前唯一能无创伤地探测活体组织化学特性的方法。
在许多疾病中,代谢改变先于病理形态改变,而MRS对这种代谢改变的潜在敏感性很高,故能提供信息以早期检测病变。
磁共振波谱mRS)研究人体细胞代谢的病理生理改变,而常规MRI则是研究人体器官组织大体形态的病理生理改变,但二者的物理学基础都是核共振现象。
一、MRS的原理磁共振信号的共振频率由两个因素决定①旋磁比r,即原子的内在特性②核所处位置的磁场强度。
核所受的磁场主要由外在主磁场(B。
)来诀定,但是核所受的磁场强度也与核外电子云及邻近原子的原子云有关。
电子云的作用会屏蔽主磁场的作用,使着核所受的磁场强度小于外加主磁场。
这种由于电子云的作用所产生的磁场差别被称为化学位移。
因此,对于给定的外磁场,不同核所处的化学环境不一样,从而产生共振频率的微小差别,导致磁共振谱峰的差别,从而识别不同代谢产物及其浓度。
MRS可检测许多重要化合物的浓度,根据这些代谢物含量的多少可以分析组织代谢的改变,1H-MRS可测定12种脑代谢产物和神经递质的共振峰,N-乙酸门冬氨酸(NAA)、肌酸(Cr)磷酸肌酸(PCr)胆碱(cho)肌醇(MI)谷氨酸胺Gln)谷氨酸盐(Glu)乳酸(Lac)等。
生物中,许多生物分子都有31P,这些化合物参与细胞的能量代谢和与生物膜有关的磷脂代谢,31P-MRS被广泛用在对脑组织能量代谢及酸碱平衡的分析上,可以检测磷酸肌酸(PCr人无机磷酸盐(PI)α- ATP、β-ATP、γ—ATP的含量和细胞内的PH值。
二、MRS的临床应用1.正常人的脑MRSMR波谱变化可反映神经元生长分化,脑能量代谢和髓鞘分化瓦解过程改变。
NAA是哺乳动物神经系统中普遍存在的化合物,几乎所有的NAA均存在于神经对内,目前将NAA作为反映神经元功能的内标物。
正常人有很高的NAA/Cr)值,NAA下降提示神经元的缺失和破坏。
mrs的原理和临床应用课件
MRS基本原理
• 5 自旋耦合(spin-spin coupling) • 在分子中,不仅核外的电子会对质子的
共振吸收产生影响,邻近质子之间也会因 互相之间的作用影响对方的的核磁共振吸 收,引起共振谱线增多。这种相邻原子核 之间的相互作用称为自旋偶合。因自旋偶 合而引起的谱线增多现象称为自旋裂分。 • 所谓自旋裂分是当发生核磁共振时,一 个质子发出的信号被邻近的另一个质子裂 分成了两个,这就是自旋裂分。 • 任何原子核都具有磁距和自旋的特性并 能产生磁共振信号;用于临床最常见的元 素有氢(1H),磷(31P),碳(13C),钠(23Na 及氟(19F)。其受激发后产生的信号构成了 磁共振波谱成像的基础。
MRS基本原理
• 这7 条共振峰在不同组织、不同 代谢状态时的峰值是不同的,与正 常标准对照,可判断每一个化合物 的含量。另外,Pi 的化学位移受细 胞内pH 值的影响,根据它的化学位 移相对于PCr 的改变可测定细胞内 的PH 值。但磷在人体内自然丰度及 灵敏度较低,而氢是人体最丰富的 原子核,自然丰度和灵敏度均高, 最易被检测到,检测设备要求相对 简单,故近年来1H MRS 研究较多。
MRS基本原理
•
化学环境指的是,原子核所在
的分子结构。同一种原子核处在不
同的分子结构中,甚至同一个分子
结构的不同位置或者不同的基团中,
其周围的电子数和电子分布都将有
所不同,因而受到的磁屏蔽作用也
不同。处于化合物中的同一种原子
核,由于所受磁屏蔽作用的程度不
同,将具有不同的共振频率,这就
是所谓的化学位移现象,也是磁共
振波谱成像的基础。
磁共振波谱MRS的原理和临床应用
MRI与MRS的区别: MRI尽量去除化学位移的作用,并突出反 映组织间T1、T2的差异,而MRS恰恰要利 用化学位移的作用来确定代谢物的种类和 含量。
1 1946年美国斯坦福F.布洛克和哈弗大学 E.M.帕塞尔小组均同时记录到液体样品和固 体样品的磁共振信号。 2 20世纪50年代桑德斯和柯克伍德首次成功 的利用MRS直接观测生物大分子40MHz的 核糖核酸酶的MRS。此后,又连续测到其 他蛋白质、核酸、磷脂等相应组分。
在研究生物大分子时,MRS有以下技术特 点: 1 不破坏生物高分子的结构(包括空间结构) 2 在溶液中测定符合生物体的常态,也可测 定固体样品,比较晶态和溶液态构象的异 同。 3 不仅可以用来研究构象而且可以用来研究 构象变化即构象动力学过程。
4 可以提供分子中个别基团的信息,对于比 较小的多肽和蛋白质已经可以通过二维的 MRS获得三维的结构的信息。 5 可用来研究活细胞和活组织。
MRS在生物体中研究范围很广: 1 确定生物分子的成分和浓度,特别是可不破坏组织细胞 而测得其组分;确定异构体比例;确定分子解离状态;确 定金属离子或配基是否处于结合状态;以及测定细胞内外 的PH值等。 2 热力学的研究:测定酶与底物、配基、抑制剂的结合常 数;测定可解离基团的PK值,特别是生物大分子中处于不 同微环境的同类残基的同类基团的不同PK值。
化学环境指的是,原子核所在的分子结构。同一种原子 核处在不同的分子结构中,甚至同一个分子结构的不同位 置或者不同的基团中,其周围的电子数和电子分布都将有 所不同,因而受到的磁屏蔽作用也不同。处于化合物中的 同一种原子核,由于所受磁屏蔽作用的程度不同,将具有 不同的共振频率,这就是所谓的化学位移现象,也是磁共 振波谱成像的基础。
磁共振波谱技术在医学中的应用
磁共振波谱技术在医学中的应用磁共振波谱技术(MRS)是一种能够测量人体内部化学物质含量和分布的无损成像技术。
其基本原理是:通过利用核磁共振的原理,将人体分子中的氢离子激发到高能态,然后测量其复原过程中发送的特定频率以检测其所在分子的种类和浓度。
近年来,随着此项技术的快速发展,MRS 在医学领域得到了广泛的应用。
它具有无创性、无放射性、全身性和定量性的优点,成为现代医学诊断和治疗的重要手段之一。
以下是 MRS 在医学中的具体应用:一、诊断神经系统疾病MRS 技术可以检测人体神经系统组织中各种代谢产物,如 N-乙酰天冬氨酸(NAA)、肌酸(Cr)、胆碱(Cho)等,并测量它们的浓度。
这些代谢产物的浓度变化可以反映神经系统疾病的早期发生和恶化程度。
例如,NAA 是神经元的强有力标志,其浓度下降可以提示疾病的发生和后续恶化。
在 Alzheimer 病中,NAA 的降低率较高,而在多发性硬化症中,NAA 和 Cr 的浓度均较低。
二、诊断肿瘤MRS 技术还可以监测肿瘤代谢产物,因为肿瘤组织细胞代谢特征与正常组织细胞不同。
局部化 MRS 技术可以定量测量肿瘤中的乳酸、丙酮酸、胆碱等代谢产物,通过这些代谢产物的数量和种类,可以识别出肿瘤是良性的还是恶性的,并了解其扩散程度。
例如,前列腺癌中,胆碱浓度较高,而乳酸浓度较低,可以用来鉴别癌变和正常组织。
三、诊断肝病MRS 技术可以测量肝脏中的脂肪含量、乳酸含量和 ATP 含量等代谢产物的变化,为肝病的诊断和治疗提供了重要的指导。
例如,在肝脏脂肪变性的病人中,脂肪酸酰基转移酶等代谢酶的活性降低,脂肪的酶解也会减缓,从而导致脂肪积累。
MRS 技术可以测量肝脏中的脂肪含量,从而检测出这种疾病。
四、评估心脑血管疾病风险通过 MRS 技术,可以评估患者的心脑血管疾病风险。
例如,高胆固醇、高血糖等代谢异常会增加血管内皮细胞凋亡,导致血管壁变薄和血管分泌物质的过量释放。
MRS 可以显示出这些变化,进而判断患者的心脑血管疾病风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
包括了穩定態自由旋進(進動)造
影。
• 2 弛豫(relaxation )
• 病人检查时被置于磁场中接受 一序列脉冲后,打乱组织内质 子运动,脉冲停止后质子的能 级和相位恢复到激发前状态, 这一过程称为弛豫。纵向弛豫 (T1)和横向弛豫(T2)。
磁共振现象类比
• 玩具小鸡啄米--重力场<->主磁场, 摇晃的手<->脉冲激励磁场,回复平 衡状态<->弛豫
振波谱成像的基础。
MRS基本原理
• 实际上,研究某种样品物质 的磁共振频谱时,常选用一种 物质做参考基准,以它的共振 频率作为频谱图横坐标的原点。 并且,将不同种原子基团中的 核的共振频率相对于坐标原点 的频率之差作为该基团的化学 位移。显然,这种用频率之差 表示的化学位移的大小与磁场 强度高低有关。
• 2 热力学的研究:测定酶与底物、 配基、抑制剂的结合常数;测定可 解离基团的PK值,特别是生物大分 子中处于不同微环境的同类残基的 同类基团的不同PK值。
MRS在生物体中研究范围
• 3 动力学研究 • 监测反应进程测定各组分随时
间的变化等。 • 4 分子运动研究:如生物膜的
流动性等。 • 5 分子构象及构象变化研究 • 6 活体研究 • 7二维MRS研究:20世纪70-80年
mrs的原理和临床应用
什么叫核磁共振?
• 原子核在自旋中会产生磁 场,所以这样的原子核可以看 成微小的磁铁.如果把这样带 有磁性的核放到外磁场中,核 自旋对外磁可以有2I+1种取 向.氢原子核的I=1/2,因此只 有两种取向,+1/2,-1/2,即 与外磁场同向和与外磁场反 向.前者能量低,后者能量 高.
MRS基本原理
• 3 电子云:带负电荷的电子具有与 原子核相似的自旋特性,在原子核 周围形成具有屏蔽作用的磁场,这 一磁场称为电子云。电子云的作用 使得外加磁场对原子核的作用减弱。
• 4 化学位移 :
• 将人体置入外加主磁场中,核沿 主磁场方向做陀螺样进动,原子核 所受的磁场主要由主磁场决定。但 是,也与核的磁旋比γ、核外电子 云及临近质子的电子云有关。电子 云的作用会屏蔽主磁场的作用,使 的核所受的磁场强度小于外加主磁 场。这种由于电子云的作用产生的 磁场差异被称为化学位移。主要是 屏蔽系数与原子核的特性(或者说 种类)以及原子核所在的化学环境 有关。
• 3 不仅可以用来研究构象而且 可以用来研究构象变化即构象 动力学过程。
MRS技术特点
• 4 可以提供分子中个别基团的 信息,对于比较小的多肽和蛋 白质已经可以通过二维的MRS 获得三维的结构的信息。
• 5 可用来研究活细胞和活组织。
MRS在生物体中研究范围
• MRS在生物体中研究范围很广:
• 1 确定生物分子的成分和浓度,特 别是可不破坏组织细胞而测得其组 分;确定异构体比例;确定分子解 离状态;确定金属离子或配基是否 处于结合状态;以及测定细胞内外 的PH值等。
代人类进入二维到三维MRS研 究。
二维MRS波谱图
MRS的临床意义
• 磁共振波谱(MR Spectroscopy, MRS) 是医学影像学近年来发展的新的检查手段:
• 1.作为一种无创伤性研究活体器官组织代 谢、生化变化及化合物定量分析的方法,
• 2.随着MRI、MRS装置不断改进,软件开发 及临床研究的不断深入,人们通过MRS对各 种疾病的生化代谢的认识将不断提高,为 临床的诊断、鉴别、分期、治疗和预后提 供更多有重要价值的信息。
MRS基本原理
• 在正常组织中,代谢物在物质中 以特定的浓度存在,当组织发生病 变时,代谢物浓度会发生改变。磁 共振成像主要是对水和脂肪中的氢 质子共振峰进行测量 .
• 在1.5T场强下水和脂肪共振频率 相差220Hz (化学位移),但是在这 两个峰之间还有多种浓度较低代谢 物所形成的共振峰,如NAA、Cr、 Cho等,这些代谢物的浓度与水和脂 肪相比非常低。MRS需要通过匀场抑 制水和脂肪的共振峰,才能使这些 微弱的共振峰群得以显示.
• 3.1H MRS可对神经元的丢失、神经胶质增 生进行定量分析,
• 4 31P磁共振波谱可对心肌梗塞能量代谢变 化进行评价。
• 5 MRS以分子水平了解人体生理上的变化, 从而对疾病的早期诊断、预后及鉴别诊断、 疗效追踪等方面,做出更明确的结论.
MRS基本原理
• 磁共振波谱分析原理(MRS)
• MRS是一种利用核磁共振现象和化 学位移作用,测量脑内有关区域中 各种元素和化合物分子的波谱,借 此了解局部脑神经元的活动信息。 其基本原理与MRI一致,只不过经典 MRI和fMRI技术是检测水质子共振信 号,而MRS是检测其他化学物质分子 的质子或其他原子核(1H、31P、 23Na、13C、19F)的共振信号。其中 在医学领域应用最多的是1H和31P。
什么叫核磁共振?
• 若质子受到一定频率的电磁波辐射, 辐射所提供的能量恰好等于质子两 种取向的能量差,质子就吸收电磁 辐射的能量,从低能级跃迁至高能 级。这种现象即称核磁共振。
MRS发展历史
• 1 1946年美国斯坦福F.布洛克 和哈弗大学E.M.帕
MRS基本原理
•
化学环境指的是,原子核所在
的分子结构。同一种原子核处在不
同的分子结构中,甚至同一个分子
结构的不同位置或者不同的基团中,
其周围的电子数和电子分布都将有
所不同,因而受到的磁屏蔽作用也
不同。处于化合物中的同一种原子
核,由于所受磁屏蔽作用的程度不
同,将具有不同的共振频率,这就
是所谓的化学位移现象,也是磁共
• 2 20世纪50年代桑德斯和柯克 伍德首次成功的利用MRS直接 观测生物大分子40MHz的核糖 核酸酶的MRS。此后,又连续 测到其他蛋白质、核酸、磷脂 等相应组分。
MRS技术特点
• 在研究生物大分子时,MRS有 以下技术特点:
• 1 不破坏生物高分子的结构 (包括空间结构)
• 2 在溶液中测定符合生物体的 常态,也可测定固体样品,比 较晶态和溶液态构象的异同。
MRS基本原理
• •
一、名词解释
1进动:原子核在外加磁场中自 旋的同时,还以一定的角度围绕 外加磁场方向进行旋转运动,这
在一个旋转系统里,力 F 、 力矩 、动量 P 、角动 量 L ,这些物理量之间的关 系
种运动称为进动(precession)。
自旋的進動現象主要出現在核磁
共振與磁振造影上。其中的例子