轧制板形控制理论及技术.
轧钢机的弹性变形、轧件厚度及板形控制

1、基本功能和类型 一般称之为板厚自动控制(AGC)系统(Automatic Gauge Control),它包括: 测厚部份 检测轧件的实际厚度 厚度比较及调节系统 与设定值比较得出厚差δh,经计算后得出压下调节量δS。 辊缝调节 根据实际测出的压下量变化△S与计算得出的δS 值进行比较,输出电流信号,使液压侗服阀动作,完成辊缝的调节。 轧件变形区部份 这是厚度控制的对象,也是闭环控制系统中的一环。 根据轧件的测厚方法,厚度AGC系统可分为三种类型: 1)直接测厚的反馈式AGC。由测厚仪直接测得轧机出口的轧件厚度h,与设定值比较后得出偏差δh ,将此反馈给系统变换为辊缝调节量δS ,使压下装置移动相应的值以消除厚差δh 。
α=1,K=∞ 全补偿 α>0 ∞>K>C 硬特性(部份补偿) α=0,K=C 恒原始辊缝控制 不补偿 α>-∞,C>K>0,软特性(反方向部份补偿) α= - ∞ ,K=0,△P =0 恒压力控制(反方向全补偿)
以上控制方式的关系曲线见图示。同时也可以用P-H图表示。
一般在成品机架上为保持出口板厚不变,采用硬特性。而在平整机上,采用恒压力控制保持压力波动为零,使其出口板形良好,同时消除轧辊偏心对板厚的影响。
在压力反馈回路中,给出不同的辊缝调节系数Cp ,就能实现各种控制特性的厚度控制。如果将位置反馈回路断开,只是将轧制力P与给定的轧制力P0相比较,使系统保持P= P0,这就实现了恒压力控制。
从以上分析可知,提高机座的刚度系数C可以减小工作机座的弹性变形从而提高板厚精度。但是刚度的提高是有限的,完全依靠机座刚度系数C的提高来达到板厚精度是不可能实现的。必须通过轧机的板厚自动控制系统,可对板厚变化进行补偿实现高精度轧制。
其物理意义为单位板厚变化所对应的轧制力变化。当厚度变化为零时,这时当量刚度K为∞。以下用弹跳方程来分析实现这一过程的原理。
轧制工艺过程控制原理与方法

轧机刚度可变的基本方 程:
h h x P C P
Km
Km
P P Km KE
1C
h -轧辊位置补偿之后的带钢轧出厚度偏差; C-轧辊位置补偿系数; KE-等效的轧机刚度系数; x-轧辊位1-104 Davy-Loewy带钢张力控制系统 轧机;2-张力计;3-液压缸位置;4-液压缸;5-张力偏差;
P金 属F(的B,压R,力H方, h程, f:,T, s )
塑性曲线B
金属的压力方程
曲线B的斜率代表轧件塑性 的塑性刚度M :
M P P h
(3)实际轧出厚度随辊缝而变化的规律
轧机的原始预调 辊缝值S0决定着 弹性曲线A的起 始位置。
图1-92 实际轧出厚度随辊缝变化的规律
(4)实际轧出厚度随轧机刚度而变化的规律
1.9 轧制工艺过程控制原理与方法
本节应掌握的知识点: 1.板带厚度控制基本原理; 2.板带宽度控制的基本方式; 3.板形的基本概念
高精度轧制,对板、带钢的要求:
1)板带钢的横向断面厚度分布均匀性; 2)板带钢的纵向断面厚度分布的均匀性 3)板带钢断面宽度在纵向长度上分布的均匀性。
为保证横向断面厚度分布的均匀而提出:
1)辊型及辊型设计; 2)板型及板型控制
为保证纵向厚度分布均匀而提出:
1)自动厚度控制理论; 2)自动厚度控制技术
为保证纵向宽度分布均匀而提出:
1)自由张力连轧; 2)小张力连轧。
1.9.1 厚度控制 (1 )产生板厚变化的原因 1) 轧辊辊型的影响
(a)圆柱形轧辊的空载辊缝;(b)受力过程中产生轧辊挠度
6-位置基准值;7-位置调节器;8-张力基准值
⑥带活套的热带连轧机组中间机架的张力控制系统
浅谈冷轧带钢板型自动控制技术

高。因而影 响轧机 的生产能力 。此外 ,板形 不 良也使轧
机所 能轧 出的最薄规格受到限制 。
2 . 冷轧带钢板型的测量方法 :1 1 目测板形 。 在冷轧
机上 采用大张力轧制时 ,借助 于木棍打击低 速轧制 的带
钢 。根据木棍 打击带 钢 的声 音 和回弹检测 张应力 的分
布 。2 ) 用磁 力板形仪 进行测量 。 在带 张力冷轧 的情况 下 ,由于导致产生板形缺陷的不均匀延伸将使轧制张力 沿板 宽方 向的分布发生改变。非接触式的磁 力板形仪是 利用 带钢张力分布不均而引起导磁率变化的原理而制作 的仪器。仪器 的测定部分 由编成一组 的多对 探测头所组 成 ,探测头 的数 目根据板宽不 同可分为5 ~ 1 1 对。上探测
斜 调节量 ,由轧辊 压下位置进行调整 。( 2 ) 弯辊 和C VC 调节 :弯辊调节具有动作快 、简单 ,没有滞后 的特点 ,
所 以首先进行弯辊调节 。当二次板形缺陷分量在弯辊调 节能力4 0 ~ 8 0 %范围以 内时 ,单独进行弯 曲调节 。当超
出这个范围时 ,则要投入C V C 系统 ,共 同对二次板形缺
右 。同时也发现该 系统还有不完善的地方 ,如系统对板
均 ,每一段测量 出与其相接触的- -4 , 段带材( 2 5 ~ 5 0 毫米
宽) 中的张应力 ,据此反推板形并 实行控制。
二 、板 形 自动控 制 技术
板形 自动控制系统是 由板形检测装置 、控制器和板
轧制理论与工艺 第三篇 板带材高精度轧制和板形控制

(a)板坯厚度变化时:压下的调整
量△S0与料厚的变化量并不相等
由三角形DEE/和三角形EE/F 可推出下式:
S
=
0
M K
h 0
图14—1 (a)板坯厚度变化时
主要用于前馈即预控AGC,即 在入口处预测料厚的波动,据 以调整压下,消除其影响。
轧制理论与工艺
RAL
(b)变形抗力变化时:压下的调整量△S0与轧出板厚变化量△h也不相等
建议的,1蒙相当于相对长度差为10-4。泼森定义板形为横向
上单位距离上的相对长度差,以mon/cm表示,即:
s
104
L L
B) 加拿大铝公司是取横向上最长与最短纵条之间的相对长度差
作为板形单位,称为 I 单位,1个I单位相当于相对长度差为
10-5。所以板形表示为:
st
105
L L
式中:L—最短纵条的长度,mm。
因素:轧辊的弹性变形、不均匀热膨胀和不均匀磨损
轧辊的不均匀热膨胀
轧辊受热和冷却沿辊身分布不均,一般辊身中部温度
高于边部,传动侧低于操作侧,径向辊面高于辊心。
这使得热膨胀精确计算困难,一般采用简化公式:
Rt yt KT(TZ TB )R KTTR
式中 TZ、TB——辊身中部和边部温度; R ——轧辊半径; ——轧辊材料的线膨胀系数; KT——考虑轧辊中心与表面温度不均分布的系数,一般=0.9。
S/0
P/K
h
S0
(P-P0)/K
h
h
S0
P
P0 K
S0—考虑预压变形后的空载辊缝。
轧制理论与工艺
RAL
14.1.1 板带厚度变化的原因和特点
影响板带厚度的主要因素:
《六辊平整机非对称轧制过程板形预报与控制技术》范文

《六辊平整机非对称轧制过程板形预报与控制技术》篇一一、引言六辊平整机作为金属板材加工的重要设备,其非对称轧制技术因能够提高轧制效率及板材的成型质量而受到广泛关注。
在六辊平整机轧制过程中,板形的预报与控制技术是保证产品质量的关键环节。
本文旨在探讨六辊平整机非对称轧制过程中板形的预报与控制技术,以提高板材的加工质量和生产效率。
二、非对称轧制过程板形预报(一)预报模型建立板形预报模型是六辊平整机非对称轧制过程的核心,其准确性直接影响到轧制过程的控制效果。
预报模型应综合考虑轧机的几何参数、轧制力、轧制速度等因素,以及板材的材质、厚度、宽度等特性。
通过建立数学模型,实现对板形变化的预测。
(二)预报方法研究板形预报方法包括数值模拟、物理模拟及实际生产数据的统计分析等。
数值模拟方法可利用有限元软件对轧制过程进行仿真,预测板形的变化趋势。
物理模拟方法则通过建立实验装置,模拟实际轧制过程,获取板形变化的规律。
实际生产数据的统计分析方法则是通过收集并分析实际生产过程中的数据,找出板形变化的规律和趋势。
三、板形控制技术(一)轧制力控制轧制力是控制板形的重要参数。
通过合理调整轧制力的大小和分布,可以控制板材的厚度、宽度和板形。
在非对称轧制过程中,应合理分配各辊的轧制力,保证板材的稳定轧制。
(二)速度控制速度控制是保证轧制过程稳定性的关键。
在非对称轧制过程中,应合理调整各辊的速度,使板材在轧制过程中保持稳定的运动状态,避免产生波浪、翘曲等板形问题。
(三)温度控制温度对板材的轧制过程和板形具有重要影响。
在非对称轧制过程中,应合理控制轧制温度,保证板材的塑性变形和热传导过程的稳定性,从而控制板形的变化。
四、技术应用与优化(一)技术应用在实际生产中,应将板形预报与控制技术应用于六辊平整机非对称轧制过程中。
通过实时监测和调整轧制参数,实现对板形的精确控制。
同时,应结合生产实际情况,不断优化预报与控制模型,提高板形的预报精度和控制效果。
热轧带钢生产中的板形控制

热轧带钢生产中的板形控制是保证产品质量的关键环节之一。
板形控制主要包括轧制工艺参数的调整和辊系结构的优化两方面。
本文将从这两个方面进行详细的介绍。
一、轧制工艺参数的调整1. 温度控制:热轧带钢的温度对板形控制有着重要影响。
过高的温度会导致带钢热膨胀,从而产生较大的板凸度;过低的温度则会导致带钢冷却过快,使得带钢变形不均匀。
因此,必须对热轧带钢的温度进行精确控制,确保其在适宜的温度范围内进行轧制。
在实际生产中,可以通过控制热轧带钢的加热温度、热轧温度和冷却方式等来实现温度控制。
可以采用先控制热轧带钢的加热温度,确保钢坯达到适宜的温度范围,然后通过控制热轧带钢的入口温度和轧制温度来进一步调整温度进行控制。
同时,还可以优化冷却方式,如采用水冷、风冷等方法进行冷却,以达到更好的板形控制效果。
2. 速度控制:热轧带钢的速度对板形控制同样具有重要影响。
速度过快会导致拉伸应力过大,从而使板形产生波状或弓形变形;速度过慢则会导致带钢在轧制过程中受到过多的应力作用,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对轧制速度进行合理的控制。
可以通过调整轧机的传动装置、辊道的排列方式、模块的配比等来实现速度控制。
同时,还可以通过控制轧机的压下量、变形度等工艺参数来进一步调整速度进行控制。
3. 张力控制:热轧带钢的张力对板形控制同样具有重要影响。
张力过大会导致带钢产生不均匀的塑性变形,从而使板形产生波状或弓形变形;张力过小则会导致带钢发生塑性回弹,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对张力进行精确的控制。
可以通过调整轧机的辊道间隙、调整轧机的压下量、调整轧机的传动装置等来实现张力控制。
同时,还可以采用张力控制系统进行实时的张力监测和调整,以确保带钢在轧制过程中保持适宜的张力。
二、辊系结构的优化1. 辊系选择:辊系的选择对板形控制具有重要影响。
辊系的结构参数、辊型和辊材质等都会对板形产生影响。
合适的辊系选择可以实现板形的稳定控制,提高产品的表面质量和机械性能。
轧制厚度及板型控制

轧制厚度及板型控制导读:就爱阅读网友为您分享以下“轧制厚度及板型控制”资讯,希望对您有所帮助,感谢您对的支持! 厚度自动控制和板形控制项目1 板带材轧制中的厚度控制项目2 横向厚差与板形控制技术项目1板带材轧制中的厚度控制一、厚度自动控制的工艺基础 1.p-h图的建立(1)轧制时的弹性曲线轧出的带材厚度等于理论空载辊缝加弹跳值。
轧出厚度:h=S0 +P/K―――轧机的弹跳方程S0 ――空载辊缝P――轧制压力K――轧机的刚度系数根据弹跳方程绘制成的曲线(近似一条直线)――轧机弹性变形曲线,用A 表示。
A(2)轧件的塑性曲线根据轧制压力与压下量的关系绘制出的曲线――轧件塑性变形曲线,用B表示。
B(3)弹塑性曲线的建立将轧机弹性变形曲线与轧件塑性变形曲线绘制在一个坐标系中,称为弹塑性曲线,简称P-h图。
注意A线与B线交点的纵坐标为轧制力A线与B线交点的横坐标为板带实际轧出厚度2. p-h图的运用由p-h图看出:无论A线、B线发生变化,实际厚度都要发生变化。
保证实际厚度不变就要进行调整。
例如:B线发生变化(变为B‘),为保持厚度不变,A线移值A',是交点的坐标不变。
C线――等厚轧制线作用:板带厚度控制的工艺基础板带厚度控制的实质:不管轧制条件如何变化,总要使A 线和B 线交到C线上。
p-h图二、板带厚度变化的原因和特点影响板带厚度变化的因素:1、轧件温度、成分和组织性能不均匀的影响温度↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓变形抗力对轧出厚度的影响2、来料厚度不均匀的影响来料厚度↓→压下量↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓来料厚度对轧出厚度的影响3、张力变化的影响张力↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓张力对轧出厚度的影响4、轧制速度变化的影响通过影响摩擦系数和变形抗力来改变轧制压力。
摩擦系数↓→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓摩擦系数对轧出厚度的影响5、原始辊缝的影响原始辊缝减小,板厚度变薄。
浅谈轧机板形控制系统的组成及控制原理

电荷放大器将压电传感器生成的电荷信号转换为电压。 旋转变送器(PCM 变送器)将这些电荷放大器的输出信号 转换为(PCM 编码的)数字信号。数据通过电缆从旋转变 送器传递给安装在控制柜内的 PCM 解码器插架(PCM 已 经停产,现在基本都采用集成的 SIKO 模块代替 IOP 模块及 PCM 插架)。下图是 SIKO 模块实物图。
[1] 阿 亨 巴 赫 .OPTIROLL i2 SFC and SCA Training[CP/ K].2004[2021.5]. 设备厂家 .
Fti = 每个测量区铝箔张力 Fri= 每个传感器的径向力 HExit= 铝箔出口厚度
图 2 传感器受力模型
图 1 板形辊结构
收稿时间 :2021-05 作者简介 :郭明明,生于 1985 年,男,助理工程师,高级技师,研究方向 : 自动化控制、传动控制、设备管理。
铝箔两边张力 Fti 会产生一个向下的压力 Fri 即传感器的 径向压力。那压电传感器上会产生电荷脉冲。每个脉冲的强 度取决于轧制铝箔在铝箔横截面上的长度分布情况 , 铝箔精 确位置对覆盖少的传感器影响很大,以至于只有传感器覆盖 面积超过额定 50%,系统才可以使用测量。
M 冶金冶炼 etallurgical smelting
热轧带钢生产中的板形控制

热轧带钢生产中的板形控制,重要性不可忽视。
板形是指带钢在加热、轧制、冷却等工艺过程中所产生的板材几何形状的特征。
优秀的板形控制可以保证带钢的质量和性能,提高产品的市场竞争力。
板形控制主要涉及到工艺设计、机械设备、工艺参数和辅助控制手段等方面。
下面将详细介绍板形控制的相关内容。
首先,工艺设计是实现优秀板形控制的基础。
工艺设计要充分考虑加热炉、轧机和冷却设备等的配套性能和优化布置。
加热工艺设计要合理控制加热温度和速度,避免板材表面烧伤和内部结构变形。
同时,轧机的选择和布置要符合板材的特性,保证板材的厚度均匀性、宽度偏差和形状控制的稳定性。
冷却设备的设计要满足板材的冷却速度和控制要求,避免板材的变形和缺陷。
其次,机械设备对板形控制起到至关重要的作用。
加热炉要具备恒温、均匀加热的能力,避免板材局部温度差异引起的变形。
轧机要具备高质量的轧辊、轧制力控制等功能,确保板材的均匀变形和良好的表面质量。
冷却设备要有合理的布置和冷却参数,保证板材在冷却过程中的形状稳定。
第三,工艺参数的选择和调整对于板形控制具有重要意义。
加热温度和速度要控制在合理范围内,避免板材表面和内部温度梯度过大引起的变形。
轧制力、轧制速度和轧制间隙要根据板材的性质和要求进行合理的调整,保证板材的均匀变形和形状稳定。
冷却温度和速度等参数要控制在合理的范围内,避免板材在冷却过程中的变形和缺陷。
最后,辅助控制手段的应用可以提高板形控制的精度和稳定性。
例如,引入轧制力控制系统、辊形调整系统和垫板调整系统等,可以实时监测和调整轧机的工作状态,及时纠正板材的偏差和变形。
同时,利用数字化技术和智能控制系统,对板形控制进行实时监测和数据分析,提高板形控制的效果和精度。
总之,热轧带钢生产中的板形控制是一项复杂而关键的工作。
通过合理的工艺设计、优质的机械设备、合理的工艺参数和先进的辅助控制手段的应用,可以实现优秀的板形控制,提高带钢产品的质量和竞争力。
轧制理论

二、轧件厚度波动的原因及厚度控制的基本原理
中 厚 板 板 形 控 制 技 术
中厚钢板板形一直是困扰轧钢工作者的难题。生产初期采用烫辊、原始辊型以及加大轧 辊直径等办法,但收效甚微;之后增加轧机刚度、完善辊系,减少轧辊挠度、配臵弯辊装臵 及附设立辊轧机,已取得明显的效果;进而采用了AGC、计算机控制、BBR法、MSA法、 HCW轧机、VC辊、阶梯辊、PC轧机及CVC轧机等板形控制技术,将中厚钢板板形控制技术提 高到更高水平。 当前,为了提高中厚钢板的尺寸精度、成材率及其性能的均匀性、扩大钢板规格与品种、 减少精整工序,板形控制已成为中厚钢板生产中一项不可缺少的技术。 板形控制也是一项钢板主体三维形状的控制技术。最佳目标是生产出尺寸偏差非常小、 切头尾和切边极少、矩形、近似矩形及齐边(不切边或铣边)的平直钢板,并借此技术可以扩 大产品,生产出楔形(长度方向上不同厚度倾斜)、梯形(宽度方向上不同厚度倾 斜)、圆形、厚、异宽、防挽及带肋等各种异形钢板。 板形控制目标: (1)纵向厚度偏差,不大于±0.08mm; (2)横向厚度偏差, 不大于± 0.05mm; (3)不平直度,不大于0.04mm; (4)头尾异形总长,不大于50mm; (5)边部余量,不大于20mm; (6)镰刀弯,不大于1.5mm/全长; (7)宽度偏差,力0一+2mm; (8)长度偏差,不大于+ 0.02%全长; (9)平面识别,不大于+2mm; (10)成材率, 达96%以上。
二、轧件厚度波动的原因及厚度控制的基本原理
中 厚 板 板 形 控 制 技 术
纵向板厚控制 钢板轧制随着定尺长度的增大、纵向厚差的减小、板厚尺寸进级范围的缩小、异形板 轧制及平面板形控制的需要,因此,纵向板厚控制越来越重视,已成为现代化中厚板轧机 板形控制所必不可缺的重要手段。 随着中厚板轧机轧制速度的提高,轧制过程中坯料的厚度偏差、轧件头尾温差与黑印、 原料的强度与硬度不同、轧机刚度的变化、轧辊磨损、压扁、挠度成偏心、压下装臵调整 与检测的偏差等诸多因素的影响,钢板纵向板厚与偏差是不断变化的。 目前,国内外中厚板轧机上已普遍采用AGC技术来对纵向板厚进行控制。 AGC是根据 材料变形抗力或入口侧厚度偏差来控制压下量变化,使长度方向厚度恒定或很少变动。作 为厚度基础的厚度计AGC是以板厚计算公式计算出轧制中板厚来控制AGC 。 横向板厚控制 中厚板的横向板形控制,也叫凸度板形控制。 由于中厚板凸度的存在,板厚偏差值增大。特别是对桥梁和多层容器的影响最大,容 易产生弯曲应力和剪切应力,降低了工作应力与安全系数。另外,当一块宽板分割为两条 板时,造成钢板两边厚度不一致,也合影响用户的使用。因此,现代中厚板生产已将减少 凸度提高到非常高的地位,也是提高经济效益的一项重要措施。中厚板凸度是由轧辊的挠 度、不均匀磨损、温度变化、辊型及偏心等因素造成的。另外,轧机刚度和轧件温差的影 响也很大。其中轧辊产生挠度对钢板凸度的影响最为明显。因此,许多减少钢板凸度的措 施都是从减少轧辊挠度出发的。早期采用过烫辊的办法,目前,采用补偿与修正的措施有 加大支撑辊及机架立柱断面、合理设计机架与辊系、原始辊型、由宽至窄板的程序轧制、 弯工作辊、弯支撑辊,同时弯工作辊和支撑辊、阶梯辊、VC辊、HCW轧机、PC轧机及CVC 轧机等。
中厚板轧机的板形控制

中厚板轧机的板形控制(壹佰钢铁网推荐)板形控制对于提高板带材质量意义重大,是板带压力加工的核心控制技术之一。
近年来,随着先进的板形控制技术不断涌现并日臻完善,促进了板带钢生产装备的进步和产业升级,生产效率和效益大幅提升。
然而,普通中厚板轧机一般为可逆式四辊轧机,常采用单机架或双机架结构布置,有些只具有简单的弯辊装置。
由于设备或工艺的原因,板形控制能力不强,制约了板材质量和成材率的提高。
所以,普通中厚板轧机的板形控制仍然是一个重要课题。
在轧制计划已知的条件下,中厚板轧机板形与板凸度控制手段主要有工作辊弯辊、压下负荷分配以及工作辊和支撑辊的初始辊型。
1. 工作辊弯辊技术。
液压弯辊技术是目前中厚板生产中常用的板形控制技术,其基本原理是通过对工作辊或支撑辊辊颈施加适当的弯辊力来瞬时地改变轧辊的有效凸度,从而改变承载辊缝形状和轧后钢板的延伸率沿横向的分布。
工作辊弯辊直接对辊缝形状产生影响,从而改变轧件的出口板凸度。
由于前面道次轧件较厚,凸度遗传效应小,而对板形和板凸度起决定性影响的轧制道次主要是后 3~4 道次,所以不必对一块钢坯所有轧制全部道次都采用弯辊进行板形控制,只需要在后几个关键道次采用弯辊进行板形和板凸度控制即可满足精度要求。
因此,前面道次不采用弯辊,尽量采取大压下量来发挥轧机的能力;最后三或四个道次采用弯辊控制。
2. 压下负荷分配。
在中厚板轧制时,压下负荷分配是板形与板凸度控制的重要手段。
压下负荷分配是通过调整各个道次的压下量使其轧制力改变,从而使承载辊缝形状发生改变,轧件的出口凸度也随之发生改变。
压下负荷分配可以根据生产中在线的板形情况进行适时调整,响应速度快,操作性和适应性较强。
不同的轧制阶段、不同的辊型、不同的轧件材质和不同的轧制温度等所对应的压下规程分配方法不同,所以应该根据实际情况进行动态的轧制负荷分配。
3. 工作辊和支撑辊的初始辊型。
轧辊辊型是影响板凸度的重要因素,所以,改善板形与控制板凸度常见的方法是进行工作辊辊型的合理设计。
热轧带钢生产中的板形控制(三篇)

热轧带钢生产中的板形控制热轧带钢是一种由连续轧机通过高温轧制过程中制造的带状钢材,具有广泛的应用领域,如建筑、机械制造、汽车工业等。
然而,在热轧带钢生产过程中,由于各种因素的影响,往往会出现板形问题,即钢带在轧制过程中出现不平整、弯曲或起波等现象。
这不仅影响了带钢的质量和性能,还会给下道工序的加工带来困难和影响。
因此,热轧带钢生产中的板形控制至关重要。
板形问题的产生原因多种多样,下面将分析几个主要的因素,并介绍相应的控制措施。
1. 型辊和辊系的设计和调整:型辊是轧制过程中起着塑性变形和形状控制作用的关键元件。
首先,型辊的选择应根据带钢的要求和钢种的性质进行选择,以确保能够得到所需的板形公差。
其次,型辊和辊系的调整是关键,应确保辊系的轴线垂直于水平线,并且各辊之间的间隙和压力均匀,以避免板形问题的产生和扩大。
2. 加热温度的控制:加热温度是热轧带钢生产中的重要参数之一,直接影响到钢材的塑性变形和板形控制。
在加热过程中,应控制好加热温度的均匀性和稳定性,避免温度过高或不均匀导致的板形问题。
此外,还应注意控制加热速度和冷却速度,以控制好板坯的温度梯度,避免板坯的不均匀热胀冷缩引起的板形问题。
3. 轧制工艺的优化:轧制工艺是实现板形控制的关键。
首先,应合理选择轧制规范,确定合适的轧制温度和轧制比例,以控制好板材的塑性变形和减小残余应力。
其次,应注意轧制过程中的控制,在控制好板材的进给速度和板坯的温度梯度的同时,要控制好辊系的磨损和辊承力等参数,以避免板形问题的产生。
4. 板形测量和反馈控制:板形问题的产生往往是由于辊系和工艺参数的变化引起的,因此要及时发现和识别板形问题的存在和变化,就需要进行板形的测量和反馈控制。
目前,常用的板形测量方法主要有激光束法、光干涉法和摄像机法等,通过对板形的实时测量和分析,可以及时调整辊系和工艺参数,以达到板形控制的目的。
总之,热轧带钢生产中的板形控制是一个复杂的问题,需要从多个方面进行综合分析和控制。
《2024年UCM冷连轧机薄带钢轧制板形控制的研究及有限元仿真》范文

《UCM冷连轧机薄带钢轧制板形控制的研究及有限元仿真》篇一一、引言随着现代工业的快速发展,冷连轧机在钢铁生产中扮演着越来越重要的角色。
特别是对于薄带钢的生产,轧制板形控制成为了决定产品质量的关键因素之一。
UCM冷连轧机作为一种先进的轧制设备,其轧制板形控制技术的研究对于提高产品质量、优化生产流程具有重要意义。
本文旨在研究UCM冷连轧机薄带钢轧制板形控制技术,并利用有限元仿真进行验证和分析。
二、UCM冷连轧机薄带钢轧制板形控制技术研究1. 轧制板形控制原理UCM冷连轧机薄带钢轧制板形控制主要是通过调整轧机的辊缝、轧制速度、轧制力等参数,以实现对带钢板形的有效控制。
其原理主要基于塑性变形理论、弹塑性力学以及金属材料的流动特性。
在轧制过程中,通过合理调整这些参数,可以控制带钢的横向流动和纵向延伸,从而达到控制板形的目的。
2. 影响因素分析影响UCM冷连轧机薄带钢轧制板形控制的因素较多,主要包括原料厚度、原料宽度、轧辊转速、轧制力、温度等。
这些因素对带钢的轧制过程、金属流动以及板形产生重要影响。
因此,在控制板形时,需要综合考虑这些因素的影响。
三、有限元仿真分析为了更好地研究UCM冷连轧机薄带钢轧制板形控制技术,本文采用有限元仿真方法进行验证和分析。
有限元法是一种有效的数值模拟方法,可以模拟复杂的金属轧制过程,并对轧制过程中的应力、应变、温度等参数进行精确计算。
1. 模型建立根据UCM冷连轧机的实际结构和工艺参数,建立相应的有限元模型。
模型包括轧机、轧辊、带钢等部分,并考虑了材料属性、接触条件、摩擦条件等因素。
2. 仿真过程及结果分析在有限元模型的基础上,对UCM冷连轧机的轧制过程进行仿真。
通过调整辊缝、轧制速度、轧制力等参数,观察带钢的轧制过程和板形变化。
通过对仿真结果的分析,可以得出不同参数对板形的影响规律,为实际生产提供指导。
四、实验验证及结果分析为了进一步验证有限元仿真的准确性,本文进行了实际生产实验。
铝 箔 轧 制 中 的 板 形 控 制

铝箔轧制中的板形控制板形控制是铝箔轧制中的核心技术,是提高箔材成品率和产品质量的关键操作,也是实现高速轧制的基本条件。
笔者根据从事箔轧多年的实践,谈谈板形控制的原理及方法,供同行参考。
1 箔轧形状缺陷的产生和不平度的描述箔材平直度的好坏取决于轧件宽度方向上各点纵向延伸是否相等。
当发生不均匀变形时,变形体内的应力分布也呈不均匀分布,导致附加应力产生,变形结束后留在变形体内形成残余应力。
当变形体内残余应力间的相互作用不能抵消,且超过箔材维持箔面刚性平衡的应力水平时,轧制中的铝箔将发生形状失稳,出现诸如中间波浪、两边波浪、单边波浪、或二肋波浪等形状缺陷,以松弛不均匀变形产生的残余应力,则箔面的平直度遭到破坏。
由于轧制变形区内变形情况的复杂性,易受外部其他因素的影响而具有很大的随机性,轧件均匀变形的可能性并不大,因此实际生产出的铝箔或多或少都带有一定程度的不平度。
平直度是衡量铝箔质量的重要指标,需要定量描述以界定平直度合格与不合格范围。
目前常用的有两种方法:不平度和相对长度差。
其前提是把板材或箔材轧制中出现的波浪视为正弦波形,如图l所示。
图1 板箔材的波浪度1.1 不平度该方法是取一条纵向试样置于平台上,测定波高、波长。
算出波高与波长比值百分数。
该方法简单易行,但易受被测试样自重影响,波高、波长测量准确性不高,箔材轧制中很少采用。
λ=h/L×100%(1)式中:λ—不平度;h—波高;L—波长。
(1)式中当λ=1%时,波浪就较为明显。
1.2 相对长度差图1曲线部分和直线部分相对长度差由线积分求正弦曲线长度后得出:△L/L=(πh/2L)2(2)式中:△L/L—相对长度差;h—波高;L—波长。
△L/L单位为I。
相对长度差为10-5时为1个I单位,板形的不平度或板形偏差:Σ=105△L/L,Σ单位为I。
该方法是纵向取1 m箔材,沿横向切取宽约20mm的窄条,展开后测量长度方向增量△L,纵向最短的窄条长度(其△L=0)视为L,把△L、L值代入(2)式求出△L/L。
热轧带钢板形控制

热轧带钢板形控制一、 板形基本概念板形是指成品带钢的断面形状和平直度两项指标,二者都是标志带钢质量的重要指标,并且在生产中有着密不可分的联系。
1、断面形状断面形状是带钢厚度沿板宽方向的分布情况,如图1所示。
在实际生产中,以凸度来简单表示,如下式:e c h h -=δ式中:δ——带钢凸度。
h c ——带钢中部厚度。
h e ——带钢两边厚度平均值(由于存在“边部减薄”现象,一般取距带钢边部25~50mm 处的厚度作为边部厚度)。
2、平直度平直度指标表示带钢是否存在翘曲及翘曲的程度,即浪形,见图2。
可用以下几种方法表示:(1) 相对波峰值表示法%1000⨯=L hλ式中:h 、L 0——分别表示浪高和浪距。
(2) 相对长度差表示法相对长度差表示波浪部分的曲线长度对于平直部分标准长度的相对增长量。
可用下式表示:I L L x L x 5010)()(⨯-=ε 式中:L(x)——宽度方向任一点x 上的波浪弧长I ——表示平直度的单位,1I 单位相当于1m 长的带材中有10μm 的相对长度差。
图1 带钢横断面形状图2 带钢浪形示意图另外,还有张力差表示法、向量表示法和带钢断面的多项式表示法等。
二、 板形控制原理 1、凸度控制在带钢轧制过程中,其断面形状最终将取决于两工作辊间的辊缝形状。
因为辊缝形状由工作辊辊型曲线决定,所以,凡是影响工作辊辊型曲线形状的因素都会改变带钢的断面形状。
影响带钢凸度的因素有:(1) 工作辊原始凸度; (2) 工作辊热凸度; (3) 工作辊磨损凸度;(4) 工作辊在轧制力及弯辊力作用下产生的弯曲挠度;(5) 工作辊在不均匀分布的轧制力作用下沿板宽方向产生的弹性压扁。
控制带钢凸度(即控制工作辊辊缝形状)的方法因轧机的技术装备水平不同而不同。
(1) 以原始辊型设计为基础,合理地编制轧制规程。
通过合理分配各架轧机的负荷,来补偿因轧辊热凸度、磨损凸度和弹性变形而带来的辊缝形状的改变。
轧制自动控制5-板形分析模型

根据实际生产需求选择合适的评价指标, 如准确率、召回率、F1分数等。
结果分析
模型应用
对验证结果进行分析,找出模型的优点和 不足,并提出改进措施。
将经过验证的模型应用到实际生产中,以 指导轧制工艺参数的调整和优化,提高板 材的质量和产量。
04 轧制过程中的板形控制
控制策略
前馈控制
基于对轧制过程的理解和预测, 提前调整相关参数,以减少或消
05 板形分析模型的应用
在轧制过程中的应用
实时监测
预防设备故障
板形分析模型可以实时监测轧制过程 中的板材形状变化,及时发现并解决 板形问题,确保产品质量。
板形分析模型可以监测轧制设备的运 行状态,及时发现设备故障或异常情 况,避免生产中断和产品质量下降。
优化轧制参数
通过分析板形数据,可以优化轧制参 数,如轧制力、轧制速度和轧辊间距 等,提高板材的平直度和一致性。
轧制自动控制5-板形分析模型
目 录
• 引言 • 板形的基本概念 • 板形分析模型 • 轧制过程中的板形控制 • 板形分析模型的应用 • 结论与展望
01 引言
背景介绍
轧制技术是金属加工领域中的重要技术,广泛应用于钢铁、 有色金属、木材等材料的加工。随着科技的发展,轧制技术 也在不断进步,其中板形控制是轧制技术中的重要研究方向 之一。
板形是指金属板材的平面形状,其质量直接影响到后续加工 和最终产品的性能。因此,研究板形控制技术对于提高产品 质量和降低生产成本具有重要意义。
研究目的和意义
研究目的
本研究旨在建立轧制自动控制5-板形分析模型,通过对实际生产数据的分析和模拟,探究轧制过程中板形的形成 机制和控制方法,为实际生产提供理论支持和技术指导。
薄规格钢板轧制板形控制技术应用分析

薄规格钢板轧制板形控制技术应用分析摘要:薄规格规格钢板通过轧制后的原始板形通常较差,要解决工艺过程的难题,实现高效化生产,需从生产管理、工艺技术和设备能力上进行系统的创新与改进。
基于此,本文对影响薄规格钢板生产的主要因素以及薄规格钢板轧制板形控制技术应用进行了分析。
关键词:薄规格钢板;精轧机;板形;温度1 影响薄规格钢板生产的主要因素1.1 精轧机轧制温度精轧机轧制过程中,受工作辊冷却水、辊道冷却水、钢板长度等影响,钢板在轧制过程中降温很快。
从现场生产情况来看,薄规格钢板精轧机轧制7道次,开轧温度在1000℃以上,终轧温度在780℃左右,才能保证正常轧制。
精轧机开轧温度低于980℃,终轧温度低于750℃,就极易出现甩尾、刮框等生产质量问题。
1.2 厚度控制轧制6mm×3000mm钢板,精轧机设定厚度6.2mm,轧制后钢板实际厚度为6.8mm,存在厚度控制不到位问题。
分析精轧机PDA数据,第4道次轧制完成后,检测到轧制力超过200t。
而EGC为无负载压下单元,当轧制力超过200t时,EGC停止动作,由此造成后面几个道次辊缝调节EGC不动作,全部由HGC完成。
而受行程和保护影响,HGC不能完全达到所需要的辊缝调节量,造成末道次设定辊缝与实际辊缝偏差较大,产生了设定厚度与实际厚度的偏差,精轧机厚度控制达不到质量要求。
1.3 板形控制板形控制是轧制薄规格钢板的一项关键技术,包括平面板形控制、浪形控制以及镰刀弯板形控制等。
由于精轧机无弯辊、窜辊等板形控制手段,辊型稳定性存在一定问题,前后推床导板对中性有差异等,造成轧制薄规格钢板的板形控制难度很大。
L2数学模型,如轧辊热凸度数学模型、轧辊磨损数学模型等计算值与实际值的差别,影响了精轧机轧制规程以及板形控制。
1.4 轧制规程料型选择、坯料的加热制度都影响轧机的轧制规程,轧制规程是否合理,直接决定了薄规格钢板能否顺利轧制。
粗轧机轧制道次不超过6道次,精轧机轧制道次不超过7道次,才能保证精轧机轧制温度。
2024年热轧带钢生产中的板形控制(三篇)

2024年热轧带钢生产中的板形控制在带钢生产中,只有保证其良好的板形,才能确保生产顺利进行,才能使产品产量、质量不断提高。
当带钢内部残余应力足够大时,会使带钢翘曲,表现为侧弯、边浪、小边浪、小中浪。
在带钢钢种确定的情况下,产生翘曲与带钢的宽度、厚度有关。
带材越薄、越宽,生产中越易翘曲。
而目前市场对带材的需求是既宽且薄,因此,良好的板形控制非常重要。
一、生产中出现板形问题的主要原因1.带钢的不均匀受热或冷却带钢加热或冷却不均时会在内部产生应力,当其值超过极限就会出现板形问题。
在宽度方向上出现应力不均时会产生边浪或小边浪。
2.坯料尺寸不合如果坯料尺寸不合规格,断面厚薄不均,则会造成带材宽度方向延伸不均。
3.辊缝设置不合理如果辊缝设置不均匀,单边差较大,则会导致带材延伸不一致。
4.轧辊问题(1)在轧制过程中,轧辊因受较大轧制力、热凸度、磨损等影响,会出现一段有害变形区。
(2)由于轧辊材质或铸造问题,使用中会出现较大磨损;意外事故也会导致轧辊端部剥落,使带材受力严重不均,出现侧弯。
(3)轧辊导卫固定不牢,轧辊轴承座和机架窗口间隙大,也会引起轧辊横向窜动。
二、预防措施1.严格执行加热制度,保证加热质量生产中必须严格执行加热制度、停轧降温制度。
要根据轧制节奏需要,合理控制各段炉温,保证开轧温度,并使坯料加热均匀。
2.保证坯料表面质量和尺寸精度装炉前要对坯料进行表面检查,及时清除表面缺陷,并保证尺寸精度。
3.合理设置辊缝根据轧制规程合理调整各道次压下量,轧制速度必须与压下量相适应。
轧制过程中精轧机组保持小套量微张力轧制,精、粗轧机组之间保持无张力微堆轧制。
粗轧单边差不大于05mm,精轧单边差不大于003mm。
4.正确选择轧辊材质,合理设计轧辊辊型根据轧制过程中出现的轧辊有害变形区大小,计算支撑辊的弯曲挠度,合理设计辊型。
在支撑辊两端改为阶梯形过度。
另外,应合理选择轧辊材质,减少轧辊表面磨损,并尽可能减少有害变形区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P0 0 S0’ g S
k α f h( f ) f=(P- P0)/k
0
x x x
H
h
P0:预压靠力
S0’ :原始空载辊缝 S0 :考虑预压变形时的(相当)空载辊缝 对应弹跳方程:
S :压力为0时辊缝指示器读数
P P0 h S0 K
1.2 塑性曲线
当 B、H、R、…….均一定时,可认为P随h而变
P
0 S2 S1
S3 h 2 h 1 h 3
H h(H)
3)影响P的因素←轧件及工艺方面原因 (1)轧件温度、成分、组织性能不均等
P 2 1 T2ْC< Tْ1C h2>h1
热轧TْC↕-- TْC↓→ σ↑(K↑)→ P↑→ P/K↑→ h↑
P2
P1
0 S0
h1
h2
H
h(H)
冷轧--σ↑(K↑)→ P↑→ P/K↑→ h↑
1 PE P 1 m1 s1 m2 s 2 K
入口、出口张力因子 m1取0.5~0.667、m2取0.335~0.5)
P
2 1 H 2>H 1 h2>h1 h1 h2 H1 H2 h(H)
(4)坯料尺寸变化
P2 P1
0 S0
B↕、H↕→∆h↕→P↕→P/K↕→ S↕→ h↕
P 2
P2
P1
1
σ2>σ1 h2>h1
0 S0
h1 h 2
H
h(H)
(2)速度变化--通过f、油膜厚度、变形抗力等起作用
P 1 2
热轧
V 2>V 1
油膜厚度↑ h2<h1
P1
P2
• 辊速V↕较大时油膜厚度↕→S↕→h↕
• V↑→油膜厚度↑→S↓→∆h↑→h↓
V↑
0 S0
h2
h1
H
h(H)
S 冷轧V↕ → f↕→ P↕→S↕→h↕ →油膜厚度↕→ P↕→S↕→h↕ V↑→f↓→σ↓→P↓→P/K↓→ S↓→ h↓
2)考虑预压变形时P-H图
P P
C—等厚线
弹跳方程: h:出口厚度
h S0
P P0 K
S0 :考虑预压变形时的(相当)空载辊缝
P0 0 α S0 (P- P0)/k h β
P0:预压靠力 K:轧机刚度系数
H (H)h
P:轧制压力
• 可较直观地分析H、h、P以及S0等参数关系,是弹跳方程和塑性方程联 解的一种图解形式; • 直观地反映了轧制条件和轧机刚度对h的影响,并能对轧机操作调整进 行分析,是厚控的基础。
S0’ S0
• 轧机刚度系数 K=tgα =∆P/∆f
kg/mm
• K物理意义:当轧机产生单位弹性变形时所需施加的负载量。
2)考虑预压变形时弹性曲线
gkl与0k’l’对称
l’ 压缩 k’ f’ S 人工零位 S0 S0 h P
l
拉伸
gf= 0f’=S 0f= S0’+ S = S0 P= P0
辊缝指示器
Institute》
《 The Iron and Steel
《ISIJ International》等。
方法:
从基本理论掌握入手,理论联系实际,学会分析及
解决实际问题的方法和能力。
第二讲
厚度控制原理及技术
厚度是板带钢最主要尺寸质量指标之一,厚度自控是现代板带生
产中不可缺少的重要组成部分。 高精度指厚度h 纵向的精确度---主要取决于有载辊缝的大小 横向的精确度---主要取决于有载辊缝的形状
2 厚度变化原因及特点(规律)
2.1 厚度差(h↕)类型:
1)头部厚度偏差:
主要原因:空载辊缝设置不当;
来料参数↕时未能及时调整S0 ;
2‘
件厚
设定值 3‘
1‘ 2 1 3
件长
2)同板厚差(纵向厚差): 主要原因:是P↕→使辊缝S0不变的情况下h↕
2.2 厚度变化主要原因及特点
1)影响K的因素
h S0
P
S↓
1 2
P1
P2
V 2>V 1 (f 2< f 1) h2<h1
h2 h 1 H h(H)
0 S0
(3)张力变化--通过Qp、K起作用 例:穿带、抛钢时,带钢头、尾张力是突然↑or消失的
P 1 q 2>q 1 h2<h1
P1
P2
2
0 S0
h2 h1 H
h(H)
q↕→Qp↕、K↕→P↕→头尾出现两个厚度增大区→↑切损 带张力时的轧制力
P P0 K
K:当轧机产生单位弹性变形时所需施加的负载量 K=f(P、B、V、辊材质、凸度、D工与D支接触状态…..) • 一般认为:在一定轧机上对一定产品B,可认为K不变
P K2 K1
K2> K1
• K↑→有利轧更薄 目前一般K>500~600t/mm
0 S0
h2 h1
H
h(H)
2)影响S0的因素 S0 决定轧机弹跳起始位置,包含: • 压下位置↕→即S0↕→h↕; • 轧机部件热胀、辊磨损、偏心→S0↕→h↕;
• 研究其:影响因素、变化规律、控制措施
1 P-h 图的建立
1.1 弹性曲线 --表示轧机弹性变形与轧制力间关系曲线 建立方法--实测 分 轧板法--改变辊缝S法、固定辊缝S法; 压靠法--人工零位法;
1)典型图示: P
l
P ∆P
P
g
∆f
k
α f f h
S0’: 原始空载辊缝 H h f:轧机弹性变形量
学习目的:
•了解及掌握高精度轧制技术基础理论知识。
•了解当前国内外现代轧制技术的(现状、特点、发展) 新工艺、新技术、新发展
学习要求:
•了解该学科的核心、科学前沿、发展动态。 如: 阅读国内核心刊物--《钢铁》、《轧钢》、 《金属学报》、《特殊钢》等;
国外刊物--《 Iron and
Steel Engineer》
轧制板形控制理论及技术
教材:
金属塑性加工学--轧制理论与工艺(第二版) 王廷溥,齐克敏主编,2002
主要参考书:
1,高精度轧制技术,黄庆学 梁爱生著,冶金工业出版社,2002。 2,高精度板带材轧制理论与实践,{美}V.B金兹伯格著, 姜明东 王国栋等译,冶金工业出版社,2000 3,带钢热连轧的模型与控制,孙一康著,冶金工业出版社,2002 4,带钢冷连轧计算机控制,孙一康著,冶金工业出版社,2002 5,金属塑性加工学----轧制理论与工艺(第二板), 冶金工业出版社,2001 6,
P
∆Pi β
∆hi
h3 h1 h2
H
(H)h
定义:件塑性刚度系数
M tg
Pi hi
1.3 弹-塑性曲线(P-H图)
为了讨论方便,弹、塑性曲线均用直线代替:
1)不考虑预压变形时P-H图 P
P
0
α S0 h
β H (H)h
• 对应弹跳方程基本形式:
h S0
P K
S0:将曲线以直线取代时的(假定)空载辊缝 K:轧机刚度系数