二重积分与二次积分ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
j(x)
D
b
x= j2(y)
注:若左、右边界曲线中有分段曲线,比如左边界曲线是分段曲线:
x
=
j
(
y)
=
j1 j 2
( y) ( y)
a yc , c yb
D c
Байду номын сангаас
x= j1(y)
x= y(y)

f (x, y)d =
c
dy
y (x)
f (x, y)dx
b
dy
y (x)
f (x, y)dy
b
dx
y (x) f (x, y)dy 。
a
j1 ( x)
c
j2 (x)
D
O
y= y(x)
D
y= j1(x)
a
y= j2(x)
c
bx
首页
上页
返回
下页
结束
2.将二重积分化为先对x 后对y 的二次积分
第一步:根据已知条件画出积分区域D的图形。
第二步:将区域D向x轴投影,得到投影区间[a, b]。
第三步:确定区域D的上下边界曲线。
设下边界曲线为y= j(x),上边界曲线为y= y(x),且上、下边界曲线都不是分段曲线。
第四步:写出二次积分
y
f (x, y)d =
b
dy
y (x) f (x, y)dx 。
a
j(x)
b
D
x= j(y)
a O
D
x= y(y)
x
首页
上页
返回
下页
结束
2.将二重积分化为先对x 后对y 的二次积分
1.将二重积分化为先对y 后对x 的二次积分
第一步:根据已知条件画出积分区域D的图形。
第二步:将区域D向x轴投影,得到投影区间[a, b]。
第三步:确定区域D的上下边界曲线。
设下边界曲线为y= j(x),上边界曲线为y= y(x),且上、下边界曲线都不是分段曲线。
第四步:写出二次积分
f (x, y)d =
b
dx
y (x) f (x, y)dy 。
a
j(x)
D
y
y= y(x)
D
Oa
y= j(x)
bx
首页
上页
返回
下页
结束
1.将二重积分化为先对y 后对x 的二次积分
第一步:根据已知条件画出积分区域D的图形。
第二步:将区域D向x轴投影,得到投影区间[a, b]。
第三步:确定区域D的上下边界曲线。
设下边界曲线为y= j(x),上边界曲线为y= y(x),且上、下边界曲线都不是分段曲线。
y (x) f (x, y)dx 。
a
j1 ( x)
c
j2 (x)
a
D
O
x
首页
上页
返回
下页
结束
第一步:根据已知条件画出积分区域D的图形。
第二步:将区域D向x轴投影,得到投影区间[a, b]。
第三步:确定区域D的上下边界曲线。
设下边界曲线为y= j(x),上边界曲线为y= y(x),且上、下边界曲线都不是分段曲线。
第四步:写出二次积分
y
f (x, y)d =
b
dy
y (x) f (x, y)dx 。
第四步:写出二次积分
y
f (x, y)d =
b
dx
y (x) f (x, y)dy 。
a
j(x)
D
注:若上、下边界曲线中有分段曲线,比如下边界曲线是分段曲线:
y
=
j
(x)
=
j1 (x) j 2 (x)
axc, c xb

f (x, y)d =
c
dx
相关文档
最新文档